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1. Introduction.
1.1. Problem. In this paper we study the asymptotic behaviour of small solutions of
the stationary problem of the three-dimensional Navier-Stokes equations:

—Aw+(w-V)w+Vg=f, V-w=0 forzeQ,
w=g for x € 092, (SP)

lim w{z) = uy
|z|—o00

where u,, is a nonzero constant three-dimensional row vector and 2 is an exterior domain

in R® with smooth boundary 9Q. Also, we discuss the stability property of the solutions

of (SP) with respect to small Lz-perturbation. To be more precise, let us consider the
nonstationary problem :

vi—Av+(v-V)v4+Vp=f V.v=0 fort>0,z€9,
v=g for t > 0, z € 89,
NS
v(0,z) = a(x) for x € Q, (NS)

lmllimoov(t, T) = U vt > 0.

Inserting v(t,x) = w(z) + u(t,z), a(z) = w(z) + b(z) and p(¢,z) = q(z) + (¢, z) into
(NS), we obtain the equations governing the perturbation u :

w—Au+(w-Viu+(u-Viw+(u-Viu+Ve=0
V-u=0
u(t,z) =0 fort >0, x € 092,
u(0,z) = b(z) for z € Q,

} fort >0,z €Q,
(P)
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We shall prove the existence and asymptotic behaviour globally in time of solutions of
(P) when |u.| and the Lz-norm of b are very small.

The notation in (SP) and (NS) is the usual one of vector analysis explained below
more precisely in the paragraph of notation. Three-dimensional row vectors of functions
are denoted with bold-face letters, for example, w = w(z) = T(wi(z), wa(z), w3(z))
where T M means the transposed M. The solution w(z) of (SP) can be interpreted as the
velocity field of a steady motion of an incompressible fluid in position x = {x1, 2, z3) € 2
with an external force f = f(x) and a prescribed velocity field g = g(x) at the boundary
O , and the scalar function q = g(z) is then the associated pressure, where we adopt
a coordinate frame fixed to a moving rigid body O which is identified with a bounded
domain in R? in the viscous incompressible fluid that occupies the region 2 = R% — O.
The solutions v = v(t,z) = T(vy (¢, z), v2(t, z),v3(t,z)) and p = p(t, ), a scalar function,
of (NS) also can be interpreted as the velocity field and its associated pressure of the
time-dependent motion of a viscous incompressible fluid in position x € { at time ¢t > 0
with an initial velocity field a = a(z) as well as the same external force f = f(z) and
prescribed velocity g = g(x) at 92 as in (SP).

It is well known that without smallness assumptions, present day analysis yields only
a locally in time unique solution of (NS) in the three-dimensional case, while Leray
[33] and Hopf [26] proved the existence of square-integrable weak solutions for arbitrary
square-integrable initial velocity, whose uniqueness is still unknown.

The first general study of (SP) for arbitrary prescribed data is due to Leray [32]. He
proved the existence of smooth solutions of (SP) with a finite Dirichlet integral. But,
the solutions obtained by Leray did not provide much qualitative information about the
solutions. In particular, nothing was proven about the asymptotic structure of the wake
behind the body O. Finn [12] to [16] has studied (SP) within the class of solutions,
termed by him physically reasonable, which tend to a limit at infinity like |z|~'/2~¢ for
some € > 0. For small data he proved both existence and uniqueness within this class.
In fact, his solutions satisfy the following estimate :

[w(z) — ue| £ Clz|™! as |z] — 0o and Vw € L3(Q) (PR)

where C is a constant. Furthermore, his solutions exhibit paraboloidal wake region
behind the body O.

Finn has conjectured [17] that for sufficiently small data, physically reasonable solu-
tions are attainable. Namely, the problem is to find a solution u(¢,z) of (P) such that
u(t,z) — 0, that is, v(t,z) — w(z)} — 0 as t — oo. This is called a stability problem.

The stability problem was first solved by Heywood [23, 24] in the L, framework.
Roughly speaking, he proved that if the Ly-norm of b(z) is very small and if C < 1/2,
C being the constant in (PR) above, then there exists a unique solution u(t,z) of (P)
satisfying the convergence property :

/Q |V(u(t,z) — w(z))|?dz — 0 and /|;”|E§QR lu(t,z) — w(z)|?dz — 0

as t — 0o where R is any positive number. His result was sharpened, in particular with
respect to the rate of the convergence, by Masuda [35], Heywood himself [25], Miyakawa
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[36], and Maremonti [34] (cf. further references cited therein). But, as Finn showed in
[14], if w(z) is a physically reasonable solution and if the force exerted to the body O
by the flow does not vanish, then w(z) — u, is not square-integrable over §). Therefore,
it seems reasonable to seek a solution of the problem (P) in a class of functions that are
not square-integrable over 2 for each time ¢ > 0.

In this direction, Kato [29] solved the problem (NS) in the L,-framework when (2 = R
(n 2 2), uo = 0 and the L,-norm of a is very small. He employed various L,-norms
and L,—-L, estimates for the semigroup generated by the Stokes operator. Iwashita [28]
extended Kato’s result to the case that Q # R"™ (n 2 3), us = 0 and that the L,-norm
of a is also very small. The main point of Iwashita’s work was to obtain L,~L, estimates
of the semigroup generated by the Stokes operator in  with zero Dirichlet boundary
condition. Since the zero vector 0 is a trivial solution to (SP) when u., = 0, expressing
the Kato and Iwashita results in other words, we can say that the trivial solution is stable
by the small L,-perturbation.

Recently, when u,, = 0 and @ C R™ (n 2 3), Borchers and Miyakawa [5] and Kozono
and Yamazaki [31] proved the stability of nontrivial physically reasonable solutions by
the small weak L,-perturbation. Namely, they proved that if the L, weak norm of b
is very small, then (NS) admits a unique solution v(¢,z) that converges to w(z) in the
L, weak space with a suitable rate with respect to ¢t as ¢ — oo. Since the physically
reasonable solutions of (SP) belong to the L, weak space when us = 0 (cf. (PR)), the
stability problem was, therefore, settled in the case where u,, = 0 and n 2 3.

On the other hand, the case where u,, # 0 has been studied relatively seldom com-
pared with the case where u,, = 0 (cf. except for papers cited above, Oseen [38], Babenko
(1], Bemelman [2], Faxén [11], Farwig [8, 9], Galdi [19]). In particular, the stability has
been proved only in the Lo-framework. This paper is devoted to the study of the stabil-
ity problem of physically reasonable solutions with respect to small Ls-perturbation in
the three-dimensional exterior domain when u, is a nonzero constant vector. In fact,
since w(z) — us belongs to Lz-space when u., # 0, which will be proved in Theorem
1.1 below, the stability theorem with respect to the Ls-perturbation is meaningful. As
a corollary of our stability theorem, we also prove a unique existence theorem of small
strong solutions of (NS) in the Lz-framework when f = g = 0 and u,, # 0, which is
an extension of the Kato and Iwashita results to the case where u., # 0. Moreover, we
shall prove that our solutions tend to Kato and Iwashita solutions when u,, — 0 even
in the L. -space.

1.2. Notation. To state main results, first we outline at this point our notation. The
dot - denotes the usual inner product of three-dimensional row vectors. (a;;) means the
3 x 3 matrix whose i*" column and j** row component is ai;. As usual, the subscript ¢
means partial differentiation with respect to ¢, and moreover we put

3, =0d/dt, 8; =0d/dx;, A=0%+62+ 82,

0% =00 05205°, a=(a1,a2,a3), |a]=a;+a+as.

For three-dimensional row vector-valued functions u = T(uy,up,u3), v = T(v1,ve,v3)
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and a scalar-valued function u we put

O u = (02u,]o| =m), 9, u=(8u,|a| <m), &0%u="(8]8%us,8]0%uz,8]8%us),
o7u = (0%u, |a| = m), 5;nu = (07w, |a| < m), Vu=(9;u,),

3 3 3
Au = T(Auy, Aug, Auz), (u-V)v = T(Z ujaj'vl,Zuijvg, ZUjajU3),

3
V-u= Zajuj,Vu = T(alu,aw,asu), Vu:Vv = T(Vu - Vuy, Vu - Vug, Vu - Vug).
j=1

To denote the special sets, we use the following symbols:
By={z€R®||z|<b}, Go={z€R®||z|2b}, Dy={zcR®|b—1Z% |z| b},
Sb={$€R3||CL‘I=b}, Qy=QN By, Y =00US,.

Let by be a fixed number such that By, D O. Sobolev spaces of vector-valued functions
are used, as well as of scalar-valued functions. If D is any domain in R3, L,(D) denotes

the usual L,-space of scalar functions on D and || - ||, p its usual norm. Moreover, we
put
3 1/p
Ml = | D llusl? o (1=p <o), |ulleo,p = max ||l p,
= 2,

lullp,m,0 = 197 ullp,5, llpm,p = 18, ully,p, (u,v)p Z/DU(x)~V(:v)dx~

For simplicity, we shall use the following abbreviation: (-,-) = (-, )a, |- [l = || - llp.0:
I llpm = |- lpmts |+l = Il lpgs | Iy = I+ lpymgo- D’ denotes the set of all
distributions on R3, &’ the set of all tempered distributions on R® and C§°(D) the set
of all functions of C*°(R®) whose support is contained in D. Moreover, we put

Lyy(D) = {u € Lp(D) | u(z) =0 "z ¢ By},
plOC(R3) ={ueS |0%u€L,(By) Ya:|a| <m and "b> 0},
p,loc( Y= {u| U € plOC(R3) such that v =U on D},
Ly 1oc(D) = Woloc(D)?
W (D) = {u € Wi,c(D) | [tllp,m,p < o0},
Wm(D
WD

) = the completion of C§°(D) with respect to || - ||p,m,D,

) = {v € Wioo(D) | 187 ullp,p < o0}

To denote function spaces of three-dimensional row vector-valued functions, we use the
blackboard bold letters. For example,

H“Q(D) = {Ll = T(ulau%u?)) | Uj € Lq(D)aj - 1a2’3}
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Likewise for C3°(D), Ly 5(D), W7, , (D), Ly 10c(D), W (D), W?(D) and W?(D). More-
over, we put

Jp(D) = the completion in L, (D) of the set {ue CF(D)| V- -u=0 in D},
Gy(D) ={Vp|p e W,(D)},

:u&n={gewgmngu»=omuﬂzaﬁ4,Aawm-g@dr=m,

where dI' is the surface element of 80 and v(z) = T(v)(z),ve(z),v3(z)) is the unit
outer normal to 9. According to Fujiwara and Morimoto [18] and Miyakawa [36], the
Banach space L, (D) admits the Helmholtz decomposition: L,(D) = J,(D) ® G,(D),
where @ denotes the direct sum. Let Pp be a continuous projection from L,(D) onto
J,(D). The Stokes operator Ap and the Oseen operator Op(uy,) are defined by the
relations: Ap = —PpA and Op(us) = Ap + Pp(uy - V) with the same domain:
Dp(Ap) = Dp(Op(us)) = Jp(D) N WL(D) N W2(D). Note that Op(0) = Ap. For
simplicity, we write P = P, A = Ag and O(us) = Oa(uy ). To denote various constants
we use the same letter C. By C4 p,... we denote a constant depending on the quantities
A, B, ... Cand C4 g, . will change from line to line. Let C denote the set of all complex
numbers. For two Banach spaces X and Y, £(X,Y’) denotes the set of all bounded linear
operators from X into Y with norm || - ||z(x,y), B(I, X) the set of all X—valued bounded
continuous functions on I and C(I, X) the set of all X—valued continuocus functions on
I. Finally, e79(M=)t = T, (t) denotes the analytic semigroup on J,({) generated by
O(uso), the existence of which is proved by Miyakawa [36].

