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Abstract

We study some mathematical properties of a novel implicit constitutive relation wherein the

stress and the linearized strain appear linearly that has been recently put into place to de-

scribe elastic response of porous metals as well as materials such as rocks and concrete. In

the corresponding mixed variational formulation the displacement, the deviatoric and spher-

ical stress are three independent fields. To treat well-posedness of the quasi-linear elliptic

problem, we rely on the one-parameter dependence, regularization of the linear-fractional

singularity by thresholding, and applying the Browder–Minty existence theorem for the reg-

ularized problem. An analytical solution to the nonlinear problem under constant compres-

sion/extension is presented.
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Volumetric-deviatoric decomposition · Mixed variational formulation · Quasi-linear elliptic

problem · Linear-fractional singularity · Regularization · Thresholding · Well-posedness
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1 Introduction

When the implicit relation between the stress T, deformation gradient F and density ρ intro-

duced by [20, 21] to describe the response of elastic bodies, is linearized by assuming that

the displacement gradient is small, it reduces to

β0ε + β1I + β2T + β3T2 + β4(Tε + εT) + β5(T
2ε + εT2) = 0, (1)

where I is the identity transformation, ε is the linearized strain, the βi , i = 1,2,3 are scalar

valued functions that can at most depend linearly on ε, but arbitrarily on the invariants of
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T, while βi , i = 0,4,5 depends on the invariants of T. Since by virtue of the balance of

mass: ρR = ρ(detF), which when linearized leads to ρR = ρ(1 + trε), trε can be replaced

by ρ, which makes the constitutive relation useful in describing the response of porous

materials as the porosity determines the density of the material (see [23] for discussion of

the development and relevance of such constitutive relations). Gainfully exploiting the fact

that such constitutive relations can accommodate the material moduli can be functions of

the density, [18, 19] studied the problem of initiation of damage in concrete.

A subclass wherein the constitutive relation is also linear in T is given by

(1 + λ3trT)ε = E1(1 + λ1trε)T + E2(1 + λ2trε)(trT)I. (2)

In (2) moduli λ1, λ2, λ3, E1, E2 are all constants. When λ1, λ2, λ3 are all zero, we recover

the equation for classical linearized elasticity. Then, we can identify

E1 =
1 + ν

E
=

1

2μ
> 0, E2 = −

ν

E
< 0,

where E is the Young’s modulus and ν is the Poisson’s ratio, which are related to the Lame’

constants λ and μ. Let us express the stress in terms of its deviatoric and spherical parts by

using

T = T∗ +
1

3
(trT)I.

Then (2) reduces to the equation

(1 + λ3trT)ε = E1(1 + λ1trε)T∗ + E4(1 + λ4trε)(trT)I, (3)

where the new coefficients E4 and λ4 are expressed as

E4 =
E1

3
+ E2 =

1 − 2ν

3E
=

1

9K
> 0, λ4 =

(E1/3)λ1 + E2λ2

E4

using the bulk modulus K .

Earlier studies that are relevant to the analysis considered here are the investigations into

bodies exhibiting limiting small strain in a nonlinear elastic body by [7], on viscoelastic

bodies by [8, 11, 12], and with regard to implicitly constituted quasi-linear viscoelastic

bodies by [9]. A relevant subclass of contact problems in the bodies with non-penetrating

cracks was developed by [14].

The general implicit model relating the Cauchy–Green tensor and the Cauchy stress has

no issues concerning frame-indifference. Of course, when we linearize since the linearized

strain is not frame indifferent, the linearization of the implicit model will not be frame-

indifferent.

While it is true that our model shares negative aspects with the classical linearized model

with regard to singularities of the linearized strain, the general implicit constitutive relations

when linearized also leads to strain-limiting models for the linearized strain (the strain can be

fixed apriori to be as small as one wants) and in the case of such models very rigorous mathe-

matical results have been established. Existence of weak solutions to fully three-dimensional

problems for a class of limiting strain models is presented in [3], and the existence of so-

lutions to anti-plane problem for weak solutions of a class of strain limiting models can be

found in [4]. Our model shares other negative aspects with the classical linearized model
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giving rise to singularities at corners, etc., however it has certain useful features that the

classical linearized elastic model does not have as documented in the next comment.

