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On an Improved State Parametrization for Soft

Robots With Piecewise Constant Curvature

and Its Use in Model Based Control
Cosimo Della Santina , Antonio Bicchi , and Daniela Rus

Abstract—Piecewise constant curvature models have proven to
be an useful tool for describing kinematics and dynamics of soft
robots. However, in their three dimensional formulation they suf-
fer from many issues limiting their range of applicability - as
discontinuities and singularities - mainly concerning the straight
configuration of the robot. In this work we analyze these flaws, and
we show that they are not due to the piecewise constant curvature
assumption itself, but that instead they are a byproduct of the
commonly employed direction/angle of bending parametrization
of the state. We therefore consider an alternative state representa-
tion which solves all the discussed issues, and we derive a model
based controller based on it. Examples in simulation are provided
to support and describe the theoretical results. When using the
novel parametrization, the system is able to perform more complex
tasks, with a strongly reduced computational burden, and without
incurring in spikes and discontinuous behaviors.

Index Terms—Modeling, control, and learning for soft robots,
motion control, natural machine motion.

I. INTRODUCTION

I
N THE recent years, a growing attention has been devoted to
developing controllers for continuum soft robots [1], namely

robots made of continuously deformable soft materials [2].
While several important results have been obtained using the
tools of machine learning [3], the use of model based control
techniques has recently proven to be an effective alternative [4],
[5]. In this context, piecewise constant curvature (PCC) models
have proven to be a very useful tool with a vast range of ap-
plications. Examples include design [6], sensing [7], kinematic
control [8], [9], feedforward dynamic control [10], feedback
dynamic control [11], [12], just to cite a few. In a PCC model
the soft robot is approximated as a sequence of continuous
segments, with curvature constant in space (CC) but variable
in time. Fig. 2(a) shows an example of a soft robot made of
three CC segments.

Manuscript received August 12, 2019; accepted January 9, 2020. Date of
publication January 17, 2020; date of current version January 30, 2020. This
letter was recommended for publication by Associate Editor S. Coros and Editor
K.-J. Cho upon evaluation of the reviewers’ comments. This work was supported
by the NSF under Grants Agreement NSF EFRI 1830901 and NSF 1226883.
(Corresponding author: Cosimo Della Santina.)

C. Della Santina and D. Rus are with the Computer Science and Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA
02139 USA (e-mail: dsantina@mit.edu; rus@csail.mit.edu).

A. Bicchi is with the Research Center “E. Piaggio” and the Dept. of Informa-
tion Engineering, University of Pisa, Pisa 56122, Italy and also with the “Soft
Robotics for Human Cooperation and Rehabilitation” Lab, Istituto Italiano di
Tecnologia, Genoa 16163, Italy (e-mail: antonio.bicchi@iit.it).

Digital Object Identifier 10.1109/LRA.2020.2967269

Despite the many accomplishments, PCC models have been
regarded with suspicion by recent works in the field due to sev-
eral issues they present, mainly concerning kinematic singulari-
ties and discontinuities [13]. These shortcomings can potentially
produce critical behaviors in the practice, that we will discuss
in detail in the letter.

More complex models - taking into account different kinds
of strains - do not present these issues [13]–[16]. So it is a
common belief in the field that the discussed problems are a
product of the PCC hypothesis itself. We show here that this
is actually a misconception, and that the issue lays instead in
the parametrization of the robot configuration that has been
historically used. This parametrization was introduced by the
very first works proposing to use PCC assumption to manage
the complexity of the continuum structure of the soft body [8],
[17], [18].

In this work, we analyze the properties of a parametrization
of the system state solving all the discussed issues, with specific
focus on its use in model based control. The main intuition
behind this parametrization comes from the observation of the
classic rigid-bodied case. In rigid robots, the configuration is
clearly connected to physical, directly measurable, quantities -
i.e. the joint angles. This characteristics prevents the appearance
of problems not directly concerning the physical nature of the
system. We achieve the same in the soft case by considering as
state of the robot a linear combination of lengths that can be
directly measured on the robot structure.

In conclusion, this letter contributes with
� An in depth analysis of the main issues affecting the

standard parametrization of 3D PCC models;
� A state parametrization, solving all the discussed issues;
� Simulations illustrating the theory.

II. THE STANDARD PARAMETRIZATION DOES NOT DEFINE AN

ATLAS OF THE CONFIGURATION MANIFOLD

Consider a PCC robot composed of n segments with constant
curvature (CC) connected in series, as exemplified in Fig. 2(a).
We introduce n reference frames {S1}, . . . , {Sn} attached at
the ends of each segment, plus one fixed base frame {S0}.
Under the PCC hypothesis, each segment is free to bend in
any direction; its curvature is constant in space but variable in
time; the segments are connected so that the resulting curve is
everywhere differentiable. We consider here PCC soft robots for
which also the length of each segment can change. Any other
strain is neglected (see [18] for more details).
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Fig. 1. The chart ηα,i classically used to describe the configuration manifold
Mi of a continuum soft segment with constant curvature generates artificial
redundancies and singularities, which in turn produce pathological behaviors
when controlling the robot. These characteristics are artificial in the sense that
they are not a physical property of the system, but instead they are introduced
by its mathematical description. In this work we analyze a set of coordinates
∆x,i,∆y,i alternative to the classic φi, θi. They are identified by a chart ηq,i
which we prove defining an atlas, i.e. it maps the whole Mi one-to-one in the
Euclidean space - solving the discussed issues. This reflects in strongly improved
performance in simulating and controlling the robot.

