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On an infinitesimal approach to semisimple Lie groups and raising and 
lowering operators of O(n) and U(n) 

M. D.Gould 

Department of Mathematical Physics, University of Adelaide, G.P.D. Box 498, Adelaide, South Australia, 5001 

(Received 7 February 1978; revised manuscript received 11 January 1979) 

A purely algebraic approach to the evaluation of the fundamental Wigner coefficients and 

reduced matrix elements of O(n) and U(n) is given. The method employs the explicit use of 

projection operators which may be constructed using the polynomial identities satisfied by the 

infinitesimal generators of the group. As an application of this technique, a certain set of raising 

and lowering operators for O(n) and U(n) are constructed. They are simpler in appearance than 

those previously constructed since they may be written in a compact product form. They are, 

moreover, Hermitian conjugates of one another, and therefore are easily normalized. 

1. INTRODUCTION 

I t has been shown 1-5 that the infinitesimal generators of 

semisimple Lie groups may be assembled into a matrix 

which satisfies a certain polynomial identity (herein called 

the characteristic identity) over the center of the universal 

enveloping algebra. On a representation admitting an infini

tesimal character such an identity reduces to a polynomial 

identity over the underlying field (usually the real or com

plex field). In such a case the polynomial identity may be 

written in a convenient factored form.2.3 In particular when 

acting on a finite dimensional irreducible representation of 

the group the polynomial identity reduces to the identities 

encountered recently by several authors for the various clas

sical groups. 5-7 

The idea of assembling the infinitesimal generators of 

the classical groups into a matrix is not new and has proved 

in the past to be a useful technique.8
-

1O By taking traces of 

powers of such a matrix one obtains a full set of invariants 

which serve to label the representations of the group com

pletely, a fact which was recognized early.4,10 The eigenva

lues of such invariants (and invariants of a related nature) 

have been studied and computed by several authors. I 1-13 Re

cently, however, a simple and systematic procedure for eval

uating such invariants has been developed which employs 

the characteristic identities (see Ref. 11 and also compare 

with Ref. 13, Appendix B). In fact one may simply construct 

a full set of invariants for an arbitrary semisimple Lie group 

by the use of such methods. A general formula for the eigen

values of these invariants, which applies to infinite as well as 

finite dimensional representations, has been developed in 

Ref. 3. This fact alone illustrates the potential importance of 

the characteristic identities in applications to group theory. 

This paper is the first in a series which deals with the 

applications of the characteristic identities to the theory of 

groups. One of our principle aims is to show how one may 

evaluate the mUltiplicity free Wigner coefficients of a semi

simple Lie group. It was noted early by Fano l4 that the char

acteristic identities (for the unitary groups of low order) 

were valuable for the explicit construction of projection op

erators. This idea was incorporated into subsequent work of 

Baird and Biedenharn4 who noted that this algebraic tech

nique would combine nicely with their evaluation of the fun-

l amental Wigner coefficients for the general unitary groups. 

However, the idea was not considered further and it is our 

aim to pursue this matter in detail. The principle motivation 

for this paper, however, is that since the characteristic iden

tities for arbitrary semisimple Lie groups are known the 

technique is generalizable to more general groups other than 

the relatively well known unitary groups. 

The present paper deals solely with the orthogonal and 

unitary groups although possible extensions to more general 

groups are discussed in the concluding section. It is our prin

ciple aim to show how certain fundamental Wigner coeffi

cients for O(n) and U(n) may be evaluated in a straightfor

ward and simple manner by applying the use of projection 

operators which are constructed by means of the character

istic identities. At the same time we shall make an effort to 

relate our results to those obtained by Biedenharn, Louck, 

and Baird '5
,16 who have given the evaluation of all multiplic

ity free Wigner coefficients for the unitary groups. Although 

our approach is intimately related to the approach employed 

by Baird and Biedenharn '6 there is one essential difference. 

The Wigner coefficients of the group are obtainable using 

only the properties of the projectors for which we have an 

explicit expression in terms of polynomials in the group gen

erators. Calculations may then be carried out using only the 

Lie algebra commutation relations. Since the identities and 

associated projectors have been constructed explicitly for ar

bitrary semisimple Lie groups'7 this method is generalizable, 

in principle, to the general case. 

As an application of this technique we shall construct a 

certain set of raising and lowering operators for U(n). These 

operators are different to those constructed by Nagel and 

Moshinsky" and may be written in a convenient product 

form. They are moreover Hermitian conjugates of one an

other which makes their normalization simple. 

We shall also consider an extension of these results to 

the orthogonal subgroup ofU(n). In particular the raising 

and lowering operators of the orthogonal groups are ob

tained which are different from those obtained by Wong19 

and Pang and Hecht. 20 Our approach to the orthogonal 

group in particular is considerably simpler than previous 

treatments and is no more difficult than the U(n) case. The 

raising and lowering operators for O(n) may also be written 
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in a compact product form and are moreover Hermitian con

jugates of one another. 

2. WIGNER COEFFICIENTS OF Urn) 

The generators aj of the Lie group U(n) satisfy the com

mutation relations 

i k k i i k 
[apal] = Djal - Dlaj 

and the hermiticity property 

(aj)t = a{. 

These generators may be assembled into a square matrix a 

whose (i,i) entry is the generator aj. Polynomials in a may 

then be defined recursively by the formula 

(am)) = (am - I);P; = a~(am - It 

By a simple induction argument one may show that if p(x) is 

any polynomial then the entries of the matrix p(a) satisfy the 

Hermiticity property 

[p(a)j]t = p(a){. (1) 

It has been shown2.3 that the matrix a satisfies a polyno

mial identity over the center of the enveloping algebra which 

may be written in its factorized form as 
n 

II (a - ar) = 0, (2) 
r=1 

where the a r are invariants of the group whose eigenvalues 

on a representation ofU(n) with representation label 

(A1, ... ,An) are given by 

ar=Ar + n - r. 