In our model, the term E1(1 + λ1trε) can be viewed as a density dependent material

moduli as trε can be expressed in terms of the density. Thus, our model is a linearized

model that can describe the small displacement gradient response of porous materials whose

material moduli would depend on the density. In a porous material we expect the material

moduli to be density dependent. The material moduli of a classical linearized elastic model

are constants.

As we mentioned earlier, by virtue of the balance of mass, we can in fact rewrite the

constitutive relation (2) by introducing the density in the place of the trε. On taking the

trace of (3) we get the implicit function

�(trε, trT) := trε − 3E4trT + (λ3 − 3E4λ4)(trε)trT = 0, (4)

because trT∗ = 0, and trI = 3 in 3d. The equation (4) can be solved explicitly with respect

to the trace of the linearized strain as

trε =
3E4trT

1 + (λ3 − 3E4λ4)trT
. (5)

It is important to bear in mind that the trε has to be small and hence the right hand side of

(5) has to be small. That is E4, the λs, and the trT have to be such that this is true.

Using equation (4) one can also obtain an expression for the Cauchy stress in term of the

linearized strain. This would however involve terms that are higher order in the linearized

strain which we have already neglected. One has to be careful in dealing with approxima-

tions that stem from the implicit constitutive relations that lead to equation (1). It might be

possible to express the stress as a nonlinear function of the linearized strain, but this cannot

be viewed as a constitutive relation. One ought to always consider the problem wherein the

linearized strain appears only linearly in the approximate constitutive relation.

The following remarks make this clear. Suppose one considers a special sub-class of the

implicit expression that expresses the Cauchy–Green tensor B as a function of the Cauchy

stress. When one linearizes the same assuming that the displacement gradient is small, then

one obtains an approximation wherein the linearized strain is a nonlinear function of the

stress. Inverting it could, and most often would, lead to the stress as a nonlinear function of

the linearized strain which is not allowable according to our basis for the approximation in

the first place. The point is, when dealing with implicit constitutive relations if it is possible

to express the Cauchy–Green tensor in terms of the stress, then inverting this expression if

this is possible and linearizing is not the same as linearizing and inverting (see [22] for a

detailed discussion of the same). We should always use the expression wherein the linearized

strain occurs linearly as the appropriate form of the approximate constitutive relation.

Inserting (5) into (2) and dividing the result by 1 + λ3trT it follows that

ε = E1

1 +
(

λ3 + 3E4(λ1 − λ4)
)

trT

(1 + λ3trT)
(

1 + (λ3 − 3E4λ4)trT
)T

+ E2

1 +
(

λ3 + 3E4(λ2 − λ4)
)

trT

(1 + λ3trT)
(

1 + (λ3 − 3E4λ4)trT
) (trT)I. (6)
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Fig. 1 Linear-fractional functions A1 (left plot) and A2 (right plot)

Splitting the stress into its deviatoric and spherical parts according to (3), and taking into

consideration that

E1

1 +
(

λ3 + 3E4(λ1 − λ4)
)

trT

3
+ E2

(

1 +
(

λ3 + 3E4(λ2 − λ4)
)

trT
)

= E4(1 + λ3trT),

we express the response function (6) equivalently in the form:

ε = E1A1(trT)A2(trT)T∗ + E4A2(trT)(trT)I, (7)

where the linear-fractional factors A1 and A2 are defined by

A1(trT) := 1 +
3E4(λ1 − λ4)

1/trT − 1/τcr1

, A2(trT) :=
1

1 − trT/τcr2

,

with τcr1 := −1/λ3 and τcr2 := 1/(3E4λ4 −λ3). For example, we portray in the left and right

plots of Fig. 1, respectively, A1 and A2 from (7) in the (trT, trε)-coordinates with regard to

their dependence of the sign of λ1 − λ4 and τcr2. It is worth noting that the sign and order

relations between τcr1 and τcr2, between ecr1 := −1/λ4 and ecr2 := (3E4)/(λ3 − 3E4λ4) are

arbitrary.