Fig. 2. Three views of PCC soft robots. Panel (a) shows a PCC soft robot
made of three CC segments, and moving in three dimensions. The reference
systems {Si} and the transformation matrices T i

i−1 are also reported in figure.
Panel (b) depicts the i-th segment, with reference frames and α-parametrization
highlighted. Panel (c) visually represents an arc at a distance δj,i from the axis
along the direction of curvature.

We call T i
i−1 ∈ SE(3) the homogeneous transformation map-

ping {Si−1} into {Si}

T i
i−1 =

[

Ri
i−1 tii−1

[

0 0 0
]

1

]

, (1)

with Ri
i−1 =

[

{n̂i}i−1 {êi}i−1 {ôi}i−1

]

∈ SO(3) rotation

matrix, and tii−1 ∈ R
3 translation. {n̂i}i−1, {êi}i−1, {ôi}i−1 are

three unit vectors. They identify the three axes of {Si}, with
coordinates expressed w.r.t.{Si−1}. It has been shown by Walker
and colleagues in their seminal works on the topic [8], [17], that
the manifold Mi ⊆ SE(3) in which T i

i−1 lives is of dimension
three. Consequently the manifold M = M1 × · · · ×Mn has
dimension 3n. To this end, they do not directly introduce a chart
ηα from M to R

3n, as depicted in Fig. 1. They instead propose
an inverse η−1

α mapping, from R
3n to M. More specifically

they introduce a parametrization [φi, θi, δLi]
T ∈ R

3 for the

Fig. 3. Graphical representation of three shortcomings of the standard α
parametrization. These problems occurring at the kinematic level reflects into
major issues in the dynamic case. The q parametrization that we propose here
is not affected by these flaws, as shown in the right part of the figure.

configuration of a segment (see Fig. 2(b)), such that; i) φi is
the angle between the plane n̂i−1 − ôi−1 and the plane on which
the bending occurs,1 ii) θi is the relative rotation between the
two reference systems expressed on the latter plane, iii) δLi is
the change in length of the central axis. A δLi ≡ 0 identifies
a CC segment of constant length, while a δLi �= 0 describes a
change of length w.r.t the rest valueL0,i ∈ R. Therefore only δLi

greater than −L0,i are physically meaningful. φi is also called
direction of bending, and θi angle of curvature. The resulting
inverse mapping for the i-th segment takes the form

Ri
i−1 =

⎡

⎢

⎣

c2φi
(cθi − 1) + 1 sφi

cφi
(cθi − 1) cφi

sθi
sφi

cφi
(cθi − 1) s2φi

(cθi − 1) + 1 sφi
sθi

−cφi
sθi −sφi

sθi cθi

⎤

⎥

⎦
,

tii−1 =
L0,i + δLi

θi

[

cφi
(1− cθi) sφi

(1− cθi) sθi
]

T ,

(2)
with cφi

, sφi
, cθi , sθi being cos(φi), sin(φi), cos(θi), sin(θi)

respectively. L0,i ∈ R is the rest length of the central axis of the
segment.

In the following we refer to αi = [φi θi δLi]
T ∈ R

3 as
configuration of the i-th segment in the α- parametrization.
α ∈ R

3n is the configuration of the soft robot, which collects
αi for all the segments. It is important to underline that the η−1

α

so defined is not a isomorphism. Indeed

T i
i−1(φi, 0, δLi) = T i

i−1(γ, 0, δLi) ∀ φi, δLi, γ . (3)

Therefore, there are infinite choices of the vector αi describing
a single physical configuration; the one in which the robot is
straight.

It is worth to stress that T i
i−1 refers to both position and

orientation.
This condition is graphically illustrated by Fig. 1, where the

single red dot in Mi - representing the straight segment in
Fig. 3(a) - is mapped to a whole line inαi. Therefore, by looking
at the configuration through αi, one could think that physical
motions can be produced by keeping θi ≡ 0, and varying φi.
This is however not the case.

1The plane created by linear combinations of {n̂i}i−1 and {êi}i−1 is thus
the one in which the bending occurs if φi = 0.
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This flaw is reflected into the Jacobian of the transformation.
We consider for simplicity only the translational part of T i

i−1.

Its Jacobian can be evaluated by direct differentiation of tii−1 in
(1)

xJα,i=

⎡

⎢

⎢

⎢

⎣

sφi (cθi−1)Li

θi

cφi
Li (cθi+θi sθi−1)

θ2
i

cφi (1−cθi)
θi

cφi (1−cθi)Li

θi

sφi
Li (cθi+θi sθi−1)

θ2
i

sφi (1−cθi)
θi

0 −
Li (sθi−θi cθi)

θ2
i

sθi
θi

⎤

⎥

⎥

⎥

⎦

, (4)

with Li = L0,i + δLi. The Jacobian determinant is

det(xJα,i) = −
(cos (θi)− 1)2 (δLi + L0,i)

2

θ3i
, (5)

which tends to zero for θi → 0. Thus (4) loses rank in the straight
configuration. Similar observations can be drawn for the rota-
tional part of T i

i−1. This shortcoming reflects into many aspects
of the PCC soft robot’s kinematics and dynamics, producing a
variety of pathological behaviors that we will discuss in the next
sections.

