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Abstract We extend the classical notion of a Reedy category so as to allow non-trivial
automorphisms. Our extension includes many important examples occurring in topology
such as Segal’s category I', or the total category of a crossed simplicial group such as Con-
nes’ cyclic category A. For any generalized Reedy category R and any cofibrantly generated
model category &, the functor category EX is shown to carry a canonical model structure of
Reedy type.
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0 Introduction

A Reedy category is a category R equipped with a structure which makes it possible to prove
that, for any Quillen [32] model category &, the functor category £ inherits a model struc-
ture, in which the cofibrations, weak equivalences and fibrations can all three be described
explicitly in terms of those in £. Prime examples of such Reedy categories are the simplex
category A and its dual A°P; the corresponding model structure on cosimplicial spaces goes
back to Bousfield-Kan [9], while the model structure on simplicial objects in a model cate-
gory £ is described in an unpublished manuscript by Reedy [34]. The general result for an
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arbitrary model category £ and Reedy category R is by now a standard and important tool in
homotopy theory, well explained in several textbooks, see e.g. [20,22,23].

As is well known, Reedy categories are skeletal, and moreover do not permit non-trivial
automorphisms. There are, however, important cases in which it is possible to establish
a Reedy-like model structure on the functor category ¥ even though R does have non-
trivial automorphisms. One example is the strict model structure on I'-spaces (space-valued
presheaves on Segal’s [36] category I') established by Bousfield—Friedlander [8]. Another
example is the case of cyclic spaces (space-valued presheaves on Connes’ category A, see
[14]). This paper grew out of a third example, namely the category of dendroidal spaces [30],
which carries a Reedy-like model structure, although a dendroidal space is by definition a
presheaf on a category 2 of trees containing many automorphisms. Using the results of this
paper, it has been shown that a localization of our Reedy-like model structure on dendroidal
spaces is equivalent to a model structure on coloured topological operads, cf. [12,13].

In this paper, we introduce the notion of a generalized Reedy category, and prove that for
any such category R and any R-projective (e.g. cofibrantly generated) Quillen model category
&, the functor category £ R inherits a model structure, in which the cofibrations, weak equiv-
alences and fibrations can again be described explicitly in terms of those in £. Any classical
Reedy category is a generalized Reedy category in our sense; in fact, a generalized Reedy
category is equivalent to a classical one if and only if it has no non-trivial automorphisms.
Segal’s category I' (as well as its dual) and the cyclic category A of Connes are examples of
generalized Reedy categories, as is any (finite) group or groupoid. The cyclic category is an
example of the total category associated to a crossed simplicial group [18,26]; we will show
that the total category of any crossed group on a classical Reedy category is a generalized
Reedy category. This method yields many interesting examples of generalized Reedy cate-
gories with non-trivial automorphisms. In particular, the category €2 mentioned above is of
this type. Other examples of generalized Reedy categories relevant in homotopy theory are
the orbit category of a finite or compact Lie group, and the total category associated to a
complex of groups, see e.g. [21].

The results of this paper lead to interesting applications and further questions. We already
mentioned the comparison between dendroidal spaces and coloured topological operads,
which is analogous to the comparison between complete Segal spaces (a localization of
the Reedy model structure on simplicial spaces) and topologically enriched categories—
see [6,11-13,25,27,35]. We expect the Reedy model structure on spaces over a complex
of groups to be useful in describing the derived category of the corresponding orbifold.
A precise comparison would refine the weak homotopy equivalence between (the classifying
spaces of) the complex of groups and the proper étale groupoid of the corresponding orbifold,
cf. [29]. Another topic to be explored further is the relation between various models for cyclic
homology (see e.g. [33]) and the Reedy model structure on cyclic spaces given by applying
our main theorem to Connes’ category A. In this context, we note that it is known [10] that a
localization of this model structure is Quillen equivalent to the model structure [15] on cyclic
sets.

In a recent paper, Angeltveit [1] studies Reedy categories enriched in a monoidal model
category, and obtains examples of such from non-symmetric operads. We expect that a similar
enrichment is possible for our generalized Reedy categories, so that Angeltveit’s construc-
tion can be applied to symmetric operads as well. It would also be of interest to study the
functoriality of the model structure on £ R as a functor of R, and extend the results of Barwick
[3] to our context.

To conclude this introduction, we describe the contents of the different sections of this
paper. In Sect. 1, we present our notion of generalized Reedy category, state the main theorem
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on the existence of a model structure (Theorem 1.6), and list some of the main examples. In
Sect. 2, we explain a general method for constructing generalized Reedy categories out of
classical ones by means of crossed groups. Sections 3 and 4 contain some technical prelimi-
naries for the proof of the main theorem which will be given in Sect. 5. In Sect. 6, we give a
brief introduction into skeleta and coskeleta for functor categories of the form E¥. We then
discuss a special class of dualizable generalized Reedy categories R for which the skeleta
of set-valued presheaves on R have a simple, explicit description. In Sect. 7, we obtain a
refinement of the main theorem (Theorem 7.6) giving sufficient conditions on R and £ for
the Reedy model structure on EX” to be monoidal.

1 Generalized Reedy categories

Recall that a subcategory S of R is called wide if S has the same objects as R. An example
of a wide subcategory of R is the maximal subgroupoid Iso(R) of R.

Definition 1.1 A generalized Reedy structure on a small category R consists of wide sub-
categories RT, R™, and a degree-function d : Ob(R) — N satisfying the following four
axioms:

(i) non-invertible morphisms in R* (resp. R™) raise (resp. lower) the degree; isomor-
phisms in R preserve the degree;

(i) RTNR™ =Iso(R);

(iii) every morphism f of R factors as f = gh with g € RT and » € R™, and this
factorization is unique up to isomorphism;

@iv) If 6f = f for 6 € Iso(R) and f € R™, then 6 is an identity.

A generalized Reedy structure is dualizable if in addition the following axiom holds:
(iv) If f6 = f for 6 € Iso(R) and f € R, then 0 is an identity.

A (dualizable) generalized Reedy category is a small category equipped with a (dualizable)
generalized Reedy structure.

A morphism of generalized Reedy categories R — S is a functor which takes R (resp.
R™) to ST (resp. S7) and which preserves the degree.

Remark 1.2 The inclusion from left to right in axiom (ii) follows from axiom (i). Axiom
(iv) says that automorphisms in R consider morphisms of R~ as epimorphisms. This last
axiom implies that the isomorphism in (iii) is unique. The axioms (i)-(iii) are self-dual while
axiom (iv) is dual to axiom (iv)’. A generalized Reedy category R is thus dualizable if and
only if RP is also a generalized Reedy category. Most of the examples that we are aware of
are dualizable. The asymmetry in the definition is related to the asymmetry of the projective
model structure on objects with a group action, which enters in Theorem 1.6; cf. the proof
of Lemma 5.5.

Remark 1.3 1If R is a generalized Reedy category, an equivalence of categories R’ SR
induces a generalized Reedy structure on R’. In this sense, the existence of a generalized
Reedy structure is invariant under equivalence of categories.

Remark 1.4 Recall that in the literature (cf. [20,22,23,34]) a category R, equipped with R,
R~ and d as above, is called a Reedy category if it satisfies the following two axioms:
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(i) non-identity morphisms in R™ (resp. in R™) raise (resp. lower) degree;
(i) every morphism in R factors uniquely as a morphism in R~ followed by one in R™.

Any such Reedy category is a dualizable generalized Reedy category in our sense. To empha-
size the distinction with generalized Reedy categories we will refer to the classical ones as
strict Reedy categories. The notion of a strict Reedy category is not invariant under equiva-
lence of categories. In fact, one checks that in a strict Reedy category every isomorphism is
an identity.! A generalized Reedy category is equivalent to a strict one if and only if it has
no non-trivial automorphisms, and is itself strict if and only if it is moreover skeletal.

Remark 1.5 As for strict Reedy categories, all the results concerning a fixed generalized
Reedy category R go through if the degree-function takes values in an arbitrary well-ordered
set. (However, with these more general degree-functions, the notion of a morphism of Reedy
categories is more subtle to define).

For a generalized Reedy category R, we introduce the following notions, which are clas-
sical in the case of a strict Reedy category. For each object r of R, the category R™ (r) has
as objects the non-invertible morphisms in R™ with codomain r, and as morphisms from
u:s —>rtou s — ralw:s — s suchthat u = u'w. Observe that axiom (iii)
implies that w € R™"; moreover, the automorphism group Aut(r) acts on the category R™ (r)
by composition. For each functor X : R — £ and each object r of R, the r-th latching object
L, (X) of X is defined to be

Ly(X) = lim X;
S—=>r
where the colimit is taken over the category R™ (r). We will always assume & to be suffi-
ciently cocomplete for this colimit to exist (in many examples this colimit is finite). Note that
Aut(r) acts on L,(X).