Associated with the matrix a is its adjoint ii defined by 

a; = - aj. As for the matrix a one may define polynomials in 

the matrix ii recursively by the formula 

(am)j = (am - I);iit = ii.;k(am - lk 
The adjoint matrix ii satisfies the polynomial identity 

n 

II (ii - iir) = 0, (3) 
,= 1 

where the roots ii, are related to the a, by 

ii,=n -I-a,. 

By virtue of the identities (2) and (3) projection opera

tors P [r] and per] may be constructed by setting 

P [r] = II ( a - a l ), per] = II ( ii - iii ). 
'*' a, - a l 1*, a, - al 

Such projection operators are useful since they may be used 

to define rather general functions of the matrix a by setting 

n n_ 

p(a) = 2: p(ar)P[r], p(ii)= 2: p(iir)P[r]. (4) 
r= I ,= I 

Suppose now that 1T* denotes the fundamental contra

gredient vector representation ofU(n) and let V* be the re

presentation space of 1T*. Then on V* the generators aj are 

represented by elementary matrices 1T*(aj ) = - E /, where 

E /, has 1 in the (j,i) position and zeros elsewhere. It follows 

then that the matrix a may be written 

n n 

a = 2: Ej aj = - L 1T*(ti;)aJ. 
iJ= 1 iJ= 1 

445 J. Math. Phys., Vol. 21. No.3, March 1980 

In passing it is interesting to note that in the case of 

SU(2) where 1T* is the spin representation one obtians the 

matrix originally considered by Dirac in connection with 

wave equations for particles of higher spin. This same matrix 

also occurs in the quantum mechanics of a spinning electron 

in three dimensions (Landes interval rule) and appears again 

as one of the ladder operators considered by Louck21 and 

others. 

Now let V(A) denote a finite dimensional irreducible 

module over U(n), with highest weight A, and let 1T;., be the 

representation afforded by V(A). On V(A) the entries of the 

matrix a are represented by endormorphisms aj=1T;., (a}). In 

such a case a may be written in the form 

a = - i 1T*(ti;)1T;.,(aj) 
iJ= 1 

and hence a may be regarded as an operator on the product 

space V* 181 V(A). 

Following Hannabuss6 the matrix a may be written in 

invariant form, when acting on V(A), as 

a = - ![1T* ®1T;.,(12) -1T*(12)® 1-1 18117';.,(12)], 

where 12 is the universal Casimir element 

n 

12 = L aja{. 
iJ= I 

To see this we note that a is an operator on the tensor prod

uct space V * 181 V (A ). On V * the generators are represented 

by elementary matrices - E 1 and on V (A ) by 17';., (aj). On 

V * 181 V (A ) the generators therefore are 

1T* 181 17';., (aj) = - E {® 1 + 1 181 1T ;., (aj), 

so one may write 

1T* 181 1T;.,(12) = i [- E1® 1 + I® 17';.,(aj)] 
iJ= I 

X [ - Ej® 1 + I®1T;\(a0]. 

Rearranging this expression we obtain 

n . . 

L E 117';., (a 'J = - H 1T* 181 17';\ (12) - 17'*(12) 181 1 
iJ= 1 

- 1 181 1T;\ (12)] , 

where the left-hand side is the matrix a ofU(n) as required. 

Decomposing the tensor product representation 

V * 181 V (A ) we obtain the Clebsch-Gordon reduction 

n 

V * 181 V (A ) = L V (A - A,), 
,= I 

where A, is the weight with 1 in position r and zeros else

where. On each space V(A - Ar) the operator a takes the 

constant value 

- H17';\ - ~P2) - 1T*(12) - 17';\ (12 )] = Ar + n - r, 

which are the roots a r of the characteristic identity. More 

generally if p(x) is any polynomial then on the space 

V (A - A,), pea) takes the constant pear)' In particular the 

U(n) projector P [r] takes the constant value 1 on the space 

V (A - A ,) and zero on the remaining V (A - A k) (k=t=r). 
ThusP[r] projects V*® V(A)onto V(A -A,). We may ex

press this in terms of Gel'fand patterns as 
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1
1L-..::1) 11L-..::1) 

P [r] (fL) S = Drs (fL) S , 
(5) 

where 

I
lL - ..::1s) 

(fL) 

denotes a Gel'fand basis state for the space V (IL -..::1 s) and 

(fL) denotes a Gel'fand pattern for the subgroup U(n - 1). 

Now let 

I~), I(~/) 
be two Gel'fand basis states in the space V (IL ). Then the ma

trix elements of the (iJ) entry ofthe projector P [r] between 

these states are given by 

( ILl illL) (IL 
1°1 11o 

IL) (v') P [r]j (v) = (v'); i P [r] j ;(v) , 

where 

forms the usual basis for the contragredient vector represen

tation and where 

1

1o IL ) 
j '(v) 

denotes the product state 

I ~O) ® I(~J 
Introducing a complete set of states for the product re

presentation V* ® V(IL ) these matrix elements may in tumbe 

written 

( ILl 'IIL) (IL 1011L -..::1 s
) 

(v') P [r]j (v) = (,u~,u') (v'); i (fL') 

s,1 

(
IL -..::1 I IlL -..::1 ) 

X (P') S P[r] (P) I 

(
IL -..::11110 IL) 

X (P) j ;(v) , 

where the sum on (P) and (P') is over all patterns in the 

spaces V(IL -..::11) and V(IL - ..::1 s), respectively. Using prop

erty (5) of the projector P [r] the right hand side equals 

( 
IL 1011L - ..::1 r) (IL - ..::1 r 11o IL ) (6) 

~ (v'); i (fL) (fL) j ;(v) 

The numbers 

(
IL -L1rI16 IL) 

(Il) j '(v) 

are of fundamental importance since they are Wigner 

coefficients. 