We conclude that linear-fractional functions A1 and A2 are neither bounded from below

nor above, and not even continuous so that no well-posedness theory can be applied to the

constitutive relation (7). Therefore, assuming λ1 = λ3 = 0 such that the factor A1A2 = 1

in front of T∗, we regularize by thresholding the unbounded and discontinuous function

A2(trT)trT =: B(trT). Then we apply the existence theorem for monotonous, bounded, co-

ercive, and hemi-continuous operators (see [2, 17]). If λ1 is set to be zero, then the material

moduli cannot depend on the mean value of the stress, that is the mechanical pressure. Even

in the case of pressure dependent viscosity of the Navier–Stokes fluid, unless the viscos-

ity is also dependent on the shear rate, it is not possible to establish existence results (see

[6, 15, 16]).

2 One-Parameter RegularizedModel

When we set λ1 = λ3 = 0 the constitutive relation (6) reduces to

ε = E1T + E2

1 + 3E4(λ2 − λ4)trT

1 − 3E4λ4trT
(trT)I,
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Fig. 2 Linear-fractional function

B(p) depending on the sign of

τcr

and with the help of (7) it takes the equivalent form:

ε = E1T∗ + E4

trT

1 − 3E4λ4trT
I. (8)

Let us decompose the stress into two independent variables as

T = T∗ +
1

3
pI, trT∗ = 0, (9)

where p := trT. With the help of (9) and using

ε = ε∗ +
1

3
(trε)I, (10)

equation (8) is decoupled into the deviatoric and spherical parts as

ε∗ = E1T∗,
1

3
trε = E4B(p), B(p) :=

p

1 − p/τcr

, τcr :=
1

3E4λ4

. (11)

In Fig. 2 we portray the linear-fractional function B from (11) versus p with the regions

wherein the signs τcr are delineated. Note that B(0) = 0.

For b and b chosen as positive thresholds such that 0 < b < b < ∞, we regularize the

discontinuous function B in (11) by piecewise functions

F[B(p)] :=

⎧

⎪

⎨

⎪

⎩

B(p) if 1 − 1/b < p/τcr < 1 − 1/b,

bp if p/τcr ≥ 1 − 1/b,

bp if p/τcr ≤ 1 − 1/b,

(12)

which is comprised of three pieces. The example F[B(p)] from (12) is portrayed in the left

and right plots of Fig. 3 depending on either τcr < 0 or τcr > 0. In this example, 0 < b < 1

guarantees that the point p/τcr = 1 − 1/b < 0, and the choice 1 < b guarantees the other

point p/τcr = 1 − 1/b > 0.

Lemma 1 (Threshold linear-fractional function) The regularized function p �→ F[B(p)] in

(12) is continuous, coercive and bounded such that

F[B(p)]p ≥ bp2,
∣

∣F[B(p)]
∣

∣ ≤ b|p|, (13)
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Fig. 3 The threshold function F [B(p)] for τcr < 0 (left plot) and τcr > 0 (right plot)

and strongly monotone:

(

F[B(p)] −F[B(q)]
)

(p − q) ≥ min(b, b2)(p − q)2. (14)

Proof From (11) we calculate that B(p) = bp at p/τcr = 1 − 1/b, and similarly B(p) = bp

at p/τcr = 1 − 1/b. Therefore, the piecewise-continuous function from (12) at these two

points is continuous.

From (12) we conclude that F[B(p)] lies in the cone:

min(bp, bp) ≤ F[B(p)] ≤ max(bp, bp), (15)

which leads to (13). Since B ′(p) = 1/(1 − p/τcr)
2 > 0 for p 	= τcr, each branch of B as

p < τcr and p > τcr is monotone, and composed continuously in (12) with the two linear

pieces bp and bp it remains monotone. The derivative bounds min(b, b2) ≤ (F[B(p)])′ ≤

max(b, b2) follow the lower estimate (14). �

Using the result of Lemma 1, in the next section we formulate the nonlinear elasticity

problem for three independent variables ε, T∗ and p. The mixed three-field formulation of

linear elastic model was used for the reason of FEM analysis in [1, 5]. For a constitutive

equation wherein the material moduli depend on the mean normal stress, see [10, 13].

