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Abstract: The purpose of this work is to illustrate by clear examples the noetherity nature of a finite Dirac-delta Extensions 

of a studied noether operator. Previously in our published papers, we have investigated in different two cases, the 

noetherization of a Dirac-delta extensions of a noether linear integro-differential operator defined by a third kind integral 

equation in some specific well chosen functional spaces. Our various already published researches were connected with such 

topic widely studied and clearly presenting different specific approaches, applied when establishing fundamentaly noether 

theory for some kind of integro-differential operators to reach the noetherization. The initial considered noether operator � has 

been extended with some finite dimensional spaces of Dirac-delta functions, and the noetherization of the two cases of 

extensions has been established depending with the parameters of the third kind integral equation defining �. The previous 

lead us to set the problem of the construction of practical examples clearly illustrating the relationship between theory and 

practise. For this aim, we based on an established wellknown noether theory and, we construct in this work step by step, two 

illustrative examples to show the interconnexion between the theory and pratise related to the investigation of the construction 

of noether theory for the considered extended noether operator denoted �̅, defined by a third kind linear singular integral 

equation in some generalized functional spaces. The extended operator �̅ of the initial noether operator A is verified being also 

noether and therefore we deduce the index of the extended operator �̅. 

Keywords: Noether Theory, Noetherization, Third Kind Integral Equation, Singular Linear Integro-Differential Operator, 

Deficient Numbers, Index of the Operator 

 

1. Introduction 

Using well known noether theory devoted to various 

integro-differential operators defined by some integral 

equations of the third kind studied in some scientific 

researches, it has been established the conditions of solvency 

of the considered integral equations in terms of the 

conditions of the orthogonality of linear dependance of the 

solutions of the homogeneous associated equation in the 

associated space. Full details for example can be found in the 

following references [11, 12, 21, 23]. 

The process of the construction of noether theory for 

integro-differential operators defined by some types of third 

kind integral equations in some specific functional spaces, 

which we may call as noetherization, lead us to indicated the 

conditions of the solvability of the considered integral 

equation besides the establishment of the noetherity of the 

investigated operator. In some special studied cases, we faced 

difficulties related to the investigation of the solvability of 

integral equations of the third kind while constructing 
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noether theory for operator defined by such integral equations. 

Many times, we showed the necessity to well choose the 

necessary approaches that lead us to the noetherization of the 

studied operator. We recall that different wellknown 

scientists in their researches have undertook specific and 

needed approaches when realizing the noetherization of an 

integro-differential operators as mentioned. We can 

enumerate among others, the normalization method, the 

method of hypersingular integrals and the method of 

approximative inverses operators. The illustration of such 

approaches with full details can be found in the following 

references [1, 2, 6, 7, 8, 10-13, 18]. 

In the recent published papers [32, 33], Abdourahman 

investigated the noetherization of a more general case of an 

integro-differential operator defined by a third kind integral 

equation having a main part as a linear differential operator 

denoted L. It has been applied the approach indicating the 

necessity of the construction of the continuity of the 

regularizators to reach the noetherity of the considered 

operator devoted to the researches undertook by scientist 

Yurko are illustrated in the papers [30, 31]. 

Some mathematicians as Bart G. R, Warnock R. L, Shulaia 

D, and Gobbassov N. S devoted various papers related to 

some linear integral equations of the third kind winthin the 

framework of investigation of conditions of their solvency or 

noetherisation of the considered operators in their works [4, 5, 

8, 9, 14]. 

Among many others also, we can note a special theorem 

dedicated to the investigation for solvency of certains types 

of third kind integral equations which has been formulated by 

Picard E in Comptes Rendus 150, 489–491 (1910). Full 

details on such work may be found in the reference [3]. 

Besides analytical methods of investigations of some types 

of integral equations, we do not forget to bring out the special 

approach in connexion with the approximative methods of 

solving Fredholm integral equations in some specific 

functional spaces, which has been used by the russian 

mathematician Gobbassov N. S. in his researches, conducted 

within the Metody Resheniya integral’nykh uravnenii 

Fredgol’ma v prostranstvakh obobshchennykh funktsii 

(Methods for Solving Fredholm Integral Equations in Spaces 

of Distributions). The previous described method is located 

with the full explanations in [16]. 

A special work dedicated to the Collocation Method for 

Integral Equations of the Third Kind executed by Gobbassov 

N. S was illustrated in the field of differential equations 

which is located in [15]. 