1.3. Main results. Now, we shall state our main results. We start with an existence
theorem of small solutions to (SP).

THEOREM 1.1. Let 3 < p < oo and let § and 8 be any numbers such that 0 < § < 1/4
and0<éd<f<l—6 LetfelL,(R)andge Wg’ﬁ(aﬂ). Then, there exists a constant
€, 0 < e £ 1, depending on p, § and 3 but independent of u., such that if 0 < |u| S e
and < f 95 +ligllp2 £ €|us|?tS, then the problem (SP) admits solution w and p

possessing the estimate :

W = ool + 1 = eells + Ipllp < faocl?, (11)

where
LUy = s:g (1 + 221 + su_ (2))/?+H|u(z)|, (1.2)
lallls = sup (L+ [2))(1 + su., (2)°[u(=)| (1.3)

+sup (1 + [2))*2(1 + su,, (2))/***|Vu()],
e}

Sun () = [2] = T2 - Voo /[ |- (1.4)

REMARK 1.2. The similar result was obtained recently by Novotny and Padula [37]
in the compressible viscous fluid case. From works due to Finn [12] to [16] and Farwig
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[8, 9], the dependence of solutions on u, is not clear. Since such dependence plays an
important role to solve the stability problem, we shall prove Theorem 1.1 in this paper.

REMARK 1.3. The estimate (1.1) represents the wake region behind O. Moreover, by
(1.1), w — uy € L3(R2) and Vw € L3/5(€2). In fact,

©  gr T sin@dg 13
_ < s
lw = ool = [271-/0 (1+7)378 /0 (1 —cos0)5] ool

oo dr i sin 6 d@ 2/3
Ié]
IVwlls/2 = [2”/0 (14 7)%/47rG+8)/4 /0 1- cosa)(3+6>/4] [ueo |

Now, we shall state our stability theorem, that is, the existence of solutions of (P)
globally in time. According to the approach due to Kato [29], instead of (P), we consider
the integral equation. Namely, in view of (1.1}, if we write (w - V)u = (uy, - V)u +
((W —us)) - Vu in (P) and if we apply the projection IP to the resulting formula, the
first formula in (P) is reduced to

(1.5)

u; + O(uy) u = —P[Lw]u + N[u]], (1.6)

where
Llwlu= (W~ ux) - Viu+ (u:V)w, (1.7)
Nu] = (u- V)u. (1.8)

Then, applying Duhamel’s principle to (1.6), we have the integral equation

) = Tur 09~ [ Tu (6= ) PLEL] u(s) + Nulo)] s (1.9)

Instead of (P), we shall solve (1.9).

THEOREM 1.4. Let 3 < p < oo and let § and 8 be the same as in Theorem 1.1. In
addition, we assume that 0 < § < min(1/6,4/p). Let f € Lo(Q2), g € W?,(8Q) and
b(z) € J3(2). Then, there exists an € > 0, 0 < € £ 1, depending only on p, 5, and é
essentially such that if 0 < Jue| £ €, € f a5 +I8llp.2 < €|uco|®4 and [|b|j3 £ ¢, then
the problem (1.9) admits a unique solution u € B([0, 00), J3(€2)) possessing the following
properties:

[u]B,O,t + [u]p,p(p),t + [vu]3,l/2,t § \/Ea (110)
tE%E_ [||u(t, ) =bls+ [u]p,u(p),t + [vu]3,1/2,t] =0. (1.11)

Here and hereafter, we put

[2lp,pe = sup s”||z(s,)llps (1.12)
0<s<t

u(p)=§(1—l>:%—i for p 2 3. (1.13)

2p
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Moreover, we have the relations:
(u]g.u(g)t S Cq (e + 61/2+ﬁ) , 3<q< o0,

lu(t, Yoo £ Crm (e + 61/2+ﬁ) (t_1/2 i t_(1‘3/2m)) , (1.14)

for any ¢ > 0 where m is a number such that 3 < m < p.

Finally, we consider the convergence of solutions of (NS) as |u.,| — 0 in the case that
f(z) = g(z).
THEOREM 1.5. Let us consider the problem (NS} in the case that f(z) = g(z) = 0.
Let 0 < 8 < 1 and let a(z) = ue + b(z) be an initial velocity. Then, there exists an e,
0 < € £ 1, depending on 8 but independent of uy, and b such that if ju,| < €, b € J3(Q)
and ||blls £ ¢, then (NS) admits a unique solution vy_ (¢,z) with suitable pressure part
Pu, (¢, ) such that u(t,z) = vy (¢, 2) — ux € B([0,00),J3()) and (1.10), (1.11) and
(1.14) hold for the present u with suitable constants C,; and C,, independent of ¢, 8 and
Uo. Moreover, we have the following convergence property:

Vi (1) = 0 = vo(t, llg £ Cy (+740 +64/20) ugel® 32 7q < o0,
[Vae (t,7) = Vo(t, )]0 £ Crm (t(1‘3/2m) + 1) U, (1.15)
IV (Van 7) = Vaee (6Dl S € (872 4+ 1) Jucol?
for any t > 0 where m is a constant > 3.

2. Preparation for the latter sections. In this section, we shall discuss some
basic facts which will be used in the latter sections. Throughout this section, D de-
notes a bounded domain in R® with smooth boundary 8D. We start with a proposition
concerning inequalities of Poincaré’s type and an extension of functions.

PROPOSITION 2.1. Let 1 < p < 0o. (1) Then, the following two relations hold:

vl < Cp | |IVV]lp,0 + /v(:r) dz v e W, (D), (2.1)
D
lvllp,0 £ CplIVollpp Yv € W(D). (2.2)

(2) Let m be an integer 2 0. Then, for any u € W;*(D), there exists a v € W,*(R?) such
that u = v in D and |v|p.m £ Cpm,p||tllp,m,n0, where Cp . p is a constant independent
of u and v.

Proof. See [19, I1.4] for (1) and [19, I1.2] for (2).

In order to state the so-called Bogovskii’s lemma, Proposition 2.2 below, we introduce
the space W;?a(D) in the following manner:

W (D) = {u € WD) | /D u(z) dz = 0}. (2.3)
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PROPOSITION 2.2. Let 1 < p < oo and let m be an integer 2 0. Then, there exists a
B € L(W, (D), W +1(D)) such that V- B[f] = f in D.

Proof. See Bogovskii [3, 4] (also Giga and Sohr [22, Lemma 2.1] and Iwashita [28,
Proposition 2.5], Galdi [19, IIL.3]).

To use a cut—off technique, we use the following proposition which is easily proved by
using Propositions 2.1 and 2.2 (cf. Kobayashi and Shibata [30, Proposition 2.4]).

PROPOSITION 2.3. Let 1 < p < oo and b > by. Set G = §, .1 or R3. Let m be
an integer > 1 and let ¢ be a function of C*°(R3) such that ¢(z) =1 for |z £ b—1
and p(z) = 0 for |z[ 2 b. If u € W, (G), V-u=0in G and u = 0 on 09 when
G = Q or Qp4q, then (Vy) -u € W;f’a(Db). As a result, B[(Vy) - u] € W;”“(Db),
V-B((Ve) - u] = (V9) - u and [BI(V9) - ull, .1 £ Crmpblltllpm,b.-

The following proposition is concerned with the regularity of the projection P¢g for
G=DorG=.

PROPOSITION 2.4. Let 1 < p < oo and let m be an integer = 0. Set G = D or G = 2.
Then, Pg € LIW(G), W™ (G) N ],(G)).
Proof. See Giga and Miyakawa [21] for G = D and Giga and Sohr [22] for G = Q.
‘We shall quote a Cattabriga theorem of a unique existence of solutions to the following
equation:
—-Au+Vp=f, V.-u=fin D, u=0ondD. (2.4)

PROPOSITION 2.5. Let 1 < p < co and let m be an integer = 0. Put
Wr(D) = (fewpD)| [ fia)de =0}, (25)

Then, for any f € W*(D) and f € W;,F'(D), there exists a unique u € W, +2(D)
which together with some p € W**!(D) solves (2.4); p is unique up to an additive
constant. Moreover, the following estimate is valid:

[ullpm+2.0 + [Vollpmsr,0 S Com.D {€llpm.o + [ fllpm+1,0}- (2.6)

Proof. See Cattabriga [6], Galdi and Simader [20], and Farwig and Sohr [10].
Finally, we shall discuss a unique existence of solutions to the following equation:

—Au+(uy -Vu+Vp=f, V-u=finD, u=0ondD, (2.7)

with a side condition:

/ p(x)dz =c. (2.8)
D

PROPOSITION 2.6. Let 1 < p < co and let m be an integer 2 0. Set

me(D) = W;n(D) X W;’II(D) x C,
II(E, £y Mllpm.p = Ifllpm.0 + I fllpm+1.0 + lc].

(2.9)
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Then, there exist Ly, p € LWV,"(D), W;"*?(D)) and lu,, p € LW*(D), W;*T1(D))
such that u = Ly__ p(f, f,¢) and p = [, p(f, f,c) solve the problem (2.7) and (2.8)
uniquely. Moreover, for any ¢ > 0 we have the relation

|(Luy.p — “]Lu;o,D)(fa £ C)”p,m+2,D + [[(Tuge.p — "‘[u’m,D)(fa f C)Hp,m-f—l.,D

, (2.10)
S Cpm,p,o(1 = K+ K [ — ug ) I(F, £, )l p,m,p

provided that |us|, |ul,| £ o where k = 0 and 1.
Proof. First, we consider the solvability of (2.4) with side condition (2.8). Let u and
p be solutions to (2.4) and set

d=|D|™! <c - /Dp(x) dx) and q(z) = p(z) + d.

Then, u and q satisfy (2.8) as well as (2.4). The uniqueness of solutions to the problem
(2.4) and (2.8) follows from Proposition 2.5 and (2.1). Therefore, in view of Proposition
2.5 and (2.1) we can define the solution operators M € L(W,;*(D),W/*(D)) and
m e L(WM(D), W;**1(D)) such that if we set u = M(f, f,c) and p = m(f, f,c) then u
and p satisfy (2.4) and (2.8).

