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1. Introduction.
1.1. Problem. In this paper we study the asymptotic behaviour of small solutions of

the stationary problem of the three-dimensional Navier-Stokes equations:

— A w + (w • V)w + Vq = f, V-w = 0 for x €

w = g for x E <90, (SP)

lim w(:r) =
|x|—>OC

where Uoo is a nonzero constant three-dimensional row vector and Q is an exterior domain
in IK3 with smooth boundary <9f2. Also, we discuss the stability property of the solutions
of (SP) with respect to small L3-perturbation. To be more precise, let us consider the
nonstationary problem :

vt - A v + (v • V)v + Vp = f, V • v = 0 for t > 0, x 6 O,

v = g for t > 0, x £ dfl,

v(0, x) = a(x) for ie!l,

lim v(t,x) = uao vi > 0.
|a;|—>oo

Inserting v(t,x) = w(x) + u(t,x), a(x) = w(x) + b(x) and p(t,x) = q(x) + r(t,x) into
(NS), we obtain the equations governing the perturbation u :

(NS)

' - A u + (w • V)u + (u ■ V)w + (u • V)u + V r = 0
V • u = 0

for t > 0, x G fl,

(P)u(t,x) = 0 for t > 0, x € dfl,

u(0, x) — b(x) for x € fl,
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We shall prove the existence and asymptotic behaviour globally in time of solutions of
(P) when |uoo| and the L3-norm of b are very small.

The notation in (SP) and (NS) is the usual one of vector analysis explained below
more precisely in the paragraph of notation. Three-dimensional row vectors of functions
are denoted with bold-face letters, for example, w = w(x) = T(wi(a:), w2{x),wz(x))
where TM means the transposed M. The solution w(x) of (SP) can be interpreted as the
velocity field of a steady motion of an incompressible fluid in position x — {x\,x%, £3) €
with an external force f = f(ar) and a prescribed velocity field g = g(x) at the boundary
dil , and the scalar function q = q(:c) is then the associated pressure, where we adopt
a coordinate frame fixed to a moving rigid body O which is identified with a bounded
domain in R3 in the viscous incompressible fluid that occupies the region ft = K3 — 6.
The solutions v = v{t,x) — T(vi(t,x),v2(t,x),v3(t,x)) and p = p(i,:r), a scalar function,
of (NS) also can be interpreted as the velocity field and its associated pressure of the
time-dependent motion of a viscous incompressible fluid in position x £ at time t > 0
with an initial velocity field a = a(x) as well as the same external force f — f(x) and
prescribed velocity g = g(x) at dfi as in (SP).

It is well known that without smallness assumptions, present day analysis yields only
a locally in time unique solution of (NS) in the three-dimensional case, while Leray
[33] and Hopf [26] proved the existence of square-integrable weak solutions for arbitrary
square-integrable initial velocity, whose uniqueness is still unknown.

The first general study of (SP) for arbitrary prescribed data is due to Leray [32]. He
proved the existence of smooth solutions of (SP) with a finite Dirichlet integral. But,
the solutions obtained by Leray did not provide much qualitative information about the
solutions. In particular, nothing was proven about the asymptotic structure of the wake
behind the body O. Finn [12] to [16] has studied (SP) within the class of solutions,
termed by him physically reasonable, which tend to a limit at infinity like \x\~l^2~e for
some e > 0. For small data he proved both existence and uniqueness within this class.
In fact, his solutions satisfy the following estimate :

|w(x) — UqcI ̂  C |a:|_1 as |s| —> 00 and Vw 6 £3(0) (PR)

where C is a constant. Furthermore, his solutions exhibit paraboloidal wake region
behind the body O.

Finn has conjectured [17] that for sufficiently small data, physically reasonable solu-
tions are attainable. Namely, the problem is to find a solution u(t, x) of (P) such that
u(t,x) —* 0, that is, v(t,x) — w(x) —> 0 as t —> 00. This is called a stability problem.

The stability problem was first solved by Hey wood [23, 24] in the L2 framework.
Roughly speaking, he proved that if the L2-norm of b(x) is very small and if C < 1/2,
C being the constant in (PR) above, then there exists a unique solution u(i, x) of (P)
satisfying the convergence property :

/ |V(u(t, x) — w(x))|2 dx —> 0 and / ju(£, x) — w(x)|2 dx —+ 0
J\xx\iR

as t —> oc where R is any positive number. His result was sharpened, in particular with
respect to the rate of the convergence, by Masuda [35], Heywood himself [25], Miyakawa
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[36], and Maremonti [34] (cf. further references cited therein). But, as Finn showed in
[14], if w(x) is a physically reasonable solution and if the force exerted to the body O
by the flow does not vanish, then w(x) — Uoo is not square-integrable over Q. Therefore,
it seems reasonable to seek a solution of the problem (P) in a class of functions that are
not square-integrable over fl for each time t > 0.

In this direction, Kato [29] solved the problem (NS) in the Ln-framework when il = Rn
(n ^ 2), Uoo = 0 and the L„-norm of a is very small. He employed various Lp-norms
and Lp-Lq estimates for the semigroup generated by the Stokes operator. Iwashita [28]
extended Kato's result to the case that Q ^ M™ (n ^ 3), = 0 and that the Ln-norm
of a is also very small. The main point of Iwashita's work was to obtain Lp—Lq estimates
of the semigroup generated by the Stokes operator in Q with zero Dirichlet boundary
condition. Since the zero vector 0 is a trivial solution to (SP) when Uoo = 0, expressing
the Kato and Iwashita results in other words, we can say that the trivial solution is stable
by the small L„-perturbation.

Recently, when Uoo = 0 and (lei" (n ^ 3), Borchers and Miyakawa [5] and Kozono
and Yamazaki [31] proved the stability of nontrivial physically reasonable solutions by
the small weak L„-perturbation. Namely, they proved that if the Ln weak norm of b
is very small, then (NS) admits a unique solution v(t,x) that converges to w(x) in the
Ln weak space with a suitable rate with respect to t as t —> oo. Since the physically
reasonable solutions of (SP) belong to the Ln weak space when = 0 (cf. (PR)), the
stability problem was, therefore, settled in the case where = 0 and n ^ 3.

On the other hand, the case where Uoo ^ 0 has been studied relatively seldom com-
pared with the case where = 0 (cf. except for papers cited above, Oseen [38], Babenko
[1], Bemelman [2], Faxen [11], Farwig [8, 9], Galdi [19]). In particular, the stability has
been proved only in the L2-framework. This paper is devoted to the study of the stabil-
ity problem of physically reasonable solutions with respect to small L:j-perturbat;ion in
the three-dimensional exterior domain when is a nonzero constant vector. In fact,
since w(.t) — belongs to Z/3-space when 7^ 0, which will be proved in Theorem
1.1 below, the stability theorem with respect to the La-perturbation is meaningful. As
a corollary of our stability theorem, we also prove a unique existence theorem of small
strong solutions of (NS) in the L3-framework when f = g = 0 and / 0, which is
an extension of the Kato and Iwashita results to the case where ^ 0. Moreover, we
shall prove that our solutions tend to Kato and Iwashita solutions when -4 0 even
in the Loo-space.

1.2. Notation. To state main results, first we outline at this point our notation. The
dot • denotes the usual inner product of three-dimensional row vectors. (a,j) means the
3x3 matrix whose ith column and jth row component is a1?. As usual, the subscript t
means partial differentiation with respect to t, and moreover we put

dt = d/dt, dj = d/dxj, A = d\ + d% + d%,
d% = d?d?d^, a = (ai,a2,a3), |a| = ai + a2 + a3.

For three-dimensional row vector-valued functions u = T(ui, m2, 113), v = T(i>i, W2, V3)
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and a scalar-valued function u we put

d?u = (5>, H = m), d^u = (d"u, |a| < to), = T(d/<2>i, d?0>2, d/d>3),
= (<%>, M = TO), Cu = (^"u> lal < m)> Vu =

3 3 3
Au = t(Awi, Au2, Au3), (u • V)v = T(^UjdjVi, ujdjv2, ^ UjdjV3),

j=i j=i j=i
3

V • u = ^^djUj,Vu = T(diu, d2u, d^u), Vw : Vv = T(Vu • Vvi, Vu • Vt>2, Vu • VU3).
j=i

To denote the special sets, we use the following symbols:

Bb = {x G M3 | \x\ g b}, Gb = {x € M3 | |z| ^ b}, Db = {x G M3 | b - 1 g \x\ g 6},

Si, = {a: e K3 |x| = 6}, n Bb, d£lb = <90 U S^.

Let bo be a fixed number such that Bbo D O. Sobolev spaces of vector-valued functions
are used, as well as of scalar-valued functions. If D is any domain in R3, Lp(D) denotes
the usual Lp-space of scalar functions on D and || • ||Pid its usual norm. Moreover, we
put

(lgp<oo), llulloo^ = max U^Hoo^,
.7=1,2,3

\\p,m,D = P™w||p,D, ||u||p,mjD = ||a™u||p,D, ('\1,V)D= U(x) ■ v(x)dx
JD

For simplicity, we shall use the following abbreviation: (•,•) = (-,-)n, || • ||p = || ■ ||Pin,
|[ ' llp,m — || ' ||p,m,£2; I * lp — II llp,M35 I ' lp,m — II * llp,m,K3, ^ denotes the set of all
distributions on R3, S' the set of all tempered distributions on K3 and Cq°(D) the set
of all functions of C°° (K3) whose support is contained in D. Moreover, we put

Lp,b(D) = {u G LP(D) | u(x) = 0 vx ^ Bb},

oc(R3) = {u G S' | d«u G Lp(Bb) va : \a\ < m and v6 > 0},

W™loc(D) = {u\3Ue W™loc(R3) such that u = U on D},

Lp,ioc(D) = W^loc(D),

W™{D) = {u G W£l0C(D) I ||u||p,m,D < 00},

W™(D) = the completion of C£°(D) with respect to || ■

W™{D) = {u G W™loc(D) | \\d?u\\p,D < oc}.

To denote function spaces of three-dimensional row vector-valued functions, we use the
blackboard bold letters. For example,

Lq(D) = {u = t{ui,u2,u3) I Uj G Lq(D),j = 1,2,3}.
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Likewise for C§°(D), LPib(D), W£loc(D), LVlloe{D), W?{D), W?(D) and W™(D). More-
over, we put

IP(D) = the completion in LP(D) of the set {u e Cq'(D) | V • u = 0 in D},

Gp(D) = {Vp\peW}(D)},

w™d(<^) ={?€ W™(ft) | g(x) = 0 for |z| ^ b0 + 1, [ u(x) • g(z) dY = 0},
JdQ

where dr is the surface element of dtt and v(x) = T(ui(x), ^2(2), ^(x)) is the unit
outer normal to dft. According to Fujiwara and Morimoto [18] and Miyakawa [36], the
Banach space LP(D) admits the Helmholtz decomposition: LP(D) = 3P(D) © GP(D),
where ® denotes the direct sum. Let be a continuous projection from LP(D) onto
Jp(Z?). The Stokes operator and the Oseen operator Od(uoo) are defined by the
relations: Ad = —PdA and Oij(u00) = AD + PD(uoo • V) with the same domain:
T>p(Ad) = Vp(Od(Uoo)) = Jp(-D) nWp(D) n Wp(D). Note that ©d(0) = AD. For
simplicity, we write P = Pn, A = Aq and O(uoo) = On(uoo). To denote various constants
we use the same letter C. By Ca,b,- we denote a constant depending on the quantities
A, B, ■■ ■. C and Ca,b,... will change from line to line. Let C denote the set of all complex
numbers. For two Banach spaces X and Y, C(X, Y) denotes the set of all bounded linear
operators from X into Y with norm || • ||c(x,Y)> the set of all X-valued bounded
continuous functions on I and C(I,X) the set of all X valued continuous functions on
I. Finally, e^c"-Uoo')t — TUao(t) denotes the analytic semigroup on Jp(f2) generated by
O(uoo), the existence of which is proved by Miyakawa [36].