Dually, for each object r of R, the category R~ () has as objects the non-invertible mor-
phisms in R~ with domain r, and as morphisms fromu : r — stou’ :r — s'allw : s — s’
such that u’ = wu. Observe that axiom (iii) implies that w € R™; moreover, the automor-
phism group Aut(r) acts on the category R~ (r) by precomposition. For each object X of £
and each object r of R, the r-th matching object M, (X) of X is defined to be

M, (X) = l(ﬂl X
r—s

where the limit is taken over the category R™ (). We will always assume £ to be sufficiently
complete for this limit to exist (in many examples this limit is finite). Note that Aut(r) acts
on M, (X).

Each object X of the functor category £® defines for any object r of R natural Aut(r)-
equivariant maps L,(X) — X, — M,(X).Foramap f : X — Y in ER these give rise to
relative latching, resp. matching maps

X, UL, x) L.(Y) — Y., resp. X, — M, (X) X M, (v) Yr.

Recall that for any group (or groupoid) I" and any cofibrantly generated model category
&, the category E' of objects of &£ with right '-action carries a projective model structure,
in which weak equivalences and fibrations are defined by forgetting the I"-action. In general,

! Indeed, for an isomorphism f, let f = gh and h f_1 = g'I’ be the unique factorizations. Then id =
ghf™1 = (gg))h’, so W' = id and gg’ = id, whence g = id and g’ = id since g, g’ € RT. Thus
f = h € R™. The same argument applied to f —1 shows that f preserves the degree, hence f = id.
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a Quillen model category £ will be called R-projective, if for each object r of R, the cat-
egory A% admits a projective model structure. For R-projective model categories &£, we
introduce the following notions:

Amap f: X — Y in ER is called a

— Reedy cofibration if for each r, the relative latching map X, Ur, (x) L,(Y) — Y, is a
cofibration in AU,

— Reedy weak equivalence if for each r, the induced map f; : X, — Y, is a weak equiva-
lence in £AU);

— Reedy fibration if for each r, the relative matching map X, — M, (X) Xum,(v) ¥r is a
fibration in £AW®),

Observe that the automorphism group Aut(r) really enters only in the definition of a
Reedy cofibration, by definition of the model structure on £4U(") just described.

Theorem 1.6 Let R be a generalized Reedy category and let £ be an R-projective Quillen
model category in which the relevant limits and colimits exist (for instance, £ can be any
cofibrantly generated model category). With the above classes of Reedy cofibrations, Reedy
weak equivalences and Reedy fibrations, the functor category ER is a Quillen model category.

The proof will be supplied in Sect. 5. Notice that if R = R* then the constant functor
& — ER sends weak equivalences and fibrations in & to Reedy weak equivalences and Reedy
fibrations in £¥. Thus, we obtain the following corollary which is well known for strict Reedy
categories, cf. the two books [22,23].

Corollary 1.7 Let £ and R be as in Theorem 1.6. If R = RT then h_I)n (ER = Eisaleft
Quillen functor:

Remark 1.8 A Quillen model category £ could be called R-injective, if for each object r of
R, the category £A"() admits an injective model structure, i.e. one for which the forgetful
functor to £ detects weak equivalences and cofibrations. The proof of Theorem 1.6 will show
that if R°P is a generalized Reedy category and £ is R-injective then £ admits a model struc-
ture in which the three classes of maps are defined in a similar manner, but with reference
to the injective model structure on each EAUD) Tn this case, a dual of Corollary 1.7 holds,
stating that if R = R™ then l(gl : &R — £ is a right Quillen functor.

Examples 1.9 We give a list of first examples which, among other things, show that general-
ized Reedy categories occur naturally in several different contexts in homotopy theory. More
examples are provided in Sect.2.

(a) For completeness, we mention (again) that any strict Reedy category is a dualizable
generalized Reedy category (cf. Remark 1.4). This applies in particular to standard
examples of Reedy categories such as the simplex category A and its dual, as well as
to (N, <), < - —, - =2 - (relevant for homotopy colimits of sequences, for homotopy
pushouts and for homotopy coequalizers). Other examples are Joyal’s category of finite
disks and its dual ® (cf. [5,24]).

(b) Segal’s category I" (cf. [36]) is a dualizable generalized Reedy category. In fact, I'°P is
equivalent to the category Fin, of finite pointed sets, and one can take Fin} to consist
of monomorphisms and Fin, of epimorphisms, while the degree-function is given by
cardinality. If £ is the category of simplicial sets, the Reedy model structure on £ ree
given by Theorem 1.6 was discussed in Bousfield—Friedlander [8] and referred to as the
strict model structure on I"'-spaces. The simplicial circle A[1]/9 A[1], when viewed as
a functor A — T (cf. [5,36]), is a morphism of generalized Reedy categories.
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(c) The category Fin of finite sets carries a dualizable generalized Reedy structure, anal-
ogous to the pointed case. A skeleton of Fin is often denoted by Ay, and € Al s
referred to as the category of symmetric simplicial objects in &, cf. [2,10]. The inclusion
A < Ay, is a morphism of generalized Reedy categories.

(d) Any group(oid) is a generalized Reedy category.

(e) Orbit categories. The orbit category O(G) of a finite group G has the subgroups of G
as objects, and the G-equivariant maps G/H — G/K as morphisms. This orbit cate-
gory is a generalized Reedy category with O(G) = O(G)™ and d(H) = card(G/H)
(the index of H in G). There is also a generalized Reedy structure on O(G) with
O(G) = O(G)t and d(H) = card(H). If G is not finite, the first structure still makes
sense for subgroups of finite index, the second one for finite subgroups. The orbit cat-
egory O(G) of a compact Lie group G is the category with closed subgroups of G as
objects and G-homotopy classes of G-maps G/H — G/K as morphisms from H to
K. This is again a generalized Reedy category with O(G) = O(G)™. The degree of an
object H now takes values in N x N with the lexicographical ordering, and is defined
by d(H) = (dim(H), card(woH)). Notice that this generalized Reedy structure does
not admit a dual structure in which O(G) = O(G)~ like in the case of finite groups,
because there may be infinite increasing sequences of closed subgroups, e.g. the sub-
groups Z/ p"Z of the circle S'. This contradicts the existence of a degree-function for
which the morphisms are degree-lowering.

(f) Complexes of groups. Let X be a simplicial complex. Recall that a complex of groups
G over X assigns to each simplex 0 € X a group G, to each inclusion ¢ C 7 an
injective group homomorphism ¢, : G; — G, and to each sequence p C o C 7 a
specific element g = g, ».r € G, such that the triangle

G; - Gg
N4
Gp

commutes up to conjugation by g, i.e. for each x € G:

80t ()" = ¢y 0 (o0 (X))

Moreover, for 1 € p C o C t, the following coherence condition should be satisfied:

¢n,p(gp,(r,r)gn,p,r = 8n,p,08n,0,7"

Such complexes of groups can be used to model orbifold structures on a triangulated
space | X|, see [21,29]. To each complex of groups G over X is associated a category
Ax(G) whose objects are the simplices 0 € X; if o € 7 then morphisms y : 0 — ©
in Ax(G) are given by elements y € G,. Compositionof y : 0 — tandx : p — o is
defined tobe ¢, +(¥)x : p — o.The coherence condition implies that this composition
is associative. The category A x (G) is a generalized Reedy category in which the degree
of o is the dimension of the simplex, and for which Ay (G) = Ax(G)™.

The class of generalized Reedy categories is closed under arbitrary coproducts and under
finite products. A more subtle closure property is the following:

Proposition 1.10 Let S — R be a fibered category over R. Suppose that the base R and
each of the fibers S, are equipped with generalized Reedy structures. Assume furthermore
that for each morphism o : r — s in the base R,
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(i) the base change a* : Sy — S, preserves the degree;
(ii) ifa belongs to RT then o* takes ST to S;;
(i) if o belongs to R™ then a* has a left adjoint ay which takes S, to Sy .

Then S can be equipped with a generalized Reedy structure such that the fiber inclusions
Sy < S and the projection S — R preserve the factorization systems.

Proof Consider a morphism f : x — yinSovera : r — sinR. Say f € ST ifa € R
and the unique morphism x — «*(y) in S, determined by a cartesian lift «*(y) — y of
o liesin S}. Say f € S™ if @ € R™ and the unique morphism a;(x) — y in S, deter-
mined by a cocartesian lift x — a)(x) of « lies in S . For x € S;, define the degree by
ds(x) = dr(r) + ds, (x). With these definitions, it is straightforward to verify that S is a
generalized Reedy category.

Example 1.9(f) is a special instance of Proposition 1.10.