Now, we apply M and m to (2.7), and then

( — AM(f, f,¢) + (ue - VIM(S, f,c) + VUL, f,¢)
=f+ (us - V)M(, £, ¢) in D,
V-M(f, f,0) = f (2.11)

M(f, f,c) =0 on 8D, / m(f, f,e)dz =c.
D

\

If we define the operator Su,, € L(W,"(D)) by the relation
Suoo (f’ f’ C) = ((uoo : v) M(f’ f’ C), 07 0)7

then Sy, is a compact operator, because (u, - V) M(f, f, ¢) belongs to W *+!(D) which
is compactly imbedded into W;*(D). Let us prove that I+ Sy, has a bounded inverse for
each u,, € R3. In view of Fredholm’s alternative theorem, it suffices to show that I+Su,,
is injective. Let us pick up (f, f,c) € W,*(D) such that (I + Su.)(f, f,c) = (0,0,0),
that is, £ + (ueo - V)M(f, f,c} =0, f = ¢ = 0. Set u = M(f,0,0) and p = m(f,0,0), and
then by (2.11) u and p satisfy the relations

—Au+(Ux-V)u+Vp=0, V.-u=0in D, u=0 on 9D, / p(z)dz =0. (2.12)
D

In view of Proposition 2.5 by the boot-strap argument we see that u and p are sufficiently
smooth, and then the multiplication of the first equation in (2.12) by u and the integration
by parts imply that [|[Vu||3 , = 0, and hence u = 0, because of the Dirichlet condition and
(2.2). Using the equation again, we see that Vp = 0 which together with [, p(z)dz =
0 and (2.1) implies that p = 0. Thus, for each uy,, € R? I+ S, has its inverse
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(I+Su,. )"t el W, (D)). Since (Su,, — Su )£, f,¢) = ((ue —ul,) - VM(f, £,¢),0,0),

we have

I+ Su) 7 = [+ 5u) " (Suw = Su)] @+ Su)™?
7=0
provided that
I+ Sy, )? M 1<)
||( + Su..) |I£(me(D)) I ||£(wpm(D)$w;1+2(D)) [Uoo —ug| S 3

which implies that (I + S, )~! is continuous with respect to u., € R3. Then it follows
easily that for any compact set K C R3 there exists a constant Cx > 0 such that

I+ Sus) Heowroy S Cr, "ue € K.

If we set Ly, p =M(I+ S, ) ! and Iy p = m(I+ Sy )"}, then we see easily that
Ly, ,p and ly_ p satisfy the required property, except for (2.10) with x = 1. But, since

(]Luoo,D - ]Lu’oo,Da [uw,D - (ugo,D)(f’ f’ C)
= (LuooyD7 [uoo,D)((uOO - ui)o) : VILUZ,Q,D(fv fa C)’O’ 0)’

the estimate (2.10) with x = 1 also follows immediately from (2.10) with x = 0. This
completes the proof of the proposition.

3. L, solutions of the Oseen equation. In this section, we shall discuss L,
solutions of the following equation:

—Au+ (U - Vi)u+Vp=1f, V.u=0inQ, u=g on oQ. (3.1)

The goal of this section is to prove the following theorem.

THEOREM 3.1. Let 3 < p < co and let K be any compact set in R3. If f € L,(2)NL;(Q)
and g € Wﬁyd(BQ), then the problem (3.1) admits unique solutions u € W2(Q) and
p € W, (Q) satisfying the estimate

lallp2 + llplle,1 = Co e {NEllp + [I£]l1 + ll8lln2 } (3.2)

for any u,, € K with some constant Cp x independent of u, f and g.

3.1. Basic property of the Oseen fundamental solutions. In this paragraph, we shall
discuss the basic property of the fundamental solutions x;x(us)(z) and m;(z), j, k =
1,2,3, of the Oseen equation:

AW+ (Up-V)W4+Vp=g, V-w=0 inR> (3.3)
Put

85k — &5 €k €72
|§|2 +'iuoo : 6 ’

Xik(Uoo) = F [Djku )], Pikua (§) =

1| &
n=7" |

(3.4)
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where i = v/ —1, F ! denotes the inverse Fourier transform and 0;x is the Kronecker’s
delta symbol, that is, §;; = 1 and é;; = 0 for j # k. The following formula is well known
(cf. Oseen [38], Galdi [19, IV.2 and VII. 3], Kobayashi and Shibata [30]):

Xjk(Uoo)(2) = (655 A — 8;0,) 2 (0)(x),
1 O8ugo () 1 — e~ (35)

= —_— = Uoo|/2 )
@@ =55 | da, 0 = sl /240

xjk(0)(z) = 8%|x| <6]k + xlj |x2k) , (3.6)

_
mi(z) = Wa

where sy () is the same as in Theorem 1.1.

LEMMA 3.2. Assume that u, # 0 and let x;x(uw), Su,, and o be the same as in (3.5).
Then, for any §: 0 £ § £ 1 there exists Cs > 0 independent of u,, such that

N
(0 8uy, (2))° ||’
Cs
(0 Sup, (2))8 Su,, (€)1/2 |23/

Cs o172 1
IV xjk(uoo ) ()| = (0 su,,(2))° [|nv|3/2 * W} ‘

lIA

X3k (o) (2)]

IV x5k (0o )(2)| £

Proof. See Oseen [38], Galdi [19, VIL3], and also Kobayashi and Shibata [30].

LEMMA 3.3. Let 3 < p < oo and oy > 0. Assume that |u.| £ g¢. Put
3
X(uoo *f— ZXIJ*fJ?ZXZ]*f])ZX3J*f] , 7r"‘fzzﬂ'j’"fj
j=1

for f = T(f1, fa, f3) where the asterisk * stands for the convolution. If f € L,(R%) N
L;(R?), then x(uoo) * f € WZ(R®) and 7 « f € W}(R?); moreover,

Ix(Uoo) * flp2 + | * flp1 = Cpoo(IElp + [£]1), (3.9)
[x(uoo) * £ = x(ule) * fllp2,8, £ Cppluce — ule[V/2 (If], + |£]1). (3.10)

Proof. Let ¢°(£) be a function of C*°(R?) such that 0 £ ¢® <1, °(¢) =1 for |¢| £ 1
and ¢%(¢) = 0 for |¢] = 2 and put p=(¢&) =1 — ©°(€). Set

Xok(Uoo) = F 1 [N (€) Pk ()], 7 = FH [N (€) €167 7] (3.11)

for N = 0 and oco. To handle with x$}(us) and 73°, we use the following theorem
concerning the L, boundedness of the Fourier multlpher
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PROPOSITION 3.4. (cf. Hormander [27, Theorem 7.9.5]) Let 1 < p < oo and let k(€) €
C>(R® — {0}) satisfy the condition |8 k(¢)] £ M |£|71*! for |¢| £ 2 and £ € R® — {0}
with some constant A > 0. Then,

Ifnl (ki) |y < Cp M |ulp, Yue LP(RS)

where C}, is a constant independent of M, and u and 4@ denote the Fourier transforms of
u.
Since ¢>(£) = 0 for || £ 1, by Proposition 3.4 we see easily that

102 Xk (oe) * flp + X5k (Uoc) * flp2 + |75 % flp1 S C M |flp,
X5k (o) * f = XFR(ULe) * flp2 £ C M [uoe — ul | |flp.

In order to handle with xj} and 73°, we need the following lemma.

(3.12)

LEMMA 3.5. Let x5;(us) and su,, be the same as in (3.11) and (1.4), respectively.
Then, we have the following relations:

IXGk (Ueo)(@)| £ C(1+ [2]) 71, (3.13)
VX% (ts0)(2)] £ C(1 + [use|V?) (1 + su. ()21 + |2]) 732, (3.14)
16279 (z)| £ C(1 + |z])~FHeD Ya, (3.15)

where we have put so(z) = |z|.
Postponing the proof of Lemma 3.5, we continue the proof of Lemma 3.3. When
3 < p < oo, by (3.13) to (3.15) we see easily that

IX?k(uw) * flp1 + |7 * flp1 S (|X?k(uoo)|p,1 +milp ) fl1 £ Cfh (3.16)
Since
19°(&) (Pskuee (€) — Pikur (§)) |
BEPWAR 1/2 1/2 ot (172
= OO\ T iuw aller +iuga1) \ieg) =C9O
we have

) £ = X0u)  Fle € O = w2 [ el (317

Combining (3.12), (3.16) and (3.17), we have Lemma 3.3.

A proof of Lemma 3.5. We shall prove only (3.14) in the case that u., # 0, because
other assertions will also be proved in a similar manner. Since ng(uoo) = Xjk(Uoo) * ;;3
and since 1 + sy () £ 1+ sy (¢ — ¥) + Su., (y), by Lemma 3.2

O —
(14 un () /2934 (uo0)(2)] £ € { L '“”,(;fis/y)' dy

+0 [ (4 su(@ = g2 (z — v)| [M+L] dy}
RS b (T Y 4 A RN

1+ |ueo|t/? [ 1 1J
SC’/ + —| dy
= Jre (U lz -yt L2 Jyl?
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where we have used the facts that sy__(z—y) £ 2|z —y| and that ;5 is rapidly decreasing.

Observing that
2 1+ |z
1+ |z 2 ’

C
() fowth
L+lz|) Jpe (14 yh*
for 0 < g < 3, we have (3.14).

3.2. A construction of a parametriz. In this paragraph, we shall construct a paramet-
rix of the problem

I

/ o
lyis+apz 1+ [z —yl)*yle

lIA

/ o
wzey2 (1+ |z —y)* [yl

—Au+ Uy -VIu+Vp=f V.-u=finQ, u=0ondQ. (3.18)

For notational simplicity, we set
o) = Lypora(®) x {f € WHR) | [ f(0)do =0 and £(a) = 0 for [o] 2 b0+ 1},
Q

where by is the same number as in paragraph 1.2. Moreover, put b = by + 4 and let ¢ be
a function of C*°(R3) such that ¢(z) = 1 for |z| £ b— 2 and ¢(x) = 0 for |z| > b — 1.
Let 3 < p < oo, Il f denote the restriction of f to § and set fo(z) = f(x) for x € Q and
fo(x) = 0 for z ¢ Q. Assume that (f, f) € K,(Q). A parametrix will be constructed by
a compact perturbation of the operators Rg{us,) and p(u.,) defined as follows:

Ro(uco)(f, f) = (1 - ¢) (x(us) ¥ f0) + ¢ Ly (f, f) + Ri(us)(f, f),

p(uso) (£, f) = (1= ¢) (% o) + @ Luo (£, ), (3.19)

where

Ri(ue) =B[(V ) - (x(Uso) * )] = B[(V ¢) - (Lu. (f, f))],
Lo (£, /) =1Luw,g,,(nbf,nbf,/3 7+ fo da),

L (£, f) =Iuw,gb(nbf,nbf,/ 7+ o dz),
By

and Ly o, and ly_ o, are the same as in Proposition 2.6 with D = €. Since
Luy,(f,f)=00n0Q, V- Ly _(f,f)=If=finQ and ¢ = 1 on supp f C By,+1, we
have

/ (Vw)'lLuw(f,f)d-’r=/ v-[somum(f,f)]dx—/ o (V- Lu_(f, /) d
Dy_q Qp Q

=/60y-]Lu°°(f,f)dI‘—/Qfda:=0,
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and hence (Vo) - Ly, (f, f) € W2 ,(Dy_1) (cf. (2.5)). By Propositions 2.2 and 2.3 we
see that Rj(u.) is well defined and that R;(uy,) € E(ICP(Q),WS’(Db_l)). Let K be any
compact set in R® and u,, € K. By Lemma 3.3 and Proposition 2.6 we have

[ Ro(uoo ) (£, F)llp.2 + | p(uoo) (£, Hllp,1 £ Crep (NEllp + 1 fllp1) (3.20)
(=A + (o - V)) Ro(uso)(f, f) + Vp(us)(f, f) =+ Su (£, f) in ©Q, (3.21)
V- Ro(us)(f, f) = f in Q, Ro(us)(f, f) = 0 on 09 (3.22)

where

Sue (f, ) = = 2(Ve): (x(us) x fo) — (A¢) (x(uoo) * fo)
+2(V): (VL (£, £) + (Ap) Lu (£, )
— (9 * V)0) (X (100 * f0) + (U0 - V)io) (Liu (F, f))
+ (A + (U - V) Ri(uco)(f, f) = (V) (m x£o) + (Vo) (lu, (£, f))-
Note that Sy (f,f) € W2(Q) and that supp Su,(f,f) C Dy—1, and hence if we put
Ju (£, f) = (Su (£, £),0), then J,_. is a compact operator from Kp,(€2) into itself. Our

task is to show the existence of the inverse operator (I+ Ju_ )~* of I+ Jy,. . In order to
do this, the following lemma is a key.