Note that Eq. (6) implies, in view ofEq. (4), that the 

matrix elements of the group generators are given by 

( ILl 'IIL) n (IL 1011L - ..::1 5
) 

(v') aj (v) = r~l (ILr + n -=-r) ~ (VI); i (fL) . 

(
IL - ..::1 r llO IL ) 

X (P) j ;(v) . 

446 J. Math. Phys., Vol. 21, No.3, March 1980 

This equation is quite easily generalized to more general 

groups and indicates that in determining the matrix ele

ments of the group generators only the associated Wigner 

coe1ficients are required. 

In certain special cases the sum (6) reduces to a single 

term enabling an evaluation of certain Wigner coefficients 

by an independent evaluation of the left hand side. The case 

of primary interest to us is the matrix element of the (r,r) 

entry of the projector P [r] between the maximal state IlL ) of 

V (IL ). In this case one obtains 

I( 1011L-..::1)12 <IL IP [r]~IIL) = I IL;; r. 

(P) r (fL) 

has weight IL - ..::1 r which is the highest weight occurring in 

V (IL - ..::1~. Hence, the term 

(
IL; 1011L - ..::1 r ) 

r (Il) 

vanishes unless 

1

1L-..::1 r ) 

( fL) 

coincides with the unique maximal state IlL - ..::1 r) of 

V(IL - ..::1 r ). One therefore obtains 

(IL IP[r];IIL) = 1(1L;1~11L _L1r)12, (7) 

Another case of interest, which we shall not treat here, 

is the case where i = j = n in Eq. (6). In this case one obtains 

the important result 

(~') I P [r 1;: I (~) = o(V')(v) I (~/); ~ IlL ~:r) \2, 

The matrix elements of P [r] ~ are quite easily evaluated as 

demonstrated in Ref. 22. This then enables a complete deter

mination of all fundamental Wigner coefficients and ulti

mately the matrix elements of the group generators. We shall 

illustrate this procedure in a forthcoming publication. It is 

also interesting to note that the technique is capable of gener

alization to infinite dimensions enabling a treatment of the 

noncom pact groups. 

The matrix element (7) is quite easily determined as 

demonstrated in Ref. 22, according to which we may write 

I( .1°1 )2 _ (ILr-.1L1+I-r-l) 
IL 1L-L1 -IT . 

, r r i>r ILr -ILl +I-r 
(8) 

Now if IlL ) is the maximal state in V (IL ) then one obtains 

P[rljllL)=O, for j>r and i= 1, ... ,n, (9) 

To see this suppose 

I(~) 
is an arbitrary state in V(IL). Application ofEq. (6) immedi

ately gives 

IAI '1) (A l6IA- L1r )(A-L1r\16 ) 
\(v') P [r]j A = ~ (v'); i (P) (P) j;lt, 

(10) 
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However, ifj> r then the state 

I ~O;A ) 

has weight A - Ll j' which is greater than the highest weight 

occurring in V (A - Ll J It follows immediately that the sum 

(10) vanishes. Sinc.e 

I(~) 
was chosen arbitrarily one obtains Eq. (9). 

By applying similar considerations to the matrix a one 

obtains the equation 

forms the usual basis for the fundamental vector representa

tion. One may then deduce the results 

<A iP[r]~IA) = I (A; 1r
O

lA + Llr) 1

2

, (11) 

per ];1.,1, ) = 0, for k r, j = 1, ... ,n. 

According to Ref. 22 the Wigner coefficient (11) may be 

evaluated using the formula 

I( 1°1 )1 2 
II(A r -At+l-r+1) A; A +Ll r = . (12) 

r i<r Ar-At+l-r 

3. REDUCED MATRIX ELEMENTS OF Urn) 

Recall that a U(n) vector operator if! is defined as a 

collection of components if! i(i = I, ... n) which satisfy 

[aj,if!k] = Djkif!i. (13) 

By taking the Hermitian conjugate of this relation one ob

tains the transformation law of contragredient vector 

operators 

i tit 
[ai'if!k] = - Dkif!j' (14) 

It is known 5
.
'6 that a vector operator if! may be resolved 

into a sum of shift vectors if![r]: 

n 

if! = 2: if![r], 
r= 1 

where if![r] increases the eigenvalue of the representation la

bel Ar by one unit leaving the other Ak unchanged; 

Akif![r] = if![r](A k + Dkr )· 

Similarly, a contragredient vector operator if! t may be re

solved into shift components if!t[r] = (if![r])t which de

crease the representation labels by one unit: 

Akif!t[r] = if!t[r](Ak - Dkr). 

Such shift vectors may be constructed by application of the 

projectors P [r] and P[r] as follows: 

447 

if![r] = P[rJif! = if!P[r], if!t[r] = if!tp [r] = P[r]if!t. 

(15) 

J. Math. Phys., Vol. 21, No.3, March 1980 

One may show (see Ref. 22 for details) that the follow

ing relations hold: 

if![r]if!t[r] = mr P [r], if!t[r]if![r] = mr per]. (16) 

The invariants mr and mr are of particular interest since 

their eigenvalues on finite-dimensional irreducible represen

tations are the squares of the reduced matrix elements of if! 

and if! t, respectively. Equation (16) may then be regarded as 

an operator generalization of the Wigner-Eckart theorem. 