Corollary 1.11 Let R be a generalized Reedy category for which R = RY, and let ® :
R°P — Cat be a diagram of Reedy categories and morphisms of Reedy categories. Then the
Grothendieck construction S = fR @ is again a generalized Reedy category.

2 Crossed groups

In this section, we introduce the notion of a crossed group G on a category R, and discuss
the construction of the associated fotal category RG. We will show that for any strict Reedy
category R and crossed R-group G, the total category RG is a generalized Reedy category,
which is no longer strict unless G is trivial. Many of our examples of generalized Reedy
categories are instances of this construction.

Crossed groups on the simplex category have been studied in the literature under the
name skew-simplicial groups (see Krasauskas [26]), resp. crossed simplicial groups (see
Fiedorowicz—Loday [18]). Recently, Batanin—Markl [4, 2.2] considered crossed cosimplicial
groups which are crossed groups on the dual of the simplex category. Feigin—Tsygan already
spelled out the axioms of a crossed group in [17, A4.1-4]. Cisinski considers the more general
concept of a thickening in [10, 8.5.8].

Definition 2.1 For any small category R, a crossed R-group G is a set-valued presheaf on
R, together with, for each object r of R,

(i) a group structure on G,
(ii) left G,-actions on the hom-sets Homp (s, 7) with codomain r,

such that the following identities hold forall g, h € G,, ¢ :s > 1, Bt — &,

gx(a o B) = gul(@) o™ (8)+(B), (D
g«(1;) =1, )
a*(g-h) = he()*(g) - a*(h), 3)
a*(ey) = e, )

where the presheaf action of « : s — r is denoted by «* : G, — G and the group action
of g € G, is denoted by g, : Hompg(s, r) — Homg(s, ). Moreover, for each object r, the
identity of r (resp. neutral element of G,) is denoted by 1, (resp. e, ).
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Remark 2.2 In what follows we shall make no difference in notation between composition in
R and composition in G, especially since both structures will agree in the total category RG.
In addition to the four identities spelled out in Definition 2.1, the following four identities
also hold in any R-crossed group G (by the axioms for a presheaf, resp. group action):

(@p)*(g) = B a*(g), S

;) =g, (6)
(gh)«(a) = gsxhi(a), 7
(er)x(a) = . 3)

Definition 2.3 For any small category R and crossed R-group G, the fotal category RG is
the category with the same objects as R, and with morphisms r — s the pairs («, g) where
o :r — s belongs to R, and g € G,. Composition of («, g) : s — tand (B, h) : r — sis
defined as

(c,g) o (B, h) = (a - g+(B), B*(g) - h).

One easily checks that this composition is associative and has a two-sided unit (1,, e,) for
each object r of RG.

Remark 2.4 In the special case where G is a constant presheaf (i.e. G = G, for a fixed
group G and a*(g) = g for all g and all «), the total category RG reduces to the familiar
Grothendieck construction for a diagram of categories on G.

In the special case where the left action of G on R is trivial (i.e. g«(«) = « for all g and
all «), the crossed group is actually a presheaf of groups, and the total category RG again
reduces to a Grothendieck construction, this time for a diagram of groups on R°P.

In these cases, Proposition 2.5 below becomes a special instance of Corollary 1.11.

Returning to the general case of a crossed R-group G, notice that we always have a canon-
ical embedding R < RG which sends « : ¥ — s to («, e;) : r — s, and identifies R with
a wide subcategory of RG. Elements g € G, of the crossed group may be identified with
special automorphisms (1,, g) in the total category RG, and every morphism (¢, g) in RG
factors uniquely as a special automorphism (1,, g) followed by a morphism (e, e,) in R.
This unique factorization property is characteristic for total categories of crossed groups as
asserted by:

Proposition 2.5 Let R C S be a wide subcategory and assume that there exist subgroups
Gy C Autg(s) of special automorphisms such that each morphism in S factors uniquely as
a special automorphism followed by a morphism in R. Then the groups G define a crossed
R-group, and S is isomorphic to RG (under R).

Proof For any morphism « : r — s of R and special automorphism g € G, the pres-
heaf action of R as well as the group action of G are defined by factoring the composite
ga : r — s uniquely as in the hypothesis of the proposition, as

S
lg
g (@)

With this explicit description, the proof of the identities of Definition 2.1 and of the isomor-
phism S = RG is a matter of (lengthy but) straightforward verification.

a*(g)

o
B —
—_—

N —
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Remark 2.6 Fiedorowicz—Loday [18] take Proposition 2.5 for R = A as the definition of
a crossed simplicial group (with contravariant instead of covariant group action), and state
Definition 2.1 of a crossed A-group as a proposition.

Example 2.7 The most prominent example of a crossed group is the simplicial circle C =
A[1]/0A[1] whose total category AC is isomorphic to the cyclic category A of Connes
[14]. Tt is convenient to embed C in a larger crossed A-group X, formed by the permu-
tation groups X,) of the sets [n] = {0, 1,...,n}. The crossed A-group structure of X
is defined as follows: given « : [m] — [n] in A and g : [n] — [n] in X[,), the map
a*(g) : [m] — [m] is the unique permutation which is order-preserving on the fibers of «,
and for which g,(e) = goa o a*(g)’l : [m] — [n] is order-preserving:

[m] —%—+ [n]

a*(g)] le

m] ——— [n].

@
Let C;) C Xy be the subgroup generated by the cycle 0 = 1 +— -+ = n +— 0. One
checks that if g € C[, then a*(g) € Cpyy for each « : [m] — [n] in A, so that C inherits a
crossed A-group structure. The total category AC is then isomorphic to the cyclic category
A of Connes [14], and embeds in the total category AX. The latter has been described in
detail by Feigin—Tsygan [17, A10] and plays an important role in the general classification
of crossed A-groups, see [18,26].

Example 2.8 One of the examples of a generalized Reedy category which motivated this
paper is the category €2 of trees introduced by Moerdijk—Weiss in [30]. The objects of this
category are finite trees with a distinguished output edge and a set of distinguished input
edges, as common in the context of operads. Any such tree T freely generates a symmet-
ric coloured operad 2 (T') whose colour-set is the set E(T) of edges of T'; the morphisms
T — T’ in Q are the maps of symmetric coloured operads Q(7) — Q(T”). For a more
precise description, we refer to [30]. Here, it is enough to observe that any such morphism
T — T’ induces amap E(T) — E(T’) in a functorial way, and that this induced map com-
pletely determines the morphism. The category 2 carries a natural dualizable generalized
Reedy structure, for which the degree is given by the number of vertices in the tree, while a
morphism belongs to Q7 (resp. 7) when it induces an injection (resp. surjection) between
the sets of edges.

For such a tree T', one can consider the set of planar structures p on T'. Since every tree in
Q carries at least one planar structure, the category 2 is equivalent to the category Q' whose
objects are planar trees (T, p), and whose morphisms (T, p) — (T’, p’) are the morphisms
T — T’ in Q. For every such morphism, one can pull back the planar structure p’ on 7" to
one on 7', and call the morphism planar if this pulled back structure coincides with p. The
planar morphisms form a wide subcategory of ', denoted €24sqr; in this latter category,
every automorphism is trivial, and 2,444, is equivalent to a strict Reedy category. Every
morphism in ©’ factors uniquely as an automorphism followed by a planar map. This shows
by Proposition 2.5 that the category 2 is equivalent to the total category of a crossed group
on 2 planar-

The embedding i : A «—  (cf. [30]) is a morphism of generalized Reedy categories, and
Theorem 1.6 gives a Reedy model structure on dendroidal spaces, which is compatible with
the Reedy model structure on simplicial spaces. At the end of Sect.7 (cf. Example 7.7(iii)),
we will show that the model structure on dendroidal spaces is monoidal (in the sense of
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986 C. Berger, I. Moerdijk

Hovey [23]) with respect to the Boardman-Vogt tensor product on dendroidal spaces (cf. [30,
Appendix]).

Consider a crossed R-group G, and suppose that R carries a generalized Reedy structure.
We will say that the crossed R-group is compatible with the generalized Reedy structure if
the following two conditions hold:

(i) the G-action respects R* and R™ (i.e. if a : » — s belongs to R* and g € Gy then
g«(@) : r — s belongs to RY);

(ii) if ¢ : r — s belongs to R™ and g € Gy is such that «*(g) = ¢, and g.(a) = «, then
g =es.

Remark 2.9 Observe that condition (i) is in particular satisfied if any morphism in R, which
in RG is isomorphic to a morphism in R, already belongs to R*. Condition (ii) is equiv-
alent to the condition that R™ fulfills axiom (iv) of Definition 1.1 with respect to special
automorphisms of RG, cf. the proof of Proposition 2.5.