LEMMA 3.6. Let 1 <p < oo. Ifu € Wg(ﬂ) and p € W}() satisfy the homogeneous
equation

—Au+(Uy - V)u+Vp=0, V-u=0in £, u= 0 on 91, (3.23)
and the growth order condition
lim R~ / ([u(@)[? + [p(z)P) dz = 0, (3.24)

RE|z|22R

then u(z) = 0 and p(z) = 0.

Proof. See Iwashita [28] and Kobayashi and Shibata [30].

LEMMA 3.7. Let 1 < p < oo. Then, for each u, € R3 I+ J, . has its inverse
T+ Juy,) 7t € LK, (82)).

Proof. Since J,_, is compact, in view of Fredholm’s alternative theorem it suffices
to show that I + J,_ is injective, and hence let us pick up (f, f) € K () such that
I+ Ju )£, f) = (0,0), that is, f = 0 and £ + S, (f,0) = 0. Put u = Ry(u)(f,0)
and p = p(uy)(f,0). By (3.20) to (3.22), we see that u and p satisfy the condition in
Lemma 3.6, and hence u = 0 and p = 0. That is,

Rp(us0)(f,0) = 0 and p(uy)(f,0) =0 in . (3.25)

Since ¢(z) = 1 for jr| £ b—2 and 1 — p(z) = 1 for |z] 2 b — 1 and since supp
Ry(uy)(f,0) C Dp_q, by (3.25) we see that

X(Uo) xfo=0and mxfy=0 for|z|2b-1,
Ly (f,00=0 and py_ (f,0) =0 for [z| £ b—2.

(3.26)
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Putz=0L,_ (f,0)forz € Qpandz=0forz € O and q = I,_(f,0) for x € Qp and
q=0for z € O. By (2.7) and (2.8) we have

—Az+ (U V)z+Vqg=1fy, V-z=0in By, z=0o0n S,

/qdac=/ [uoo(f,O)dac:/ m* f dx.
By Q By

In view of (3.26), x(ux) *fo — z and 7 x fy — q satisfy (2.7) and (2.8) with f =0, f =0,
¢ =0 and D = By, and hence by Proposition 2.6, we have

x(Us) ¥ fo =Ly (f,0) and 7 *fH =, (f,0) in Q. (3.27)

In particular, R;(us){f,0) = 0 in Q, because supp Vo C Dy_1 C Q. Then, combining
(3.25) to (3.27), we see easily that x(uy) *fy = 0 and 7 x fy = 0 in 2, and hence f = 0,
which completes the proof of the lemma.

LEMMA 3.8. Let 3 < p < 0o0. Then, for any compact set K C R3, there exists a constant
Mk, > 0 such that [|[(I+ Ju.,) ek, @) £ Mk p provided that u, € K.

Proof. By (2.10) with £ =1 and (3.10), | Ju.. — Ju._llcic,@) S Ckpluc — ub|*/2.
Since

(H+Ju’ {Z ]I+;7u°° Juoo ju’oo)]J}(I[+s7uoo)_l
=0

provided that
Crpll T+ Tu) "Mlei, @) oo — ubo |2 £1/2,

by Lemma 3.7 and the compactness of K we have the lemma immediately, so that the
proof is completed.

By (3.19), (3.21) and Lemmas 3.6 and 3.8, we see that when f € L,;(2) and g €
WPQ’ 4(09), the problem (3.1) admits a unique solution u and p of the form

u=g+ Ro(us)(I+ Juw)_l(f - (-A+(ux-V))g, -V -g),

p=p(too) I+ Ju )" (F — (=A + (U - V)) &, ~V - &), (3.28)

which satisfy the estimate

lallp.2 + lIpllp1 = Collifllp + llgllp.2)- (3.29)

In (3.29), the constant C}, depends on K but is independent of u, € K whenever K is
any compact set in R3.

3.8. A proof of Theorem 3.1. In the course of the proof, let K be any compact set
in R® and uy,, € K. Set fo(z) = f(z) for z € Q2 and fy(x) = 0 for z € , and let
¥(z) € C®(R®) such that ¥(x) = 1 for |z| < by + 2 and ¥(z) = 0 for |z| = by + 3. Put

= (1~ %) x(uco) * fo + B[(V¥) - (x(uco) * fo)],
qg=(1-vy)m=f.

(3.30)
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By Proposition 2.3 and (3.9), we have

Ivllp.2 + llallpn & Crp{lflle + I£ll1}, (3.31)
V.v=0in, v=0on 0, (3.32)
(-A+ (U - V))v+Vg=(1—-9)f+hinQ, (3.33)
where
h =2(V¥): Vx(ue) * fo + (A)x(Uso) * fo — (U - V)¥)x () * fo (3.34)
+ (—A + (U - V) B[(VY) - (x(us) * fo)] — (V)7 * £5. '
By Proposition 2.3 and (3.9) we have also
supph C Dyoys,  [Ihllp = Crp (IEllp + [I£]11)- (3.35)
Now, we put
w=g-+ RO(uoo)(H + juoo)_l(wf —h- (—A + (uoo : V))g, -V g), (3 36)
t=p(uoo)(I+ Ju) ' (Wf —h— (-4 + (e - V))&, =V - 8). '
Then, by (3.28)
(—A+ (U V)) W+ Ve=9yf—h, V-w=0in Q, w=g on 99, (3.37)
and moreover by (3.35) and (3.29)
[Wllp2 + el < CrplIfllo + 1€l + lI8llp.2)- (3.38)

If we put u = v+ w and p = q + v, then combining (3.31), (3.32), (3.33), (3.37), and
(3.38), we see that u and p solve (3.1) uniquely and satisfy (3.2), which completes the
proof of Theorem 3.1.

4. On an existence theorem of solutions to a stationary problem; A proof
of Theorem 1.1. In this section we shall prove Thoerem 1.1 by the usual contraction
mapping principle. To this end, the following theorem is the key of our argument.

THEOREM 4.1. Let 3 <p <ooand 0 < § <1/4. Let < - 325 and ||| - |||s be the same as
in Theorem 1.1. Assume that 0 < Jue| £ 1. If < f >95< 00 and g € W ;(89), then
the problem (3.1) admits unique solutions u € W2(£2) and p € W, () such that

lullp.2 + Ipllp + lullls € Cpalusel *{< £ 25 +gllp.2}- (4.1)

Postponing the proof of Theorem 4.1, we shall prove Theorem 1.1. Put w = uy + v,
and then the problem (SP}) is reduced to the following problem:

—AVH+ (U - V)V+ (V- V)v+Vg=1f, V.-v=0inQ,
V=—Ux+g on Of2.

(4.2)
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Let ¥(z) be a function of C§°(R3) such that ¢(z) = 1 for |z| < by and 9(z) = 0 for
|z| 2 by + 1, and then u.¥(z) € Wid(aﬂ), because supp (Uoc?) C Bpy+1, Uoo® = U
on 91, and moreover

/ 1/~(uoow)dr‘=/ V-uxdl =0. (4.3)
o0 onN

In fact,

Zz
/13b0+1 V- (uxtp)dz = /Bb0+1 V- (usy) dz :/ Eh (W) do = 0,

Sbo+1

where do is the surface element of Sy, 11, and hence by Proposition 2.3, a = u.¢ — B[V -
(uso?))] satisfies the relations: V-a = 0 in R® and a = u,, on 9. In particular, by
integration by parts

Oz/V-ad:c:—/ u-adI‘:—/ V- U dll,
o Fel9) an

which shows (4.3).
Let us introduce the invariant set 7 as follows:

I={(y,p) EW,(Q) x W,(Q) |y = ~us + g 0on 90,
I, o)z = [1¥llp,2 + 1Pl + ¥ llls < ueol?/2}
Given (y,p) € Z, let z and q denote solutions of the equations

—Az+ Uy - V)z+Vg=f—(y-V)y, V.-2=01in Q,
Z=—Uy +g on d9.

Observe that

<F—(y-V)y > S22+ £ €lus|®™ + Jus[* /4,
|~ st + &llp2 S [¥]p2toe] + € |uc|*H7,

and hence by (4.1)

[i(2, )z S Cpslusol = {2€luce|**” + [uce [ /4 + 9] 2 uce]}
S Cps(2e + [ueo ™0 /4 + [Pl 2 uco ' 7)o |

If we choose € > 0 so small that
Cp,5(2¢ + P /4 + lep,zel_ﬁ) <1/2, (A.1)

we have ||(z,9)||7 £ |uwo|?/2. Therefore, if we define the map G by the relation G(y,p) =
(z,9), then G maps 7 into itself. Let (y;,p;) € Z, = 1, 2. Since

< (y1-Vyr — (y2- V)yz >25 < (llyallls + lly2lls)ly: — y2lls
< |usolPlllys = y2lls,
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by (4.1) we have

IG(y1,91) — G(y2,p2) |7 £ Cpslucel®Clly1 — y2lls
< Cpsluce P~ (y1,01) = (y2,p2)llz-

If we choose € > 0 so small that
Cose?™ 0 <1/2, (A.2)

then G is a contraction map of Z, and therefore there exists a unique fixed point (v, q) € 7.
Obviously, if we put w = uy + v, then w and q solve (SP) and satisfy (1.1), which
completes the proof of Theorem 1.1.

Now, we shall prove Theorem 4.1, below. First of all, we note that

dz
f fl. 22« f .
Il +18 2 < €220 [ G g

In the course of the proof, we always assume that |u,| £ 1. Also, we use the polar
coordinate system

yp =rcosf, y, =rsinfcosvy, yz =rsinfsiny (4.4)

for 087,059y <2rand 0 £ 7 < 0o. Let S be an orthogonal matrix such that
Suo = |Uo]T(1,0,0) and put s(y) = |y| — y1. By a change of variable: y = Sz,

|z| = |y| = r and sy () = s(y) = r(1 — cos9). (4.5)

In particular, using the assumption § < 1/4, we have

/ dx _ o /°° dr /" sin 6 df
rs (L4 |2))572(1 + sy (2))1/2+25 o (1+7)5/2Zp1/2428 [ (1 — cosf)1/2+28
which implies that

[fllp + [Ifll1 + lIgllp,2 S Cs < £ >25 +llgllp,2 (4.6)

with some constant Cs independent of u.,. By Theorem 3.1, the problem (3.1) admits
unique solutions u and p that satisfy the estimate

lallp2 + Ipllo1 & Cos(< £ >25 +I8llp,2),
which together with Sobolev’s inequality implies that
”u”oo,l < Cp”u”p,2 § Cp,6(<< f >0 +||g”17,2)a (47)

and then it suffices to prove that

(1 + suq (2))° ()] £ Cpsluce| (< £ 25 +gllp,2) 2l (4.8)
(14 Sus @)**|V u(2)] £ Cpolucel (< £ 25 +Igllp,2)lz| =/ (4.9)
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for |z| 2 bp+4. Recall that u = v+w, where v and w are the same as in (3.30) and (3.36),
respectively. When |z| 2 bp+4, we have v = x(uoo)*fp and w = x (U0 )* My, (k, —V-g),
where k = Yf —h—(—A+(us-V))g (cf. (3.36)) and My, (k, —V-g) is the zero extension
to the whole space R? of the first component of (I + J,_ ) !(k,~V -g). By Lemma 3.8,
(3.35) and (4.6), we see that

supp [My,, (k, =V - g)lo C By +3, (4.10)
[Mue (&, =V - g)lol1 £ Cp,bo,6(K £ 25 +I8llp,2)- (4.11)

In order to show that (4.8) and (4.9) hold for x(ue) * [My_ (k,—V - g)]o, it suffices to
prove the following lemma.