In our previous published papers, we have already 

established and constructed the noether theory for the finite 

dimensional Dirac-delta extensions of the following integro-

differential operator defined by a third kind linear singular 

integral equation of the following form: 

������� = �	�
��� + � ��, ���
�� ������ = ����; � ∈
�−1,1�, 

with the unknown function � ∈ ���� �−1,1�, the second right 

hand side ���� ∈ ���	��−1,1�  and the kernel ��, �� ∈	���	��−1,1�	X	C	�−1,1� extending the space ���� �−1,1� to the 

spaces  ! = ���� �−1,1� ⊕ #∑ %&'�&����!&(� ); 	0 ≤ , ≤ - −2 or  ! = ���� �−1,1� ⊕ #∑ %&'�&����!&(� ); 	, > - − 2 

depending of cases. For full details of such researches, see 

[21, 28]. 

Therefore, it is interesting for us to illustrate the obtained 

theoretical results by constructing practical examples which 

are to be investigated within this work by applying theory. 

In the present paper, we construct two illustrative 

examples of a noetherized operator into the two mentioned 

upstairs functional spaces. 

Namely here, we consider for investigation the integro-

differential operator defined by a third kind integral equation 

of the following type for which we construct two illustrative 

examples. 

������� = �	�
��� + � ��, ���
�� ������ = ����; � ∈

�−1,1�                                      (1) 

where ���� ∈ ���	��−1,1�	and	���� ∈ � ∈���� �−1,1�, ��, �� ∈ 	���	��−1,1�	X	C	�−1,1�. 
Theoretically, we have studied and established the 

noetherity of the extended integro-differential defined by (1), 

see our published papers [21, 28]. 

Recall that the theoretical investigation for noetherity 

conducted for such operator lead us to focus our approaches 

to reach the the construction of the continuity of the 

regularisators, while moving from the interval [0,1], with the 

goal to cover for noetherity the whole closed interval [-1,1]. 

See papers [12, 30, 31, 32, 33]. 

Within this work, we calculate and determine the deficient 

numbers %��̅�	and	4��̅�  and also the index 5��̅�  of the 

operator �̅  depending of the first case studied . The second 

case may be obtained analogically. 

The paper is organized as follow: firstly, we present in 

section 2 all the necessary preliminaries related to the 

concept and the notions of well known noether theory widely 

used from various books in connexion with operators theory. 

Section 3 is properly devoted to the presentation of the two 

considered examples to be investigated depending of the 

cases 0 ≤ , ≤ - − 2  and , > - − 2 . Next we then and 

lastly, summarize the content of the work in section 4 titled 

conclusion, followed by some necessary recommendations 

for the follow-up or future scientific works to undertake, 

stated in section 5. 

2. Preliminaries 

Before presenting in details our main results, we recall the 

following definitions and concepts well known, and 

previously used, from the noether theory of operators which 

can be found also in the following references [6, 10, 11, 12, 

21, 22]. 

By the way, we briefly review this important notions of 

Taylor derivatives, which is widely used when constructing 

noether theory of some integro-differential operators in 
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specific generalized functional spaces. They will appear 

within the whole paper dealing with the investigated 

considered examples. 

Definition 2.1 Function ���� ∈ 	��−1,1�	 admits at the 

point � = 0  Taylor derivative up to the order - ∈ℕ	if	there	exists	recurrently	for	D = 1,2, … , -, the following 

limits: 

��&��0� = D!	 limH→�	��&	 J���� − ∑ K�L����
M!

&��M(� �M 	N.      (2) 

The class of such functions ����	is noted	���	��−1,1�. 
Related to the kernel of the integro-differential operator let 

us mention that the kernel D��, ��∈���	��−1,1�	OC�−1,1�, if 
and only if D��, �� ∈ 	C�−1,1�	X	C�−1,1�and admits Taylor 

derivatives according to the variable x at the point (0,t) 

whatever �	 ∈ �−1,1�. 
The following important concepts are widely used while 

investigating the noetherity nature of an integro-differential 

operator defined by third kind integral equation in some 

specific classes of generalized functions. 

A) Associated operator and associated space. 

Definition 2.2. We state that the Banach space E′ ⊂ E∗ is 

called associated space with the space E, if 

|�f, φ�| ≤ c‖f‖W
‖φ‖W                      (3) 

for every φ ∈ E, f ∈ E′. 
We note that the initial space E  can be considered 

associated with the space E′. Moreover, the norm ‖f‖W
 is not 

obliged to be equivalent to the norm ‖f‖W∗. 
Let be noted ℒ�E�, EY�  the Banach algebra of all linear 

bounded operators from E� into EY. 