1.3. Main results. Now, we shall state our main results. We start with an existence
theorem of small solutions to (SP).

Theorem 1.1. Let 3 < p < oo and let <5 and (3 be any numbers such that 0 < 6 < 1/4
and 0<«5</3<l — 6. Let f G Loc(fi) and g G Wp2 Then, there exists a constant
e, 0 < e ^ 1, depending on p, 6 and (3 but independent of such that if 0 < |uoo| = e
and -C f »26 +||g||P,2 ^ eluool^15, then the problem (SP) admits solution w and p
possessing the estimate :

||W - Uqo lip,2 + |||w - Uqo|||ff + HpIIp.I = \uoo\0, (1-1)

where

< u >26 = sup (1 + |z|)5/2(l + sUoo(z))1/2+2<5|u(:r)|, (1.2)
xen

|||u|||s = sup (1 + |z|)(l + sUoo(a:))6|u(x)| (1.3)
x6f2

+ sup (1 + |z|)3/2(l + sUoo(cc))1/2+,5|Vu(a;)|,
xen

su00(a;) = M — TX ■ Uoo/|Uoo|- (1.4)

Remark 1.2. The similar result was obtained recently by Novotny and Padula [37]
in the compressible viscous fluid case. From works due to Finn [12] to [16] and Farwig
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[8, 9], the dependence of solutions on Uoo is not clear. Since such dependence plays an
important role to solve the stability problem, we shall prove Theorem 1.1 in this paper.

Remark 1.3. The estimate (1.1) represents the wake region behind O. Moreover, by
(1.1), w — Uqo € IL.3(fi) and Vw € L3/2(fi). In fact,

l|w - Uool^ ^

||Vw||3/2 ^

2tt

2tt

r°° dr r
Jo (1 +r)3rs J0

sin 0 dO 1/3
'"■001 >

(1 — cos 6)6

dr sin 0 dd

un l*3

r°° dr r
J0 (l + r)9/4r(3+«)/4 Jo(l + r)9/4r(3+«)/4 JQ (1 -C0s6')(3+l5)/4_

2/3
0

(1.5)
U 00

Now, we shall state our stability theorem, that is, the existence of solutions of (P)
globally in time. According to the approach due to Kato [29], instead of (P), we consider
the integral equation. Namely, in view of (1.1), if we write (w • V)u = (uqo • V)u +
((w - Uoo)) • Vu in (P) and if we apply the projection P to the resulting formula, the
first formula in (P) is reduced to

uf +©(uoo)u = -P[£[w]u + A/"[u]], (1.6)

where

£[w]u = ((w - Uoo) ■ V)u+ (u • V)w, (1.7)

Af[u] = (u • V)u. (1.8)

Then, applying Duhamel's principle to (1.6), we have the integral equation

u{t)=TUoo(t)b- [ TUoo(t — s) P [£[w] u(s) + A/"[u(s)]] ds. (1.9)
Jo

Instead of (P), we shall solve (1.9).

Theorem 1.4. Let 3 < p < 00 and let <5 and /3 be the same as in Theorem 1.1. In
addition, we assume that 0 < 6 < min(l/6,4/p). Let f € Loo(fi), g G W^d(dfl) and
b(a:) e J3(f2). Then, there exists an e > 0, 0 < e ^ 1, depending only on p, f3, and 6
essentially such that if 0 < |uoo| ^ e, « f 3>2« +||g||p,2 ^ 6 luool'3"1"'5 and ||b||3 ^ e, then
the problem (1.9) admits a unique solution u € B{[0, 00), JT3(S7)) possessing the following
properties:

[u]3,0,t + [u]p,/i(p),i + [Vu]3|i/2,t ^ %/€) (1-10)

~ b"3 + [U1p^(p)'4 + [Vu]3,l/2,t] = 0. (1.11)

Here and hereafter, we put

[z]p,p,t = sup sp||z(s,-)||p, (1.12)
0 <s<t

fo"'=3- (113)
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Moreover, we have the relations:

^ Cq (e + e1/2+/3) , 3 < q < oo,

||u(<,Olloo ±Cm(e + (rV + t-Ci-3/am)) , ^

for any t > 0 where m is a number such that 3 < m < p.
Finally, we consider the convergence of solutions of (NS) as |uoo| —» 0 in the case that

f(x) = g(a;).

Theorem 1.5. Let us consider the problem (NS) in the case that f(a;) = g(x) = 0.
Let 0 < P < 1 and let a(x) = + b(x) be an initial velocity. Then, there exists an e,
0 < e ^ 1, depending on 3 but independent of and b such that if |uoo| ^ e, b € 13(0)
and ||b||3 ^ e, then (NS) admits a unique solution vu^ (t, x) with suitable pressure part
Puoc(*,a:) such that u(t,x) = vUoo(t,x) - Uoo S S([0,00), Jf3(f2)) and (1.10), (1.11) and
(1.14) hold for the present u with suitable constants Cq and Cm independent of e, 3 and

Moreover, we have the following convergence property:

llvuoo^,-) -Uoo - V0(t,-)llg ^ Cq (t~^q) + *3/2<z) (Uoo^ 3 g V<? < 00,

llvuoo (t, ■) - Vo(t, ')||00 ̂  Cm + l) lUool'3, (1.15)

l|V(vUoo(t,-) - VUoo(*,-))||3 ^ C (t~1/2 + l) |Uqo

for any t > 0 where m is a constant > 3.

2. Preparation for the latter sections. In this section, we shall discuss some
basic facts which will be used in the latter sections. Throughout this section, D de-
notes a bounded domain in R3 with smooth boundary dD. We start with a proposition
concerning inequalities of Poincare's type and an extension of functions.

Proposition 2.1. Let 1 < p < 00. (1) Then, the following two relations hold:

IMIp.d = Cd ( ||Vu||P)£> + J v(x)
D

dx "v e Wp(D), (2.1)

\\v\\P,D^CD\\Vv\\p,D *veW£(D). (2.2)

(2) Let m be an integer ^ 0. Then, for any u e W™{D), there exists a«e W™(IR3) such
that u = v in D and \v\Ptm ^ CP,m,.DlM|p,m,.D, where CP)mi£> is a constant independent
of u and v.

Proof. See [19, II.4] for (1) and [19, II.2] for (2).
In order to state the so-called Bogovskii's lemma, Proposition 2.2 below, we introduce

the space W™a(D) in the following manner:

W™(D) = {«e W™(D) | f u(x) dx = 0}. (2.3)
Jd
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Proposition 2.2. Let 1 < p < oo and let m be an integer ^ 0. Then, there exists a
B e £(W™a(D),W™+1(D)) such that V • B[/] = / in D.

Proof. See Bogovskii [3, 4] (also Giga and Sohr [22, Lemma 2.1] and Iwashita [28,
Proposition 2.5], Galdi [19, III.3]).

To use a cut-off technique, we use the following proposition which is easily proved by
using Propositions 2.1 and 2.2 (cf. Kobayashi and Shibata [30, Proposition 2.4]).

Proposition 2.3. Let 1 < p < oo and b > b0. Set G = fl, or ]R3. Let m be
an integer ^ 1 and let ip be a function of C°°(]R3) such that <p(x) = 1 for |x| ^ b — 1
and tp(x) = 0 for jrc| ^6. If u € W™/oc(G), V • u = 0 in G and u = 0 on dfl when
G = or fib+i, then (V<p) • u e W™a(Db). As a result, B[(V</?) • u] e W™+1(Db),
V • B[(Vv?) • u] = (Vip) ■ u and |B[(Vy>) • u]|pm+1 ^ Cp,m,v,b\\a\\P,m,Db-

The following proposition is concerned with the regularity of the projection Pg for
G = D or G = n.

Proposition 2.4. Let 1 < p < oo and let m be an integer ^ 0. Set G — D or G = fi.
Then, PG G £(Wpm(G), Wpm(G) n JP(G)).

Proof. See Giga and Miyakawa [21] for G = D and Giga and Sohr [22] for G = Q.
We shall quote a Cattabriga theorem of a unique existence of solutions to the following

equation:
-Au + V p = f, V ■ u = / in D, u = 0 on dD. (2.4)

Proposition 2.5. Let 1 < p < oo and let m be an integer ^ 0. Put

W™a{D) = { f e W™(D) I f fix) dx = 0 }. (2.5)
Jd

Then, for any f € W™(D) and / € W™+X(D), there exists a unique u € W™+2(.D)
which together with some p e W™+1(D) solves (2.4); p is unique up to an additive
constant. Moreover, the following estimate is valid:

||u||p,m+2,D || Vp llp^rn+l,^ = Cp,m,D {||f||p,m,D l|/||p,m+l,-D }. (2.6)

Proof. See Cattabriga [6], Galdi and Simader [20], and Farwig and Sohr [10].
Finally, we shall discuss a unique existence of solutions to the following equation:

-Au + (uoo • V)u + Vp = f, V ■ u = / in D, u = 0 on dD, (2.7)

with a side condition:

hp(x) dx = c. (2.8)
I

Proposition 2.6. Let 1 < p < oo and let to be an integer ^ 0. Set

Wpm(D) = Wpm(D) x W£+\D) x C,

(f) /) c)lllp,m,D = ||f||p,m,D + ||/||p,m+l,D + |c|-
(2.9)
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Then, there exist LUoo,D € C(W™(D), Wpm+2(D)) and lUoo,D € C(W™(D), W™+1(D))
such that u = LUoo,£>(f, /, c) and p = [Uooto(f, /, c) solve the problem (2.7) and (2.8)
uniquely. Moreover, for any a > 0 we have the relation

II — K Lu^Xf, /, c) \\p,m+2,D + || (luoc-D — K lu^.LiXf > /> c) ||p,m+l,D
^ Cp,m,D,a{ 1 - K + K lUoo - U^|) |||(f, /, c)|||p,m,D

provided that |uoo|, lu^J ^ a where k = 0 and 1.
Proof. First, we consider the solvability of (2.4) with side condition (2.8). Let u and

p be solutions to (2.4) and set

d = \D\~~1 ̂c — J p(rr)<£r^ and q(a;) = p(x) + d.

Then, u and q satisfy (2.8) as well as (2.4). The uniqueness of solutions to the problem
(2.4) and (2.8) follows from Proposition 2.5 and (2.1). Therefore, in view of Proposition
2.5 and (2.1) we can define the solution operators M £ £(W™(D),W™+2(Z?)) and
m G £( W™(D), W™+1(D)) such that if we set u = M(f, /, c) and p = m(f, /, c) then u
and p satisfy (2.4) and (2.8).

Now, we apply M and m to (2.7), and then

in D,
(2.11)

- A M(f, /, c) + (Uoo • V)M(f, /, c) + V m(f, /, c)

= f + (Uoo • V) M(f, /, c)

V ■ M(f, /, c) = /

>fl(f, /, c) = 0 on dD, I m(f, /, c) dx = c.
Jd

If we define the operator SUor € C( W™(D)) by the relation

(f, /, c) = ((Uoo • V) M(f, /, c), 0,0),

then SUoo is a compact operator, because (u^ • V) M(f, /, c) belongs to W™+1(D) which
is compactly imbedded into W ™(D). Let us prove that I + ^u^ has a bounded inverse for
each Uqo eR3. In view of Fredholm's alternative theorem, it suffices to show that I + ,S'Uoc
is injective. Let us pick up (f,/,c) € Wpm(D) such that (1 + 5Uoo)(f,/,c) = (0,0,0),
that is, f + (uqo • V) M(f, /, c) = 0, / = c = 0. Set u = M(f, 0,0) and p = m(f, 0,0), and
then by (2.11) u and p satisfy the relations

-A u +(uoo • V) u +Vp = 0, V-u = 0in£>, u = 0 on dD, / p(x) dx = 0. (2.12)
Jd

In view of Proposition 2.5 by the boot-strap argument we see that u and p are sufficiently
smooth, and then the multiplication of the first equation in (2.12) by u and the integration
by parts imply that || Vull2 D = 0, and hence u = 0, because of the Dirichlet condition and
(2.2). Using the equation again, we see that Vp = 0 which together with fD p(a;) dx =
0 and (2.1) implies that p = 0. Thus, for each u,^ G R3, I + 5Uoo has its inverse
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(I + SvJ-1 &C(Wpm(D)). Since (SUoo - Su J(f, f, c) = ((Uoo - • V M(f, /, c), 0,0),
we have

OO

(I + SUJ-1 = £ [(I + SuJ-HS^ - SUJ]J (I + S^)"1
3=0

provided that

||(I + 5Uoo) || £(Wpm(D)) Wpm(L>),W™+2(£))) lUoo _ Uool = 2'

which implies that (I + Suoc)_1 is continuous with respect to e R3. Then it follows
easily that for any compact set K C R3 there exists a constant C\- > 0 such that

11(1 + 5,u00)^1||£(Wp"'(D)) ^ Ck, vUoo e K.