LEMMA 4.2. Let b > 0, g € L1 4(R?) and 0 < |ue| £ 1. Then, for |z| > b+ 1 we have
the following relations:

[X(1o0) * &(2)] £ Copltroe| (1 + su., (2)) °lz| g,
[Vx(uc) * g(@)| S Cs,plttoe| *(1 + su., (€)= />+9 |2 732 |g],.
Proof. The argument is the same, so that we shall prove only the second estimate,

below. Since 1+ sy () £ 14 sy, (& —y) + Su.. (¥) and since sy (y) £ 2band |z —y| =
|z|/(b+ 1) when |z| 2 b+ 1 and |y| £ b, by (3.8) we have

21/2+6C6 g(y dy
(14 50 ()24 Fx(10) + @) S 2s” [ ;'x o

el 2 ]k s e
a—yF7? g T B

Csp / { 1 1 } Csplgl1
£ — + lg(y)|dy £ — =7,
o l® Jra LIz — 9|32 |z —y|? U |8|2]3/2

which shows the second inequality of the lemma.
In particular, by (4.10), (4.11) and Lemma 4.2 we have

+ 21/2-{-600
R3

(1+ 5une (@) lelw(@)| + (1 + s, ()2 ]a]/2|V w(2)|
< Csplune| 5(< £ 05 +llgllp2)  for [2] 2 bo + 4.

(4.12)

In order to show that (4.8) and (4.9) also hold for x(us) * f5, we use the following
lemma.

LEMMA 4.3. Let 0 < § < 1/4. Let g € Lo(R3) and assume that

<g >z = sup (1+ [21)*/2(1 + su,, ())"/***|g(z)| < oo. (4.13)
z€R

Then, for |z| 2 1 we have the relations

X (100) * 8(2)] £ Csluico|~*(1 + su,, (2)) ~°J2| 77, (4.14)
Vx(ue) * ()] S Csltio| 7 (1 + su, () ~1/29) )| =3/2, (4.15)
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Obviously, applying Lemma 4.3 to x(u.) * fy, and combining the resulting estimate
and {4.12) implies (4.8) and (4.9), and hence we can complete the proof of Theorem
4.1. Therefore, we shall prove Lemma 4.3, below. Although Farwig (8, 9] proved Lemma
4.3 essentially by refining the argument due to Finn [12], in order to make the paper
self-contained as much as possible, we shall give a proof of Lemma 4.3. Our argument is
a little bit different from the argument due to Finn and Farwig in the case of the gradient
estimate. Since 1 + su_(z) £ 1+ sy (z — y) + su,, (y), by (3.8) and (4.5)

(1 + 50,0 () Ix(usc) * g(2)|

Cs dy

<2%<g> (— +C > /

=7 S BT el T e Wl H Te =y + su (e — )P
Cs dy

<2X<g> (— + C, ) / .

=7 S8\l T e WA H 1Sz — yP (1 + s(Se — )/

Using the assumption 1/2 + & < 1 and (4.4) and (4.5), we have

dy 2 dy
| |>(|/| )/2Iy|(1+ Sz — y)3/2(1 + s(Sz — y))/2+ = L+ [z Jwe (1+ [y])>/2s(y)1/2+°
yl2(|z|+1

_ 47T ,61/2+5 /oo 7"2 dT
T4z Sy (A4 r)d/epl/2Hes
Here and hereafter, we write
/” sin 6 d 21-¢
IBq = = .
o (L—cosf)? 1-—g¢q
Since 14 |Sz — y| = (1 + |z|)/2 when |y| £ (1 + |z[)/2, by Holder’s inequality, (4.4) and
(4.5) we have

dy
/ ly|(1+ 1Sz — y|)%/2(1 + 5(Sz — y))1/2+¢
lyiS(lzl+1)/2
3/8 5/8

2 5/2 8/3 4/5 c
S{— e d 4o d < .
- (1 + lxl) / o v / s(w) Y = 14|z

[ylE (x| +1)/2 ly|£3(]z(+1)/2

Combining these estimations implies (4.14).
In order to show (4.15), we observe that

Vx(use d
[V x(000) *8(2)] S < & >2 /R e |z_y|')5 /;El Qgi' Yo 419

Since |z — y| 2 |y|/2 when |y| 2 2|z|, by (3.8) we have

Vx (U d
(14 Su,, ($))1/2+6 / 1+|z— y||)5/>§(11+)§fl|($y_ y))1/2+28

Jyl22x

Cs (;)3” / dy L / Ay g
lusl® \ 2|z] rs (14 |y])3/2(1 + s(y))t/2+28 0 lyl4 s(y)1/2

lyl22|x|

HA

< G
= |uee|® 32
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dy P /Oo dr _47r 3/2
it s(u) 72~ TR fy 52 T |f’3| '

2|z|
ly|22|x|

137

because

Since |z — y| 2 |x|/2 when |y| £ 1/2 and |z| 2 1, by (3.8) we have

IVx(us) ()| dy
(1+ su., (z))!/2*¢ / T2 —3)72(1 + su (z — ) /5 5
lyl£1/2

(2\"*] ¢ / dy +C/ dy (4.18)
= \Jz| e [® e 0 [y13/2 s(y)1/2

lyl<1/2 yI<1/2
<G
= |ueo|® Jx]3/2

Since

Cs
<
for |y| 2 1/2 as follows from (3.8) and the fact that 0 < ]uoo|

1, by changing the
variable : x —y = z when |y| £ |z|/2 we have

/ |V x(ues) (3)| dy < Cs ¢

< S' d 4.19
T+ 7= 921 + s (z — ) /7% = |uoo|6Z/w my)dy (419)
1725 |y|<2]z] p=0

where w = {y € R? | |z|/2 £ |y| £ 2|z|} and

1
hp(z,y) = (1 + |y)3/2+P(1 + s(y))/2+(1+P)8(1 + |z — y|)5/2-P(1 + s(x — y))1/2+(2-P)8"

In view of (4.16) to

(4.19), in order to show (4.15) it now suffices to prove that

Cs
[ ey s m S, Wz p=0L (0

because s(Sz) = sy (). Since

dy
/w (1 + s(z — y))1/2+@-P)8(1 4 |z — y|)3/2-P

A

dy
/ (1+ s(y))/2+@=P)(1 + |y|)5/2-P
ly|S3|x] (4.21)

3lz] ridr
<27 _ /
S 27612+ (2-p)6 . 017

5/3—p p1/2+(2—p)b
< Cs max(1, |z[P~9%) for |z| 2 1,
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when s(z) £ 1 and |z] 2 1 we have

C§ _ Cé
< 6 p—6y <

Therefore, we assume that |z| 2 1 and s(z) 2 1, below. Let ¢ and 1 be numbers such
that 0 €& <7, 0SS n £ 27 and

1 = |z|cosé, x2 =|z|sinfcosn, z3 = |z|singsinn.

Let ¢ be a very small positive number and p(8) a function of C°°(R) such that 0 < p(8) <
1, p(8) =1 for # £ 1/4 and p(8) =0 for 8 2 1/2. Since

(1 —cos(£/4)) £ 1 —cosé £32(1 —cos(§/4)) for0S €S, (4.23)
we have (1 — p(0/€))s(y)~(1/2+(140)8) < Cgs(x)~(1/2+(1+P)9) for |y| = |x|/2, and hence
by (4.21)

Csmax(1, |z|P~%) Cs
[a=poomaay < S D < e

because s(z) 2 1 and |z| 2 1. Since

|z — y|? = |z|® + r? = 2|z|r(cos & cos @ + sin & sin (cos 7 cos ¢ + sinnsin ¢))

= |z|? + % — 2|z|r(cos & cos @ + sin € sin @ cos(n — ), (4.25)
when 0 £ 0 £ £/2 we have by (4.23)
|z —y|? 2 |z|* + r? — 2|z|r(cos € cos @ + sin & sin F)
= |z|*> + 2 — 2|z|r cos(¢ — ) (4.26)

2 |a|? + r® — 2|z|r cos(€/2) 2 |z|*(1 — cos®(£/2))
= |z|?>(1 — cos £)/2.

When € < € < 7, by (4.26) we have |z — y| = |z|(1 — cose)!/2/2, and hence

C 1 1 C
1 1/2+5/0h,d§f/ dy < —5-,
( + S(x)) wp( /é) P(m y) y = |$|4 " S(x _ y)1/2 + S(y)1/2 Yy = |$|3/2
which together with (4.24) and (4.22) implies that (4.20) holds for e £ £ £ 7.

Now, let € > 0 be chosen so small that a finite number of inequalities below will hold
and we consider the case where 0 < £ < e. Note that s(z) = 0 when £ = 0 so that this
case is already over. Put ¢ = 3/2 — p and

Gi={zeR®| (1-4Y9)|z| £ |y| £ (1 +4¢Y9)|z|}, G2 =w—G1.
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Since

S(ZII)I/2+6K2

(6/¢) 1 !
S TR T T g

2|z|

< GCs r2dr
= [P P72 [T
(14+4£1/9)|z|
(1-4£%/%)|z]
+ / ridr /5/2 sin 8d6
r1/2(jz| —r)3/2-p | Jo (1 —cosf)1/2
|=z]/2

+ Cs / dy
|2[3/2+7 J, (1 + s(z — y))V/2+E=PS(1 4 | — y|)5/2-7’

if € > 0 is chosen so small that 1 — cos(£/2) < €2 for 0 < £ £ ¢, then by (4.21) and the
fact that (3/2—-p)/q=1,

< Gt o2 max(LleP)

(4.27)
Cs

EREET Ry

because 1 £ s(z) < 2|z
Finally, we shall consider the case where y € G; and 0 £ 6 £ £/2. By integration by
parts with respect to 6,

(1+4€"/9) x|
K,

A

2 2 .
r°p(0/€)siné
drdfdy < L L

0 /0 r2+P(1 — cos )Y/ 2m,(z, y) ravep = L+ fn
(1-4¢1/9)|z|

where

mp(x,y) = (14 s(z — y))/2+CP8(1 4 |z — y|)%/2P,

(144€1/9)|z|

2w r2 _ 1/2
// [0 (6/8)|(1 — cos 8) drdfdy,

L
v £mp($ )

|x|2+]J
(1-4¢2/9)[e]

(1+4€/9) 2|

Lz:m% / /0/02",.,)(0/9(1_0039)1/2

(1-4€1/9)|z

860 myp(z,y) "t drdfdyp.