Because in the simplex category A the morphisms of AT (resp. of A™) are the mono-
morphisms (resp. split epimorphisms) of A, any crossed A-group is compatible with the
Reedy structure of A. The same property holds for crossed groups on €2 /4,4r, cf. Example
2.8, and in general for crossed groups on strict EZ-categories, cf. Definition 6.7.

Proposition 2.10 Let R be a strict Reedy category, and let G be a compatible crossed
R-group. Then there is a unique dualizable generalized Reedy structure on RG for which the
embedding R < RG is a morphism of generalized Reedy categories.

Proof Necessarily, (RG)T consists of those morphisms («, g) for whicha € R*. Because of
compatibility condition (i), (RG)¥ is closed under composition. It is now straightforward to
verify that this defines a generalized Reedy structure on RG. In particular, axiom (iv) follows
from compatibility condition (ii) and the fact that all automorphisms of RG are special since
R is a strict Reedy category. The dual axiom (iv)’ holds automatically.

3 Kan extensions and the projection formula

In this section we recall some basic facts about Kan extensions for diagram categories. Let
¢ : D —> C be a functor between small categories, and write ¢* : EC — &P for pre-
composition with ¢. The left and right adjoints of ¢* are usually called left and right Kan
extension along ¢.

If £ is sufficiently cocomplete, the left Kan extension ¢ : ¥ —> £T can be computed
pointwise by

o1 (X)e =lim X o 7,
¢/c

where ¢ /c is the comma category with objects (d, u : ¢(d) — c¢) and morphisms (d, u) —
(d',u’) givenby f :d — d’' in D such that u’ o ¢(d) = u. The functor 7, : ¢/c —> D'is
defined by (d, u) — d. We will often informally write

¢1(X)e = lim  Xg.
d(d)—c

The formula for left Kan extension simplifies if the functor ¢ : D — C is cofibered. Recall
(cf. [7]) that for a given functor ¢ : D — C, a morphism f : d — d’ in D is cocartesian if
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forany g : d — d” such that ¢(g) = ho (f), there is aunique k : d’ — d’ such that g = kf
and ¢ (k) = h. The functor ¢ is called cofibered, if morphisms in C have cocartesian lifts in
D. If ¢ is cofibered, then for any object ¢ of C, the embedding of the fiber ¢~ (c) into the
comma category ¢/c (given on objects by d > (d, 14(¢))) has a left adjoint, so o) is
cofinal in ¢/c, and hence

d(X)e = lgr)l X
)

is the colimit over the fiber. This implies that for any commutative diagram of categories

o B

vl e
o 4% ¢

the natural transformation of functors (induced by adjunction)

VBT — oy

is an isomorphism whenever the diagram is a pullback with ¢ (and hence ) cofibered. This
is often called the projection formula, and will be applied below in the special case where
D= f(C F is the Grothendieck construction of a covariant diagram F : C — Cat.

Dually, if £ is sufficiently complete, the right Kan extension ¢, : €Y — £C can be
computed pointwise by

O+(X)e = 1(&1’1 Xa
c—~>¢(d)

and this formula simplifies for fibered functors ¢ : D — C. Recall that a functor ¢ is called
fibered, if morphisms in C have cartesian lifts in D. If ¢ is fibered, then for any object ¢
of C, the embedding of the fiber ¢~!(c) into the comma category c/¢ (given on objects by
d — (1g(c), d)) has a right adjoint, so ¢~ 1(c) is final in c/¢, and hence
$x(X)e = lim X
)

is the limit over the fiber. This implies that for any commutative diagram of categories

D’ﬂD

vl e
¢ c
the natural transformation of functors
@y —> Yup”
is an isomorphism whenever the diagram is a pullback with ¢ (and hence ) fibered. This

dual projection formula will be applied below in the special case where D = f(c F is the
Grothendieck construction of a contravariant diagram F : C°? — Cat.
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4 Latching and matching objects

In this section we give an alternative, more global definition of latching and matching objects.
Throughout, we consider a fixed generalized Reedy category R with wide subcategories R*
and degree-function d as in Definition 1.1, and assume that £ is a sufficiently bicomplete
category.

4.1 The groupoids of objects of fixed degree

For each natural number n, the full subcategory of R of objects of degree < n will be
denoted R<,, the full subgroupoid of Iso(R) spanned by the objects of degree n will be
denoted G, (R), and the discrete category of objects of R of degree n will be denoted R,,.

4.2 Overcategories

For each natural number 7, the category R™ ((1)) has as objects the non-invertible morphisms
u :s — rinR* such that d(r) = n, and as morphisms from u to 1’ the commutative squares

A

/
S
e
/
r

<
N -— @

&,

such that f € R™ and g € G,(R).

The wide subcategory R™(n) of R ((n)) contains those morphisms for which g is an
identity. The category RT () of Sect.1 may thus be identified with the full subcategory of
R™(n) spanned by the objects with codomain r. Notice that

R*m) = [] RY ).
d(r)=n
The categories introduced so far assemble into the following commutative diagram:

R < Rty % c,@®) I R

ko ! fi,
R () 21, R,

where d, denotes the domain-functor, b,, and c, denote codomain-functors, and i,, j, and
k;, are inclusion-functors. Note that ¢, is cofibered, i.e.

R ((n)) = / RT(-),
Gn(R)
and that the square is a pullback. In particular, the projection formula yields
in(ca)t = (bp)ik;,.
4.3 Latching objects

The definition of the latching object L, (X) for an object X of £F now takes the following
form:

Ln(X) = (ca)idyy (X) € 6@,
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We write X, = j¥(X) = X|g, (), so that we get in each degree n a latching map
Lo(X) — X,
Note that, since ¢, is cofibered, we have more concretely:

Ln(X)r = lim X5,
—

S—r

where the colimit is taken over the category RT (r) as in Sect.1. Accordingly, we will often
simplify notation and write L, (X) for L, (X),.

Observe that a morphism ¢ : S — R of generalized Reedy categories induces for k € N
a commutative diagram of functors

d ¢
S £ 87 (k) = Gx(S)
ol el s
R £ R ((0) % Gi(R)
and hence a natural transformation
O — ¢f (cin
and in particular for each object X of £R a natural map
@ndid* X = @grdi X —> ¢i(cindiX,
in other words a natural comparison map

Li(¢* (X)) — ¢ (Li(X)).

Lemma 4.4 Let ¢ : S — R be a morphism of generalized Reedy categories. Suppose that
the induced square

SH(h) 5 Gi(S)

¢l |
RY((k) % Gr(R)

is a pullback. Then, for each object X of EX, the natural comparison map of latching objects
Li(¢™ (X)) = ¢ (Li(X)) is an isomorphism.
The pullback hypothesis holds in particular in the following two cases:

(i) S=RT(n)and ¢ =d,k, : R*(n) — R is the domain functor;
(i) S=R<,and ¢ : R<, — Ris the canonical embedding.

Proof The natural comparison map is an isomorphism because ¢ and ¢ are cofibered func-
tors, see Sect. 3 and end of Sect. 4.2.

If S = R*(n) then S*((k)) has as objects the composable pairs ¢+ — s — r of non-
invertible, degree-raising maps such that d(r) = n and d(s) = k, and as morphisms those
transformations of diagrams which are the identity on the last object, an isomorphism on the
intermediate object, and degree-raising on the first object; this category coincides with the
fiber product of ¢y : Gx(S) — Gi(R) and ¢ : R*((k)) — G (R).

If S = R<, the pullback hypothesis follows from the fact that an object of RY((k))
belongs to ST ((k)) if and only if its codomain is of degree < n.
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4.5 Undercategories

The category R™((n)) has as objects the non-invertible morphisms # : r — s in R™ such
that d(r) = n, and as morphisms from « to u’ the commutative squares
!

/

u
/

8, .
u
s

“ -— N

.

such that f € R™ and g € G, (R).

The wide subcategory R~ (n) of R™((n)) contains those morphisms for which g is an
identity. The category R~ (r) of Sect. 1 may then be identified with the full subcategory of
R™ (n) spanned by the objects with domain r. Notice that

R~ (n) = ]_[ R™(r).

d(r)=n

The categories introduced so far assemble into the following commutative diagram:

R ¥ R () &% 6, ® & R

where y, denotes the codomain-functor, g, and §,, denote domain-functors, and i,, j, and
K, are inclusion-functors.
Note that §,, is fibered, i.e.