Definition 2.3. Let EZ	, j = 1,2  two Banach spaces and 

E′Z		their associated spaces. The operators A ∈ ℒ�E�, EY� and 

A′ ∈ ℒ�E′Y, E′�� are called associated, if 

�A′f, φ� = �f, Aφ�                       (4) 

for all f ∈ E′Y and φ ∈ E�. 

By defining the concept of associated space and associated 

operator, we used the work [22]. 

Further we will also use some concepts of noether theory 

and wellknown results on some classes of singular equations 

with their particularities took from the references [17, 18, 19, 

20, 27, 29]. 

For the operator A ∈ ℒ�E�, EY�	 we put α�A� =dimker	A	 − the number (of linearly independent) zero of the 

operator A; and β�A� = dimcokerA	 − the number of zero of 

the conjugate operator in the conjugate space; χ�A� =α�A� − β�A� 	− the index of the operator. 

In the case when α�A�	and	β�A� are finite, and the image 

of the operator A closed in EY, then the operator A is called 

noether operator. 

It seems that, we can formalise the noetherity in terms of 

associated operator and associated space. See [22, 26]. 

Lemma 2.1 Let EZ	, j = 1,2 two Banach spaces and E′Z	their 

associated spaces and, let A ∈ ℒ�E�, EY� and A′ ∈ ℒ�E′Y, E′�� 
be associated noether operators and more, 

α�A� = −α�A′�. 
Then, for the solvency of the equation Aφ = f  it is 

necessary and sufficient that �f, ψ� = 0 for all solutions of 

the homogeneous associated equation A′ψ = 0. 

B) Pair of associated spaces 

We give the following definition. 

Definition 2.4 Let x� ∈ �−1,1�.	 Through 	�bc� �−1,1�  we 

represent the set of functions from C��−1,1�  verifying the 

condition φ�x�� = 0. 

It is clear that, 	�bc� �−1,1�  is a Banach subspace in the 

space C��−1,1�, if remarking, that for φd�x�� ∈ 	�bc� �−1,1� 
the convergence by norm C��−1,1�  conducts φd�x�� →φ�x��, e → ∞, that, with respect to φd�x�� = 0	for	all	e ∈ ℕ 

leads us to φ�x�� = 0. 
Now let us state this important lemma. 

Lemma 2.2 The space	�bc� �−1,1� is associated to the space C�−1,1�. 
Proof: It is sufficient to ensure that for the regular 

functional �f, φ� , where 	� ∈ �bc� �−1,1�  and � ∈ ��−1,1�  it 
is taking place the approximation of the form (3): 

|�f, φ�| ≤ c‖f‖ghci ���,��‖φ‖j���,�� 
with some constant c > 0. The last is obvious as 

|�f, φ�| = k� f�x�φ�x�dx�
�� k ≤

2max��lbl�|f�x�| ∙ max��lbl�|φ�x�| ∙	          (5) 

That is what was required. 

Let make a remark. From the approximation (5) it can be 

seen that, the associated with the space C�−1,1� should be 

the spaces C��−1,1� and	C�−1,1�, as in (5) it has not been 

used the approximation of the derivative and the value at the 

point x�. 

Therefore, we can, narrowing the associated space, pick up 

which one is convenient for our further goals. Namely for 

that reason in the lemma 2.2, it is featured the space �bc� �−1,1�. 
Definition 2.5 Through P� = P�,��,�o��−1,1�  we note the 

space of generalized functions ψ��� on the subspace of test 

functions 	���p��−1,1�	such that, 

ψ��� = q�H�
Hr +∑ 4&'�&����	��&(� ,             (6) 

where s��� ∈ 	���p��−1,1�	⋂	���� �−1,1� , 4& −  arbitrary 

constants '�&���� −  k-th Taylor derivative of Dirac delta 

function which can be understood in the following way 

�'�&����, ����� = � '�&�����
�� ������ = �−1�&��&��0�. 

In the space P� let introduce the norm 

‖ψ‖ui = ‖z‖	gc�w����,�� + ‖z‖ji���,�� + ∑ |4&|	��&(� ,       (7) 

We note that under p = 1 the expression of the norm can 

be writing in a more simple way. 