In view of (4.26), we know that

|z —y| 2 s(z)Y?|x|/2/2 for 0L 6 L €/2. (4.28)




140 YOSHIHIRO SHIBATA

Since we can choose € > 0 so small that

|0’ (8/€)I(1 — cos 6)'/*

Csind

IIA

§ (1 —cos &)t/

for 0 < £ L,

putting Gs = {z € R? | |z|*/?s(x)1/2/2 £ |2| £ 3|z|}, by (4.28) we have

|'(6/€)dy

L < ¢ /
= ZF0 s O Jg, o~ g/ vs(a - ) VEER

(4.29)

C / dz
= [z/2rs(z)172 g, |2[5/2-Ps(2)1/2+ (2P
( o 3x| 2
6M1/2+26 _
|2[3/25(z)1/2 £3+26 dt  forp=0
< Jal/25(z)1/2/2
= o 3|z| )
§P1/2+6 t _
|$|5/2s(x)1/2 $2+8 dt forp =1
]t/ 2s(x)1/2/2

< Cs
T 2P+ s(z))/2Ee

because 1 < s{z) £ 2|z|. To proceed with the estimation, we put
xy —y = |z —ylcos(, T2 —y2 = |z —y|sinCcosy, z3—ys=|z—y|sin{sin,

and then (s(2)/|2)/? g 0
s(x)/|x or p =0,

sin? ¢ > c{ i (4.30)
1 forp=1,

provided that y € G; and 0 £ 8 < £/2 with a suitably small constant ¢ > 0. In fact,
choosing € > 0 so small that

|z|sin€ — rsin @ > |z|(sin & — (1 + 461/9)sin(£/2)) 2 |z|€/4
when 7 < (1 + 4€Y/9)|z|, 0 L § £ ¢/2 and 0 £ £ < ¢, we have
| —y[*sin® ¢ = (22 — y2)* + (23 — y3)?
= |z|?sin? £ + r?sin® @ — 2|x|r sin € sin § cos(p — 7)
> |z|?sin® € + r2sin? § — 2|z|rsin £ sin 6

= (|| sin & — rsin §)?
> (|z|€/4)® fory € Gy and 0 £ 0 £ ¢€/2.

On the other hand, by (4.25)

|z —y|? £ |z]? + 72 — 2|z|r(cos € cos @ — sin € sin B)

=|z|> + 7% - 2|z|rcos(6 +0) S k(r) for0<0LE/2
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where k(r) = |z|? + 7% - 2|z|r cos(3¢/2). Since 1/g =2/3forp=0and 1/g=2forp=1,
we can choose € > 0 so small that 1 — 461/9 < cos(3£/2) < 1+ 4€'/9, and hence
g4/3 for p=0,

k(T‘) g max (k((l + 461/Q)|x|),k((1 — 4§I/q)|x|)> é C|.’E|2{ £2 for p=1

because k’(|x|cos(3§/2)) 0. Since €2 = ¢/(1 — cos€) = c's(x)/|z| with a positive
constant ¢’ when 0 < £ £ e and ¢ is small enough, we have (4.30).

According to (4.30), let (o be a number such that sin® (y = ¢(s(z)/|z|)'/2 for p = 0
and sin® ¢y = ¢ for p = 1, and then putting

Y1 =21 —tcosC, yo =xo —tsin(cosyy, yz3 = x3 —tsinsiny,
by (4.30) and (4.28) we see that
GS¢Sm 0SyS2m [of2s(0)/?/2 St < 3l (4.31)
when y € Gy and 0 £ 6 < £/2 provided that € > 0 is small enough. By direct calculation,
3] 1 .
gl 9] = e~ m)rsind] + [z - el coseoses
+ [{(x3 — y3)r cosBsin |}

< rsinf + 2v2rs(z — y)V?/ |z — y|V/?,

0
%(]x —y| - (&1 — rcosh))

I—S .’L'_ ’
< 2rsind + 2v2rs(z — y)'/?/ |z — y|1/?

because |22/, |23| £ v25(2)!/2|2|'/2 which follows from the fact that s(z) = (23 +23)/(]z|+
z1) 2 (2% + 22)/(2|2|). Thus,

2]
%3(1 - )
L Cs
=7 W sle = )RR (L fz — gy

) 51—
T3 g/ (4o g 727

<c 7 sin 6 r
= 7 o = yF s — g/ 5=y Prs(z - )R |

which, inserted into the definition of Ly, implies that Ly £ Cs(M; + M3) where

m= 0 p(0/€)dy
G

" Tl o, sla = )RR — g7

_ 1 p(0/€)dy
My = Lsm—

P FEP| — yi

lx|1+p
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because (1 — cos#)/? < sinf and (1 — cosf)1/? < (1 — cos€)/? £ (s(z)/|z|)'/? when

0 £ 6 £¢ < n/2. Using the change of variable: z = z — y and (4.31), we have

3|z|
M < s(x)1/? t2dt i sin ¢d¢
1= |z|3/2+P td—p+(2-p)é c (1 — cos ¢)3/2+(2-p)8
0
lo]1/25(2)1/2/2
2426)/3
s(z)!/? ( |z| )0/ +26)/ for p 0
|z[3/2 (|m|1/2s(z)1/2)1+2<S s(z)
) s(@)'/* forp=1
22 (Je!/25(2)"/2)°

<G
= |z[*/2s(z)1/2+8
because 1 < s(z) < 2|z|. Also,

3|z]

My < L / t2dt /" sin ¢d(¢
= |x|l+p t4-p+(2-p)d ‘o (1_COS<)1+(2—p)6

fo[1/25(z)1/2/2

forp=0
x| (jz|1/25(z)1/2) T (s(z))

1

lo[2 (|2]1/25(2)1/2)°
< G
= T2PPs(z) /2%

= Cs
forp=1

because 1 £ s{z) £ 2|z|. Combining these estimations implies that

Cs
2 <
= 122 (1 + s(x))1 /245

L for [z] 2 1 and s(z) 2 1,
which together with (4.29), (4.27) and (4.22) implies (4.20). This completes the proof of
the lemma.

5. On the existence of strong solutions to the non-stationary problem :
Proofs of Theorems 1.4 and 1.5. Employing the argument due to Kato [29], we shall
solve the integral equation (1.9). Recall that Ty,__(t) denotes the semigroup generated by
the operator O(us) = P(—A + (s - V)) with domain D, = J,(2) NWL{(Q)NW2(Q). In
particular, To(t) is the semigroup generated by the Stokes operator A = O(0) = P(-A)
when uy,, = 0. The L,~L, estimate of T,,_(t) given in the following theorem plays an
important role in our proof of Theorems 1.4 and 1.5.

THEOREM 5.1. Let ¢ > 0 and assume that |u.| £ 0p. (1) If 1 < p £ ¢ < 00, then

v 371 1
I D2l S Cpas ™ lall v =3 (3= 1), we> 0 ae gy,
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(2) If 1 < p < 00, then
|Tur (Dallos S Cooo t™** Jlall,, "t 21, Ya€ Ip(Q).
(3)If 1 <p<q< 3, then
NVTu. ®allg S Cpgoot™ P all,, V>0, Yae Q).
(4)If1 <p < g < oo, then
|Tu B)allgr € Cpgo0t™ 2 [lallp, 0<Yt<1, YaeJp(Q).

REMARK 5.2. The assertions (1) and (3) were proved by Iwashita [28] when u,, =0
and by Kobayashi and Shibata [30] when u., # 0. The assertions (2) and (4) will be
proved in the appendix below. When u,, = 0 and p = 6, (2) was already proved by
Chen [7]. (4) is well known as a property of the analytic semigroup, but the point is that
the constant Cp, 4 5, is independent of uy, provided that |us| < oo.

To handle with the linear perturbation term P[L[w]z] in (1.9), we will use the following
generalized Poincaré’s inequality.

LEMMA 5.3. Let 0 £ a < 1/3 and sy_(z) = |z| — T2 - ue/|Use]. Put du(z) =
Su,. (€)*|z|'~*log |z|. Then, for any R = 3 there exists a constant Cg , 5 independent
of us such that

for any v € W1(R3).

Proof. First, we consider the case where a > 0. Let € > 0 be a small number and p(6)
a function of C*°(R) such that p(f) = 1 for |¢] < € and p(6) = 0 for |#| = 2¢. Let S be
an orthogonal matrix such that Su,, = |us|*(1,0,0) and put y = Sz. We shall use the
polar coordinate (4.4) and the relation (4.5). If we put

1 ™ p(8)|v(zx)|3sin @
/0 dé

I(r, o) = r(logr)3 (1 — cos §)3« ’

then we have
v(z) °

/ (@) Bdmg/;o/ozw[(r,cp)drdgo-i-m /

|z|ZR |z|2R

v(z)
|z| log ||

because 1 — cos§ < 1 — cose when ¢ £ 6 < 7. First of all we shall estimate I(r, ).
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Observe that
(1=3a)r(logr)*I(r, p)
= —/7r p(6)(1 — cos )~ SQ%Iv(x)IP’dO - /07r 0 (8)(1 — cos 8) 3% (x)|3df

lI/\

/ p(0)(1 — cos ) 32|y (z) |*| Vu(z |d9+/ 10’ (0)|(1 ~ cos 8)' —3*|v(z)|3d6
0

< 3r [/0 p(0)(1 — cos )30~ 3a)/2| (w)|3d0]3/2 [/0 p(9)51n9|vv(x)|3d0] 1/3

(sin§)1/2
+/ 10’ (8)](1 — cos 8)' ~3*|u(x)|3d6.
0

Since

p(6)(1 — cos §)3(1—3)/2 p(0)sind [(1—cosg)l-=1%/2 p(0)sinf
<

(sin@)1/2 ~ (1 —cos@)3e

sin 8 = 7°(1 — cos )3«
as follows from the fact that 1 — a 2 1/2, we have

1/3

2 ki
1,05 €t (10;)3 / p(0)sin ]9 (2) a0
/ |0’ (8)]| sin 8)v(x)|3db

log T
which implies that

/ ‘wec., / (lmllilgg)l'_xl)sdﬁm / Vo(z)Pdz |, (5.2)

lz|ZR lzIZR lzIZR

and hence the proof is reduced to the case where a = 0, which is well known but for
the completeness we shall give its proof. Let ¢¥(r) be a function of C*°(R) such that
P(r)y 20, ¢¥(r)=1forr 2 R and ¥(r) =0 for r £ R — 1. We use the polar coordinate
(4.4) again, and then we have for any large L > R

/L o)t _ ¥ $(r)ly) Pdr
r r(logr)? = Jp_; r(logr)?

r

0
P(r)o(y))? 1 [t [¥(r)v(y)]?]
(logr)? ’R—l +§/R_1 T (logr)z

1
2
Ey(n)v(y) P V()| L mlv)P
{ R-1 logr dr+/R_1 (logr)? dT}

L ()@ 2/3 L 1/3
o) dr> ( w<r)|w(y>|3r2dr)

WA

1
2

A

1
2 r—1 7(logr)? R—1

/ R
+ max [y (r)| E /R_l lu(y)[*rdr,

(R —1)*(log(R —
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which implies that

r |v(y)|3 - L 3,24 R 3.2
/ d §CR{/R_1|VU(y)| d +/ o()Pr dr}. (5.3)

r T(logr)? R-1

Integrating (5.3) over S; and passing L to infinity, we have (5.1) for @ = 0, which together
with (5.2) completes the proof of the lemma.
By (2.2) with D = Q4,41 and Lemma 5.3, we have the following corollary.