R™((n) = / R™(-),
Gn(R)
and that the square is a pullback. In particular, the dual projection formula yields
i (8n)x = (Bn)sky -
4.6 Matching objects

The definition of the matching object M,,(X) of an object X of £X now takes the following
form:

My (X) = $n)ey, (X) € €53
We write X, = j7(X) = X|g,®), so that we get in each degree n a matching map
X — My(X).
Note that, since §, is fibered, we have more concretely:

Mn(X)r = lim Xj,

r—s

where the limit is taken over the category R™(r) as in Sect.l. Accordingly, we will often
simplify notation and write M, (X) for M, (X),.
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Lemma 4.7 Let ¢ : S — R be a morphism of generalized Reedy categories. Suppose that
the induced square

ST((k)) — G (S)

St |
R7((k)) - Gk (R)

is a pullback. Then, for each object X of ER, the natural comparison map of matching objects
Of (M (X)) — My (9" (X)) is an isomorphism.
The pullback hypothesis holds in particular in the following two cases:

1) S=R7(n)and ¢ = ypk, : R™(n) — R is the codomain functor;
(i) S =R<,and ¢ : R, — Ris the canonical embedding.

Proof Dual to the proof of Lemma 4.4.

5 The Reedy model structure

In this section we prove Theorem 1.6. In particular, we assume throughout that R is a gen-
eralized Reedy category, and £ is an R-projective Quillen model category. Recall that R-
projectivity of £ simply means that for each object r of R, the category EA"(") admits a
projective model structure. We can reformulate the definition of the classes of maps in Sect.1
as follows:

Lemma 5.1 A map X — Y in ER is a Reedy cofibration (resp. a Reedy weak equivalence,
resp. a Reedy fibration) if and only if, for each natural number n, the map X, Uy, (x) Ly (Y) —
Y, (resp. X, — Yy, resp. X,, = M, (X) Xum,v) Yn) is a cofibration (resp. a weak equiva-
lence, resp. a fibration) in E&®).

Proof This just follows from the equivalence of categories
SG”(R) ;) HgAut(r)
r

where r runs through a set of representatives for the connected components of the groupoid
Gn(R).

A Reedy (co)fibration which is also a Reedy weak equivalence will be referred to as a
trivial Reedy (co)fibration. The following lemmas are preparatory for the proof of Theorem
1.6.

Lemma 5.2 Let f : A — B be a trivial Reedy cofibration; suppose that, for each n, the
induced map L, (f) : L,(A) — L,(B) is a pointwise trivial cofibration (i.e. L,(f); is a
trivial cofibration in £ for each object r of R). Then f : A — B has the left lifting property
with respect to Reedy fibrations.

Proof Consider a commutative square in £¥

o
—

f

o

Y
A}f
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where f is a trivial Reedy cofibration and g is a Reedy fibration, and furthermore L, (f) :
L,(A) — L,(B) is a pointwise trivial cofibration for all n. We construct a diagonal filler
y : B — Y by constructing inductively a filler y<, : B<, — Y<, on the full subcategory
R<, of objects of R of degree < n. For n = 0, we get a diagonal filler yy : By — Yj in

Ao 2% vy

foi lgo

BQ—O>X()

since R« is the groupoid Go(R), and Lo(A) = 0, My(X) = 1, so that by hypothesis fyisa
trivial cofibration in £50®) and gy is a fibration in £G0&),
Assume by induction that a filler y<,—1 : B<,—1 — Y<,—1 has been found for

U<p—1
Afnfl - anfl
Sf<n—1 l igfn—]
lgfnfl

By —— X1
This yields composite maps
L,(B)y — L,(Y) — Y, and B, — M,(B) — M,(Y)
as well as a commutative square
Ay Ur,a) Ln(B) Y,

) fo

Bn Xn XM, (X) Mn(Y)

A G, (R)-equivariant filler is exactly what is needed in order to complete the inductive step.
To see that such a filler exists, note that by hypothesis v, is a cofibration and wy,, is a fibration
in £&® It is thus enough to check that v, is a weak equivalence. For this, consider the
following diagram in which the square is a pushout:

La(A), . A, Ir
La(f)r] | Pacnt
Ln(B)r g (A UL,Z(A) Ln(B))r~

Since, by hypothesis, L, (f), is a trivial cofibration in £, and f; is a weak equivalence, v, is
a weak equivalence as required.

Lemma 5.3 Let f : A — B be aReedy cofibration such that f, : A, — B, is a weak equiv-
alence for all objects r of R of degree < n. Then, the induced map L, (f) : L,(A) — L, (B)
is a pointwise trivial cofibration.

Proof For n = 0, there is nothing to prove; therefore, we can assume inductively that
Li(f) : Ly(A) — Li(B) is a pointwise trivial cofibration for k < n. We want to show that
i¥L,(f)isatrivial cofibrationin & R» To this end, we have to find a filler for any commutative
square
irL,(A) — Y
i La(f)) g
i¥L,(B) — X
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in £® in which g : ¥ — X is a fibration. Since i¥L, = i*(cy)1d} = (by)ikid*, a filler for
the former square is the same as a filler for the following square in £ RY (),

kid!(A) — bi(Y)
kid(f) \br(e)
kid*(B) — b} (X).

In order to finish the proof, we shall apply Lemma 5.2 to this square. The category S = R™ (n)
is a generalized Reedy category for which S = S*. In particular, Reedy fibrations are the
same as pointwise fibrations, so b} (g) is a Reedy fibration. Moreover, k;d,:(f) is a Reedy
weak equivalence in £5, since the objects of S have degree < . It remains to be shown that
kxd¥(f) is a Reedy cofibration whose induced maps on latching objects of degree < n are
pointwise trivial cofibrations.

Write ¢ = d,k,. By Lemma 4.4, the functor ¢ : EG®) . g6 jnduces a
canonical isomorphism Lj(¢*(A)) = ¢>Z(Lk(A)). Therefore, the relative latching map
¢*(A) UL, p#a)) Li(@*(B)) — ¢*(B) may be identified with ¢; of the relative latch-
ing map Ay Ug,(a) Lk(B) — By. Observe that ¢ : G¢(S) — G (R) is a faithful func-
tor between groupoids, so ¢; preserves cofibrations, thus k;;d(f) is a Reedy cofibration.
Moreover, Li(¢*(A)) — Lik(¢*(B)) is a pointwise trivial cofibration for k < n, since

Ly (A) — Li(B) is so by induction hypothesis.

Lemma 5.4 Letg : Y — X beatrivial Reedy fibration; suppose that for each n, the induced
map M, (g) : M,(Y) — M,(X) is a (pointwise) trivial fibration. Then g : Y — X has the
right lifting property with respect to Reedy cofibrations.

Proof Dual to the proof of Lemma 5.2.

Lemma 5.5 Let g : Y — X be a Reedy fibration such that g, : Y, — X, is a weak equiva-
lence for all objects r of R of degree < n. Then, the induced map M,,(g) : M,,(Y) — M, (X)
is a (pointwise) trivial fibration.

Proof For n = 0, there is nothing to prove; therefore, we can assume inductively that
My (g) : Mp(Y) - My (X) is a trivial fibration for k < n. We want to show that i, M, (g) is
a trivial fibration in £X». To this end, we have to find a filler for any commutative square
A — i"M,(Y)
fl }iz Ma(g)
B — iy M,(X)
in €% in which f A — Bisacofibration. Since iy M, = i,}(8,)+v,} = (Bu)«k,iy,’, afiller
for the former square is the same as a filler for the following square in & (V:
B (A) — Ky vy (Y)
Br()Y beava(®)
By (B) — kv, (X).
In order to finish the proof, we shall apply Lemma 5.4 to this square. The category S = R™ (n)
is a generalized Reedy category for which S = S™; notice that S has no non-trivial automor-
phisms in virtue of axiom (iv) of Definition 1.1; in other words, S is equivalent to a strict

Reedy category. Therefore, Reedy cofibrations are the same as pointwise cofibrations, so
B (f)is a Reedy cofibration. Moreover, «;, y,* () is a Reedy weak equivalence in £ S, since
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the objects of S have degree < n. It remains to be shown that «,5y,*(f) is a Reedy fibration
whose induced maps on matching objects of degree < n are trivial fibrations.

Write ¢ = y,&,. By Lemma 4.7, the functor ¢ : £ Ge@®) . £G®) jnduces a canonical
isomorphism ¢)Z‘(Mk(Y)) = My (¢*(X)). Therefore, the relative matching map ¢*(Y) —
& (X) X pr ¢+ (x)) Mi(¢* (Y)) may be identified with ¢ of the relative matching map Y —
Xr X mx) Mi(Y). Observe that ¢} preserves fibrations, thus «, 'y, (g) is a Reedy fibration.
Moreover, My (¢p*(Y)) — My (¢p*(X))isatrivial fibration fork < n,since My (Y) — M (X)
is so by induction hypothesis.