If we set LUooi£> = M(I + 5Uoo)_1 and Iu<x,d = n\(I + SUoo)~l, then we see easily that
LUoo.d and [Uoo,d satisfy the required property, except for (2.10) with k = 1. But, since

(^Uoo.C — luoo.D — tu^0,o)(f) /j c)

= (^Uoo.D) ^uoo,d)((u00 — uoo) ' ^u^c,Z)(f)/i c)) 0, 0),

the estimate (2.10) with k = 1 also follows immediately from (2.10) with n = 0. This
completes the proof of the proposition.

3. Lp solutions of the Oseen equation. In this section, we shall discuss Lp
solutions of the following equation:

-A u + (uoo • V) u + V p = f, V • u = 0 in fi, u = g on dft. (3.1)

The goal of this section is to prove the following theorem.

Theorem 3.1. Let 3 < p < oo and let K be any compact set in R3. If f e Lp(fi)nLi(fi)
and g € Wpd(dCl), then the problem (3.1) admits unique solutions u £ Wp(fi) and
p € Wp(fi) satisfying the estimate

||u||P,2 + ||p||p,i = Cp,k{ ||f Hp + ||f IIl + ||g||p,2 }> (3-2)

for any u^ € K with some constant CP)k independent of u^, f and g.
3.1. Basic property of the Oseen fundamental solutions. In this paragraph, we shall

discuss the basic property of the fundamental solutions Xjfc(uoo)(x) and nj(x), j, k =
1,2,3, of the Oseen equation:

-A w + (Uoo • V) w + V p = g, V • w = 0 in R3. (3.3)

Put
Xjk(Uoo) = T 1 [Pj-fc.u. (£)] . Pjfc,Uoo(0 = g|||2 g '

TTj = T~l £>3
(3.4)
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where i = yj —1, T~x denotes the inverse Fourier transform and Sjk is the Kronecker's
delta symbol, that is, 6n = 1 and 6jk = 0 for j / k. The following formula is well known
(cf. Oseen [38], Galdi [19, IV.2 and VII. 3], Kobayashi and Shibata [30]):

' Xjk(uoo)(x) = {Sjk A - djdk) E (a)(x),
1 /•"«u00 (x) _ -a (3.5)

s(0")(z)=o  /  da, cr = |uoo|/2^0,
S7T <7 Jq a

= + (36)

(3-7)

where sUoo(x) is the same as in Theorem 1.1.

Lemma 3.2. Assume that Uoo ^ 0 and let Xjfc(uoo), and a be the same as in (3.5).
Then, for any i5: 0 ^ 6 ^ 1 there exists Cs > 0 independent of such that

IXjfc(uoo)(a;)| ^ (x))6M'

|v*fc(u~)(!c)l - (3-8)

|vXjfe(uoo)(x)| ^ Cs
a1'2 1
\x\3/2 + |z|2.(^Su^W)'5

Proof. See Oseen [38], Galdi [19, VII.3], and also Kobayashi and Shibata [30].

Lemma 3.3. Let 3 < p < oo and <7o > 0. Assume that |uoo| ^ ctq. Put

x(Uoo)*f= tt * f = ^ tt,- * f:>
\j=i j=i j=i ) j=i

for f = t(/i,/2,/3) where the asterisk * stands for the convolution. If f e Lp(R3) n
Li(M3), then x(Uoo) * f € W2(R3) and 7r * f G Wp(K3); moreover,

Ix(Uoo) * f|p,2 + |tt * f|p,i ^ Cp,ao(\f\p + |f|i), (3.9)

llx(Uoo) * f - X«o) * f||p,2,B4 ̂  Cp.ilUoo - u^|1/2 (|f|p + |f|i). (3.10)

Proof. Let <p°(£) be a function of C°°(1R3) such that 0 ^ ip° ^ 1, <p°(£) = 1 for |£| ^ 1
and <p°(£) = 0 for |£| ^ 2 and put (p°°{£) — 1 - </>°(£)- Set

Xjfe(uoo) = T~X WWPjk^it)] , < = T~x l^l2)"1] (3-11)

for N = 0 and oo. To handle with Xjfc(uoo) and ttj50 , we use the following theorem
concerning the Lp boundedness of the Fourier multiplier.
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Proposition 3.4. (cf. Hormander [27, Theorem 7.9.5]) Let 1 < p < oo and let k(£) €
C°°(]R3 — {0}) satisfy the condition |c^fc(£)| g M |£|_'a' for |£| g 2 and £ € IR3 — {0}
with some constant M > 0. Then,

IJF"1 [ku] \p g CpM\u\p, vueLp(M3)

where Cv is a constant independent of M, and u and u denote the Fourier transforms of
u.

Since y>°°(£) — 0 for |£| g 1, by Proposition 3.4 we see easily that

\dl Xjk{uoo) * f\p + IXjfc(Uoo) * f\p,2 + \lTj * /|p,l ^ CM\f\p,
Ix^fc(uoo) * / ~ Xjk(U'oo) * f\p,2 S CM |Uoo - llJJ l/lp.

In order to handle with Xj% anc^ ' we nee(^ the following lemma.

Lemma 3.5. Let Xjfc(uco) and sUoo be the same as in (3.11) and (1.4), respectively.
Then, we have the following relations:

|x°fc(Uoo)(z)|^C(l + |z|)-\ (3.13)

|Vx°fc(uoo)(x)| g C( 1 + |u00|1/2)(l + sUoo(a;))~1/2(l + |x|)"3/2, (3.14)

\d%n°(x)\ ̂  C( 1 + |x|)-(2+IqD V (3.15)

where we have put so(a;) = |cc|.
Postponing the proof of Lemma 3.5, we continue the proof of Lemma 3.3. When

3 < p < oo, by (3.13) to (3.15) we see easily that

lx°/b(Uoo) * f\P,i + |7Tj */|p,i g (|x°fc(Uoo)|P,i + kj|P,i)l/li ^ C|/Ii- (3-16)

Since

l¥'0(^) {pjk,Uoo(^) —Pjk,u£„(0) I

Kuoo-u'^-fl \1/2 fl \1/2 ^ p .o^JUoo -U^l1/2

we have

lx?fc(uoo)*/-x°fc(u'00)*/|oo,l g ClUoo - u'^l1/2 [ |^"5/2de|/|i. (3.17)
J l€l^2

Combining (3.12), (3.16) and (3.17), we have Lemma 3.3.
A proof of Lemma 3.5. We shall prove only (3.14) in the case that ^ 0, because

other assertions will also be proved in a similar manner. Since X°fc(uoo) — Xjfc(uoo) * <P°
and since 1 + sUoo(z) g 1 + sUoo(x - y) + sUoo(y), by Lemma 3.2

(l + sUoo(x))1/2|Vx°fc(u00)(a;)| g C< f
J R

KQc - y) 1 j.
«3 |y|3/2 V

+c [ (i + su^^-y))172!^^-?/)!
7k3

lUool1/^ 1

= C f n 1 |U°°JR3 U + F —

|y|3/2 12/12 _
1/2

w
dy j

l
lM3/2 \y\2\

dy
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where we have used the facts that sUoo(x — y) ^ 2\x — y\ and that if0 is rapidly decreasing.
Observing that

L dv s r, ( 2 +<c
ivig(i+ixD/2 (! + \x-y\)4\y\q \1 +1^1 / \ 2

dyf  djy <(-*-)" f
J\y\^(i+\x\)/2 + \% - y\)4 \y\q \i + M/ Jr3 (i + I2/I)4

for 0 < q < 3, we have (3.14).
3.2. A construction of a parametrix. In this paragraph, we shall construct a paramet-

rix of the problem

-A u + (uqo • V) u + V p = f, V • u = / in ft, u = 0 on dft. (3.18)

For notational simplicity, we set

Kp{ft) — hpM+4(ft) x {/ e Wp(r2) [ f f(x) dx = 0 and /(x) = 0 for |x| ^ b0 + 1},
in

where bo is the same number as in paragraph 1.2. Moreover, put 6 = 60 + 4 and let ip be
a function of C°°(]R3) such that <p(x) = 1 for |x| 5= b — 2 and ip{x) = 0 for |x| ^ b — 1.
Let 3 < p < oo, II;, f denote the restriction of f to ftb and set fo(x) = f (x) for x € ft and
fo(x) = 0 for x ^ ft. Assume that (f, /) e K.p(ft). A parametrix will be constructed by
a compact perturbation of the operators i?0(u^) and p(uoc) defined as follows:

^o(Uoo)(f,/) = (1 - <p) (x(Uoo) *fo) + ^LUoo(f,/) + fll(Uoo)(f,/),

p(Uoo)(f,/) = (1 ~<p) (7T*f0)

where

fli(Uoo) = B[(V <p) • (x(uoo) * f)] — B[(V ip) • (LUoo (f, /))],

Lu00(f)/)=LUoo,n6(n6f,n6/> [ TT*i0dx),
JBb

iu00(f,/) = [u001ni(n6f,n6/, f 7T*f0dx),
J Bh

and LUooifl, and [Uoo,n6 are the same as in Proposition 2.6 with D — ftb- Since
^uooCf,/) = 0 on dft, V -LUoo(f,/) = Ubf = f in ftb and <p = 1 on supp / C Bbo+i, we
have

[ (VV)-LUoo(f,f)dx= f V-[<phUoo(f,f)]dx- f y?(V-LUoo(f,/))dx
J T)b— 1 J£lb J

= [ u-hUoo(f,f)dT- f fdx = 0,
JdQ Jn
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and hence (V<p) • LUoo(f, /) G W£a(Db-1) (cf. (2.5)). By Propositions 2.2 and 2.3 we
see that i?i(Uoo) is well defined and that i?i(uoo) € jC(/Cp(Cl),W^(Dt,-i)). Let K be any
compact set in R3 and € K. By Lemma 3.3 and Proposition 2.6 we have

II i?o(Uoo)(f, /) lip,2 + || P(Uoo)(f, /)||P,1 ^ CK, 6 ( ||f||p + II /IU) , (3.20)
(-A + (Uoo ■ V)) i?0(Uoo)(f, f) + v p(u00)(f, /) = f + 5Uoo (f, /) in U, (3.21)

V-i?0(uoo)(f,/) = /inn, ^o(uoo)(f, /) = 0 on dfl (3.22)

where

(f, /) = - 2(V<p): (x(uoo) * fo) - (A(^)(x(u00) * f0)

+ 2(V</?): (VLUoo(f,/)) + (A?)LUoo(f,/)
- ((Uoo ' VV)(x(Uoo) * f0) + ((Uoo • V)<p)(LUoo(f, /))

+ (-A + (Uoo • V)) i?1(u00)(f, /) - (V^)(tt * f0) + (V^)(lUoo(f,/)).

Note that SUoo(f,/) £ Wx(n) and that supp SUoo(f,f) C A>-i, and hence if we put
i7Uoo(f, /) = (5Uoo(f,/),0), then is a compact operator from /Cp(f2) into itself. Our
task is to show the existence of the inverse operator (I + JUoo )_1 of I + JUoa ■ In order to
do this, the following lemma is a key.