Fig. 3 shows also other two issues affecting the standard
α-parametrization. Even outside the straight condition, the two
configurations (φi, θi) and (φi − π,−θi) describe the same
physical posture - as depicted in Panel (b). Panel (c) shows
a segment moving in space. This can cause a discontinuity in
the evolution expressed in φi, θi if the robot crosses the plane
corresponding to the extreme values of φi.

Finally, the actual chart ηα,i : Mi \ {N} → R
3 can be eval-

uated everywhere outside the straight configuration as [12]

θi = sign(tii−1[3]) | arcsin
√

(Ri
i−1[1, 3])

2 + (Ri
i−1[2, 3])

2|,

δLi = tii−1[3]
θi

sin θi
− L0, φi = arctan

(

tii−1[2]

tii−1[1]

)

, (6)

where Ri
i−1[j, k] is the (j, k)-th element of Ri

i−1, and tii−1[j] is

the j-th element of tii−1 in (1). ηα is then defined as the function
collecting all the ηα,i.

III. NEW PARAMETRIZATION: A SINGLE CHART COVERING

THE WHOLE MANIFOLD

In this section, we introduce a new description of the soft
robot configuration, defined by an isomorphism ηq between the

entire manifold M and R
3n (see Fig. 1). In this way we prove

that the singularity problem discussed above is not a topological
feature of the manifold Mi itself. This is reflected in a number
of practical advantages, that we discuss in the next sections.
This description is derived under the standard PPC hypotheses
discussed for the standard parametrization. In the following, we
evaluate the isomorphism ηq : M → R

3n in two steps. First, we

evaluate η−1
q : R

3n → M as combination of η−1
α : R

3n → M

and a function m : R
3n → R

3n mapping the old configuration
into the new one. As a second step, we show that η−1

q is invertible
everywhere, and we obtain ηq by inverting it.

A. Arc Lengths

Before introducing the map m(·), we need to discuss some
relevant quantities characterizing a CC segment.

We make here the assumption that each arc included in a
segment volume has same curvature. We also assume that the
bending of all the arcs take place on parallel planes. Consider

Fig. 4. Representation of the proposed q-parametrization, for the i-th segment
of a PCC robot. The left part of the figure - Panel (a) - shows the i-th CC
segment of a soft robot. The parameters qi are defined as a linear combination
of the lengths of the four arcs highlighted in figure. The two ends of each arc
are connected at a distance di from the origin of {Si−1} and {Si}. These
connections are shown by the the right side of this figure - Panels (b) and
(c) respectively - which presents the cross sections of the two ends of the CC
segment. Relevant quantities are underlined in figure.

now the four arcs highlighted in Fig. 4. They have one of their
ends connected to the frame {Si−1}, as show by the left side
of the figure. The other end is connected to the frame {Si}, as
shown by the right side of the figure. More specifically the first
arc has one end connected to [di, 0, 0]

T expressed in {Si−1},
and the other to [di, 0, 0]

T expressed in {Si}. Similarly the
other three arcs are connected to [−di, 0, 0]

T, [0, di, 0]
T, and

[0,−di, 0]
T.

We call δj,i the distance between the end of the j-th arc on
the top side, and the straight line included in the plane n̂i-êi,
perpendicular to the direction of bending, and passing through
the central axis of the segment - as shown by right side of Fig. 4.
Trigonometric considerations yield the following expressions
for these distances

δ1,i(φi) = +di cos(φi), δ2,i(φi) = −di cos(φi),

δ3,i(φi) = +di sin(φi), δ4,i(φi) = −di sin(φi) ,
(7)

where φi is the direction of bending, as defined in Section II.
Consider now the plane on which the j-th arc bends. The

cross-section that it identifies is shown in Fig. 2(c). The length
of the four arcs can thus be evaluated through simple geomet-

ric considerations asLδj,i = θi(
Li

θi
− δj,i) = Li − θiδj,i, where

Li = L0,i + δLi is the length of the central axis of the segment,
and θi is the the angle of curvature as defined in Section II.
Combining this equation with (7) leads to the closed form of the
four lengths as function of αi

L1,i(φi, θi, δLi) = L0,i + δLi − θdi cos(φi),

L2,i(φi, θi, δLi) = L0,i + δLi + θdi cos(φi),

L3,i(φi, θi, δLi) = L0,i + δLi − θdi sin(φi),

L4,i(φi, θi, δLi) = L0,i + δLi + θdi sin(φi). (8)

B. Improved Parametrization

We calculate the difference in length between the two arcs
having one of their ends connected along n̂i−1, and between the



1004 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 2, APRIL 2020

remaining two

∆x,i =
L2,i − L1,i

2
= θidi cos(φi),

∆y,i =
L4,i − L3,i

2
= θidi sin(φi). (9)

These two variables contain all the information about θi and φi,
and at the same time they have a direct connection to physical
quantities. Even more importantly, (9) is such that all the αi

such that θi = 0 - i.e. in the straight configuration - are mapped
to a single value regardless the value of φi. In this way all the
redundant representations collapse into a single non redundant
one (see Fig. 1).

We therefore propose to use ∆x,i and ∆y,i as a substitute for
θi and φi, yielding the transition map

⎡

⎣

φ

θ

δL

⎤

⎦

m(·)
−−→

⎡

⎣

∆x

∆y

δL

⎤

⎦ . (10)

We will call in the following qi =
[

∆x,i ∆y,i δLi

]T
∈ R

3

configuration of the i-th segment in the new parametrization, q ∈
R

3n is the vector collecting all the qi, and it is the configuration
vector of the robot expressed in the new parametrization.