In fact, from the equality 	s��� = �	�y	s���� +
∑ q�z����

&! �&	��&(�  it follows, that (under - ∈ ℕ� 
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‖s���‖j���,�� ≤ ‖y	s‖j���,�� + ∑ {s�&��0�{	��&(� =‖s���‖	gc�w����,��	. 
In the case - = 1	we have: 

‖s‖	gc�i����,��	 = |q
�H��q���

H |j���,�� + |s�0�| ≤ ‖s‖ji���,��, 
so that under - = 1: 

‖s‖j���,�� ≤ ‖s‖	gc�i����,��	 ≤ ‖s‖ji���,��.         (8) 

From (7) it follows that under - = 1	the norm in (8) can be 

defined in the following way: 

‖ψ‖ui = ‖s‖ji���,�� 	+ |4�|              (9) 

Theorem 2.1 The space P�  is a Banach space associated 

with 	���p��−1,1�. 
Proof: The fact that P� is a Banach space follows from the 

definition (7) where the norm in P� is defined as sum of the 

norms in the Banach spaces 	���p��−1,1� and C��−1,1� with 

addition of a norm of finite-dimensional space. 

The fact that |�f, ψ�| ≤ c‖f‖	gc�w����,��‖ψ‖ui  can be 

obtained analogously as done in �21�. 
Next, we note that, it is obvious to see that 	‖φ‖g���,��	≤‖φ‖	gc�r����,��. 
Finally, note that from the definition 2.1 it follows the 

following fact, if ����	~	��−1,1�, then �	���� ∈ ���	��−1,1�. 
This assertion may be generalized as follows. 

Lemma 2.2. Let - ∈ ℕ, � ∈ ℤ�. If ����	~������−1,1� then, 

�	���� ∈ ���	����−1,1�, and the formula holds 

��	������M��0� = � 0, � = 0,1, . . . , - − 1,
M!

�M�	�!��M�	��0�, � = -, . . . , - + �.  (10) 

Proof. Note that a stronger assumption on the function 

����, such that ���� ∈ ���	����−1,1�  would allow us to 

easily prove the lemma just by applying Leibniz formula. 

Note that Lemmas 2.1 and 2.2 imply the next lemma. 

Lemma 2.3. Let f��� ∈ ���	��−1,1�, - ∈ ℕ	�e�	��0� =. . . . . = �������0� = 0, 1 ≤ � ≤ -. Then 
��H�
H� ∈ ���	����−1,1�. 

It is also convenient to use an equivalent definition for the 

norm in ���	��−1,1�: 
‖�‖gc�r����,��� = ∑ �yM��g���,��oZ(�                (11) 

It is easy to verify the equivalence of the norms (7) and 

(11). Namely, we always have {��M��0�{ ≤ j! �yM��g���,�� 
which gives the estimate ‖�‖ ≤ �‖�‖� . To obtain the 

inverse estimate, we use the next following equality below. 

�yM����� = �	�M�y����� + ∑ ���L	
�!

	���(M �����0�,     (12) 

from which �yM��g���,�� ≤ ‖�‖, � = 0,1, . . . . . , - − 1 and, 

then ‖�‖� ≤ �‖�‖. 

Lemma 2.4. The operator y	: ���	��−1,1� ⟶ ��−1,1� has 

the following properties: y	 is bounded, and ‖y	�‖g���,�� ≤ ‖�‖gc�r����,��; y	 is right invertible; %�y	� = - , where %�y	�  is the dimension of the null 

subspace for y	. 

For the proof of the previous lemma with full details we 

can refer to references [21, 23]. 

Next, in the following section, we will present the two 

models of situation of an extension of an already noetherized 

operator by adding finite dimensional Dirac-delta functions, 

to be investigated for noetherity respectively with 

consideration of the generalized functional spaces, in which 

investigations are are conducted. 

3. Main Results 

In this section, we undertake properly the illustration of the 

noetherity investigation of a realized extension with Dirac-

delta functions of an already established noether operator in 

some generalized functional spaces. More details and 

explanations related to such finite dimensional extensions 

and construction of noetherity theory, are found in the papers 

[11, 12, 21, 23, 24, 25, 28]. 

Namely, here we consider as model already theoretically 

investigated, the integro-differential operator defined by the 

next formula (13). 

I) Case when 0 ≤ , ≤ - − 2 and the space  ! =  �. 