Lemma 3.6. Let 1 < p < oc. If u e Wp(fi) and p € Wp (H) satisfy the homogeneous
equation

-A u + (uoo • V) u + Vp = 0, V • u = 0 in tt, u = 0 on <9f2, (3.23)

and the growth order condition

lim R
R—> oo

J (|u(x)|p + |p(x)|p) dx = 0, (3.24)-3

R^\x\-^2R

then u(x) = 0 and p(x) = 0.
Proof. See Iwashita [28] and Kobayashi and Shibata [30].

Lemma 3.7. Let 1 < p < oo. Then, for each € R3, I + «7Uoo has its inverse
(1 + Juj-1 €£(/Cp(fi)).

Proof. Since JUoo is compact, in view of Fredholm's alternative theorem it suffices
to show that I + JUoo is injective, and hence let us pick up (f, /) € ACP(S1) such that
(I + = (0,0), that is, / = 0 and f + 5Uoo (f,0) = 0. Put u = i?0(uoo)(f,0)
and p = p(u00)(f,0). By (3.20) to (3.22), we see that u and p satisfy the condition in
Lemma 3.6, and hence u = 0 and p = 0. That is,

-Ro(uoo)(f,0) = 0 and p(uoo)(f,0) = 0 in fl. (3.25)

Since <p(x) — 1 for |x| ^ b — 2 and 1 - ip(x) — 1 for \x\ ^ b - 1 and since supp
#i(uoo)(f, 0) C Db-1, by (3.25) we see that

X(uoo) * fo = 0 and tt * f0 = 0 for|x|^6-l,
L Uoo (f, 0) = 0 and p Uoo (f, 0) = 0 for |x| ^ b - 2.
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Put z = LUoo(f,0) for x & fib and z = 0 for x 6 O and q = [Uoo(f, 0) for x € fib and
q = 0 for x e O. By (2.7) and (2.8) we have

-A z + (uqq • V) z + Vq = fo, V ■ z = 0 in Bb, z = 0 on Sb,

I q dx= [Uco (f, 0) dx — / 7r * f dx.
JBb Jnb °° J Bb

In view of (3.26), x(uoo) * fo - z and ir * f0 — q satisfy (2.7) and (2.8) with f = 0, / = 0,
c = 0 and D = Bb, and hence by Proposition 2.6, we have

x(uoo) *f0 =LUoo(f,0) and tt * f0 = lUoo (f, 0) in fi6. (3.27)

In particular, Ri (uoo)(f, 0) = 0 in 0, because supp Vy? C 1 C flb- Then, combining
(3.25) to (3.27), we see easily that x(uoo) * fo = 0 and n * fo = 0 in f2, and hence f = 0,
which completes the proof of the lemma.

Lemma 3.8. Let 3 < p < oo. Then, for any compact set K c R3, there exists a constant
Mk,p > 0 such that ||(I + Ju00)_1||£(A:p(n)) ^ MKiP provided that Uoo G K.

Proof. By (2.10) with k = 1 and (3.10), || JUoo - JuJUck^o)) ^ Ca>|uoo - u^l1/2.
Since

(i+= jf; [a+- j«j]j | (i+Juj-1

provided that
Ck,p||(I + v7Uoo)~1||£(x;!,(n))|uoo - u'oJ1/2 = V2>

by Lemma 3.7 and the compactness of K we have the lemma immediately, so that the
proof is completed.

By (3.19), (3.21) and Lemmas 3.6 and 3.8, we see that when f € LPib(f2) and g €
Wpd(<9fi), the problem (3.1) admits a unique solution u and p of the form

u = g + R0(uoo)(I + JUrx) x(f - (—A + (uoo ■ V))g, -V ■ g),

p = p(uoo)(I + JUoo)_1(f - (-A + (Uoo • V)) g, -V • g),

which satisfy the estimate

||u||p,2 + ||p||p,i ^ Cp(||f||p + ||g||p,2)• (3.29)

In (3.29), the constant Cp depends on K but is independent of 6 K whenever K is
any compact set in M3.

3.3. A proof of Theorem 3.1. In the course of the proof, let K be any compact set
in M3 and Uoo € K. Set fo(a;) — f(x) for x e O and fo(x) = 0 for x G O, and let
ip(x) € C°°(E3) such that ip(x) = 1 for |x| ^ &o + 2 and i>{x) = 0 for \x\ ^ 6o + 3. Put

v = (l-^)x(Uoo)*fo+B[(V^)-(x(Uoo)*fo)],
q = (1 - V)7r*fo- (3,30)
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By Proposition 2.3 and (3.9), we have

||v||p,2 + ||q||P,i ̂  CK,p{||f||p + l|fIIi}, (3.31)
V • v = 0 in ft, v = 0 on dft, (3.32)

(—A + (uqc • V))v + Vq = (1 — ip)i + h in ft, (3.33)

where

h = 2 (Vip): Vx(uoo) * f0 + (A^)x(uoo) * fo - (("oo • V)^)x(uoo) * fo

+ (-A + (Uoo • V)) B[(W) • (x(uoo) * fo)] - (VV)tt * f0. (3.34)

By Proposition 2.3 and (3.9) we have also

supph c Df,0+3, ||h||p ^ Ck,p (||f||p + ||f IIi)- (3.35)

Now, we put

w = g + i?0(uoo)(I + - h - (-A + (Uoo ■ V))g, -V • g),

r = p(Uoo)(I + - h - (-A + (Uoo • V))g, -V ■ g).

Then, by (3.28)

(—A + (Uoo • V))w + Vr = ipf - h, V ■ w = 0 in ft, w = g on <9ft, (3.37)

and moreover by (3.35) and (3.29)

l|w||p,2 + ||r||p,i g CK,p(||f||p + ||f||i + ||g||p,2). (3.38)

If we put u = v + w and p = q + t, then combining (3.31), (3.32), (3.33), (3.37), and
(3.38), we see that u and p solve (3.1) uniquely and satisfy (3.2), which completes the
proof of Theorem 3.1.

4. On an existence theorem of solutions to a stationary problem; A proof
of Theorem 1.1. In this section we shall prove Thoerem 1.1 by the usual contraction
mapping principle. To this end, the following theorem is the key of our argument.

Theorem 4.1. Let 3 < p < oo and 0 < 6 < 1/4. Let < • >2s and ||| • |||« be the same as
in Theorem 1.1. Assume that 0 < |uoo| ^ 1. If <C f 3>26< 00 and g E W^d(dQ), then
the problem (3.1) admits unique solutions u € W^(ft) and p E Wp(ft) such that

||u||p,2 + ||p||p,l + |IIuHI5 ^ Cp^ii^r6-^ f >26 +l|g||p,2}. (4.1)

Postponing the proof of Theorem 4.1, we shall prove Theorem 1.1. Put w = Uoo + v,
and then the problem (SP) is reduced to the following problem:

- Av + (Uoo • V) V + (v • V) V + Vq = f, V • v = 0 in ft,
v = —Uqo + g on 5ft.
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Let ip(x) be a function of Co°(M3) such that ip(x) = 1 for |a:| ^ b0 and ip(x) = 0 for
|i| ^ b0 + 1, and then u(Xtip(x) € because supp (uooiff) C Bbo+1,
on dfl, and moreover

[ v • (udF = I v ■ Uoo dT = 0. (4.3)
J dfl J dQ

In fact,

/ V • (Uoctft) dx = V ■ (Uooip) dx= T~~i ' (u°o^) da = 0,
bo + i J BbQ+i J Sb0 + i

where dcr is the surface element of Sb0+1, and hence by Proposition 2.3, a = — I
(Uoo^)] satisfies the relations: V • a = 0 in IR3 and a = Uoo on d£l. In particular, by
integration by parts

0 = / V • adx = — v ■ a.dT = — I v ■ u0
Jo Jd a JdQ

,dT,

which shows (4.3).
Let us introduce the invariant set J as follows:

1 = {(y,p) ewp2(n) x w^n) I y = -Uoo + g on m,

ll(y,p)l|i = l|y||P,2 + HpIIp.i + |||y||U ^ luocZ/2}.
Given (y, p) € I, let z and q denote solutions of the equations

- Az + (uqq ■ V) z + Vq = f - (y • V) y, V • z = 0 in f2,
z -= —Uqo + g on dfl.

Observe that

« f - (y • V) y »25 ^ < f »25 + |||y|||g ^ e |Uoo|*+/3 + |Uoo|2/J/4,

|| - Uooi> + Slip,2 ^ |^lp,2|Uoo| + £ lUool^,

and hence by (4.1)

||(Z, q)||2T ^ Cp,(5|Uoor'5{2e|u0o|'5+/3 + |Uoo|2/3/4+ |^|p,2|Uoo|}

^ Cp,s(2e + |u00|/3_<5/4 + |V'lp,2|u0o|1_/3)|uoo|/3.

If we choose e > 0 so small that

Cp,s(2e + eP-s/4 + S 1/2, (A.l)

we have || (z, q) ||x = luoo 1^/2. Therefore, if we define the map G by the relation G(y, p) =
(z,q), then G maps X into itself. Let (yj,pj) € I, j = 1, 2. Since

< (yi • V)yi - (y2 • V)y2 »2(5 ̂  (|||yi||U + Il|y2 IIU)|||yi - y2||U
^ luoohllyi — y2||U,
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by (4.1) we have

||G(yi,Pi) -G(y2,p2)||i ^ Cp^luool^Hly! -y2|||fi
^ Cp.filuool^lKy^pi) - (y2,p2)||i-

If we choose e > 0 so small that

CPtSe0~s^ 1/2, (A.2)

then G is a contraction map of 2, and therefore there exists a unique fixed point (v, q) el
Obviously, if we put w = Uoo + v, then w and q solve (SP) and satisfy (1.1), which
completes the proof of Theorem 1.1.

Now, we shall prove Theorem 4.1, below. First of all, we note that

Hp + l|f IIi ̂  2 « f »2£ /
J R

dx
'„3 (1 + M)5/2(1 + Suoo(z))1/2+2«-

In the course of the proof, we always assume that |uoo| ^ 1. Also, we use the polar
coordinate system

yi=r cos 9, y2 = r sin 0 cos V', 2/3 = r sin 9 sin ip (4.4)

for 0^^^7r, 0^V = 27r and 0 ^ r < 00. Let S be an orthogonal matrix such that
Suoo = |uoo|T(1, 0, 0) and put s(y) = |y| — y\. By a change of variable: y = Sx,

M = \y\=r and sUoo(z) = s(y) = r( 1 - cos0). (4.5)

In particular, using the assumption 6 < 1/4, we have

f dx n [°° dr r sin 9 dd
JR3 (l + |x|)5/2(l + Suoo(^))l/2+26 - nJ0 (1 + r)5/2rl/2+26 JQ (1 _ cos 0) 1/2+26

which implies that

llfllp + ||f||l + l|g||p,2 ̂  Cs « f »2* +||g||p,2 (4.6)

with some constant Cs independent of u^. By Theorem 3.1, the problem (3.1) admits
unique solutions u and p that satisfy the estimate

||u||p,2 + ||p||p,i ^ Cp,«(« f »2« +||g||p,2),

which together with Sobolev's inequality implies that

||u||oo,l = Cp||u||p)2 ^ Cp^(<C f ~5>26 +||g||p,2)) (4-7)

and then it suffices to prove that

(! + sUoo(a!))fi|u(aOI ^ Cp,«|u00|-,5(< f »2(5 +||g||p,2)|x|_1, (4.8)

(! + su00(z))1/2+A|Vu(s)| ^ Cp,6|u00|_<5(«: f »2(5 +||g||p,2)|x|"3/2 (4.9)
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for |x| ^ &o+4. Recall that u = v+w, where v and w are the same as in (3.30) and (3.36),
respectively. When |x| ^ 6o+4, we have v = x(uoo)*fo and w = x(uoo)*.MUoo(k, — V-g),
where k = ^f-h-(-A+(iioo-V))g (cf. (3.36)) and _MUoo(k, —V-g) is the zero extension
to the whole space R3 of the first component of (I + »7Uoo)_1(k, —V • g). By Lemma 3.8,
(3.35) and (4.6), we see that

supp [XUoo (k, -V • g)]0 C Bbo+3, (4.10)

|[-MUoo(k, -V ■ g)]o|i ^ Cp,bo^(< f »2« +||g||p,2)- (4-11)

In order to show that (4.8) and (4.9) hold for x(uoo) * [-MUoo(k, -V ■ g)]o, it suffices to
prove the following lemma.