The operator t,b[r] = (m r)-II2if![r] is therefore a funda

mental Wigner operator which have been treated in detail by 

Biedenham, Giovannini, Louck, and Baird.4
,'5.23 Equation 

(16) may then be rewritten in the form 

t,b[r]t,b t[r] = P [r], 

an observation previously made by Louck and Biedenham. 13 

The important thing from our point of view is that we have 

an explicit expression for P [r] as a polynomial in the matrix 

a. Equation (16) was arrived at using only purely algebraic 

techniques. 

Note that by taking the trace ofEq. (16) one obtains the 

relations 
if![i]iif!t[rl; 

m = ----, m r = 
r tiP[r]) 

if!t[rLif![r]i 

t,(P [r]) , 
(17) 

which enables a systematic method for determining the re

duced matrix elements. (The traces ofthe projectors P [r] and 

P[r] have been evaluated in Refs. II and 22.) 

We now note that if 1.,1, ) is a maximal weight state of 

weight A then one obtains, in view of Eqs. (9) and (11), 

if!t[rLiA)=if!t[r]l'[rHIA)=O, for i>r, 

if![r]iIA ) = if!jP[r]jIA) = 0, for kr. 

From this it follows that if![r] riA> and if!t[rlrIA) are maxi

mal weight states ofU(n) of weight (A. + Ll r) and (A - Ll r), 

respectively. One may secure the normalization of these 

states from the equations 

if![r],if!t[rJ. = m,P [r]~ if!t[r]rif![r]' = mY[r]~ (18) 

which may be evaluated using Eqs. (8) and (12). 

Suppose now we look at the subgroup embedding 

U(n)CU(n + I). The generators ofU(n + I) may also be 

assembled into a matrix Ii as we did for U(n). This matrix 

satisfies an (n + I) degree polynomial identity analogous to 

Eq. (2). We denote the U(n + I) characteristic identity by 

n+1 

II (Ii - fJr ) = 0, 
r= 1 

where thefJr are invariants of the group which take constant 

valuesPr = Ar + n + 1 - r on a representation ofU(n + I) 
with highest weight (Al, .. ·,A.n + I)' 

In our previous notation let if! denote the U(n) vector 

operator with components if!i = a~ + 1 and let if!; = a7 + 1 

(i = I, ... n) denote its contragredient. In this case the reduced 

matrix elements of if! and if! t may be evaluated as a function 

ofthePk and a r by applying formula (17) (see Ref. 22 for 

details). One obtains the formulas 
n + 1 n _ 1 

mr=(-IYII (pp-ar-I)II (ar-at+l) , 
p= 1 t= 1 

(19) 
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_ n+1 n _I 

mr=(_l)n II (pp-ar)II (ar-al-I) . 
p= I 1= I 

*r 
The raising and lowering operators tIt[r] rand tltt[rlr will 

shift between maximal weight states ofU(n) in a given irre

ducible representation ofU(n + 1). The normalization of 

these operators may be obtained directly from Eq. (18) since 

the quantities m,.,m,.,P [r ];, and P[r]; may all be evaluated 

using Eqs. (8), (12), and (19). 

4. RAISING AND LOWERING OPERATORS OF Urn) 

The U(n) generators aJ, where i andj are restricted to 

values 1, ... ,m (for some positive integer m less than n), form 

the generators of the unitary subgroup U(m) ofU(n). We see 

therefore that U (n) admits the canonical chain of subgroups 

U(n):JU(n - 1):J··.:JU(I). (20) 

The irreducible representations of the groups U(m), 

1 <m <n, may be characterized by partitions 

(A lm,A2m, ... ,Amm) where the Aim are integers satisfying 

Alm/A2m/···/Amm/O. 

The partitions of two groups U(m + 1) and U(m) in the 

chain (20) are related by the inequalities 

Aim + I/Alm/A2m + I/A2m/"'/Amm/Am + 1 m + I' 

The set of partitions for the chain (20) is most conveniently 

arranged into a Gel'fand pattern which has been described 

by Gel'fand and Zetlin24 and appears in the paper by Nagel 

and Moshinsky. 18 

IfU(m + 1) is a subgroup in the chain (20) we shall 

denote, for convenience, a maximal weight vector ofU(m) 

[i.e., a semi maximal state ofU(m + 1)] simply by the pattern 

I 
A,m + 1). 
A,m 

This pattern denotes a maximal weight state ofU(m) of 

weight (Aim) contained in an irreducible representation of 

U(m + 1) with highest weight (Aim + I)' 

When acting on the above state the shift components 

t/!m [r] of the U(m) vector operator 

are given by [see Eq. (15)] 

. . m [a + Aim -I + 1 ]i 
t/!m[r]' = aim + I II I ' 

I = I Aim - A,rm + r - j 

c1cr 

where ais the U(m) adjoint matrix. Similarly, the shift com

ponents of the U(m) contragredient vector operator t/!;" are 

given by 

m [a - AI - m + I ]j 
t/!;,,[rL=a7+ I II m . 

I = I Arm - A 1m + I - r i 

*r 
For convenience we denote the rth component of t/!m [r] by 

t/!~n' viz., t/!'m = tit m [r)'. In view of our previous remarks we 

have 
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We therfore have our required raising and lowering opera

tors and it just remains to obtain the normalization. Using 

the hermiticity relation 

the normalization constants N 'meA im + I,A im) of the lowering 

operators t/!;:; are given by 

which, using Eq. (I 8), may in turn be written 

/..1. I 1..1. )112 N'm=\A,'m+1 m~[r]; A"m+1 • 

1m 1m 

where P [r] is the U(m) projector 

m (a - Aim - m + I) 
P[r] = II . 