��̅	���x� = �Y�′��� + � ���
�� ����� = ����	      (13) 

And we will suppose that ���� ∈  �	���� ∈ ���Y��−1,1�so 

that, = 0, - = 2, and	, = - − 2	which corresponds to the 

case of general studied noetherization investigated in our 

recent published following papers       [21, 28]. 

In this case, we have: 

���� = ����� + %'���,                     (14) 

where we take the function ����� ∈ ���� �−1,1�. 
From the form of the function ���� and next, substituting 

into (13) we obtain 

�Y��′���� + %'′���� + � ������� + %'�����
�� �� = ����	  (15) 

or the same as 

�Y�′���� + � �������� = ����	�
��              (16) 

from where we see that it is necessary, that 

��0� = � �������� = ��
��                 (17) 

and next 

�′���� = ��H��	����
H�                        (18) 

Taking into account that, ���� ∈ ���Y��−1,1�,  we may 

represent ���� in the form of 
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���� = ��0� + ������0� + �Y����           (19) 

that is allowing us to rewrite (18) in the following way: 

�′���� = ��i����
H + ����,                  (20) 

and by the virtue of the continuity of φ′���� it is necessary to 

require that 

�����0� = 0.                           (21) 

Under assumption of this condition �′���� = ����	 and 

this lead us to 

	����� = � ������ +	�� = � ������H
��

H
�� ,          (22) 

where it has been taking into account that φ��−1� = 0. 
It remains for us to satisfy the arising within the process of 

the solution the conditions (17) and (21). We have the 

following results: 

��0� = � = � �������� = � ��� � ������ =�
��

�
��

�
���
Y� �1 − �Y��������
�� .                 (23) 

Recalling how are connected ����	and	����, we obtain the 

following: 

��0� = �
Y� �����	��������i����

�� �1 − �Y���.�
��       (24) 

Considering (21), we finally find that: 

2��0� = � �����	����
�� �1 − �Y��� = � ����

�� ���
�� −�

��
��0�	�. -. � ����

�� ���
�� − � �������

�� + ��0� � ���
��     (25) 

From that with respect to the fact that �. -. � ��
��

�
�� = 2, we 

have 

��, ��� − 2'��� − 1� = 0.                 (26) 

Remark that, we may have obtained (26) using the 

associated operator and yY: 

�yY�, �� = ��, �yY�
��,	where ���� = 1 − �Y. 

Therefore, we have two conditions of solvency (21) and 

(26). 

All what has been done lead us therefore to conclude: 4��̅� = 2. It is not difficult to see that from the previous, %��̅� = 1.  It follows from the fact that the homogeneous 

equation in (16) has only zero solution. 

Additionally, from (16) it follows that �′���� = �
H�  from 

which it is necessary �′���� = 0  or ����� = �� = 0  with 

respect to ���−1� = 0. 
Therefore, we deduce the index of the extended operator �̅ 

defined by the formula ���̅� = 	%��̅� − 4��̅� = −1. 

Now, let us consider the associated homogeneous equation 

of the following form: 

��̅′	����� = −��Y��
 + � � ������ = 0,�
��        (27) 

where it is supposed that, ���� ∈ ��, i.e: ���� = q���
�� + ∑ ����(� '������  and s��� ∈ ����−1,1�. 

Substitution in (27) gives us 

−s
��� + ���. -. � q���
�� �� + ��� = 0,�

��          (28) 

If we denoted temporarily � = �. -. � q���
�� ��,�

��  then s
��� = ��� + ��� 
or s��� = H�

Y �� + ��� + ��. With respect to the condition 

s�1� = 0, we find 

s��� = ����c�
Y ��Y − 1�                  (29) 

Now, let us find the unknown �. We have the following: 

� = �. -. � q���
�� �� = ����c�

Y �. -. � ����
�� �� = 0�

�� .�
��  (30) 

Therefore, we obtain s��� = �c
Y ��Y − 1�. 

So that, definitively the solution ���� of the homogeneous 

equation has the following form (with consideration to the 

arbitrariness in the choice of ��� 
���� = �c

Y �H
���
H� + 2'���� + ��'������,       (31) 

So therefore we see, that the conditions (21) and (26) are 

the conditions of the orthogonality of linearty independance 

of the solutions of the homogeneous equation �̅′	� = 0	in ��� 

of the form 

����� = '������ and �Y��� = H���
H� + 2'���.      (32) 

Note that in the presentation (26) obviously the function s��� is defined as follows s��� = �Y − 1 ∈ ����−1,1�. 
Next, we move to the following illustrative example in 

section II°). 