The explicit expression for mi(·) is

φi(qi)=arccos

(

∆x,i

∆i

)

= arcsin

(

∆y,i

∆i

)

, θi(qi) =
∆i

di
,

(11)
f The Jacobian αJq of m(q) is block diagonal, and the i-th block
can be obtained by direct derivation of (11)

αJq,i(qi)=
1

di∆2
i

⎡

⎣

−di∆y,i di∆x,i 0
∆i∆x,i ∆i∆y,i 0

0 0 di∆
2
i

⎤

⎦ . (12)

C. Inverse Chart

We evaluate the inverse chart η−1
q : M → R3n by

composition

η−1
q = m−1 ◦ η−1

α , (13)

where η−1
α andm−1 are defined in (2) and (11). Simple algebraic

steps lead to the explicit form (14) shown at the bottom of this

page, where ∆i =
√

∆2
x,i +∆2

y,i.

To assure that η−1
q is actually the inverse of a function ηq - i.e.

that it is invertible - we evaluate its Jacobian. Combining (12)
and (4) yields

xJq(∆x,∆y, δL) =
xJα(m(q)) αJq(q) . (15)

We can not report its explicit form for the sake of space. We

report instead its determinant, with ∆i =
√

∆2
x,i +∆2

y,i,

det(xJq)=

(

cos

(

∆i

di

)

− 1

)2
(δLi + L0,i)

2

(∆i/di)
4 , (16)

which is strictly positive and with limits in ∆i → 0 (straight

configuration) well defined, and equal to (δLi + L0,i)
2/4. Eval-

uating the Jacobian for the rotational part would lead to similar
results, that we will report in future work.

Thus, ηq exists and it is an isomorphism by construction.

D. Atlas

We build now ηq by inverting the η−1
q just derived. The values

of qi can be calculated by inspection, yielding

∆x,i = tii−1[1]∆c(δL), ∆y,i = tii−1[2]∆c(δL),

δLi = tii−1[3]
di arccos(R

i
i−1[3, 3])

sin(arccos(Ri
i−1[3, 3]))

− L0,i, (17)

where Ri
i−1[j, k] and tii−1[j] are defined as above, and

∆c(δL) =
di

L0 + δL

arccos(Ri
i−1[3, 3])

2

Ri
i−1[3, 3]− 1

.

For the sake of space and readability, we consider di = 1m in
the rest of the letter. Note that this is a free parameter, that
we could also choose to match some specific location, e.g.
where strain sensors are placed, so to have direct readings of
the configuration.

IV. DYNAMICS

As discussed in [5], [12], PCC soft robots are Lagrangian
systems and their dynamics can be expressed in the standard
form. For the classic α-parametrization the following results

Bα(α)α̈+ Cα(α, α̇)α̇+Kαα+Dα(α)α̇ = Aα(α)u, (18)

where α ∈ R
3n is the configuration vector as introduced in

Section II, with its time derivatives α̇, α̈ ∈ R
3n.Bα ∈ R

3n×3n is
the inertia matrix, Cαα̇ ∈ R

3n collects Coriolis and centrifugal
forces, Kαα ∈ R

3n is the linear elastic field, and Dα(α)α̇ ∈
R

3n is the configuration dependent damping. Aα ∈ R
3n×3n

maps the input u ∈ R
3n in wrenches producing independent

accelerations α̈. Eq. (18) is a standard ordinary differential
equation if Bα is full rank, and it is completely actuated if
Aα is full rank. We will show in the following that neither of
these two conditions can be fulfilled everywhere, when using
the α-parametrization.

Ri
i−1 =

⎡

⎢

⎢

⎢

⎣

1 +
∆2

x,i

∆2
i

(

cos
(

∆i

di

)

− 1
)

∆x,i∆y,i

∆2
i

(

cos
(

∆i

di

)

− 1
)

−∆x,i

∆i
sin

(

∆i

di

)

∆x,i∆y,i

∆2
i

(

cos
(

∆i

di

)

− 1
)

1 +
∆2

y,i

∆2
i

(

cos
(

∆i

di

)

− 1
)

−∆y,i

∆i
sin

(

∆i

di

)

∆x,i

∆i
sin

(

∆i

di

)

∆y,i

∆i
sin

(

∆i

di

)

cos
(

∆i

di

)

⎤

⎥

⎥

⎥

⎦

tii−1 =
di(L0,i + δLi)

∆2
i

⎡

⎢

⎢

⎢

⎣

∆x,i

(

1− cos
(

∆i

di

))

∆y,i

(

1− cos
(

∆i

di

))

∆i sin
(

∆i

di

)

⎤

⎥

⎥

⎥

⎦

(14)
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Similarly, using the here proposed parametrization yields the
following dynamics

B(q)q̈ + C(q, q̇)q̇ +Kq +Dq̇ = A(q)u (19)

with symbols defined in analogy to (18).
We derive in the next subsections the terms of both (18) and

(19), underling the flows of the first, and how they are overcame
in the second.