Lemma 4.2. Let b > 0, g € Li,b(R3) and 0 < |uoo| ^ 1. Then, for \x\ ^ b+ 1 we have
the following relations:

Ix(Uoo) *g(x)| ^ |_^(1 + ^Uoo (x))~^|x| —|g|i,

|Vx(uoo) * g(x)| ^ C^luool-^l + sUoo(a:))_(1/2+i)|x|-3/2|g|i.

Proof. The argument is the same, so that we shall prove only the second estimate,
below. Since 1 + sUoo (x) ^ 1 + sUoo (x — y) + sUoo (y) and since sUao (y) ^ 2b and \x-y\ ^
\x\/{b + 1) when |x| ^ b + 1 and \y\ ^ b, by (3.8) we have

(l + Su00(x))W|Vx(u00)*g(x)|^^^ [ lg(y)1^2
luool" Jr* p-yI 7

+ 2"2+'C»/,. K + tnbji] (i + -W)1/wW»)l+
<

_\x — y\3/2 \x — y\2 _

Cs,b f f 1 , 1 1 ^ Cs,b|g|i
luoolW,. tlx-„!»/» \x - y\2 J ls(y)l y= luool^lxl3^'

which shows the second inequality of the lemma.
In particular, by (4.10), (4.11) and Lemma 4.2 we have

(1 + sUoo(x))5|x||w(x)| + (1 + sUoo(x))1/2+,5|x|3/2|V w(x)|

^ Cfi.pIUoor6(« f »2s +||g||p,2) for |x| ^ b0 + 4.
(4.12)

In order to show that (4.8) and (4.9) also hold for x(uoo) * f0, we use the following
lemma.

Lemma 4.3. Let 0 < 6 < 1/4. Let g e Loo(R3) and assume that

< g >25 = sup (1 + |x|)5/2(l + sUoo(x))1/2+2,5|g(x)| < 00. (4.13)
z€R3

Then, for |x| ^ 1 we have the relations

|x(uoo) * g(®)| ^ Cg|u00|-,5(l + sUoo(x))_Vr1, (4.14)

|Vx(uoo) * g(x)| ^ Ci|u00|"'5(l + sUoo(x))_(1/2+5)|x|"3/2. (4.15)
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Obviously, applying Lemma 4.3 to x(uoo) * fo, and combining the resulting estimate
and (4.12) implies (4.8) and (4.9), and hence we can complete the proof of Theorem
4.1. Therefore, we shall prove Lemma 4.3, below. Although Farwig [8, 9] proved Lemma
4.3 essentially by refining the argument due to Finn [12], in order to make the paper
self-contained as much as possible, we shall give a proof of Lemma 4.3. Our argument is
a little bit different from the argument due to Finn and Farwig in the case of the gradient
estimate. Since 1 + sUao(x) ^ 1 + sUoo(x - y) + sUoo(y), by (3.8) and (4.5)

(1 + sUoo (x))l5|x(u00) * g(x)|

= 2 <g>2« (jUoo|,5 +Co) J&3 ̂ 1(1 + |a; _ 1/1)5/2(1. + sUoo(x - y)Y'2+6

~ 2' < S >2' (kfp + C°) L \y\(l + \Sx-y\)W(l + s(Sx-y))W
Using the assumption 1/2 + 6 < 1 and (4.4) and (4.5), we have

f  dy  < 2 r  dy 
J |?/|(l + \Sx - y\f'2{l + s(Sx - y))V2+« = l + |a:| JR3 (1 + |j/|)5/2s(y)1/2+'5

|3/I = (IxI + 1)/2

4nf31/2+6 f°° r2drJJo1 + |x| J0 (1 + r)5/2r1/2+l5

Here and hereafter, we write
sin 6 d6 21~CI

0a =
r sin

Jo 0^ cos 6)1 1 — q
Since 1 + \Sx - y\ ^ (1 + \x\)/2 when |y| ^ (1 + |x|)/2, by Holder's inequality, (4.4) and
(4.5) we have

f  dy_ 
./ |j/|(l + ISx - y|)5/2(l + s(Sx - y)y/2+s

|j,|g(|x| + l)/2

3/8 / \ 5/8
5/2 ( \ I \

s (tth) f / s C

\l»l^(l®l + l)/2 / \|y|^3(|x| + l)/2
Combining these estimations implies (4.14).

In order to show (4.15), we observe that

ir-7 / \ / \i /  f |Vx(uoo)(y)\dy
*6(1)1 s<g>2'L (i + i*-„imi■ (416)

Since |a; — 2/1 = |s/|/2 when |y| ^ 2|x|, by (3.8) we have

n + , f  \VxM(y)\dy 
U + « u^X)) J {1 + lx_yl)5/2{l + Su^x_y)y/2+26

<

|y|=2|x|

C. ( 1 \3/! [ % + Co f •>1 (4.17)
luool15 \2|x

|y I=2|x|

< Cs
|UooHx|3/2:
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because
dy f00 dr An f 1 ^3^2

\x\
f dy -")-*(! f dr - 4n

J M4s(y)1/2 ~ /2 ii\x\ r5/2 5
|y|^2kl

Since \x — y\ ^ \x\/2 when |j/| ^ 1/2 and \x\ ^ 1, by (3.8) we have

\Vx(u°c)(y)\dy(l+«u_W)"M J
(l + |a:-y|)5/2(i + Suoo(x-y))i/2+M

lvl^l/2

(4is)

l 13/1^1/2 |y| = i/2
< c*

Since

luool15 |a:|3/2'

Cs
|Vx(uo0)(y)\ S

|uoo|5(l + |y|)3/2(l + sUoo(?/))W

for |y| ^ 1/2 as follows from (3.8) and the fact that 0 < |uoo| ^ 1, by changing the
variable : x — y = z when |y| ^ \x\/2 we have

I  lyriu^Ki,)!# K(Sx,y)dy (419)
J (1 + \x - 2/|)5/2(l + SUoo(x - j/))1/2+2<5 |Uoo|fi Z_W

l/2^\y\S2\x\ P

where co = {y 6 M3 | \x\/2 ^ |j/| 5; 2\x\} and

kpfay) ^ + |w|j3/2+p^ + s(2/))l/2+(l+p)6(1 + |x _ y|)5/2-p(1 + 8(x _ y))l/2+(2-p)« '

In view of (4.16) to (4.19), in order to show (4.15) it now suffices to prove that

^ hp(x, y) dy ^ |g|3/2(i ^(j))1/2 „^ |®| = 1, P = 0,1, (4.20)

because s(Sx) = sUoo(x). Since

f dy 
Ju (1 + s(x - j,))l/2+(2-„)«(l + |a; _ 3,1)5/2-?

dy* I„ (l + fl(I,))l/2+(2-P)«(l + ||,|)5/2-p
|y|=3|x| (4-21)

r3\x\f rdr
= 27r^1/2+(2-p)S Jo (1 + r)5/2-p rl/2+(2-p)«

^ C$ max(l, |x|p_l5) for \x\ ^ 1,
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when s(x) ^ 1 and |rr| ^ 1 we have

/J u)
hp(x,y)dy ^ max(l, |x|» ') g ^|3/2(1+^(:r))i/2+5' (4-22)

Therefore, we assume that |rc| ^ 1 and s(x) ^ 1, below. Let £ and r) be numbers such
that 0 ^ £ 5S 71% 0^ry^27r and

cci = |a:| cosX2 = |x| sin£cosr?, 0:3 = \x\sin£sin?y.

Let e be a very small positive number and p(8) a function of C°°(R) such that 0 ^ p(6) 5:
1, p{6) — 1 for 0 ^ 1/4 and p(6) = 0 for 0 ^ 1/2. Since

(1 — cos(£/4)) ^ 1 — cos£ ^ 32(1 - cos(f/4)) for 0 ^ ^ 7r, (4-23)

we have (1 — p(9/£))s(y)~(-1/2+(1+p^6^ ^ C^s(a:)_^1/2+(1+p^) for |?/| ^ |x|/2, and hence
by (4.21)

/«/W

C« max(l, |x|p 6) ^ Ci
|x|3/2+ps(;r)i/2+(i+p)« = ^13/25(3.) 1/2+6'(1 - p(e/0)hP(x,y)dy S ^ ^ .-l3/2 (4'24)

because s(x) ^ 1 and |x| ^ 1. Since

\x - y|2 = |x|2 + r2 - 2|x|r(cos£cos# + sin£sin0(cos?7cos<p + sin^sini^))

= |rr|2 + r2 - 2|x|r(cos£cos9 + sin£sin#cos(f7 - (p)),

when 0 5; 0 ^ £/2 we have by (4.23)

|x — y|2 ^ |x|2 + r2 — 2|x|r(cos£cos0 + sin£sin0)

= |x|2 + r2 — 2|x|r cos(£ — 0)

^ |x|2 + r2 — 2|x|r cos(£/2) ^ |x|2(l — cos2(£/2))

= |x|2(1 - cosO/2-

When e ^ ^ n, by (4.26) we have \x — y\ ^ |x|(l — cose)1/2/2, and hence

(1 + s(x))1/2^ £ P(6/0hp(x,y)dy Z ^ ^ ^ *V ̂

(4.25)

(4.26)

x|3/2'

which together with (4.24) and (4.22) implies that (4.20) holds for e ^ £ 5^ 7r.
Now, let e > 0 be chosen so small that a finite number of inequalities below will hold

and we consider the case where 0 < £ ^ e. Note that s(x) = 0 when £ = 0 so that this
case is already over. Put g = 3/2 — p and

Kj = [ p(6/£)hp(x, y)dy, j = 1,2,
J Gj

Gi = {x € E3 | (1 - 4e/Q)\x\ ^ \y\ £ (1 + 4£1/?)|x|}, G2 = - Gv
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Since

s{x)l'2+6K2

^Cs

< C6

f p(o/0 f i i 1 ,
JGa (1 + \X - 2/1)5/2-^(1 + |y|)3/2+p \ s(y) 1/2 + s(a; _ |/)l/2+(2-P)« / ^

2|x|

/r|3/2+

( 2|x|
r dr

rV2(r - |®|)5/2-p
\(l+4?i/5)|x|

(1—4€1/9)|£C|

r2dr \ /"^2 sin#<i0

+

+

1*1/2
C<5 [ dy

r r dr r
J r1/2(|a;| — r)5/2_p I 70 (1 —cos#)1/2

/«/ OJz|3/2+P Ju (1 + fl(® - 2/))l/2+(2-p)<S(l + |x _ y\)5/2-p '

if e > 0 is chosen so small that 1 - cos(£/2) £2 for 0 < £ ^ e, then by (4.21) and the
fact that (3/2 —p)/q = 1,

K2 < Cs f M3/2£ + max (1, |x|p)
s(x)1/2+'5 | ^13/2+p ^1/9|x|)3/2-P |x|3/2+p

<

s( ,
(4.27)

|x|3/2(l + s(x))V2+«

because 1 ^ s(:r) ^ 2|x|.
Finally, we shall consider the case where y E Gi and 0^6*^ £/2. By integration by

parts with respect to 9,

(l+4^/«)|x|

*'s / FA' rW--«%£(..,)***=l'+l*
(l-4«V«)|x|

where

mp(x,y) = {I + s(x - y))1/2+{2 p)6(l + \x - y\)5/2 p,

(l+4«1^)|x|i,=^ r r r r
y Jo Jo £rnp(x,y)

c

(l-4^i/<()|x|

(l+4^/«)|x|
//*7r phr

/ / rp(6»/0(l-COS6I)1
JO JO|a:|1+p

(1-4^/9)1x1

ro(0/£)fl - cos#)1/2 5 / N-lQQmp(x>y) drd6dip.