I ~ I A,rm - A, 1m + /- r 

'I-r 

Substituting formulas (8) and (19) into the above expression, 

noting that the operators Pk take constant values AI-In 11 

+ m + 1 - k, while the a r take constant values A,rm 

+ n - r, one obtains the formula 

N'm = [( - l)m]11 (Apm+ I -A,rm + r-p + 1) 

X II (Arm - Aim + 1- r - I)-Ill (Arm 
l<r I> r 

- A 1m + / - rtl] 1/2 

Our normalized lowering operators therefore are 

(N'mt 1t/!;:;. 

(21) 

Proceeding in a similar fashion the normalization con

stants N'm of the raising operators t/!'m are given by 

/..1. I \..1. )1/2 N'm = \A,m + I mY[r]; Ann + I , 

1m 1m 

which may be evaluated using Eqs. (12) and (19). One there

by obtains 

N'm = [( - l)m:~11 (Apm + 1 - Arm + r - p) 

X II (Arm - Aim + /- r + I)-III (Arm 
I> r 1< r 

-Aim + /- rtl] 112 • 

We may now write down an arbitrary Gel'fand basis 

state in terms of lowering operators acting on the maximal 

weight state Imax) ofU(n). We have 

A ln A2" .... · ...... ··A nn 

A ln - 1 A2n - 1· .... An_ 1 n - 1 

n - \ m A 
= N [A ]_. 1 II II (t/!;:; )",~ . ,- ""Imax). (22) 

m= 1 r= 1 
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The normalization constant N [A J appearing in this ex

pression is easily computed by repeated application of Eq. 

(21). We readily obtain 

(

n - 1 m (A 1 - Al + 1- r - 1)1 
N[A] = IT IT IT rm + m 

m ~ I r = I i< T (A rm - A 1m + I - r - I)! 

(A rm - A 1m + I + I - r)! 

X IIr (Arm + I - Aim + 1 + 1- r)! 

X m If (A pm + I - Arm + r - p + 1 )! ) 1/2 

p=1 (Apm+,-Arm+l+r-p+l)! 

It should be noted that the products oflowering opera

tors appearing in Eq. (22) are ordered in such a way that the 

lowering operators for the group U(m) appear on the right of 

the lowering operators for the group U(m - 1). The lower

ing operators 1/;;;' and 1/;~k for U(m) are ordered so that 1/;;;' 
appears on the right of 1/;~k when r < k. However, changing 

the order of two lowering operators for U (m) will only result 

in a change of normalization constant N [A ). 

5. EXTENSION TO O(nJ 

Without loss of generality we may take the generators 

of the orthogonal subgroup ofU(n) to be 

(23) 

where the aj are the generators ofU(n). This corresponds to 

the choice of D(n) metric g ij = Dij' The generators (23) satisfy 

the commutation relations 

(a i a k ] - s:k a i >:i a k >:ka j + s: i,ryk 
j' 1 - Uj 1- UI j - Vi I U I""i 

and the hermiticity requirement 
. t . 

(aj) =a~. 

(24) 

The representations ofD(n) may be labeled by the maximum 

eigenvalues of the operators 

- ia~~-' 1, r = 1, ... ,h, 

where 

h - f!!..] - {!n n even, 
- 2 - !(n - 1)' n odd. 

As for U(n) one may consider the D(n) matrix a, whose 

(i,}) entry is the generator aJ, and its adjoint a with entries 

aj = - aj. The matrices a and a satisfy polynomial identi

ties of the form 

n 

II (a - ar) = 0, IT (a -ar) =0, 
r= 1 r~ I 

where the aT are invariants of the group whose eigenvalues 

on an irreducible representation with highest weight 

(AI ,·.·,A,h) are given by 

a r = Ar + n - 1 - r, an + I _ r = r - 1 - A,., 
r= 1, ... ,h, 

with 

a h + I = h, for n = 2h + 1. 

Following the notation ofGreen5 we may define labelsA
r 

for 

r> h by setting 

An + , _ r =l-A,., r=l, ... h, (25) 

449 J. Math. Phys., Vol. 21, No.3, March 1980 

with 

Ah + I = 1, for n = 2h + 1. 

The roots aT appearing in the adjoint identity are related to 

the roots a r by ar = an + I _ r' 

Unlike the U(n) case theD(n) generators defined by Eq. 

(23) are not in Cartan form. However, it is easily checked, ,. 

that the matrix a defined by 

aJ = (M - 1)~a~J ' (26) 

where M is the numerical unitary matrix with entries 

M2j-1 = _1_ =M 2j-' . 

J \1'2" n+I-J' 

M
2J ___ i ___ M2j h 
j - \1'2" - n+l-j' j=l, ... " 

all other entries being zero except when n = 2h + 1, where 

we have an additional nonzero entry M~ +1 = 1, which has 

entries consisting of the O(n) generators in their root space 

forms. 

These generators satisfy the commutation relations 

. k 
(aj,ad 

= okai _ oink _ Ok an + I - j + On + 1 -- Jak . 
J I l""J n + I -, I I n + 1 - " 

The diagonal entries of the matrix a are given by 

a~= -a~!:=~= -ia~~--', r= l, ... h, 

with 

aZ! : = 0, for n = 2h + 1. 

(27) 

In view ofthe commutation relations (27) the entries a: are in 

Cartan form with the positive roots above the diagonal and 

negative roots below the diagonal of the matrix a in analogy 

with U(n) . 

More generally, if p(x) is any polynomial, then the ma

tricesp(a) andp(a) are related by 

pea) = M - 1p(a)M. (28) 

Similarly, we have 

p(ii) = (M) - Ip(Ci)M, 

where 

MP = MP (M) -Ip = (M-l)JJ 
if q' q /q' 

From this we see that the matrices a and a satisfy the same 

characteristic identity. 