COROLLARY 5.4. Let 0 £ o < 1/3 and let d,(z) be the same function as in Lemma 5.3.
Then, there exists a constant C, such that

lv/dalls < CallVolls v € W3 (). (5-4)

Below, [-]4,0,: and p(q) are the symbols defined in Theorem 1.4. Employing the argu-
ment due to Kato [29, p. 474] and using the fractional power of analytic semigroups and
Theorem 5.1, we have the following lemma.

LEMMA 5.5. Let ¢ € J3(Q2). Then,

12V Ty, (t)e € B([0,00); J3(R)), t* 9T, (t)c € B([0, 00); Jo()),
lim (|| Ty, (t)e — clls + [Tu, (Velgua)e + [VTun ()el3,1/2,¢) = 0.

t—0+

Now, we shall give estimations of the right-hand side of (1.9). For notational simplicity,
we introduce the following symbol:

[[v]]p)t = [’U]s,O,t + [vv]gyl/zyt + [v]p,u(p),t 3 é p < 00. (5.5)

LEMMA 5.6. Let 3 < p < 0o and 0 < 8 < min(1/6,4/p). Let []p oz, Il - ls and []]p+ be
the same as in (1.2), (1.3) and (5.5), respectively. Put

Ly (2)(¥) = /0 Tu.. (t — s)P[L[w]z(s, -)]ds,
N(z1,22)(t) = /0 T, (t — 8)P{(z1(s,-) - V)2z2(s,)]ds
where L{w]z = (W —ux) - V)z+ (z- V)w (cf. (1.7) ). Then, we have the relations

([Lw(@)]lpt S Cps llw = usslls [Vz]3,1/2¢ "t >0, (5.6)
[[N(zlaz2)]]p,t < Cp [zl]p,u(p)/lt [Vz2]3,1/2,t "t > 0. (5.7)

Proof. To prove (5.6), let us put @« = § +1/6, v = 36/4 and ¢ = 1/(1 + ). Since
0<6<1/6 and pé < 4, we have

0<30e<l 0<a<1/3, v<3/p, 0<e<l, (1+6e>1. (5.8)
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If we put
a =/ [(1+ ]zt sum(s)_é]36 dz,
R3
3e
c2 =/ [(1—!— lzf)~ (/2 5, (2)~(1/248=2) |og |z|] dz
R3
then by (4.4) and (4.5) we have
. _2’”/<>o r2dr /" sin 6 d§
1= o ((L+7)r)3e Jo (1 — cos@)3ée’
/°° r2(logr)3¢ dr /" sin 6d8
co =21 .
o ((L4r)l/2+apl/3)3e [ (1 — cosf)e

By (5.8), ¢; and ¢, are positive constants depending essentially only on 6. Therefore, by
Hoélder’s inequality and Corollary 5.4 we have

W — veo 13/ a4 1 V2(5, s (>
ci/(BE) llw — usllslVz(s, )3,

I2(s, )/ dallslda VW]l (510)
&/ @ Cy flw = uools | Vz(s, lls-

(W = uoo) - V)z(s, )lls/2++)

l|(z(s, ) - V)w||3/(2+‘y)

IA A TIATIA

Also, we have

(W —uso) - V)z(s, )lls < [Iw — ucollsl|Vz(s, )]s, (5.11)
(z(s,-) - VIWlls < [l[daVW]loll2(s, )/ dalls < Csllw — ucolls|V2(s, )l (5-12)

When ¢ 2 2, by Theorem 5.1, Proposition 2.4, (5.9) to (5.12), we have

PV L@ Ol s o { [ " (6= o) V2L wla(s, llads

-1

t—1
# [ S lla(s, s
t
< st 2w = wallo Vel { [ (=) st 1)
t—1

t/2 t—1
+/ s™1/2ds(t/2)~(1+/2) +/ (t— s)'(1+7/2)ds(t/2)_1/2}
0 t/2

< Cslw — uoollls[V2]s,1/2,¢-

Also, when t 2 2, by Theorem 5.1, Proposition 2.4, (5.9) and (5.10) we have

| Lw (Z)(t)[l3 + t*®) || Lw (2)()]l,
< Csllw = uoollls[V2]s,1/2,:

t i
{ / ( — 8)-3(@N/3-1/3)/25-1/2g L pu(p) / (t - s)—3<<2+w>/3—1/p)/2s—1/2d3}
0 0

= Csllw — vcollls[Vz]s,1/2,¢ (B(1/2 —7/2,1/2) + B(3/2p — 7/2,1/2))
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where B(a, 3) denotes the beta function. When 0 < t £ 2, by Theorem 5.1, Proposition
2.4, (5.11) and (5.12),

1Zw (2) (s + || Lw (2) ()l + £/ | Lw (2)(2)l3
< Csllw - uoo|”6[vz]3,1/2,t><
t t t
{/ s7V2ds 4 ¢+ / (t — 5)3/3-1/P)/25=1/2g5 4. t1/2/ (t— s)"l/zs'l/zds}
0 0

0
= Cs||w — uco||s[Vas,1/2,4t/*(2 + B(1/2 + 3/2p,1/2) + B(1/2,1/2))

Combining these estimations implies (5.6).
(2) Define £ by the relation: 1/¢ = 1/3+1/p. By Proposition 2.4 and Hoélder’s inequality,

IP(21(s, ") - V)22(s, )]lle < Cqllza(s, )/ V22(s, ) I3

o (5.13)
ngs a 3/2p)[zl]p,u(p),s[vz2]3,l/2,s

and hence by Theorem 5.1

1N (21, 22) ()15 + t“P|IN (21, 22) (D)l + /2| N (21, 22)(2) I3

t
< Coplzlpuipy e [V22]3.1 /2.0 {/ (t— s)—s(l/2—1/3)/28—(#(P)+1/2)d8
0
i
4 ) / (t — 5)=31/E=1/p)/25~(u(p)+1/2) 4
0

t
/2 / (t_s)—3(1/€—1/3)/2+1/2)3—(#(P)+1/2)d8}
0

S Csplz1]p,u(p) t[V22]3,1 /2,4 X
(B(1—3/2p,3/2p) + B(1/2,3/2p) + B(1/2 - 3/2p,3/2p)),

which implies (5.7). This completes the proof of the lemma.

Under these preparations, by the contraction mapping principle we shall solve (1.9).
Below, p, 8 and 6 are constants given in Theorem 1.4, thatis,p >3,0<d<fB<1-6
and 0 < 6 < min(1/6,4/p) and all the constants will depend on p, b and 6, but for
simplicity we will omit to write this dependence. By Theorem 5.1 there exists a ¢ > 0
such that if

0 < Jug| £ € £ min(a, 1) (A.3)

then (SP) admits solutions w and p satisfying the estimate :
W = Uoollp,2 + lIw = ussllls + 1plp,1 < Juool? (5.14)

which in particular implies that

W = toolls + [VWl3/2 < Cslucel?, (5.15)
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where

Cs = /(1+|x|)_ sum(x)_‘sdx+/ (14 |z)) %4 sy ()~ /440 4y
R3 R3

/ r2dr /” sin 6 d +27r/°° rdr /7T sin 6 df
14+7)378 Jo (1—cosf)® o (L+7)%/47p3/4+8 Jo (1 — cosf)3/4+6"
Note that Cs is independent of us,. According to (1.9), we put ug(t) = Ty_ (t)b and
Q(z)(t) = uo(t) — Lw(2)(t) — N(z,2z)(t), where we have used the symbols defined in

Lemma 5.6. To solve (1.9) by the contraction mapping principle, we introduce the
invariant space 7 as follows:

T = {z € C°((0,00); J3() N Ly () N W5(R)) |
(2l SVe Tt>0, (5.16)
Jlim ([[2(t,) = blls + [V2ls/24 + ) = 0} (5.17)

Let ¢ denote any number 2 3, below. By (1) and (3) of Theorem 5.1, we have

[[uo)]p,e £ Mi|bl3, [uo]que),e < Coliblls (5.18)

for any ¢ > 0 where M, is a constant depending only on p, essentially. If ||blls £ ¢, then
we choose € > 0 so small that

Mives, (A4)

and hence by (5.18) and Lemma 5.5 we see that ug € Z. In particular, 7 is not empty.
By Lemma 5.6, (5.18), (5.16) and (5.14),

([Q(2)]]pt < Mi€+ Cps|usol® vVe+ Cpe Yt>0
provided that z € Z and ||b||3 £ €. Since |us| £ ¢, if we choose € > 0 so small that
M Ve+Cpse’ +CpVes L, (A.5)

we have [[Q(2z)]]p,: < V€, 't > 0, which together with Lemma 5.5 implies that Q(z) € T
for any z € Z. Since Q(zl)(t) Q(22)(t) = —{Lw(21—22)+N(21—22,21)+ N (22,21 —22)},
by Lemma 5.6, (5.14) and (5.16) we have

([Q(z1) — Q(z2)]]p.e £ Ma(e® +2V/€)[[z1 — 2a]lp,s

for some M, independent of u., provided that z;, zo € Z and |uy| < €. If we choose
€ > 0 so small that

B r2ve) <1/2, (A.6)

we see that @ is a contraction, and hence @ has a unique fixed point z € Z, from which
Theorem 1.4 follows except for (1.14).

Now, we shall show (1.14) for any q. Since we have already proved (1.14) for ¢ = 3
and ¢ = p, by the interpolation we see that (1.14) holds for 3 £ ¢ £ p. Therefore, we
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may assume that p < ¢ < 00. Let v > 0 be the same as in (5.8) and put r = 3/(2 + 7).
Note that 1 < r < 3/2. By (5.9) to (5.12) and (5.14) we know that

IP[Lw]z(s, )]lln £ Cn[usel® 572 [V2l5 20 7S <3, (5.19)
When 3 < ¢ < 0o, by (5.19) with n = 3/2 and (1) of Theorem 5.1 we have

Ly LG, / t—s)" 3(2/3-1/9)/2 g=1/2 gs 1y |8 [Vz
IZu (@Ol el Febssae oo

< CqB(3/2,1/2) [uoo |74 /€
where we have used (5.16). To estimate N(z,z), in view of (5.13) let £ be a number such

that 1/¢ = 1/3 + 1/p. Since ||(z(s,) - V)z(s,")|le £ s~ (173/2P) ¢ as follows from (5.13)
and (5.16), by (1) of Theorem 5.1 we have

|N(z,2)(t)||q < C/ ~3(1/¢-1/a)/2 g=(1-3/2) jg

< CyB(3(1/q - 1/p)/2+1/2,3/2p) et #(?

for any ¢t > 0. Combining (5.18), (5.20) and (5.21), we have (1.14) for p < ¢ < oo.
Finally, we shall show (1.14) for ¢ = oco. Since we do not know the L,—L, estimate
of Ty, (t) for small t > 0, we have to use the Sobolev’s imbedding theorem and (4) of
Theorem 5.1 to estimate Ty, (t) for small ¢ > 0, so that let m be a fixed number such
that 3 < m < p. We shall always use the relation ||v||cc £ Cpl|v|lm,1 in our treatment
for small ¢ > 0, below. Keeping this in mind, by (2) and (4) of Theorem 5.1 and (5.19)
with n = 3 and n = r we have

[ Lw (2) ()]l £ Crmltico|® Ve (x(8) t7H™ + (1 — x(£))t™V2) Yt > 0. (5.22)

Here and hereafter, we put x(f) = 1fort £ 1 and x(¢) = 0 for ¢t 2 1. In fact, (5.22)
follows from the relations

(5.21)

t
/ (t — 5)~BUB=Ym)/241/2) =172 4o — B(3/9m. 1/2) 4™ V¢ >
0

t—1
/ (t—s)=3/) =12 gs < €t 1/2 Vi>1,
0

where we have used the fact that 3/(2r) > 1. By (5.13), (5.16) and (2) and (4) of
Theorem 5.1 we have also

IN(2,2)()]|ec < Ce(X(t) (1=3/(2m)) 4 (1 — ())t—m) Y4 > Q. (5.23)

In fact, since ||(z(s,-) - V)z(s,")|le £ Ces~(173/(P)) (5.23) follows from the relations

t
/ (£ — 5)=(B/E=1/m)/24+1/2) (=(1=3/(29)) g
0

= B(3(1/m —1/p)/2,3/(2p)) t~ 73/ G Vi > q;

t—1
| =900 030 s < B1 2~ 3/(2p), 3/ 20) 172 i1,
0
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where we have used the fact that m < p to obtain the fact that 3(1/m —1/p)/2 > 0 in
the beta function. Since

9o (t, Moo < € (x(®)t =) 4 (1= x()) /) [Iblls >0

as follows immediately from Theorem 5.1 and Sobolev’s imbedding theorem, we have
(1.14) for ¢ = co. This completes the proof of Theorem 1.4.