3 Analysis of the Governing Equations Using the Three Fields ε, T∗ and
p as the Variables

Let � be a bounded domain in the Euclidean space R
3 with the Lipschitz continuous

boundary ∂� and the unit normal vector n = (n1, n2, n3) which is directed outward. We

assume that ∂� = ŴN ∪ ŴD consists of two disjoint parts: the Neumann boundary ŴN and

the nonempty Dirichlet boundary ŴD.

For spatial points x = (x1, x2, x3) in �, let the body force f = (f1, f2, f3)(x) for x ∈ �

and the boundary traction g = (g1, g2, g3)(x) for x ∈ ŴN be given. We look for the dis-

placement vector u = (u1, u2, u3)(x), which determines symmetric 3-by-3 tensor for the
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linearized strain ε = {εij }
3
i,j=1(x) by

εij (u) =
1

2

( ∂ui

∂xj

+
∂uj

∂xi

)

, i, j = 1,2,3, (16)

symmetric 3-by-3 tensor for the deviatoric stress T∗ = {T ∗
ij }

3
i,j=1(x) and the first stress in-

variant p(x), which together satisfy the volumetric-deviatoric decomposition (9), the equi-

librium equation

−

3
∑

j=1

∂

∂xj

T ∗
ij −

1

3

∂p

∂xi

= fi, i = 1,2,3, in �, (17)

and the one-parametric constitutive response equation (11) regularized according to (12) as

ε(u)∗ = E1T∗,
1

3
trε(u) = E4F[B(p)], (18)

where the volumetric-deviatoric decomposition (10) of the strain was used with trε(u) =
∑3

i=1 εii(u) = div(u).

It is worth noting that, if the modulus E4 → 0, then the latter equation in (18) implies

div(u) = 0, and together with (17) the limit relations describe the Stokes system for the

incompressible solid:

−
1

2E1

�u −
1

3
∇p = f, div(u) = 0 in �.

The governing equations (16)–(18) are augmented by the mixed boundary conditions:

the Dirichlet condition for the clamp

u = 0 on ŴD, (19)

and the Neumann type condition for the traction

T∗n +
1

3
pn = g on ŴN, (20)

where T∗n =
∑3

j=1 T ∗
ijnj implies the matrix-vector multiplication.

Now we provide a variational formulation to the nonlinear boundary value problem

(16)–(20). In the following R
3×3
sym denotes 3-by-3 symmetric tensors. Let f ∈ L2(�;R3) and

g ∈ L2(ŴN;R3) be given. Find the triple comprised of functions u ∈ H 1(�;R3) with u = 0

on ŴD, T∗ ∈ L2(�;R3×3
sym ) with trT∗ = 0 and p ∈ L2(�;R), such that they satisfy the fol-

lowing variational equations:

∫

�

(

T∗ · ε(v)∗ +
1

3
p div(v)

)

dx =

∫

�

f · vdx +

∫

ŴN

g · vdSx, (21)

∫

�

(

E1T∗ − ε(u)∗
)

· S∗ dx = 0,

∫

�

(

E4F[B(p)] −
1

3
trε(u)

)

q dx = 0 (22)

for all admissible test functions v ∈ H 1(�;R3) such that v = 0 at ŴD, S∗ ∈ L2(�;R3×3
sym )

such that trS∗ = 0, and q ∈ L2(�;R). The linearized strain tensors ε(v) and its deviatoric
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part ε(v)∗ are defined according to formulas (16) and (10). Here and in what follows, the

dot implies the scalar product of tensors T · S =
∑3

i,j=1 TijSij and vectors, respectively,

u · v =
∑3

i=1 uivi .