As for U(n) one may construct a set of projectors 

p[r1=II(a-a
,

), p[r]=II(ii-~), 
l*r a r - al IcFr a r - a{ 

from which one may define arbitrary functions of a and a as 

in Eq. (4). 

Now let 1T';,. denote a finite dimensional irreducible re

presenation of D(n) with highest weight A, and let V (A) be 

the representation space of 1T';,.' As before the matrix ele

ments of entries of the projectors P [r] and P[r] are bilinear 

combinations ofWigner coefficients 

(:,)k [r)jJ:) _ 
(

A 161,1, -Ar)(A -Ar116 A) 
= ~ (v'); i (f./,) (p,) j ;(v) 

r= I, ... ,n (29) 
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P [rJ'. = . ' '. ,II, ( A 1- .\..1) (A 10jA-41)(A-41 110' ') 
(v') ] (v) ~ (v')' j (p,) (p,) i '(v) , 

where 

constitutes a basis state of the fundamental vector represen

tation of weight 41; where we define labels 41; for i>h by 

.J j = -.I n + 1 _ j' From Eq. (29) one may deduce the 

relations 

<A IP [r J;IA > = I (A; 1~ 1..1 - .J,) r, 
<A iP[rJ~IA > = I (A; lrD1A + .J,) 12 , 

which may be evaluated using the formulas (see Ref. 22) 

/ (A; 1:/..1 _ 41,) /2 

= IT (A, - AI + /- r + 1 - 'M/,h + 1 + Ol,n + 1 - r), 
i<r A,-AI+I-r 

n = 2h + 1, 

_ IT (,1,,-..1 / + 1 +1-r-thn + 1 _ r ) 
- , n =2h, 

i<, A,-AI+ I - r 
(31) 

where we define labels A, for r> h in accordance with Eq. 

(25). 

Using Eq. (29) one may also deduce the relations 

P[r]JIA)=O, forj>r, i=I, ... ,n, 
(32) 

P [r ljlA > = 0, for i< r, j = 1, ... ,n. 

6. REDUCED MATRIX ELEMENTS OF Orn) 

With respect to the generators (23) we define an O(n) 

vector operator as an operator with n components iii which 

satisfy 

[aj,ti/] = 8N/ - 8~¢j. (33) 

By taking the Hermitian conjuate of this relation one obtains 

the transformation law of contragredient vector operators 

. °t . °t .Ot 
[aj'¢k] = - 8"¢i + 8k¢; . (34) 

By applying the change of basis matrix M the vector opera

tor ¢ gets transformed to 

¢' = (M 'l)j¢j . 

The vector operator ¢ therefore has components 

¢i = ~J - 1 + i~i, 

450 

.I,n + 1 - j = .j).j - 1 _ (i).j J' = 1 h 'f/ tp'tp., , ••• , , 

J. Math. Phys .. Vol. 21, No.3, March 1980 

with 

tf/' + 1 = ¢n, for n = 2h + 1, 

which transform according to 

[a
j .I,k] = 8k.I,j _ 8k .• I,n + 1 - j 
1'If' ] If' n+1-,If' . (35) 

Similarly, the contragredient vector operator ¢ t gets trans

formed into a contragredient vector operator t/J t with 

components 

.I,t = .i,tM! 
'f't 'l"J l' 

which transforms according to 

[a
j .I,t] = _ 8; .I.t + 8n + 1 -j.l.t . 
1'If'k kif'] k If'n + 1 -, • (36) 

From now on we refer to a vector (contragredient vec

tor) operator as an operator with n components transform

ing according to Eq. (35) [Eq. (36)]. 

The O(n) vector operator ¢ may be resolved into a sum 

of shift vectors 

• n 

¢= L ¢[r] 
,= 1 

which alter the representation labels according to 

Ak¢[r] = ¢[r](Ak + 8k,), 

Akt/J[n + 1 - r] = t/I(n + 1 - r](Ak - Ok,), 
r= 1, ... ,h, 

with 

Akt/J[h + 1] = t/I[h + I]Ak, for n = 2h + 1. 

The shift components t/I t[r] of t/J t therefore alter the repre

sentation labels according to 

Ak¢t[r] = t/Jt[r](A.k - 15k,), 

Akt/lt[n + 1 - r] = t/lt[n + 1 - r](Ak + 15k,), 
r= 1, ... ,h, 

with 

Akt/lt[h + 1] = t{!t[h + I]Ak• for n = 2h + 1. 

These shifts components may be constructed by application 

of the projectors per] and per] as in Eq. (15). 

One also obtains the relations [cf. Eq. (16)1 

t/I[r]t/Jt[r] = m,P [r], t/lt[r]t/J[r] = m,P[r] , 

where m, = mn + 1 _, are the squares of the reduced matrix 

elements ofthe vector operator t/J. These reduced matrix ele

ments may be evaluated using Eq. (17). 

The generators a} of O(n + 1) may also be assembled 

into a matrix ~ as for O(n). The matrix ~ satisfies a polyno

mial identity 

"'-IT (a -fJr) = 0, 
r= 1 

where thefJr take constant values on a finite dimensional 

irreducible representation of O(n + 1) with highest weight A 

given by 

fJr = Ar + n - r, r = I, ... ,n +1, 

where we define labels Ar for r> (n +1)/2] as in Eq. (25). 

In the special case where t/J is the vector operator 

t/Ji = (M·1)jai
n 

+1 (where we sum onj from 1 to n), with 

adjoint t/J; ~ a; +1 M~, the reduced matrix elements mr and 

M.D. Gould 450 

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.82.2 On: Tue, 18 Oct 2016

06:03:44



iiir may be evaluated as a function ofthePk and a r using Eq. 