In view of (4.26), we know that

|a: — 3/| ̂ s(x)1/2\x\1/2/2 for 0 ^ 6 ^ £/2. (4.28)
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Since we can choose e > 0 so small that

|„We)l(l-cos»)^ CsiaO [or0<?g,,
£ (1-COS^)1/^

putting G3 = {z e R3 | |x|1/2s(x)1/2/2 ^ \z\ ^ 3|x|}, by (4.28) we have

r < g [ \/m)\dy U29)
|x[2+p(l — cos^)1/2 Jq1 \x — y\5/2 Ps{x — y)1/2+(2 p)s

< C f dzLx\3/2+Ps(x)1/2 Jq3 |z|5/2 Ps(z)1/2+(2 p)15
3| x

I

<

<

CS/31/2+26 7 t2 , f _n
|X|3/2S(X)1/2 J t3+2S 01 P

|x|1/2s(x)1/2/2

3|x|
CsPl/2+6 f t11^15/2^(^)1/2 J t2+6

\x\1/2s(x)1/2/2

C*

for p = 1

|x|3/2(l + s(x))1/2+«

because 1 5= s(x) ^ 2|x|. To proceed with the estimation, we put

Xi - yi = |x - y| cos C, x2 - 2/2 = |x - y\ sin £ cos ip, x3 - y3 - \x - y\sin £ sin ijj,

and then
„ f (sOrVlxl)1/3 for p = 0,

sin C = (4-30)
i 1 for p — 1,

provided that y £ Gi and 0^0^ £/2 with a suitably small constant c > 0. In fact,
choosing e > 0 so small that

|x| sin£ — r sin# ^ |x|(sin£ — (1 + 4£1/<?) sin(£/2)) ^ |x|£/4

when r ^ (1 + 4£1/?)|x|, 0^0^ £/2 and 0 ^ £ 5^ e, we have

|x - y\2 sin2 C = (x2 - 2/2)2 + (2:3 - 2/3)2

= |x|2 sin2 £ + r2 sin2 8 — 2|x|r sin£sin#cos(</? — rj)

^ |x|2 sin2 £ + r2 sin2 0 — 2|x|r sin £ sin 0

= (|x| sin£ — r sin#)2

^ (|x|£/4)2 for y € G\ and 0^05^ £/2.

On the other hand, by (4.25)

|x — y|2^|x|2+r2 — 2|x|r(cos£cos# — sin £ sin 0)

= |x|2 + r2 - 2|x|r cos(£ + 0) ^ fc(r) for 0 5= 6 ^ £/2
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where k(r) — \x\2 + r2 — 2\x\rcos(3£/2). Since l/q = 2/3 forp = 0 and l/q — 2 forp = 1,
we can choose e > 0 so small that 1 — 4£1//<J < cos(3£/2) < 1 + 4£1/?, and hence

j f £4/3 for p = 0,
£2 for p = 1,

k(r) ^ max ^fc((l + 4£1/|?)|;r|), fc((l - 4^1//g)|aj|)^ ̂  C|a;|2|

because k'(\x\ cos(3£/2)) — 0. Since £2 ^ c'(l — cos£) = c's(x)/\x\ with a positive
constant c! when 0 ^ ^ e and e is small enough, we have (4.30).

According to (4.30), let Co be a number such that sin2 Co = c{s{x)/\x\)1^ for p = 0
and sin2 Co = c for p = 1, and then putting

2/i = xi - icosC, J/2 = ^2 — isinCcosV', ys = x3 - tsin^sinip,

by (4.30) and (4.28) we see that

Co ̂  C = 0 = ^ = 27r, \x\1^2 s(x)1^2/2 ^ t ^ 3|x| (4-31)

when y £ Gi and 0 ^ 9 ^ £/2 provided that e > 0 is small enough. By direct calculation,

1
_ | {|(zi - j/i)r sin0| + |(x2 - y2)r cos0cos</?|

\x yl

+ |(x3 - y3)r cos0siny?|}

^ rsin# + 2\/2rs(x - y)1^2j\x - y\1^2,

d
— {\x-y\ - (n -rcosfl))

^ 2rsin# + 2\/2rs(a; — y)1^2/\x — yl1^2

because \z2\, \z3\ ^ v/2s(-z)1^2|^|1^2 which follows from the fact that s(z) — (z2+£2)/(|.z| +
zi) ^ (z% + zl)/(2\z\). Thus,

—mp(x,y) 1 ^ Cs
^s(x-y)

(1 + s(x - y))3/2+(2-p)«(1 + |a;_ y\)5/2-p

+
(1 + s(x - y))l/2+(2-p)« (1 + I® - y\y/2~P

< j rsin.6 r 1
— 5 1^ ̂ _ 2/|5/2-Ps(a; — y)3/2+(2-p)fi |x _ y^-pg^ _ y)l + (2-p)« J '

which, inserted into the definition of L2, implies that L2 = Cs{M\ + M2) where

s(x)1/2 f p{Q/i)dyMi

M2

- f» Ja,\x\3/2+P 5(2; _ y^3/2+(2-p)6|a; _ y|5/2-p '

p(o/Odv
l1+p L s(x — y)1+(2~p)s\x — ?/|3_p '
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because (1 — cos#)1/2 ^ sin# and (1 — cos#)1/2 5= (1 — cos^)1/2 ^ (s(x)/|x|)1/2 when
0 ^ 6> ̂  ^ 7r/2. Using the change of variable: z = x — y and (4.31), we have

Mi ^ s(x)1/2 f t2dt fn sin(d(r t2dt r
J t4-p+(2-p)S yCo|x|3/2+p J t4-p+(2-p)« (1-COS()3/2+(2-p)i

|x|1/2s(x)1/2/2

^ Cei

s{x)W ( |®| x

|a:|3/2 (|s|1/a«(s)1/2)1+M \s(x)

s(x)1/2

|a;|5/2 (|s|1/2a(s)1/a)fi

for p = 0

for p = 1

< C6
|x|3/2s(x)1/2+«

because 1 ^ s(x) ^ 2|ac|. Also,

3|x|

M2 ^
i r tzdt r

|x|1+P J t4-p+(2-p)6 J (l-cos (Y + V-P)6
\x\1/2s(x)1/2/2

sin

1 ( \x
< I |x| (|x|1/2S(®)l/2)1+26 \s{x)J

Vi26/3

<

|ar|2 (|rr|1/2s(a:)i/2)

Cs

for p = 0

for p = 1

|a.|3/2s(a.)l/2+fi

because 1 5= s(x) ^ 2|a;|. Combining these estimations implies that

Ll = |»|»/»(1 +%))■ w tor M s 1 and '<*> S

which together with (4.29), (4.27) and (4.22) implies (4.20). This completes the proof of
the lemma.

5. On the existence of strong solutions to the non-stationary problem :
Proofs of Theorems 1.4 and 1.5. Employing the argument due to Kato [29], we shall
solve the integral equation (1.9). Recall that TUoo (t) denotes the semigroup generated by
the operator O(Uoo) = P(-A + (uoc -V)) with domain Vp = JJP(Q) flWp(fi) fl W2(f2). In
particular, T0(t) is the semigroup generated by the Stokes operator A = O(O) = P(—A)
when Uoo = 0. The Lp-Lq estimate of TUoo (t) given in the following theorem plays an
important role in our proof of Theorems 1.4 and 1.5.

Theorem 5.1. Let oo > 0 and assume that |uoo| ^ cr0. (1) If 1 < p 5S q < oo, then

|| TUoo g Cm r la||p, „ = - I) , Vt > 0,va e Ip(0).
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(2) If 1 < p < oo, then

l|rUoo(t)a||oo g Cp,ao r3/2p ||a||p, £ 1, va e

(3) If 1 < p g q g 3, then

. || VTUoo (t)a||, £ ||a||p, yt > 0, va € Jp(fi).

(4) If 1 < p g q < oo, then

||TUoo Wall,,! g t~("+1/2> ||a||p, 0 < vt ^ 1, va € Jp(fi).

Remark 5.2. The assertions (1) and (3) were proved by Iwashita [28] when = 0
and by Kobayashi and Shibata [30] when ^ 0. The assertions (2) and (4) will be
proved in the appendix below. When = 0 and p = 6, (2) was already proved by
Chen [7]. (4) is well known as a property of the analytic semigroup, but the point is that
the constant Cp,9iCT0 is independent of Uoo provided that | g <r0.

To handle with the linear perturbation term P[£[w]z] in (1.9), we will use the following
generalized Poincare's inequality.

Lemma 5.3. Let 0 g a < 1/3 and sUoo(^) = M - Tx • uoo/luoo). Put da(x) =
suoc(a;)Q|a:|1_a log |x|. Then, for any R ^ 3 there exists a constant Cftag independent
of Uoo such that

/ \Mdxsc-4 I iv"w,3ji+ / wi)|3l <">

for any v 6 (

Proof. First, we consider the case where a > 0. Let e > 0 be a small number and p(0)
a function of C°°(]R) such that p{6) = 1 for |6>| < e and p(6) = 0 for |0| ^ 2e. Let S be
an orthogonal matrix such that S= |u00|T(l, 0,0) and put y = Sx. We shall use the
polar coordinate (4.4) and the relation (4.5). If we put

I(r,v)=r "wi-wi3j±im,
r(logr)3 J0 (1 — cos 9)3a

then we have

3 poo r2ir

J d„(x) - JR J„ * 'rl * (1-cose)" J
v{x) 3

|a:| log |a;|
dx

because 1 — cos6 g 1 — cose when e g 6 g n. First of all we shall estimate I(r,tp).
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Observe that

(1—3a)r(logr)3/(r, <p)
Ft r*

>3d6= - f* p(m - cos^-^Kaoi3^ - - cosey-*a\V{x)\

^ 3r f p{6){\ - cos(9)1_3a|v(:r)|2|V?;(x)|<i# + [ |/>'(0)|(1 - cos0)1_3a|t;(a;)|
Jo Jo
r r o(6)(\ - cosO)3(-1~3a^2 n i3/2 r r i1/3
Jo (sinff)1/2 Hx)l de I P(0)™°\Vv(x)\3de

+ [ |/c'(^)|(l - cos^)1_3a|v(x)|3d0.
Jo

< 3 r

Since

p(0)(l — cos9)3(~l 3q)/2 p(6)smO (1 — cos#) 1 — a

sin (

3/2 <c p(0) smd
(sin#)1/2 (1 — cos6)3a

as follows from the fact that 1 — a ^ 1/2, we have

/ r2 r \1//3
I{r,tp) ^ Ce<aI2/-i (jlogrj3 J p(0) sin e\Vv(x)\3ddJ

+ r(logr)3 J0 \p'(6)\sin9\v(x)\3de

which implies that

(1 — cos#)3a

\x\ZR
I liSol dxSC"° I (m§tr) dx + jkiW' I ,v"(x)|3<fc

\x\ZR \x\

(5.2)

and hence the proof is reduced to the case where a = 0, which is well known but for
the completeness we shall give its proof. Let ip(r) be a function of C°°(M) such that
ip(r) ^ 0, ip(r) = 1 for r ^ R and ip(r) = 0 for r ^ R — 1. We use the polar coordinate
(4.4) again, and then we have for any large L > R

(y)\3dr fL tp(r)\v(y)\3drf \v(y)\ dr < f
Jr f(logr)3 = JR_x r(logr)3

d
L i rL

1 2 JR_ i
1 ip(r)\v(y)\
2 (logr)2 r-i ' 2 JR_X (logr

[^(r)|w(y)|3]
 dr"\2

< i I f1 ^(r)\v(y)\2\^v(y)\dr + fL \ip'(r)\\v{y)\ dr
J R-1

<

2 [Jr-! (logr)2 JR_! (logr)2 )

5 (L, 't^fdr) (r./(r)|V"W|3r2<<r)

v_
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which implies that

f \v(y)\ ^ £CRl [ \X7v(y)\3r2dr + [ \v(y)\3r2dr \. (5.3)
Jr r(logr) [Jr-i Jr-i J

Integrating (5.3) over S\ and passing L to infinity, we have (5.1) for a = 0, which together
with (5.2) completes the proof of the lemma.

By (2.2) with D = Qb0+i and Lemma 5.3, we have the following corollary.