Remark 5.6 The reader may observe that the proofs of Lemmas 5.3 and 5.5, although very
similar, are not exactly dual to each other. In particular, while the fact that b (g) is a Reedy
fibration does not use axiom (iv) of a generalized Reedy category, the proof that 8(f) is
a Reedy cofibration does. On the other hand, while the preservation under ¢; of fibrations
follows from our use of projective model structures, the preservation of cofibrations relies
on the faithfulness of ¢y.

Proof of Theorem 1.6 Limits and colimits in E® are constructed pointwise. The class of
Reedy weak equivalences has the two-out-of-three property. Moreover, all three classes are
closed under retract. It remains to be shown that the lifting and factorization axioms of a
Quillen model category hold.

For the lifting axiom, observe that by Lemma 5.3, trivial Reedy cofibrations fulfill the
hypothesis of Lemma 5.2, and therefore have the left lifting property with respect to Reedy
fibrations. Dually, Lemmas 5.5 and 5.4 imply that trivial Reedy fibrations have the right
lifting property with respect to Reedy cofibrations.

We now come to the factorization axiom. Given a map f : X — Y in £, we shall con-
struct inductively a factorization X — A — Y of f into a trivial Reedy cofibration followed
by a Reedy fibration. To do so, we use that £ is R-projective by hypothesis so that for each
n, the category £8® admits a projective model structure; cf. the proof of Lemma 5.1.

For n = 0, factor fp in E5® as Xy —> Ay —> Yp into a trivial cofibration fol-
lowed by a fibration. Next, if X<, — A<,—1 — Y<,— is a factorization of f<,_; into
trivial Reedy cofibration followed by Reedy fibration in £X<»-1, we obtain the following
commutative diagram in £62®)

Lp(X) — Lu(A) — Ly(Y)

| |

Xn Y,

| |

My (X) — My(A) — M,(Y).

This diagram induces a map X,, U, (x) Ln(A) — M, (A) X, (v) Yn which we factor as a
trivial cofibration followed by a fibration in £&»®:

Xn UL, x) Ln(A) & Ay — My (A) Xp1,7) Ya-

The object A, of £ Gn (R) together with the maps L, (A) — A, — M,,(A) define an extension
of A<, to an object A<, in ER=n together with a factorization of f<, : X<, — Y<, into
a Reedy cofibration X<, — A<, followed by a Reedy fibration A<, — Y<,. The former
map is a trivial Reedy cofibration, because the map X, — A, decomposes into two maps
Xn — XuUr,x) Ln(A) — A,, the first one of which is a weak equivalence by Lemma 5.3,
the second one by construction. This defines the required factorization of f<, in € Ran,
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The factorization of f into a Reedy cofibration followed by a trivial Reedy fibration is
constructed in a dual manner using Lemma 5.5 instead of Lemma 5.3.

The proof of Theorem 1.6 uses implicitly that trivial Reedy (co)fibrations may be charac-
terized in terms of relative matching (latching) maps. Since this is a pivotal property of the
Reedy model structure, we state it explicitly:

Proposition 5.7 A map f : A — B in EX is a trivial Reedy cofibration if and only if, for
each n, the relative latching map A, Ur, (o) L,(B) — B, is a trivial cofibration in ECn(R),

Amap g Y — X in ER is a trivial Reedy fibration if and only if, for each n, the relative
matching map Y, — X, X, x) Mu(Y) is a trivial fibration in 57,

Proof For each n, the induced map f, : A, — B, in EGn®) factors as
Un Un
A, — A, UL, (4) L,(B) — B,.

If f is a trivial Reedy cofibration then f;, is a weak equivalence, so that, by Lemma 5.3, u,,
is a weak equivalence, and hence vy, is a trivial cofibration. Conversely, if each v, is a trivial
cofibration then an induction on n, based on Lemma 5.3, shows that u,, is a weak equivalence,
and hence f is a trivial Reedy cofibration.

The dual proof for a trivial Reedy fibration g : ¥ — X uses Lemma 5.5 instead of Lemma
5.3.

6 Skeleta and coskeleta

In this section we define the skeletal filtration and the coskeletal tower of any functor X :
R — & on a generalized Reedy category R, and study their interaction with the Reedy model
structure on X for a Quillen model category £. We then introduce a special class of dualizable
generalized Reedy categories for which the skeleta in Sets®” are simple to describe.

Recall that for any object X of EF, the restriction JiX : G,(R) — & along the inclusion
Jn : Gu(R) — Ris denoted X,,. We shall write 7, : R<, < R for the full embedding of the
subcategory of objects of degree < n, cf. Sect. 4.1.

Definition 6.1 The n-skeleton functor is the endofunctor sk, = t,t;. The n-coskeleton
Sfunctor is the endofunctor cosk, = t,.1,".

Since t, : R<, <> R is a full embedding, the unit of the (#,, #,;")-adjunction (resp. the
counit of the (¢, t,,+)-adjunction) is an isomorphism; in other words, the endofunctor sk,
(resp. cosky) is an idempotent comonad (resp. monad) on € R,

The counit of the (#,1, ¢,')-adjunction (resp. unit of the (z,), #,+)-adjunction) provides for
each object X of ER 3 map sk, (X) — X (resp. X — cosk, (X)) in ER. Observe however
that these maps need not be monic (resp. epic) for general X.

For consistency, sk_1(X) (resp. cosk_1(X)) will denote an initial (resp. terminal) object

of &R.

Lemma 6.2 For each object X of EX, the n-th latching object L, (X) is canonically iso-
morphic to sk,—1(X)y, and the n-th matching object M, (X) is canonically isomorphic to
cosky—1(X)n.

Under these isomorphisms, the n-th latching map L,(X) — X, is induced by the
counit sky,—1(X) — X, and the n-th matching map X, — M, (X) is induced by the unit
X — cosk,—1(X).
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Proof This follows from the explicit formulas for the left and right Kan extensions #,; and
tyx (cf. Sect.3), and from axiom (iii) of Definition 1.1. Indeed, the latter implies that for any
object r of R, the category R (r) is cofinal in the comma category R, /r, while the category
R™(r) is final in the comma category r/R,. Moreover, the latching map L,(X) — X, of
Sect. 4.3 factors canonically through the counit sk, _1(X), — X, while the matching map
X, — M, (X) of Sect. 4.6 factors canonically through the unit X,, — cosk,_1(X),.

~

Lemma 6.3 For any natural numbers m < n, there are canonical isomorphisms sk, o sk, =
sk = sk, o sk, as well as cosk,, o cosk,, = cosk,, = cosk,, o cosky,.

Proof Write o : R<;, — R, for the full embedding. It induces a pair of adjoint functors
(a1, ™). Since by definition t,«a = f,,,, we get as required
sk sk = tptytyty,
= tty oty
= oy
= tuily,
= sk,

where the isomorphism is induced by the unit id = 1ty of the monad 7,,. The other cases
are equally straightforward.

Lemma 6.3 yields for each object X of £F natural systems of maps

skoX — ski X —> skoX — -+,

coskgX <— cosk1 X <— coskr X <— - --

The colimit of the first sequence and the limit of the second sequence are both isomorphic
to X. We now discuss for which objects X of £R, this defines a skeletal filtration (resp.
coskeletal tower), i.e. for which X these maps are cofibrations (resp. fibrations) in £¥. Recall
that a functor between Quillen model categories is called a left (resp. right) Quillen functor
if it preserves cofibrations and trivial cofibrations (resp. fibrations and trivial fibrations).

Lemma 6.4 Let £ be a Quillen model category and let R be a generalized Reedy category.
We endow ER and ER=r with their Reedy model structures. Then,

(1) the left Kan extension ty) is a left Quillen functor;
(ii) the right Kan extension t,, is a right Quillen functor;
(iii)  the restriction functor t); is simultaneously a left and right Quillen functor.

In particular, sky, (resp. cosky) is a left (resp. right) Quillen endofunctor of EX.

Proof By adjointness, (iii) is equivalent to the conjunction of (i) and (ii). Under the iden-
tification G (R<,) = G (R), Lemma 4.4(ii) gives for each object X of ER and each n, an
isomorphism L (7 X) = Li(X). It follows then from the definition of a Reedy cofibration
and from the characterization 5.7 of trivial Reedy cofibrations that  preserves both classes,
and is hence a left Quillen functor. The proof that ¢, is also a right Quillen functor follows
similarly using Lemma 4.7(ii).

Proposition 6.5 Let £ be a Quillen model category and let R be a generalized Reedy cate-
gory. For any m < n < oo, and any object X of ER,
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(1) if X is Reedy cofibrant, the canonical map sky, (X) — sk, (X) is a Reedy cofibration
between Reedy cofibrant objects;

(1) if X is Reedy fibrant, the canonical map cosk, (X) — cosk,,(X) is a Reedy fibration
between Reedy fibrant objects.