A proof of Theorem 1.5. Let w,,_, be a solution of (SP) in the case that f(z) = g(z) =
0, and let z,_ be a solution of the integral equation (1.9) in the case that w = wy_ and
that b is replaced by b+ uy, — wy . If we put v = Wy +2zu_, then by Theorem 1.4
and Iwashita’s result [28 ,Theorem 1.4] we see easily that the statement of Theorem 1.5,
except for (1.15), is valid. Therefore, we shall show (1.15) only, below. The argument
below is almost the same as in the proof of Theorem 1.4. For notational simplicity, we
write z = z,_, and w = wy_ for us, # 0. Since wo = 0, if we put v = z — zg, then by
(1.9) we have

v(t) = Tu,, (1) (U — W) + (Tu_ (t) — To(t))b

— Lyw[2)(t) — N[v,2|(t) — N[zo, v](t) — I(t) (5.24)

¢ t
I(t) = / (Tu(t - 5) — To(t)) bds = - / Too_(t — 5)Pl(uoo - V)To(s)b]ds.  (5.25)
0 0
By Theorem 1.1 we know that ||us — W||ls < |ue|?, which implies that |Jus, — wiz <

C|us|®. By Theorem 5.1, we have

|Ture () = W)y € Cot™# P use|’ 3£ g < 00,
IV T (8) (oo = W)lls < C 712 Juse|?, (5.26)
1T () (000 = W)lloo < Crnw(?) Juco|”

for any ¢ > 0. Here and hereafter, we put
w(t) = x (&)t~ A3/ Cm) o (1 — x(¢))¢~(1/2-3/C@m)),
Applying Theorem 5.1 to (5.25), we have

I(Tuse (8) = To(®)bllg < Cq luscllbllst> ¥ 3 < 7g < oo,
IV(Tu.. (8) = To(1))blls & C |ucoll|b]3, (5.27)
[(Tuw (8) = To(t))blloso £ Crm [uso|[[bllsw(t)

o
(

for any ¢t > 0. By (5.20), Lemma 5.6 and (5.22), we have

[ Lwl[z

It
IVLw|z]
(

t

g £ Cot™#DNugl’Ve  3<Yg< oo,
()lls £ Ct712 [us|* Ve, (5.28)

1L w (2] ()lloo S Cmw(t) [us|’Ve




EXTERIOR INITIAL BOUNDARY VALUE PROBLEM FOR NAVIER-STOKES EQUATIONS 151

for any t > 0. Here and hereafter, we use (1.10) and (1.14) to estimate z = z,,_, and 2o.
For simplicity, we put

{V}ap1.00,t = sup x(s)s”[[v(s,-)llg + sup (1 —x(s)) s*[[v(s, )q-
0<sSt 0<sSt

By using this notation, we put

{vlee = {v}s1/20¢ + {V}putr)-3/02m) .t +{V}s0-1/2-
Then we have the relations

{N[v, 2]} g ua),-3/2a).t + {N[2, Vol}a,u(a),~3/20),¢ S CpaV e{{VInst
{VN{v,z]}31/20, + {VN[z0,V]}3,1/2,0¢ < Cp, VeVt (5.29)
{N[v,2]}oo,1-3/(2m),0,t + {N[20, V]}oo,1-3/(2m),0,t S Cn vV € {V]}pt

for any t > 0, where N[, ](t) is the same as in Lemma 5.6. To obtain (5.29), we have
used the relation

(v(s,-) - V)z(s,)lle + [l(za(s, ) - V)v(s,-)lle
< {{V}}p,t([Vz]s,l/z,s + [ZO]p,u(p),s) (X(S) s—(1=3/Cp) . (1= x(s)) s—(1/2-3/(2p)))

and the fact that [Vz]31/2s £ /€ and [2g]p . (p),s £ V€. Finally, applying Theorem 5.1
to (5.28) we have

I1®)]lg £ Coluce|€t¥/@0 3 <Yg < oo,
IVI®)l3 S Clucle, (5.30)
(N lloo S Cluce| ew(t)

for any ¢ > 0. In fact, to show (5.30) we use the relation
l(Zo(s,) - V)zo(s, )¢ S s~ (1=3/(2PN) ¢,

which follows from (5.13) and the facts that [Vzo)31/2: £ v/€ and [2o]p,u(p),: S /€ for
any t > 0. Then, the first inequality in (5.30) follows from the relation

t t—s
/ ( / (t— 5 — r)-30/=1/0)/2,, 1/2dr) —0-3/00) g < €, /D ¢ >0,
0 0

The second inequality in (5.30) follows from the relation

t t—
/ ( / (b= 5 — r)= N/ 241/2) =12 dr) -3/ gs < 0 t> 0.
0 0
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The third inequality in (5.30) follows from the relations

t t—
/ (/ s(t —s— r)—3((1/€—1/m)/2+1/2) r—1/2 dr) s—(1-3/(2p)) 4o
0 0

< Gyt~ (1/278/2m) 15

t t—s
/ (/ (t —s—r)=3pm1/2 dr) s (1=3/P) gs < t=1.
0 \Jo N N
Combining (5.26)—(5.30), we have
{vlp: < C {lucl® + uce|lIblls + [ucele + vel{vpe}
and hence choosing € > 0 so small that C/€ £ 1/2, we have
{vlp: £ Clusl’ (5.31)

because |us| £ 1 and ||b|ls £ € £ 1. Inserting (5.31) into (5.29), by (5.26) to (5.30) we
have (1.15) which completes the proof of Theorem 1.5.

Appendix. L..—L, decay estimate of T,, _(¢). In this appendix we shall show (2)
and (4) in Theorem 5.1. By Kobayashi and Shibata [30, (4.26)], we know that

IO (uce) + AL~ I, + [1(O(se) + AD) " llp2 £ Cpolifll,  7f € Tp(€2)

provided that |u.| £ 09, |A| 2 Rp and | arg A| < w—6g for some Ry > 0and 0 < & < /2.
Therefore, employing the argument in Pazy [39, Theorem 6.13] we have (4) of Theorem
5.1. In order to prove (2) of Theorem 5.1, we put u(t,:) = Ty,_(t + 1}a. Then, by
Kobayashi and Shibata [30, (6.18) and (6.27)] when u., # 0 and by Iwashita [28, Lemmas
5.3 and 5.4] when u,, = 0, we know that

latt, ) lp.2mss +10ca(t, lp2msn + Pt Mp2ma, S Cpmpo (1+8)"lal, (Ap.1)

for any t 2 0 and integer m = 0 where p is the pressure associated with u, that is,
u — Au+ (U - V)u+ Vp = 0, and b is a fixed constant > by + 3. By Sobolev’s
imbedding theorem and (Ap.1), we have

”ll(t, ’)”oo,ﬂb § p,b,oo(l + t)—3/(2p) ||a”p (Ap2)

Therefore, our task is to estimate u(t, z) for |z| 2 b.
Let 1 € C®(R?) be such that ¥(z) = 0 for |z| £ b—2 and ¥(z) = 1 for |z| 2 b—1
and put

z(t,-) = du(t,) - B{(VY) - u(t,-)],
e=19T,y, (1)a-B[(VY)- Tu,.(1)al,
h(t,) = ={(V¥)p(t,-) + 2(VY) : Vu(t, ) + (Ad)u(t, 1) = ((use - V)$h)u(t, )
+ (0 = A+ (o - V))B[(VY) - u(t, )]}
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By Proposition 2.3 and (Ap.1), we have

2 —Az+ (U V)z+V(p)=h, V.-z=0 in (0,00) x R?, (Ap.3)
z(0,x) = e(x) in R3, P
Ib(t, )p2m—1 S Cpmpoe(1+8)"¥CPal, Ym21, (Ap.4)
llelp.2m = Cpm,oollallp Ym 2 0, ‘
z(t,z) = u(t,z for |z| 2 b~ 1,
(t,z) = u(t,z) |z| 2 (Ap5)
supph(t, ) C Dy_1.

Let Sy, (t) denote the semigroup generated by O(us) on J,(R?), that is,
1\ | 12740
u f= —|z—tuoe —¥ 4t P, f
Sef= () [ e o (0) dy,

where we have put Py = Pgs for notational simplicity. By Young’s inequality and the
L,(R3) boundedness of Riesz’s transform, we see easily that

8% Sy (1) flq £ Cpg ot~ WTI/ 2 g Yo Ap.6)
x 00 q P,9,00 14

where 1 < p £ ¢ £ o0 and v = 3(1/p — 1/q)/2. Since V - e = 0, applying Duhamel’s
principle to (Ap.3), we have

2(t,) = Sun (e + 21(¢, ) / S (t = 5)h(s, ) ds.
y (Ap.6) and (Ap.4) we have
1Su.. (t)e|oo £ Cpopt >/ *P|all, "t >O0. (Ap.7)

When t 2 1, we observe that

1 t—1
|21 (¢, oo < / l(t—s>—3/<2q>|h(s,-)|qu+ /O (t— )73/ |h(s, )|, ds  (Ap.8)
t—

where g and r are suitable numbers such that ¢ > 3/2 and 1 < r < 3/2. By Sobolev’s
imbedding theorem and the fact that supp h(¢, x) is compact (cf. (Ap.5)), by (Ap.4) we
have

Ih(s,)lg, [h(s,")|r S C(1+ )" |a]|,. (Ap.9)
Applying (Ap.9) to (Ap.8) we see easily that

21 (t, oo S C(L+8)"¥®P|lall, t21. (Ap.10)
When 0 £ ¢t £ 1, we take ¢ > max{3,p), and then by Sobolev's imbedding theorem,
(Ap.6) and (Ap.4) we have

121 (8, Moo < Cplz1(E,)lg1 (Ap.11)

<c, / (t = )2 [h(s, )| ds
0

<

< Gy, q\/_||a||p = Cpqllallp-

Since u(t,z) = z(t,z) for |z| 2 b, combining (Ap.2), (Ap.7), (Ap.10), and (Ap.11)
implies (2) of Theorem 5.1, which completes the proof.

t
Cpa [ (=) 12(1+ 5/ ds la]
0
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