A. Singularity of the Inertia Matrix

A first main issue generated by the α-description of the state
is the inertia matrix that it produces. Consider as an example
the simple case of single point mass µ, connected at the tip of a
CC segment. The inertia matrix can be evaluated as follows by
using the Jacobian (4)

Bα = µ
(

xJT
α

xJα
)

= µ

⎡

⎣

bφφ(θ, δL) 0 0

0 ∗ ∗

0 ∗ ∗

⎤

⎦ , (20)

where the asterisks are non null elements that we do not report
for the sake of space, and

bφφ(θ, δL) =
(cos (θ)− 1)2

θ2
(δL+ L0)

2 , (21)

which is the rotational inertia associated to φ̈. As anticipated,
limθ→0 bφφ(θ, δL) = 0. Thus Bα loses rank in the straight
configuration, making (18) a differential algebraic equation,
which is of course much more difficult to study, control, and
simulate [19] than a standard ordinary differential equation. We
will discuss the effect of this shortcoming in the simulations
reported in following sections. Note that this behavior can not
be prevented even adding rotational inertia. Indeed, the issue
is produced by the fact that when θ = 0 the robot does not
physically move when φ changes.

We evaluate now the inertia matrix in q-space, using (15)

B = µ
(

xJT
q

xJq
)

= µ

⎡

⎢

⎣

bxx
∆x ∆y L2 (∆−s∆)2

∆6
∆x D
∆4

∆x ∆y L2 (∆−s∆)2

∆6 byy
∆y D

∆4

∆x D
∆4

∆y D

∆4 − 2 c∆−2
∆2

⎤

⎥

⎦
(22)

where with D = L (2 c∆ + s∆ ∆− 2), L = δL+ L0, ∆ =
√

∆2
x +∆2

y, c∆ = cos(∆), and s∆ = sin(∆). We do not report

bxx and byy for the sake of space. The limit for ∆ → 0 (straight
configuration) is well defined, and it is

lim
∆x→0
∆y→0

B(∆x,∆y, δL) = µ

⎡

⎢

⎣

(δL+L0)
2

4 0 0

0 (δL+L0)
2

4 0
0 0 1

⎤

⎥

⎦
, (23)

which is full rank for all physically meaningful configurations.2

We do not report neither Cα(q, q̇) nor C(q, q̇) for the sake
of space and readability. They share the same characteristics of
the respective inertia matrices in terms of well possessedness
around the straight configuration.

B. Linear Impedance

As discussed in [12], the elastic field expressed inα space is in
the linear form Kα. The stiffness matrix Kα is block diagonal,

2In δL = −L0 both (22) and (20) lose rank since the soft robot is so
compressed to collapse in a single point.

Fig. 5. We consider as control input ui for the i-th segment, the wrench
having as first two elements the torques around n̂i and êi - called τx,i and
τy,i respectively - and as third the force in the direction of ôi - called fz,i. Note
that - being the wrench internal - the same torques and force are produced with
opposite side around the frame {Si−1} (not shown in picture).

with i-th block

Kα,i =

⎡

⎣

0 0 0

0 κθ,i 0

0 0 κδL,i

⎤

⎦ . (24)

To map the elastic force to the new configuration space, we
express αi in terms of qi through (11), and we map the force
produced back to q-space through pre-multiplication for αJq,i
in (12)- i.e. by using the kineto-static duality [20]. This yields

αJT
q,i(q)Kα,i mi(qi)=

⎡

⎣

κθ,i 0 0

0 κθ,i 0

0 0 κδL,i

⎤

⎦

⎡

⎣

∆x,i

∆y,i

δLi

⎤

⎦

.
= Kiq ,

(25)
which in addition to being linear is also with full rank stiffness.
K is the block diagonal matrix having Ki as i-th block.

The damping acting in α space [12] is Dα(θ)α̇. The matrix
Dα(θ) is block-diagonal, with i-th block

Dα,i(θi) =

⎡

⎣

βθ,iθ
2
i 0 0

0 βθ,i 0

0 0 βδL,i

⎤

⎦ , (26)

which is nonlinear, configuration dependent, and it loses rank in
θi = 0. As for Kα, the damping expressed in α can be mapped
in q through pre-multiplication for αJT

q . Furthermore, α̇ can
be evaluated from q̇ through pre-multiplication for the same
Jacobian. Therefore, the damping force expressed in q space is
Dq̇. Again, D is block-diagonal, with i-th block

Di
.
=αJT

q,i(q)Dα,i(mi(qi))
αJq,i(qi)=

⎡

⎣

βθ,i 0 0

0 βθ,i 0

0 0 βδL,i

⎤

⎦ ,

(27)
which, as Ki, is constant and full rank.

C. Singularity of the Input Mapping

As already highlighted by (18) and (19), in soft robots it is
usually not possible to exert wrenches acting directly and inde-
pendently on the accelerations. Instead, the input u is mapped to
the state through a configuration dependent transmission matrix,
that is different for the two parametrizations. In order for the
systems to be fully actuated, these matrices should be full rank.
This property is a function of how fine is the discretization of
the continuum dynamics of the soft robot. In this work we take a
single CC segment for each actuated segment, leading to a square
transmission matrix. Even under this coarse discretization, Aα
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Fig. 6. Results of simulations expressed in the q (panels (a–c)) and α (panels (d-f)) parametrization for a single CC segment, with mass concentrated in its tip.
Panels (a,d) show an example of open loop unforced evolutions. Panel (a) shows the evolution when the system is simulated in q-space. Panel (d) shows the evolution
simulated in α-space with superimposed m(q), i.e. the estimation of α from the simulation in q. The initial conditions are q = [0.5 0.5 0]Tm, q̇ = [0 0 0]T,