II) Case when , > - − 2 and the space  ! =  �. 

We now move to the following type of example when the 

extended operator �̅ as previously has the form defined by 

(13) but at this time ���� ∈  � and ���� ∈ ��,��Y��−1,1�. 
This is meaning that: 

���� = ����� + %�'��� + %�'������, 
���� = ����� + 4'��� and ����� ∈ ���Y��−1,1�. 
Substitution of ���� into (13) gives us the following result: 

�Y��′���� + %�'′��� + %�'′′���� + � �������� − %�	�
�� =

����� + 4'���	                             (33) 

or the same as: 

�Y�′���� + 2%�'��� + � ��������	 − %� 	= ����� +�
��4'���.                               (34) 

From the linear dependence of the functions, it follows the 

disintegration of this equation into the system: 
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 �Y�′���� + � − %� = �����,2%� = 4                 (35) 

where it is denoted 

� = � ���������
�� .                   (36) 

It is clear that, %� = ¡
Y and turning to the first equation of 

the system we note that ���0� = � − %�. From that we find 

out: 

�′���� = �c�H��¢i��
H� = �c����H�c�i�����H�£�H��¢i��

H� =
H�c�i�����H�£�H�

H� .                  (37) 

By virtue of the continuity of �′����, we should require 

that �����0� = 0 and that is giving �′���� = ���� or: 

	����� = � ������H
�� ,                   (38) 

where it is considered, that 	���−1� = 0. It remains to turn 

down to the definition	� = � ���������
�� . 

We have the following result: 

� = � ���	 � �������
��

�
�� = �

Y� �1 − �Y��������
�� = ���0� + ¡

Y. (39) 

Recalling the connexion between ����  and 	����	we find 

out: 

2���0� + 4 = � �c�����c���
�� �1 − �Y����

�� ,        (40) 

From that, after some computations already done when 

investigating the first example lead us to the following: 

4 = ¤�����, ��� + 2'��� − 1¥.          (41) 

If taking into account the relationship 3.13 from [23] then 

the previous relationship can be writing in the form of the 

condition of orthogonality of such following type: 

¤����� + 4'���, ��� + 2'��� − 1¥ = 0,       (42) 

and similar condition ������0� = 0 we write in the following 

form: 

������ + 4'���, '′���� = 0.                      (43) 

So therefore, we see that the conditions (42) - (43) are the 

orthogonality conditions of the linear dependence of the 

solutions of the homogeneous associated equation �̅′	� =0	in the space ���. 

(Remark that for the associated equation in this example 

we can use the same spaces ��� and ��−1,1�.). 
Finally, let us move to the conclusion of the work in the 

following next section. 

4. Conclusion 

This achieved scientific work presents in full details the 

interconnexion between the theory and practise related to the 

investigation of the construction of noether theory 

(noetherization) for an extended noether operator defined by 

a third kind linear singular integral equation in some 

generalized functional spaces. 

We have completely illustrated within these constructed 

examples the two situations arising when realizing the Dirac-

delta Extensions of a noether operator in the generalized 

functional spaces 

 ! = ���� �−1,1� ⊕ #∑ %&'�&����!&(� ); 	0 ≤ , ≤ - − 2 and 

 ! = ���� �−1,1� ⊕ #∑ %&'�&����!&(� ); 	, > - − 2.  After 

presenting some concepts and notions related to the noether 

theory for integro-differential operators, we applied 

theoretical results to investigate the noetherity of the 

extended operator depending of the finite dimensional cases 

of the generalized functional spaces considered ���� �−1,1�. 
Based on the two cases of studied noetherity construction 

for an extended noether integro-differential operator of such 

mentioned kind, we bring out clearly from these illustrative 

examples all the theoretical obtained results from our 

previous published papers. 

5. Recommendations 

Following what already have been done in our previous 

published researches, we should encourage one first of all, to 

construct more illustrative examples of the investigation of 

noetherity nature (noetherization) of some extended noether 

integro-differential operators defined by third kind integral 

equations in various generalized functional spaces. By this 

mean, we should make through these illustrative examples a 

clear interconnexion between theory and practical once more. 

Lastly, we will generalize our results of the investigation on 

such topic but at this time to the integro-differential operator 

defined by an integral equation of the third kind of the higher 

order of the following type: 

������� = �	��d���� + � ��, ���
�� ������ = ����; � ∈

�−1,1�.  
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