Corollary 5.4. Let 0 ^ a < 1/3 and let da{x) be the same function as in Lemma 5.3.
Then, there exists a constant Ca such that

Hv/dalls^CallVvlla (5.4)

Below, [■]<;,p,t and ji(q) are the symbols defined in Theorem 1.4. Employing the argu-
ment due to Kato [29, p. 474] and using the fractional power of analytic semigroups and
Theorem 5.1, we have the following lemma.

Lemma 5.5. Let c e ^3(0). Then,

i1/2VTUoo(t)c e B([0,oo);J3(n)), t^TUoo(t)c e B([0,oo);I9(fi)),

(||TUoo(*)c -c||3 + [rUoo(-)c]g,M(q),t + [VTUoo(-)c]3ii/2i4) = 0.

Now, we shall give estimations of the right-hand side of (1.9). For notational simplicity,
we introduce the following symbol:

[Mht = bko.f + N3,i/2,f + Hp,n(p),t 3 ̂  p < 00. (5.5)

Lemma 5.6. Let 3 < p < 00 and 0 < 8 < min(l/6,4/p). Let [•]||| • |||^ and [[-]]p,t be
the same as in (1.2), (1.3) and (5.5), respectively. Put

Lw(z)(t) = [ TUoo(t - s)P[£[w]z(s, •)]<&,
Jo

N(z1,z2)(t)= [ TUoo(t — s)P[(zi(s, •) • V)z2(s, -)]ds
J 0

where £[w]z = ((w — Uoo) • V)z + (z • V)w (cf. (1.7) ). Then, we have the relations

Pw(z)]]p,t S Cp,6 |||w - Uoollla [Vz]3)1/2,t vi > 0, (5.6)
[[7V(zi, z2)]]p,t ^ Cp [zi]PiM(p)/2,t [Vz2]3,i/2,t vi > 0. (5.7)

Proof. To prove (5.6), let us put a = 8 + 1/6, 7 = 38/4 and e = 1/(1 + 7). Since
0 < 8 < 1/6 and p6 < 4, we have

0 < 38e < 1, 0 < a < 1/3, 7 < 3/p, 0 < e < 1, (1 + 8)e > 1. (5.8)
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If we put

°i= [ [(i + Mr^usJs)^]3' dx,
Ju3

C2= f [(1 + la:!)-^2^ «Uoo(ac)-^/2^-4*) log |x|
JR3 L

then by (4.4) and (4.5) we have

C\ = 27T

3e
dx

r°° r2 dr r
Jo ((1 +r)rs)3e J0

sin 9 d8

c2 = 2-rr

(1 — cos#)3l5e'

r2(logr)3e dr f* sin 9d6I"*3 r2(logr)3e dr f7' sir
Jo ((l+r)V2 + arl/3)3e JQ (fT cos#)e'

By (5.8), c\ and c2 are positive constants depending essentially only on 6. Therefore, by
Holder's inequality and Corollary 5.4 we have

||((w - Uoo) • V)z(s, 0113/(2+7) ̂  ||w - u00||3/(i+7)||Vz(s, -)\\3 (5.9)

= cl/(3£) |||w - Uoo|||<5II Vz(s, -)II3,
||(z(s, •) • V)w||3/(2+7) ^ ||z(s, ■)/da||3||daVw||3/(1+7) (5.10)

^ C2/(3e) Ca HI W - Uoo|||«||Vz(s, *) 113 ■

Also, we have

||((w - Uoo) • V)z(s, •)||3 ^ |||w - u00|||5||Vz(s, -)||3, (5-11)

||(z(s, •) • V)w||3 ^ ||dQVw||00||z(s, -)/da\\3 ^ C«|||w - u00|||«||Vz(s, ■)||3• (5.12)

When t^. 2, by Theorem 5.1, Proposition 2.4, (5.9) to (5.12), we have

i1/21|Viw(z)(i)||3 ^ Ct1/2 j£ (t - s)~1/2||£[w]z(s, -)\\3ds

+ j^\t-s)-m2+']/3-1/3)/2+1/2)||£[w]z(5,-)||3/(2+7)^}

^ C^1/2|||w - Uoo|||<5[Vz]3il/2,t |£ (t - s)~1/2ds(t - 1)-1/2

ft/2 ft-1 ^
+ / S-1/2dS(t/2)-(1+^/2) + / {t-sy^+i'Vdsit/l)-1'2)

Jo Jt/2 J
^ Cfilllw - Uoo 111,5 [Vz]3il/2it.

Also, when t^. 2, by Theorem 5.1, Proposition 2.4, (5.9) and (5.10) we have

||Lw(z )(i)||3 + f<*> \\Lw(z)(t)\\p

^ C«|||w - Uooll^lVzJa^/a.tX

| J\t _ s)-3((2+7)/3-l/3)/2s-l/2ds + p(p) j\t _ a)-3((2+7)/3-l/rt/2s-l/2da

- Cfi|||w - u00|||«[Vz]3,i/2,t (5(1/2 - 7/2,1/2) + B{3/2p - 7/2,1/2))
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where B(a,f3) denotes the beta function. When 0 < t ^ 2, by Theorem 5.1, Proposition
2.4, (5.11) and (5.12),

||jLw (z)(i)||a + t^p)\\Lw(z)(t)\\p + *1/2||Lw(z)(*)||3

^ C«|||w - Uqo lll^ [Vz]3 i/2)t X

y* s-l'2ds + J\t - s)-3(1/3-1/P)/2s-1/2rfs + tl/2 J\t _ s)-l/2s-l/2ds|

= C4|||w - u00|||6[VZ]3,i/2,ti1/2(2 + 5(1/2 + 3/2p, 1/2) + 5(1/2,1/2))

Combining these estimations implies (5.6).
(2) Define £ by the relation: 1/i = 1/3+ 1/p. By Proposition 2.4 and Holder's inequality,

(5.13)
||P[zi(s, •) • V)z2(s, -)]||f ^ C9||zi(s, ■)||p||Vz2(s, •)H3

gC1,S-(1-3/^[z1]Pi#l(p)i.[Vz2]3il/2,.

and hence by Theorem 5.1

11^,22)^)113 + t^\\N(z1,Z2)(t)\\p + t1/2\\N(z1,Z2)(t)\\3

= C«,p[zi]p,(i(p),t[Vz2]3,1/2,i {[ (t _ sy3(l/e-l/3)/2s-(n(p)+l/2)ds

+ flP) f(t - s)-3(l/«-l/p)/2s-(/i(p)+l/2)dg
J 0

+il/2 J\t - a)-3(l//-l/3)/2+l/2)g-(M(p)+l/2)dgJ,

= [zi]p,/^(p),f [Vz2]3,1/2,2 X

(5(1 - 3/2p, 3/2p) + 5(1/2,3/2p) + 5(1/2 - 3/2p, 3/2p)),

which implies (5.7). This completes the proof of the lemma.
Under these preparations, by the contraction mapping principle we shall solve (1.9).

Below, p, (3 and 6 are constants given in Theorem 1.4, that is, p>3, 0<«5</3<l — 6
and 0 < 6 < min(l/6,4/p) and all the constants will depend on p, b and 6, but for
simplicity we will omit to write this dependence. By Theorem 5.1 there exists a a > 0
such that if

0 < |Uoo| ^ e ^ min((7,1) (A.3)

then (SP) admits solutions w and p satisfying the estimate :

||w - Uoo||P,2 + |||w - UoolHa + ||p||p,i ^ lu^ (5.14)

which in particular implies that

l|w - Uool^ + [JVw||3/2 ̂  C6\\x00f, (5.15)
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where

Cs = f (1 + M) 3 sUoo(x) 6dx+ [ (l + |x|) 9/4 sUoo(x) (3/4+S)dx
J R3 J R3

r°° r2dr r sin Odd f00 r2 dr fn _
J0 1 +r)3rsJ0 (1 —cos 9)s + J0 (1 + r)9/4 r3/i+s J0 (1 - cos 0)3/4+s'= 2tt sin 9 d6

Note that C$ is independent of Uoo. According to (1.9), we put uo(i) = TUao(t)b and
Q(z)(t) = uo(it) — Lw(z)(t) — N(z,z)(t), where we have used the symbols defined in
Lemma 5.6. To solve (1.9) by the contraction mapping principle, we introduce the
invariant space X as follows:

X={z e C°((0,oo);J3(fi)nILp(fi)nW^f2)) |
[[z]]P,t^\/e v£ > 0, (5.16)

lim+( || z(t, •) - b ||3 + [Vz]3,1/2,t + [z]pift(p)it) = 0}. (5.17)

Let q denote any number ^ 3, below. By (1) and (3) of Theorem 5.1, we have

[[uo]]P,t ^ Mi||b||3, [u0]q^(9),t g C,||b||3 (5.18)

for any t > 0 where M\ is a constant depending only on p, essentially. If ||b||3 ^ e, then
we choose e > 0 so small that

^ 1, (A.4)

and hence by (5.18) and Lemma 5.5 we see that uo € X. In particular, X is not empty.
By Lemma 5.6, (5.18), (5.16) and (5.14),

[[Q(z)]]p,t = Mi t + CPt(j (iiooy/~e + Cpe vt > 0

provided that z e X and ||b||3 ^ e. Since |Uoo| ^ e, if we choose e > 0 so small that

Mi \f~k + CPl6 + Cp \/~e ̂  1, (A.5)

we have [[Q(z)]]p,t ^ y/e, vi > 0, which together with Lemma 5.5 implies that Q(z) £ X
for any z € X. Since <3(zi)(f)-<3(z2)(t) = —{.Lw(zi-z2)+./V(zi—z2,zi)+iV(z2,zi-z2)},
by Lemma 5.6, (5.14) and (5.16) we have

[[Q(zi) - Q(z2)]]p,t S M2(e0 + 2-/e)[[zi - z2]]Ptt

for some M2 independent of provided that zi, z2 € X and |uoo| 5= e. If we choose
e > 0 so small that

M2(e^ + 2/i) ^ 1/2, (A.6)

we see that Q is a contraction, and hence Q has a unique fixed point z 6 X, from which
Theorem 1.4 follows except for (1.14).

Now, we shall show (1.14) for any q. Since we have already proved (1.14) for q = 3
and q — p, by the interpolation we see that (1.14) holds for 3 ^ q ^ p. Therefore, we
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may assume that p < q < oo. Let 7 > 0 be the same as in (5.8) and put r = 3/(2 + 7).
Note that 1 < r < 3/2. By (5.9) to (5.12) and (5.14) we know that

llp[£[w]z(s,-)]||n ^ Cn lUool^s"1/2 [Vz]3il/2,s r ^ vn ^ 3. (5.19)

When 3 < q < 00, by (5.19) with n = 3/2 and (1) of Theorem 5.1 we have

l|£w(z)(i)||g ^ Cg [ (t - s)-3(2/3-l/«)/2 s-l/2 ds |Uoo|/3 [Vz]3)1/2)t
Jo

s CqB(S/2q,l/2) y/1
where we have used (5.16). To estimate N(z, z), in view of (5.13) let £ be a number such
that l/£ = 1/3 + l/p. Since ||(z(s, •) ■ V)z(s, ■)IU = s~(1_3/2p) e as follows from (5.13)
and (5.16), by (1) of Theorem 5.1 we have

||«(z,z)(t)||,SC,
J 0 (5.ZIJ

g Cq B{Z{\/q - l/p)/2 + 1/2,3/2p) e t
for any t > 0. Combining (5.18), (5.20) and (5.21), we have (1.14) for p < q < 00.
Finally, we shall show (1.14) for q = 00. Since we do not know the L^-Lp estimate
of TUoo (t) for small t > 0, we have to use the Sobolev's imbedding theorem and (4) of
Theorem 5.1 to estimate TUoo(t) for small t > 0, so that let to be a fixed number such
that 3 < m < p. We shall always use the relation ||i>||oo = CmlM|m,i in our treatment
for small t > 0, below. Keeping this in mind, by (2) and (4) of Theorem 5.1 and (5.19)
with n = 3 and n = r we have

||Lw(z)W||oo^Cm|u00|'3v^(xW^(m) + (l-xWr1/2) *t> 0. (5.22)

Here and hereafter, we put x(t) = 1 for t g 1 and x{t) = 0 for t ^ 1. In fact, (5.22)
follows from the relations

f (t — s)_(3w3_1/m)/2+1/2) s-1/2 ds — B(3/2m, 1/2) v£ > 0;
J 0

r "(t-syVWs-WdsZCrt-1'2 V^l,
JO

where we have used the fact that 3/(2r) > 1. By (5.13), (5.16) and (2) and (4) of
Theorem 5.1 we have also

||W(z,z)(t)||00 ^Ce(xWt"(1-3/(2m)) + (l-x(i))i"1/2) V*> 0. (5.23)

In fact, since ||(z(s, •) ■ V)z(s,-)||^ g Ces~(1_3/(2p^, (5.23) follows from the relations

I
I

t
(t - s)-(3(l/^-l/m)/2+l/2) s-(l-3/(2p)) d$

= B(3(l/m - l/p)/2,3/(2p)) t~> 0;

(t - s)-3/(2<0 s-(i-3/(2p)) ds ^ B(l/2 - 3/(2p), 3/(2p)) t~1'2 v£ ^ 1,
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where we have used the fact that m < p to obtain the fact that 3(1 /m - l/p)/2 > 0 in
the beta function. Since

l|u0(t, Olloo ̂  c (x(i)r (1-3/(2m)) + (1 - x(t)) f~1/2) ||b||3 wt > o

as follows immediately from Theorem 5.1 and Sobolev's imbedding theorem, we have
(1.14) for q — oo. This completes the proof of Theorem 1.4.