α = m(q), α̇ = [0 0 0]T. Panels (b, e) show an example of open loop forced evolutions, with constant input u ≡ [0.1 Nm 0.2 Nm − 0.1N]T. Panel (b) shows
the evolution when the system is simulated in q-space. Panel (e) shows the evolution simulated in α-space with superimposed m(q). The system starts from the
equilibrium state q = 0, α = 0. Panels (c, f) show an example of trajectory tracking in state space, resulting from the application of controllers (35) and (36). The
two trajectories αref and qref are chosen so to produce the same motion in the robot. Panel (c) shows the resulting evolution in q space, i.e. when using (36). Panel
(f) depicts the evolutions in α space obtained using (35), and as m(q).

is not full rank, while A is. We consider here the input vector
u ∈ R3n, such that u3i−2 = τx,i, u3i−1 = τy,i, u3i = fz,i, as
defined in Fig. 5.

We start from the input mapping for α, which is a block
diagonal matrix with i-th block defined as

Aα,i(α) = JT
i (q)Ri

0(q)− JT
i−1(q)R

i−1
0 (q), (28)

where Ji is the Jacobian matrix mapping α̇i into the angular
velocity expressed around n̂i and êi, and the linear velocity
projected on the ôi. R

i
0 is the rotation matrix mapping {Si} into

{S0}. This latter rotation has the role of making the definition of
the wrench local, while the second term in the subtraction takes
into account the internal nature of the actuation. Evaluating (28)
leads to

Aα,i(φi, θi, δLi)=

⎡

⎢

⎢

⎢

⎣

−cφi
sθi −sφi

sθi 0

−sφi
cφi

(L0,i+δLi)
θi − sθi
θi

2

0 0
sθi
θi

⎤

⎥

⎥

⎥

⎦

.

(29)
where cφi

, sφi
, cθi , sθi are cos(φi), sin(φi), cos(θi), sin(θi)

respectively, and L0,i is the rest length of the central axis of the
segment. In the straight configuration the matrix is

Aα,i(φi, 0, δLi)=

[

0 0 0
−sφi

cφi
0

0 0 1

]

, (30)

which is not full rank and thus not invertible. This is a strong
limitation for the development of feedback controllers, since it
prevents the introduction of the full actuation hypothesis around
the straight configuration.

Also this problem is solved by the proposed parametrization.
Matrix A in (19) can be evaluated by using the kineto-static
duality; we map a torque expressed in α to a torque expressed
in q by pre-multiplication of the Jacobian in (12). The following
matrix results

A(q) = αJT
q (∆x,∆y, δL)Aα(m(∆x,∆y, δL)), (31)

Fig. 7. Control action exerted by (35) during trajectory tracking of a sinusoidal
reference trajectory. Each time the system gets close to the condition θ ≃ 0, Aα

becomes bad conditioned, and the control action increases consequently. The
right side reports one of the spikes zoomed to reveal high frequency chattering.

which is again block diagonal, with diagonal elements Ai(qi)
equal to

⎡

⎢

⎢

⎣

∆x,i ∆y,i Di

∆3
i

−∆2
x,i ∆i−∆2

y,i sin(∆i)

∆3
i

∆x,i Di Li

∆3
i

∆2
y,i ∆i+∆2

x,i sin(∆i)

∆3
i

−∆x,i ∆y,i Di

∆3
i

∆y,i Di Li

∆3
i

0 0 sin(∆i)
∆i

⎤

⎥

⎥

⎦

,

(32)

with ∆i =
√

∆2
x,i +∆2

y,i, Li = δLi + L0,i, and Di = ∆i −

sin(∆i). The limit in the straight configuration is well defined
and full rank. Thus system (18) is not completely actuated
everywhere, while (19) is.

D. Simulations

The above discussed terms can be used to simulate the
system in α-parametrization as α̈ = −BI

α(α)(Cα(α, α̇)α̇+
Kαα+Dα(α)α̇−Aα(α)u), where we heuristically defined a
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Fig. 8. The evaluation of the closed loop expressed in α is substantially more
onerous than the one expressed in q. This histogram is produced by collecting
execution times from the trajectory tracking of 103 sinusoids with random
amplitude and frequency, each one simulated for 15 seconds.

Fig. 9. Tracking of a trajectory in Cartesian space with the robot’s tip. In panel
(a) the evolution does not reach configurations near to φ ≃ ±π, and it passes
only one time from the straight configuration. Thus the controller designed in
α space (crosses in figure) only has a 1 second delay in reaching the reference
(dashed line) if compared with the one designed in q space (solid line). In panel
(b) instead the robot is asked to cross that boundary several time, resulting in a
completely inconsistent behavior when the controller designed inα is used. Very
good performance are instead obtained with the controller designed in q space.

continuation for the inverse of Bα as BI
α(α) = B−1

α (r(α)); r(·)
substitutes to each θi a value ǫ, if |θi| < ǫ. In the following
we consider ǫ = 10−2. Since all the terms in (19) are well
defined, we can directly integrate the dynamics in the usual way
q̈ = −B−1(q)(C(q, q̇)q̇ +Kq +Dq̇ −A(q)u).