Proof The proofs of (i) and (ii) are dual; we shall establish (i). By Lemma 6.3, we can stick to
the case n = 00, i.e. to the case sk, (X) — skoo(X) = X. For this, consider the commutative
square:

Ly (skim (X)) = Li(X)

| |

sk (X)x — Xk

For k < m, the horizontal maps are isomorphisms, thus the relative latching map
sk (X)k UL, (skn(x)) Lk(X) — X is an isomorphism too. For k > m, the left vertical
map is an isomorphism by Lemmas 6.2 and 6.3, thus the relative latching map coincides
with Ly (X) — X which is a cofibration by hypothesis. Moreover, Lemma 6.4 shows that
sk (X) is Reedy cofibrant.

We shall now introduce a special class of generalized Reedy categories R for which the
skeletal filtration in Sets®" admits a particularly simple description, as in Corollary 6.10
below. In the particular case of the simplex category A, this proposition was first observed by
Eilenberg and Zilber (see [16,19]), and therefore we have chosen to name these special cate-
gories Eilenberg—Zilber categories, or briefly EZ-categories. Their formal definition makes
use of the notion of absolute pushout which we recall first:

Remark 6.6 A pushout in a category R is called absolute if it is preserved by the Yoneda
embedding R — R = Sets®”. (It can be shown that this is equivalent to being preserved
by any functor, but we will not use this fact.) We will be concerned with absolute pushouts
of two split epimorphisms (i.e. epimorphisms having sections). Notice that the image of a
map f : r — s in R under the Yoneda embedding is an epimorphism in R if and only if
f is a split epimorphism. Since pushouts of epimorphisms are epimorphisms, this shows
that an absolute pushout of split epimorphisms yields in fact a commutative square of split
epimorphisms.

Definition 6.7 An EZ-category is a small category R, equipped with a degree-function d :
Ob(R) — N, such that

(i) monomorphisms preserve (resp. raise) the degree if and only if they are invertible
(resp. non-invertible);
(ii) every morphism factors as a split epimorphism followed by a monomorhism;
(iii) any pair of split epimorphisms with common domain has an absolute pushout.

Observe that assuming axiom (ii), axiom (i) implies

(i)’ split epimorphisms preserve (resp. lower) the degree if and only if they are invertible
(resp. non-invertible).

Any EZ-category is a dualizable generalized Reedy category where RT (resp. R™) is
defined to be the wide subcategory containing all monomorphisms (resp. split epimorphisms).
Notice however that, although the dual of an EZ-category is a generalized Reedy category,
it is in general not an EZ-category. We are mostly interested in presheaves on R, so that the
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reader should be aware of the fact that the roles of R* have to be reversed in the definitions
of Sects. 4-6. Axiom (ii) expresses that the epi-mono factorization system of the presheaf
category R restricts (under the Yoneda-embedding) to R, while axiom (iii) can be restated as
follows: in R, the pushout of any pair of representable epimorphisms with common domain
is representable.

Examples 6.8 As important examples of EZ-categories we mention the simplex category A,
Segal’s category I', the category Ay, (cf. 1.9.a—c), as well as the total category RG of a
crossed group G on an EZ-category R whose underlying Reedy category is strict (e.g. the
category A for cyclic sets, resp. the category €2 for dendroidal sets, cf. 2.7 and 2.8). To see
that axiom (iii) of an EZ-category holds for RG, one can either construct the pushout of split
epimorphims in RG explicitly from such pushouts in R, or use the following more abstract
argument: the inclusion functor i : R < RG induces adjoint functors i : R <SRG :i*
Because i is leeCtIVG on objects, the restriction functor i * is faithful. This implies that the
category RG is equlvalent to the category of algebras for the monad i*i; on R. Therefore,
the restriction functor i* creates absolute pushouts.

The presheaf R(—, r) represented by an object » of R will be denoted R[r]. The split
epimorphisms of an EZ-category will be called degeneracy operators; the monomorphisms
will be called face operators. Recall that the Yoneda-lemma allows us to identify elements
of a set-valued presheaf X on R with maps x : R[r] - X in @; such a map (or element) x
will be called degenerate if x factors through a non-invertible degeneracy R[r] — R[s], and
non-degenerate otherwise.

Proposition 6.9 Let R be an EZ-category and let X be a presheaf on R. Then any element
x : R[r] — X factors in an essentially unique way as a degeneracy py : R[r] — R[s]
followed by a non-degenerate element oy : R[s] — X.

Any such decomposition will be referred to as a standard decomposition of x.

Proof The existence of a standard decomposition follows from the facts that the degree-
function takes values in N, and that non-invertible degeneracies lower the degree by 6.7(i) .
For the essential uniqueness, observe first that there can be at most one comparison map from
a standard decomposition x = oy p, to another x = o} p/, since degeneracies are epic. It
remains to be shown that such a comparison map always exists. Take the absolute pushout
of py and p’,, as provided by 6.7(iii):

R[r] 2% RIs]

Py i ifx
R[s'] — R[7]
t.X
There exists therefore a map ¢, : R[t] — X such that ¢,y = oy and ¢,7, = o,. Since
oy and o, are non-degenerate, the split epimorphisms 7, and 7, must preserve the degree. It
then follows from 6.7(i)’ that 7, and 7/ are invertible so that (t/) 'z, provides the required
comparison map.

Corollary 6.10 Let R be an EZ-category and let X be a presheaf on R. Then the counit
sk,(X) — X is monic and its image is the subobject X" of those elements of X which
factor through an element R[s] — X of degree s < n.
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Proof Notice that the counit sk, (X) — X factors through X since by definition, for each
object r of R, we have

skn(X)r = tn!t:(X)r = h_r)n X,

r—s,d(s)<n

where the last equation follows from the pointwise formula for the left Kan extension, cf.
Sect. 3. The induced map sk, (X) — X is pointwise surjective. To see that sk, (X) — X
is pointwise injective, take two elements x, y in sk, (X) giving rise to the same element z in
X Then, the essential uniqueness of the standard decomposition of z shows that x and y
define the same element in sk, (X).

7 Monoidal Reedy model structures

From now on, we shall assume that £ = (€, ®¢, I¢, T¢) is a closed symmetric monoidal
category, see e.g. [7]. Observe that if arbitrary (small) coproducts of the unit object /g exist,
there is a canonical functor I¢ : Sets — & given by § — I¢[S] =[] s Ie. The symmetric
monoidal structure will be called solid if these coproducts exist, and if moreover the resulting
functor from the category of sets to £ is faithful. Objects and morphisms of £ which belong
to the essential image of this functor will be called discrete. Likewise, the presheaf category
R maps to & R Observe that both functors have right adjoints, and hence preserve colimits.

Recall that, according to Hovey [23], a monoidal model category is a category which is
simultaneously a closed symmetric monoidal category and a Quillen model category such
that unit and pushout-product axioms hold. For brevity, we shall say that a monoidal model
category & is solid if

(i) the symmetric monoidal structure is solid in the sense mentioned above;
(ii) the unit I¢ is cofibrant,
(iii) for any discrete group G, and any map of G-sets f : A — B, if I¢[ f]is a cofibration
in £ then f is a free G-extension.”

Observe that condition (ii) makes the unit axiom redundant, and condition (iii) (applied to
the trivial group) implies that discrete cofibrations in £ are monic. Condition (ii) implies
that the converse of (iii) also holds. Examples of solid monoidal model categories include
the category of compactly generated spaces, the category of simplicial sets (both equipped
with Quillen’s model structure), and the category of differential graded R-modules with the
projective model structure.

7.1 Boundary inclusions and cofibrations

For each object r of an EZ-category R, the formal boundary dR[r] of R[r] is defined to be
the subobject of those elements of R[r] which factor through a non-invertible face operator
s — r.By Corollary 6.10, we have dR[r] = sk4(-)—1R[r]. Our main purpose here is to single
out a class of maps in R which induce Reedy cofibrations in EX” for any solid monoidal
model category €. This class coincides with Cisinski’s class of normal monomorphisms, see
[10, 8.1.30].

ZA G-equivariant map of G-sets f : A — B is a free G-extension iff f is monic and G acts freely on the
complement B\ f(A).
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Proposition 7.2 For a map ¢ : X — Y of set-valued presheaves on an EZ-category R, the
following three properties are equivalent:

(i) for each object r of R, the relative latching map X, U, (xy L,(Y) — Y, is a free
Aut(r)-extension;
(ii) ¢ is monic, and for each object r of R and each non-degenerate element y €
Y \¢(X),, the isotropy group {g € Aut(r) | g*(y) = y} is trivial;
(iii) for each n > 0, the relative n-skeleton sk, (¢) = X Ug, (x) skn(Y) is obtained from
the relative (n — 1)-skeleton sk,_1(¢) by attaching a coproduct of representable pres-
heaves of degree n along their formal boundary.