The variational equation (21) is obtained in a standard way after multiplication of the

equilibrium equation (17) with vi , summing it over i = 1,2,3 and integrating by parts over

� with the help of boundary conditions (19) and (20). The variational equations in (22) are

derived from the constitutive equations in (18) after taking the scalar product with the test

functions S∗ and q .

Before starting the well-posedness analysis of the nonlinear equations, we record two

results that we shall be using. The Korn–Poincaré inequality is given by

‖u‖2
L2(�;R3)

≤ CKP‖ε(u)‖2

L2(�;R3×3
sym )

if u = 0 on ŴD. (23)

Together with (23), uniform continuity of the trace operator leads to the estimate:

‖u‖2
L2(ŴN;R3)

≤ Ctr‖ε(u)‖2

L2(�;R3×3
sym )

if u = 0 on ŴD. (24)

Theorem 1 (Well-posedness of the regularized problem) For every fixed threshold 0 < b <

b < ∞, there exists unique triple u ∈ H 1(�;R3) with u = 0 on ŴD, T∗ ∈ L2(�;R3×3
sym ) with

trT∗ = 0, and p ∈ L2(�;R), which solves the nonlinear variational equations (21) and (22).

The solution satisfies the following a-priori estimates:

E1(1 − αE1)‖T∗‖2

L2(�;R3×3
sym )

+ E4(b − 3E4b
2
α)‖p‖2

L2(�;R)
≤

1

2α
C(f,g), (25)

with a positive weight α < min
(

1/E1, b/(3E4b
2
)
)

, and

‖ε(u)∗‖
L2(�;R3×3

sym )
= E1‖T∗‖

L2(�;R3×3
sym )

, ‖trε(u)‖L2(�;R) ≤ 3E4b‖p‖L2(�;R), (26)

where the constant C(f,g) > 0 is related to the given forces through

C(f,g) := ‖f ‖2
L2(�;R3)

+ Ctr‖g‖2
L2(ŴN;R3)

. (27)

Proof We justify the properties of the operator of the system (21) and (22).

Coercivity. Testing (21) with v = u and (22) with (S∗, q) = (T∗,p), using trε(u) = div(u)

and the lower threshold in (13) we obtain the relations

∫

�

(

E1‖T∗‖2 + E4bp2
)

dx ≤

∫

�

(

E1‖T∗‖2 + E4F[B(p)]p
)

dx

=

∫

�

(

T∗ · ε(u)∗ +
1

3
p div(u)

)

dx =

∫

�

f · udx +

∫

ŴN

g · udSx. (28)
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Inserting (S∗, q) = (ε(u)∗, trε(u)) into (22) and using the Korn–Poincaré inequality (23) for

the norm ‖u‖2
H 1(�;R3)

:= ‖u‖2
L2(�;R3)

+ ‖ε(u)‖2

L2(�;R3×3
sym )

we obtain

1

1 + CKP

‖u‖2
H 1(�;R3)

≤ ‖ε(u)‖2

L2(�;R3×3
sym )

=

∫

�

(

‖ε(u)∗‖2 +
1

3
tr2ε(u)

)

dx

=

∫

�

(

E1T∗ · ε(u)∗ + E4F[B(p)]trε(u)
)

dx. (29)

The lower estimates in (28) and (29) imply coercivity.

Boundedness. Applying the Cauchy-Schwarz, the Korn–Poincaré (23) and the trace (24)

inequalities, we derive the upper estimates from (21)

∫

�

(

T∗ · ε(v)∗ +
1

3
p div(v)

)

dx =

∫

�

f · vdx +

∫

ŴN

g · vdSx

≤
(

‖f ‖L2(�;R3) +
√

Ctr‖g‖L2(ŴN;R3)

)

‖ε(v)‖
L2(�;R3×3

sym )
, (30)

and from (22), using the upper threshold in (13), we get (26).

Due to (14) the nonlinear form and evidently the bilinear forms in (21) and (22) are

strongly monotone (hence, strictly monotone). The hemi-continuity is provided by the con-

tinuity property of the nonlinearity F[B(p)] stated in Lemma 1. Therefore, by the Browder–

Minty theorem there exists a solution (u,T∗,p), which is unique due to the strict monotonic-

ity.