We consider here a single constant curvature segment, with a
1 Kg mass concentrated in its tip and negligible inertia (see
Section IV-A). The other parameters are κθ = 1Nm

rad , κδL =

1N
m , L0 = 1m, βθ = 0.1Nms

rad , βδL = 0.1Ns
m . Fig. 6(a) and 6(d)

show the results of a simulation with u ≡ 0, and with the ini-
tial conditions q(0) = [0.5 0.5 0]Tm, q̇(0) = [0 0 0]T, α(0) =

m(q(0)), α̇(0) = [0 0 0]T. We evaluate φ and θ from q, and we
plot them together with the ones obtained by directly integrat-
ing α̈ in Fig. 6(d). The two evolutions are perfectly superim-
posed. Fig. 6(b) and 6(e) show a step response for the same
soft robot, starting from rest conditions. The amplitude of the
step is [0.1 Nm 0.2 Nm − 0.1 N]T. Again, the two evolutions
are superimposed. These simulations further confirm that the
q-parametrization is a proper alternative to α one. We will show
through simulations the advantages of the first w.r.t. the latter in
Section V-B.

V. CLOSED LOOP

In this section we consider the limitations of the classic
parametrization - and how the proposed one solves them - for
what concerns the closure of the loop.

A. Controller

We specify the trajectory in state space implementing a de-
sired evolution of the robot’s tip in Cartesian space xref , through
a standard Jacobian based kinematic inversion algorithm

α̇ref =
xJα

+(ẋd + kx(xd − x)), (33)

and

q̇ref =
xJq

+(ẋd + kx(xd − x)), (34)

where x ∈ R
3 is the position of the robot’s tip in Cartesian

coordinates. The control action regulating the system on αref

and qref is the one proposed in [5]

u = AI
α(α)(−Bα(α)α̈ref − Cα(α, α̇)α̇ref −Kααref

−Dα(α)α̇ref +KP(αref − α)−KD(α̇ref − α̇)), (35)

and

u = A−1(q)(−B(q)q̈ref − C(q, q̇)q̇ref −Kqref

−Dq̇ref +KP(qref − q)−KD(q̇ref − q̇)). (36)

It is important to underline that, while the structure of the
two controllers is the same, the resulting algorithms are deeply
different due to the parametrization.

B. Simulations

We consider κx = 100, KP = 1, KD = 1. The dynamical
systems are the same used in Section IV-D, i.e. single CC
segment with mass concentrated in its tip. We first test the
performances of the two controllers (35) and (36) in track-
ing a trajectory in configuration space. The two references
are selected so to map in a same trajectory in M, i.e. qref =
[0.5, −0.5, 0.1] sin(t)m, and αref = m−1(qref). The deriva-
tives are evaluated accordingly. Note that αref is cosinusoidal
too. The initial condition is the straight configuration. Fig. 6(c)
and 6(f) report the results of this simulation. The system con-
trolled by (36) reaches the steady state in about 1s, while the one
controlled by (35) takes about 4s. Panel (b) of the same figure
shows that this slower behavior is to be inputed to the discussed
issues in φ.

While this is not a desirable behavior, it is not the main issue
of (35). Fig. 7 shows the control action generated during the
tracking of the trajectory just discussed. Each time the system
gets close to the singularity, the control action starts to chatter
and it spikes up to 50 times the maximum torque it would
produce otherwise. Neither the spikes nor the chattering are
present when using (36).
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Fig. 10. A soft CC segment is controlled through (36) and (34), to follow a Lissajous curve with its tip. This behavior can not be produced by using a controller
designed in α, since it involves having φ crossings of the ±π boundary, and the robot moving close the straight configuration. Panel (a) shows the evolution of the
tip position in time. Panel (b) depicts the evolution of the tip in Cartesian space. Panel (c) reports the evolution in time of q.

Another pathological behavior of (35) can be spotted by
looking at execution times. To test the efficiency of the two
algorithms in terms of computational resources needed, the
two models are simulated on a same computer and in same
conditions. Fig. 8 reports an histogram collecting the execution
times of one thousand trajectory tracking simulations, with

qref = −[1; 1; 0.25]m + [φ̂, θ̂, δ̂L] sin(ωt), with φ̂, θ̂, δ̂L and
ω extracted from an uniform distribution ranging from 0 to
2 m, 2 m, 0.25 m, 10 Hz respectively, and αref = m−1(qref).
We used MatLab2017b. No extra task was executed on the
computer during the simulations. Dormand-Price variable step
algorithm was used for integration, with minimum sampling
rate 10Hz and relative tolerance 10−4. Larger values of relative
tolerance generate instable behaviors when α parametrization is
used. The closed loop (35) is ∼10 times more computationally
onerous to evaluate than (36).

We now close the loop with the kinematic inversion algo-
rithms (33) and (34). Fig. 9(a) shows the tracking of a sinusoidal
trajectory in Cartesian space. Both control architectures work
with comparable results. When instead the robot is asked to
cross the boundary of φ = ±π, the differences between the two
controllers become dramatic, as illustrated by Fig. 9(b). Finally,
Fig. 10 shows the tracking of a more complex trajectory in
Cartesian space. Only the controller built with the here proposed
q-parametrization - i.e. (36) and (34) - is able to perform the task.
We did not report the performance of the system controlled with
(35) and (33), since it diverged very rapidly.