(17). We readily obtain (see Ref. 22) 

,,+1 

iiir=m,,+I_r =(-I)"IT (pp-ar) 
p~1 

x IT (a r - a l - 1 - °1." + 1 _ rtl, n = 2h, 
I"""r 

,,+1 

iiir = m" + 1 _ r = ( - 1)" IT (pp - a r) 
p~1 

x IT (ar - a l - 1 + Ol,h + 1 - °1,11 + 1 _ rt
l
, 

I"""r 
n = 2h + 1. (37) 

7. RAISING AND LOWERING OPERATORS OF O(n) 

The orthogonal group admits the canonical chain of 

subgroups 

O(n)::JO(n - 1)::J ... ::JO(2). (38) 

The irreducible representations of the groups Oem) 

(m = 2, ... ,n) are characteristized by partitions 

(Alm,A,2m, ... ,A,hm) (h = [mI2]) which satisfy the inequalities 

AI,m>A2m>"'>Ah_I,m>IAh,ml, m = 2h, 

AI.m>A2.m> .. ·>Ah _ l.m>Ah.m>O., m = 2h + 1, 

where the labels are simultaneously all integers or all half 

odd integers. 

The partitions of two groups O(m + 1) and Oem) in the 

canonical chain (38) are related by inequalities 

A 1.2p + 1 >.,1, 1.2p>A2,2p + 1 >A2,2P>'" >.,1, p.2p + 1 >.,1, p.2p 

> -Ap,2P+ I' 

A1,2p>A1.2P _ I>A2.2p>A2,2p_ 1>"'>Ap_ 1,2p- 1 

> I Ap2p I . 
The set of partitions for the chain (38) may be rearranged 

into a Gel'fand pattern which has been described by Gel

'fand and Zetlin 24 and appears in the paper by Pang and 

Hecht. 20 

Following our U(n) notation we shall denote a maximal 

weight state of O(m) with representation label (A;m) con

tained in a representation ofO(m + 1) with representation 

label (A;m + I) by 

I 
Aim + I) . 
Aim 

Let us also denote the components t/J m [r J r of the O(m) vector 

t/J~ = (M-I)pJm + 1 simply by t/J'm. 
In order to incorporate an possible shifts we need only 

consider the operators t/J'm and their adjoints t/Jt:. for values of 

r in the range r = 1,oo.,h. Of course, in the case when 

m = 2h + 1 is odd one may also consider the zero shift oper

ator t/J~ and its adjoint t/J;;: defined by t/J~ = t/J m [h + 1 J h + I. 

However, we do not require the zero shift operator for our 

purposes. 

We then have 

451 J. Math. Phys., Vol. 21, No.3. March 1980 

The normalization constants N'm of the lowering operators 

t/J;;, and the normalization constantsN 'm of the raising opera

tors t/J'm are given by 

JA.. / /A.. )112 N'm=u. 'm +
1 
iiirP[rJ~ Aim + 1 

1m 1m 

(39) 

(40) 

Due to differences in the normalization associated with 

O(m) for m odd and even we shan now consider each case 

separately. 

O{m=2h+ 1) 

In this case we have, in accordance with Eqs. (30) and 

(37), 

I
Aim+ I) m+ 1 

iiir A.. = (- I)m IT (Apm + 1 - Arm + r - p + 1) 
1m p= 1 

X IT (Arm - Aim + 1 - r - 1 
I"""r 

-IIA;m + I) 
+ Ol,h + 1 - Ol,n + 1 - r) A.. ' 

1m 

= IT (Arm - Aim - 1 + Ol,h + 1 - Ol,n + 1 - r + 1- r) 

I>r Arm-Alm+l-r 

I
A;m+ I) 

X A.. ' 
1m 

which gives 

[ 

m+ 1 

N'm= (-l)m)I (Apm+I-Arm+r-p+l) 

X IT (Arm -Aim + 1- rtln (Arm -Aim 
I>r I<r 

]
112 

+ /- r-Itl . 

where we have made use of the identities 

Pp-'ilr=ar-pp+ 1, 

ar - 'ill = a l - a r + Ol,h + I. for r=t=h + 1. 
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Substituting these expressions into Eq. (40) one obtains 

_ [ m+1 

N';,,= (-I)m)JI (Apm+I-Arm+r-p) 

X II (Arm - AIm + /- rtlll (Arm 
I<r I>r 

- AIm + /- r + 1 - 20I,h + 1 

+ OI,n + I _ rtl] 112. 

O(m=2h) 

As for the case m odd we may substitute the formulas 

(30), (31), and (37) into Eqs. (39) and (40) to give 

N';" = [( - l)m::g II (A pm + I - Arm + r - p + 1 - 0 p,h + I) 

X II (Arm - AIm + /- rYlll (Arm 
I> r I<r 

-Aim + /- r - Itl] 112, 

_ [ m+ I 

N';,,= (-I)mJJl (Apm+I-Arm+r-P-Op,h+l) 

IT (Arm - AIm + / - r)-I IT (Arm 
1<, I>, 

- Aim + /- r + 1 + Ol,n + I _ ,tl] 112, 

where we have made use of the identities 

iJp - a, = a, - fJ p + 1 + 0 p,h + I 

and 

a,-al=al-a,. 

Our normalized lowering and raising operators are 

therefore given by (N ';"tl1/J~ and (it ';"t I 1/J';", respectively, for 

values of r in the range r = 1, ... ,h. 

8. GENERALIZATIONS (see Refs. 3 and 17) 

Let L be a semisimple Lie algebra with Cartan subalge

bra H and let (/> be the set of roots of L relative to H. Let L1 

denote a base of L and let (/> + denote the corresponding set of 

positive roots. Finally letA denote the set of integral weights 

and A + C A the set of dominant integral weights. 