Expressing the same term in the estimate (28) with that in (30) for v = u, and applying

the weighted Young inequality with a weight α > 0, we infer

∫

�

(

E1‖T∗‖2 + E4bp2
)

dx ≤
(

‖f ‖L2(�;R3) +
√

Ctr‖g‖L2(ŴN;R3)

)

‖ε(u)‖
L2(�;R3×3

sym )

≤
1

2α
C(f,g) + α‖ε(u)‖2

L2(�;R3×3
sym )

, (31)

with the constant C(f,g) defined in (27). From (26) it follows that

‖ε(u)‖2

L2(�;R3×3
sym )

≤ E2
1‖T∗‖2

L2(�;R3×3
sym )

+ 3(E4b)2‖p‖2
L2(�;R)

,

and substituting it into (31) leads to the a-priori estimate (25). This finishes the proof. �

As an important consequence of Theorem 1 we conclude the following.

Corollary 1 (Feasibility for the reference one-parametric response) If the variational solu-

tion (u,T∗,p) obtained for the regularized problem (16)–(20) fulfills the prescribed thresh-

olds by means of

1 −
1

b
≤

p

τcr

≤ 1 −
1

b
, (32)

such that F[B(p)] = B(p) according to (12), then it satisfies also the λ4-dependent consti-

tutive relation (11).

In the next section we present an analytical example of the nonlinear elasticity problem

satisfying (32).
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Fig. 4 The right circular cylinder

� under constant compression

g < 0

4 The Analytical Example

We consider an example of constant compression/ extension with given g ∈ R applied to

a right circular cylinder � (see Fig. 4). In the standard cylindrical coordinates (r, θ, z), let

� = {r ≤ r0, |z| ≤ z0}, where r0 > 0 and z0 > 0 are given. For the body force f = 0, the

loading is prescribed by

Trr = g as r = r0, Tzz = g as z = z0. (33)

We look for a solution of the form

ur(r) = ar, uθ (r) = br, uz(z) = az, (34)

with unknown constant a ∈ R implying radial and axial stretching and arbitrary b ∈ R im-

plying circumferential shear. The corresponding (34) components of the strain tensor are

εrr(u) = ur,r = a, εrθ (u) =
1

2

(

uθ,r −
1

r
uθ

)

= 0, εθθ (u) =
1

r
ur = a,

εzz(u) = uz,z = a, εrz(u) = εθz(u) = 0, (35)

such that the volumetric-deviatoric decomposition of the strain (10) gives the first invariant

trε(u) = εrr(u) + εθθ (u) + εzz(u) = 3a, and ε(u)∗ = 0.

According to the first equation in (11) it follows that T∗ = 0 and the volumetric stress

T = p/3I with unknown p ∈ R. Such a stress tensor satisfies identically the homogeneous

equilibrium equations:

−Trr,r −
1

r

(

Trr − Tθθ

)

= 0, −
1

r
Tθθ,θ = 0, −Tzz,z = 0.

Inserting the expression for T into the boundary condition (33) we obtain p/3 = g. There-

fore, the response equations in (11) are solved by

a =
1

3
trε = E4

p

1 − p/τcr

= E4

3g

1 − 3g/τcr

, (36)

for g 	= τcr/3, where τcr := 1/(3E4λ4).
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To justify Corollary 1 we conclude that (32) holds for the thresholds prescribed in such

a way that

0 < b ≤
1

1 − 3g/τcr

, b ≥
1

1 − 3g/τcr

. (37)

Note that, the left inequality in (37) is attainable only when 1 − 3g/τcr > 0 provided g/τcr >

1/3. Conversely, if (37) holds, then (34) and (36) describe the solution to the regularized

problem from Theorem 1.

We note that when λ4 = 0 then τcr = ±∞, and a = 3E4g from (36) corresponds to the

solution of the linearized problem. In this case, arbitrary thresholds 0 < b ≤ 1 and b ≥ 1

fulfill (37).
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