VI. CONCLUSIONS AND FUTURE WORK

This work analyzed an improved parametrization for the state
space of three dimensional soft robots with piecewise constant
curvature. It then discussed the main limitations of the standard
PCC parametrization, and it showed that the new one solves
them. The main focus of the work has been on the control
application of the considered parametrization. Future work will
be devoted to testing the use of the proposed parametrization
with experiments on a real robot. We will also investigate the
use of this parametrization in combination with polynomial
curvature models [21], to extend the latter to the 3D case.

ACKNOWLEDGMENT

The authors would like to thank NSF for this support.

REFERENCES

[1] T. G. Thuruthel, Y. Ansari, E. Falotico, and C. Laschi, “Control strate-
gies for soft robotic manipulators: A survey,” Soft Robot., vol. 5, no. 2,
pp. 149–163, 2018.

[2] D. Rus and M. T. Tolley, “Design, fabrication and control of soft robots,”
Nature, vol. 521, no. 7553, pp. 467–475, 2015.

[3] T. G. Thuruthel, E. Falotico, M. Manti, and C. Laschi, “Stable open loop
control of soft robotic manipulators,” IEEE Robot. Autom. Lett., vol. 3,
no. 2, pp. 1292–1298, Apr. 2018.

[4] M. Thieffry, A. Kruszewski, O. Goury, T.-M. Guerra, and C. Duriez,
“Dynamic control of soft robots,” in Proc. Int. Conf. Soft Robot. World

Congress, 2017, pp. 46–53.
[5] C. Della Santina, R. K. Katzschmann, A. Bicchi, and D. Rus, “Model-based

dynamic feedback control of a planar soft robot: Trajectory tracking
and interaction with the environment,” Int. J. Robot. Res., 2019, doi:
10.1177/0278364919897292.

[6] G. Runge and A. Raatz, “A framework for the automated design and
modelling of soft robotic systems,” CIRP Ann., vol. 66, no. 1, pp. 9–12,
2017.

[7] B. Kim, J. Ha, F. C. Park, and P. E. Dupont, “Optimizing curvature sensor
placement for fast, accurate shape sensing of continuum robots,” in Proc.

IEEE Int. Conf. Robot. Autom., 2014, pp. 5374–5379.
[8] B. A. Jones and I. D. Walker, “Kinematics for multisection continuum

robots,” IEEE Trans. Robot., vol. 22, no. 1, pp. 43–55, Feb. 2006.
[9] H. Wang, B. Yang, Y. Liu, W. Chen, X. Liang, and R. Pfeifer, “Visual

servoing of soft robot manipulator in constrained environments with an
adaptive controller,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 1,
pp. 41–50, Feb. 2017.

[10] V. Falkenhahn, A. Hildebrandt, R. Neumann, and O. Sawodny, “Model-
based feedforward position control of constant curvature continuum robots
using feedback linearization,” in Proc. IEEE Int. Conf. Robot. Autom.,
2015, pp. 762–767.

[11] C. Della Santina, R. K. Katzschmann, A. Bicchi, and D. Rus, “Dynamic
control of soft robots interacting with the environment,” in Proc. IEEE Int.

Conf. Soft Robot., 2018, pp. 46–53.
[12] R. K. Katzschmann, C. Della Santina, T. Yasunori, A. Bicchi, and D. Rus,

“Dynamic motion control of multi-segment soft robots using piecewise
constant curvature matched with an augmented rigid body model,” in Proc.

IEEE Int. Conf. Soft Robot., 2019, pp. 454–461.
[13] F. Renda, F. Boyer, J. Dias, and L. Seneviratne, “Discrete cosserat approach

for multisection soft manipulator dynamics,” IEEE Trans. Robot., vol. 34,
no. 6, pp. 1518–1533, Dec. 2018.

[14] W. S. Rone and P. Ben-Tzvi, “Continuum robot dynamics utilizing the
principle of virtual power,” IEEE Trans. Robot., vol. 30, no. 1, pp. 275–287,
Feb. 2014.

[15] S. Grazioso, G. Di Gironimo, and B. Siciliano, “A geometrically exact
model for soft continuum robots: The finite element deformation space
formulation,” Soft Robot., vol. 6, no. 6, pp. 790–811, 2019.

[16] H. Sadati et al., “TMTDyn: A matlab package for modeling and con-
trol of hybrid rigid-continuum robots based on discretized lumped
system and reduced order models,” Int. J. Robot. Res., 2019, doi:
10.1177/0278364919881685.

[17] M. W. Hannan and I. D. Walker, “Kinematics and the implementation of
an elephant’s trunk manipulator and other continuum style robots,” J. Field

Robot., vol. 20, no. 2, pp. 45–63, 2003.
[18] R. J. Webster III and B. A. Jones, “Design and kinematic modeling of

constant curvature continuum robots: A review,” Int. J. Robot. Res., vol. 29,
no. 13, pp. 1661–1683, 2010.

[19] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differen-

tial Equations and Differential-Algebraic Equations, vol. 61. Philadelphia,
PA, USA: SIAM, 1998.

[20] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling,

Planning and Control. Berlin, Germany: Springer Science & Business
Media, 2010.

[21] C. Della Santina and D. Rus, “Control oriented modeling of soft robots:
the polynomial curvature case,” IEEE Robot. Autom. Lett., vol. 5, no. 2,
pp. 290–298, Apr. 2020.

https://dx.doi.org/10.1177/0278364919897292
https://dx.doi.org/10.1177/0278364919881685