Proof (ii) = (i). By Lemmas 6.10 and 6.2, the latching object L,.(X) may be identi-
fied with the subobject of degenerate elements of X,. Since ¢ is monic, the induced map
L,(¢): L, (X) — L,(Y)is monic; moreover, ¢ takes non-degenerate elements of X to non-
degenerate elements of Y, as follows from the left lifting property of split epimorphisms
with respect to monomorphisms:

R[r] — X

Iy

Rls] —» Y

In particular, the complement X, \L,(X) is taken to the complement Y, \L,(Y), i.e. the rel-
ative latching map X, Uy (x) L,(Y) — Y, is monic, and the complement of its image may
be identified with the set of non-degenerate elements of Y, \¢ (X);,.

(i) = (iii). It follows from Lemmas 6.3 and 6.2 that the canonical map sk,_1(¢) —
sk, (@), evaluated at objects r of degree < n, is an isomorphism, while at objects r of
degree n, it evaluates to X, Uz, (x) L-(Y) — Y,. The latter is a free Aut(r)-extension by
hypothesis. Since neither sk,_1(¢) nor sk, (¢) contain non-degenerate elements of degree
> n, this shows that sk,(¢) is obtained from sk,_1(¢) by attaching, for each Aut(r)-
orbit in sk, (¢),\sk,—1(¢),, a distinct copy of R[r]; since the orbit is free, the complement
R[r]\0R[r] is freely attached.

(ili) = (ii). Since property (ii) is stable under pushout and sequential colimit, it suf-
fices to show that the boundary inclusions dR[r] < R[r] have property (ii). The only non-
degenerate elements of R[r]\dR[r] are the automorphisms of r; the latter have trivial isot-
ropy groups.

Cisinski shows the equivalence of 7.2(ii) and 7.2(iii) in a slightly different setting, cf. [10,
8.1.1, 8.1.29-35]. In the special cases R = I" and R = €, the skeletal filtration 7.2(iii) has
been described by Lydakis [28] and Moerdijk—Weiss [31], respectively.

Amap ¢ : X — Y in R, fulfilling one of the equivalent conditions of Proposition 7.2,
will be called a cofibration. Condition 7.2(i) readily implies

Corollary 7.3 Let R be an EZ-category and & be a solid monoidal model category. A map
of set-valued presheaves on R is a cofibration if and only if the induced map in ER” isa
Reedy cofibration.

Definition 7.4 An EZ-category R is called guasi-monoidal if the presheaf category R carries
a symmetric monoidal structure (R, O, /g, t) such that

(i) the bifunctor —[1— : RxR->R preserves colimits in both variables;
(i1) the unit /g is cofibrant;
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(iii) for all objects r, s of R, the boundary inclusions induce a pullback square

OR[r]OOR[s] — OR[r]OR[s]

l i

R[r]O0R[s] — R[r]JOR[s]

in R consisting of cofibrations.

Since cofibrations are monic, the induced map
R[V]DBR[S] UaR[r]Dé)]R[s] 8R[V]DR[S] e R[F]DR[S]

is also monic, and hence, by 7.2(ii), a cofibration. It then follows from 7.2(iii) and 7.4(i) that
the class of cofibrations in R satisfies Hovey’s pushout-product axiom.

7.5 Convolution product

The monoidal structure [J on R and the monoidal structure ®¢ on £ together induce a (closed
symmetric) monoidal structure on EX”, which will be denoted g, and called the convo-
lution of O and ®¢. The construction uses that £ is cocomplete and can be obtained as an
enriched Kan extension, see [30, Appendix]. For objects X and Y of ER” the convolution
product X[¢Y is explicitly given by the formula

(XOegY), = lim X, ®c Y.
R[t]—R[r]OR[s]

Notice that the functor R —> £R” discussed at the beginning of this section is strongly
symmetric monoidal because of 7.4(i). In particular, it preserves the unit.

Theorem 7.6 Let R be a quasi-monoidal EZ-category and let £ be a cofibrantly generated,
solid monoidal model category. Then the functor category EX”, equipped with the Reedy
model structure of 1.6 and with the symmetric monoidal structure obtained by convolution,
is a cofibrantly generated, solid monoidal model category.

Proof We shall first show that £ R g cofibrantly generated. The generating (trivial) Reedy
cofibrations of £X” are obtained by “twisting” the generating (trivial) cofibrations of &
against the boundary inclusions of R. To be more precise, let f : A — B be an arbitrary
generating (trivial) cofibration of £ and let i, : dR[r] — R[r] be a boundary inclusion
of R. For brevity, for any object A of £ and any set S, the tensor A ®¢ ([[g Ig) will be
written A ®¢ S, and similarly for set-valued presheaves on R. We thus obtain the following
commutative square

A Qg IR[r] - B ®g 0R[r]

| |

A ®¢ Rlr] — B ®¢ RIr]
in £8” . The induced comparison map
A ®¢ R[r] Uagor(r) B ®¢ dR[r] — B ®¢ R[r]

is a generating (trivial) Reedy cofibration of X and they are all of this form. Indeed, since
the Reedy model structure on EX” is well defined by Theorem 1.6, the generating property
just expresses that a map X — Y is a trivial Reedy fibration (resp. Reedy fibration) if and
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only if it has the right lifting property with respect to the generating Reedy cofibrations (resp.
trivial Reedy cofibrations). This in turn follows from the fact that, by adjointness, one of the
following two squares

A Qg Rlr] Upggarir) B ®¢ 0R[r] — X A &
B ®¢ R[r] Y B — Y, xXum,.(v) My (X)
has a diagonal filler if and only if the other has.

The fact that EX” is solid follows from the facts that & is solid and that R — X is a
strong monoidal functor preserving cofibrations, cf. Corollary 7.3.

So, it remains to check the pushout-product axiom. To this end, take two generating cofi-
brations f : A - B, g : C — D in £ as well as two boundary inclusions i,, i; of R, and
consider the associated generating Reedy cofibrations

flir : A®e RlrlUagcorr) B ®¢ OR[r] — B Q¢ R[r],
8/is 1 C Bs Rls]Uageorps) D Q¢ 0R[s] = D ®¢ Rs].
We shall denote them by f/i, : A/i, — B/i, and g/is : C/is — D/is. We have to show
that the pushout-product map
(A/iy8eD/is) Yayi,necyiyy (B/irDeClis) — (B/i,UeD/iy) ©)

is a Reedy cofibration which is trivial if f or g is trivial.
The operation ( f, i) — f/i, extends in an evident way to a bifunctor

— /= Arr(€) x Arr(R) — Arr(€R”"),

where Arr(C) denotes the category of arrows in C.
It is now straightforward to verify that (9) is isomorphic to //i; where

h:A®gDUA®£CB®gC—> B ®¢ D and
i[ : R[r]DaR[s] U@R[r]DZ)R[sJ BR[r]DR[s] — R[V]DR[S]

are the canonical comparison maps. Since in € and R the pushout-product axiom holds, it
remains to be shown that for a (trivial) cofibration / in £, and cofibration i, in R, the map h/i;
is a (trivial) Reedy cofibration in ¥ . By the adjointness argument given above, this holds
whenever / is a generating (trivial) cofibration, and i; a boundary inclusion; the general case
reduces to this special case, since the operation (%, i;) +— h/i; commutes with sequential
colimits and retracts in each variable, and takes pushout squares in each variable to pushout
squares in £ ROP

Examples 7.7 (a) The simplex category A is a quasi-monoidal EZ-category for the carte-
sian product on A. Therefore, the category of simplicial spaces is a monoidal model
category for the cartesian product, where “space” means either compactly generated
topological space or simplicial set. In the latter case, the Reedy cofibrations are precisely
the monomorphisms, and the result is of course well-known. Notice that in general, even
for strict EZ-categories R, the exactness axiom 7.4(iii) may not be true for the cartesian
product on R.

(b) Segal’s [36] category I' is a (quasi-)monoidal EZ-category for the smash product on
T, as can be deduced from the work of Lydakis [28]. This means that the category of
I"-spaces, equipped with the strict model structure of Bousfield-Friedlander [8], is a
monoidal model category.
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(c) The category 2 for dendroidal sets (see 2.8) is a quasi-monoidal EZ-category for the
Boardman-Vogt tensor product on Q, cf. [11,30]. Therefore, the category of dendroidal
spaces is a monoidal model category in such a way that the embedding i : A — Q
induces a monoidal Quillen adjunction between simplicial spaces and dendroidal spaces.
It is shown in [12] that, in complete analogy to Rezk’s localization of simplicial spaces
(the model structure for complete Segal spaces, cf. [6,25,27,35]), there is a localization
of the model category of dendroidal spaces which is Quillen equivalent to the model
category of quasi-operads introduced in [11].
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