Fix a basis Ixj>""x{ 1 (l = dimL) of L and let Ixl, ... ,x/l 

be the corresponding dual basis with respect to the Killing 

form on L. Let V (A ), AEA ., be a finite dimensional irreduci

ble module over L with highest weight A and let 1T,( be the 

representation afforded by V (A ). One may then consider the 

operator 

A = _1- ± [17',1. (x') ®x, + 1TA (x,) ®x'], 
2'~1 

whichmayberegardedasad Xdmatrix[d = dimV(A )]with 

entries from L: 

Aij= -~ ± [1TA(X r )ijX,+1TA(X,)ijx'], 
2'~1 

where 17',1. (x) is the matrix [with respect to some suitably 

chosen basis in V(A )] representing the generator under the 

representation 17',1.-

The matrix A is clearly a generalization of the matrices 

considered for U(n) and O(n). Upon setting 17',1. to be the 

contragredient vector representation of U (n) and choosing 

452 J, Math, Phys., Vol. 21, No.3, March 1980 

the basis aj{i,j = 1, ... ,n) one obtains the matrix with entries 

(aJ). 

If V (;.t), flEA ., is a finite dimensional representation of 

L, with highest weight fl, then acting on V (fl) the matrix A 

may be written 

1 I 

A = - 2r~1 [17',1. (x') ® 17'/xr) + 1TA (x r) ® 1T/X')]. 

A may clearly be regarded as an operator on the product 

space V(A) ® V(fl). IfA 1, ... ,Ak are the distinct weights occur

ring in V (A ) then the matrix A , when acting on V( fl), satisfies 

the polynomial identity' 

k n [A - !(A,A +20) - ! (A;,2(;.t + 0) + Ai)] = 0, 
i= 1 

(41) 

where ( , ) is the inner product induced on the weights by the 

Killing form and 0 is the half sum of the positive roots (see 
Humphreys25). 

One may write the Clebsch-Gordon reduction of the 

product space V(A) ® V(fl) in the symbolic form,,2' 

k 

V(A)®V(fl)= E:B n(z)V(fl+A;), 
i~ ! 

where V (fl + Ai) is a finite dimensional irreducible repre

sentation, which admits the infinitesimal character XJ.l + Ai 

(in the notation of Humphreys2'), which is unique ifit exists. 

The multiplicities n(z) may be obtained using Klimyk's for

mula26 (see also Refs. 3). 

Using the identity (41) one may construct the projec

tion operators 

k { A - !(A,A +20) -! (Aj ,2(fl + 0) + A) } 
P[l] = II 

j~ 1 H(A;.2(fl + 0) + Ai) - ~(Aj,2(fl + 0) + Aj)] 
#ci 

i = l, ... ,k, 

which project the space V (A) ® V (fl) onto the subspace 

V(fl + Ai)' The matrix elements of the entries of the projec

tor between basis states in the space V (fl) are therefore bilin

ear combinations of Clebsch-Gordan coefficients of the 

form 

(
fl + AilA fl ) 
(v) (p)'(r)' 

(42) 

where 

I:p);~)' 
denotes the product state 

I(~») ® I~») 
and where 

I:p ») 
refers to a state in the representation V (A) where (p) denotes 

a set of labels used to distinguish the basis states. This then 

opens up the possibility of determining the Wigner coeffi

cients (42) by exploiting the properties of the projectors P [r]. 

The nicest case occurs when the weights in V(A ) all occur 
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with multiplicity one. Then the tensor product is multiplic

ity free, which is precisely the case considered in our treat

ment ofO(n) and U(n). 
In particular, one may consider more general Wigner 

coefficients for the unitary group by choosing our reference 

representation IT;.. to be one of the tensor representations. 

Returning to the general case, on unitary representa

tions of the group, the generators behave under Hermitian 

conjugation like (x"}f = Xi' In particular, if Xa is an element 

of the root space La' corresponding to the root aE<P, then 

one may deduce (xa)td _ a' 

A tensor operator with highest weight AEA + is defined 

to be a collection of operators T i , i = I, ... ,d, which trans

form under commutation with elements of L like the repre

sentation IT)..: 

[x,Til = IT).. (x)~1j. 

One may project out the shift components T[/] of the tensor 

Tby applying the projector P [/]15: 

T[/] = TP [i]. 

One may deduce the relation 

T[/]Tt[i] = M (i)P [I], (43) 

where Tt[/] = (T[i]) t are the shift components of the con

tragredient tensor Tt. The quantity M(l) appearing in Eq. 

(43) is the reduced matrix element which may be evaluated 

using 

M' "1.1= IT [iljTt[iF 
(I) = t,(P [iD ' 

where tr (P [i]) (the trace of the projector P [I]) may be evalu

ated from the formula 3 

tr(P [i)) = e(l) n (J.1 + 8 + Ai,a) , 
aE<P' (J.1 + b,a) 

where e(l) is the multiplicity of the weight Ai in V (A ). 

Equation (43) is clearly a generalization ofEq. (16) and 

may be used in a similar way (at least for unit mUltiplicities). 

One may choose a basis for V(A) to be a weight basis (i.e., a 

basis of simultaneous eigenvectors of the Cartan subalge

bra). Suppose that the basis is arranged so that the ith basis 

vector has weight Ai' Then as before one may show that the 

operator T [/1 takes a maximal weight vector of L ofweightJ.1 

into a maximal weight vector of weight J.1 + Ai' By this 

means we may construct generalization raising and lowering 

operators for more general groups which may be normalized 

using the equation 

In particular, such considerations are important in the 

labeling problems where a Lie algebra is embedded in a larg

er Lie algebra K which is separated from K by an irreducible 
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tensor operator 

K=L$lT 

where 

[L,T]~T, [T,T]~L. 
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