A proof of Theorem 1.5. Let wUoo be a solution of (SP) in the case that f(:r) = g(x) =
0, and let zUoo be a solution of the integral equation (1.9) in the case that w = wUoo and
that b is replaced by b 4- Uoo — wUoo. If we put vUoo = wUoo + zUoo, then by Theorem 1.4
and Iwashita's result [28 ,Theorem 1.4] we see easily that the statement of Theorem 1.5,
except for (1.15), is valid. Therefore, we shall show (1.15) only, below. The argument
below is almost the same as in the proof of Theorem 1.4. For notational simplicity, we
write z = zUoo and w = wUoo for ^ 0. Since wo = 0, if we put v = z — Zo, then by
(1.9) we have

v(f) = TUoo(t){Uoo - w) + (TUoo(t) - T0(f))b

- Lw[z](t) - N[v,z]{t) - N[z0, v](£) - /(f)

where

I(t) = [t(TUoo(t-s)-T0(t))bds = - f TUoo(t-s)P[(u00-V)T0(s)b}ds. (5.25)
Jo Jo

By Theorem 1.1 we know that |||uoo - w|||6 ^ juool'3, which implies that ||iioo - w||3 ^
C|u00|/3. By Theorem 5.1, we have

||TUoo (f)(lloo - w)||, ^ Cqt~^q) luool'3 3 ^ vg < 00,

||VTUoo(0(Uoo - w)||3 ^ Ct"1/2 |Uoo|^j (5-26)

||TUoo(f)(Uoo - w)j|oo ^ Cmuj{t) (Uqo\ ^

for any t > 0. Here and hereafter, we put

w(t) = x(t)r(1-3/(2ro)) + (i - x(t))t-{1/2-3/(2m)).

Applying Theorem 5.1 to (5.25), we have

||(rUoo(t) - To(0)b||, ^ Cq |Uqo| ||b||3f3/(2^) 3 ^ yq < 00,

IIV(TUoo(t) - T0(t))b\\3 ^ C|uoo|||b||3, (5.27)
||(TUoo(f) - To(f))b||oo ^ Cm |uoo|||b||3a;(t)

for any t > 0. By (5.20), Lemma 5.6 and (5.22), we have

||LW[z](t)||9 ^ C,r^|uoo|^/i 3 ^ v9 < oo,

||Viw[z](t)||3 ^ Ct-1/2 luool^/i, (5.28)

||Z/w[z](t)||oo ^ cmu>(t) (Uool^/e
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for any t > 0. Here and hereafter, we use (1.10) and (1.14) to estimate z = zUoo and zo-
For simplicity, we put

{v}<j,pi>p2,t = SUP X(s)spl||v(s,-)||9+ sup (1 -x(s))sP2||v(s,-)||g-
0<s^t 0<s^t

By using this notation, we put

{{v}}p,t = {v}3,l/2,0,f + {v}plM(p),-3/(2p),t + {v}3io,-1/2,4-

Then we have the relations

{JV[v,z]}giM9),-3/(2«),t + {^[z, V0]}g,„(,),-3/(2q),t ^ CPtq^{{v}}p,t

{ViV[v, z]}3ii/2,o,t + {ViV[zo,v]}3ii/2,o,i ^ Cp,q^~e{{v}}pit, (5.29)

{-/V[v, z]}OOjl_3/(2m))0jt + {N[z0, v]}00il_3/(2m)io,t = Cm\fe {{v}}Pi<

for any t > 0, where N[-, -](i) is the same as in Lemma 5.6. To obtain (5.29), we have
used the relation

||(v(s, •) • V)z(s, -)|U + ll(zo(s, •) ■ V)v(s, .)||*

^ {{v}}p,t([Vz]3,1/2,3 + NP,M(P),,) (x(s) s-V-W™ + (1 - X(')) s-(V2-3/(ap)))

and the fact that [Vz]3>1/2ii = \/e and [zo]P,M(P),S = y/e. Finally, applying Theorem 5.1
to (5.28) we have

3^v</<oo,

HVJWHs^Cluoole, (5.30)
||/(t))||oo ^ C|uoo| eu(t)

for any t > 0. In fact, to show (5.30) we use the relation

||(z0(s, •) • V)z0(s, -)||<? ̂  S"(1_3/(2p)) e,

which follows from (5.13) and the facts that [Vz0]3,i/2,t = and [zo]PlAi(p),t ̂ \[t for
any t > 0. Then, the first inequality in (5.30) follows from the relation

£ ~ s - r)"3^-!/*)/* r-1'2 dr) ds <. Cp,q t^ t > 0.

The second inequality in (5.30) follows from the relation

J* - S - r)-3((l//-l/fl)/2+l/2) r 1/2 ̂  s-(l-3/(2p)) dg ^ ^ t > 0



152 YOSHIHIRO SHIBATA

The third inequality in (5.30) follows from the relations

J* - S - r)-3((l//-l/m)/2+l/2) r-l/2 ^ a-(l-3/(2p)) dg

^ CP,m^(1/2~3/(2m)) f>0

t> 1.J (/ (t — s - r) 3/£r xt2 drj s ^ 3^2p^ ds ^ Cp

Combining (5.26)-(5.30), we have

{{v}}p,t ^ C {|u00|/3 + |uoo|||b||3 + |Uoo|e + /e{{v}}p,t}

and hence choosing e > 0 so small that C\fi ^ 1/2, we have

{{v}}p,t ̂  Cluool'3 (5.31)

because |uoo| ^ 1 and ||b||3 ^ e ^ 1. Inserting (5.31) into (5.29), by (5.26) to (5.30) we
have (1.15) which completes the proof of Theorem 1.5.

Appendix. L^—Lp decay estimate of TUoo(t). In this appendix we shall show (2)
and (4) in Theorem 5.1. By Kobayashi and Shibata [30, (4.26)], we know that

|A|||(0(Uoo) + AI)_1f||p + ||(0(Uoo) + AI)-1f||p>2 ^ Cp,o-0||f||p vf G Jp(fi)

provided that lu^l ^ 00, |A| ^ Rq and | arg A| < tt—6q for some Rq > 0 and 0 < 60 < 7r/2.
Therefore, employing the argument in Pazy [39, Theorem 6.13] we have (4) of Theorem
5.1. In order to prove (2) of Theorem 5.1, we put u(t, •) = TUoo(t + l)a. Then, by
Kobayashi and Shibata [30, (6.18) and (6.27)] when / 0 and by Iwashita [28, Lemmas
5.3 and 5.4] when Uoo = 0, we know that

||u(t)-)||p,2m,n(, + ||5tu(t,-)||p,2m,n(( + ||p(<,-)llp,2m,n6 ^ Cp,m,6,a0(l+*)~3/(2p)||a||p (Ap.l)

for any t ^ 0 and integer m ^ 0 where p is the pressure associated with u, that is,
ut — Au + (uoo • V)u + Vp = 0, and b is a fixed constant > 60 + 3. By Sobolev's
imbedding theorem and (Ap.l), we have

||u(t, -)l|oo,nt ^ Cp,b,a0(1 + i)"3/(2p) ||a||p. (Ap.2)

Therefore, our task is to estimate u(i, x) for |x| ^ b.
Let ip £ C°°(IR3) be such that ip(x) = 0 for |x| ^ b — 2 and ip(x) = 1 for |x| ^ b — 1

and put

z(t, ■) = ip u(t, •) - B[(VV>) • u(t, •)],
e = VTUoo(l)a-B[(V^)-TUoo(l)a],

h(t, ') = —{(VV)p(t,') + 2(W) : Vu(t, •) + (Aip)u(t, •) - ((Uoo • V)ip)u(t, ■)

+ (ft-A + (u00-V))B[(VV)-u(i,-)]}.
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By Proposition 2.3 and (Ap.l), we have

|zt-Az+ (uoo ■ V) z + V(#) = h, V • z = 0 in (0, oo) x
\ z(0,x)=e(x) in K3, (Ap.3)

/ |h(V)lp,2m-l ^ CPim,bta0{l + t) 3/(2p)||a||p vm^l, ,
I ||e|P)2m = Cp,m,(T0||a||p vm^0, 1 P' j

(Ap.5)
{z(t,x) = u(t,x) for |x| ^ b — 1,

supph(£, •) C -Dft-i.

Let SUoo(t) denote the semigroup generated by O(uoo) on Jp(]R3), that is,

/ i \3//2 r
Su°°{t)i = yR3e-'—|2/(^Fof(,)^,

where we have put Po = P®3 for notational simplicity. By Young's inequality and the
Lp(R3) boundedness of Riesz's transform, we see easily that

1^ 5Uoo (t) f|, g |f|p va (Ap.6)

where 1 < p 5= q ^ 00 and u = 3(1 /p — l/q)/2. Since V • e = 0, applying Duhamel's
principle to (Ap.3), we have

z(V) = SUao{t)e + Zi(t, •), zi(t,-)= [ SUao(t-s)h(s,-)ds.
Jo

By (Ap.6) and (Ap.4) we have

l-Su^ (*)e|oo ^ Cp,ao £~3/(2p)l|a||p > 0. (Ap.7)

When t^. 1, we observe that

lzi(i, Oloo = [ (t - s)'3/{2q}\h(s,-)\qds + f (f - s)~3/(2r)|h(s, -)\rds (Ap.8)
Jt-1 J 0

where q and r are suitable numbers such that q > 3/2 and 1 < r < 3/2. By Sobolev's
imbedding theorem and the fact that supp h(t,x) is compact (cf. (Ap.5)), by (Ap.4) we
have

|h(a,.)|„ |h(s, -)|r ^ C(l + s)-3/(2p)||a||p. (Ap.9)

Applying (Ap.9) to (Ap.8) we see easily that

|zi(f,-)U ^C(l + t)-3/(2p)||a||p 1. (Ap.10)

When 0 ^ t ^ 1, we take q > max(3,p), and then by Sobolev's imbedding theorem,
(Ap.6) and (Ap.4) we have

Ni(t, Oloo ̂ Cp|zi(t, -)U,i (Ap.ll)

1 qds^Cq f (:t-s) 1/2|h(s, -)|q
J 0

= [ (t - s)~1/2(l + s)"3/(2p) rfs ||a||j
Jo

s CMv7||a||p g Cp,9||a||p.
Since u(t,x) = z(t,x) for |x| ^ b, combining (Ap.2), (Ap.7), (Ap.10), and (Ap.ll)
implies (2) of Theorem 5.1, which completes the proof.
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