
mathematics of computation
volume 54, number 189
january 1990, pages 395-411

ON AN INTEGER'S INFINITARY DIVISORS

GRAEME L. COHEN

Abstract. The notions of unitary divisor and biunitary divisor are extended
in a natural fashion to give k-ary divisors, for any natural number k . We
show that we may sensibly allow k to increase indefinitely, and this leads to
infinitary divisors. The infinitary divisors of an integer are described in full,
and applications to the obvious analogues of the classical perfect and amicable
numbers and aliquot sequences are given.

1. Introduction

A divisor d of a natural number n is unitary if the greatest common divisor
of d and n/d is 1, and is biunitary if the greatest common unitary divisor of
d and n/d is 1. Unitary and biunitary divisors have been studied by several
authors, often in terms analogous to those of the classical perfect and amicable
numbers. Among these writers are E. Cohen [2], Hagis [4-6], Lai [7], Subbarao
and Warren [9], Suryanarayana [11] (see also [12]) and Wall [15, 16].

It is easily seen that, for a prime power py, the unitary divisors are 1 and
py , and the biunitary divisors are all the powers 1, p , p , ... , py, except for
py    when y is even.

There is no difficulty in extending this notion. Thus we may call d a tri-
unitary divisor of n if the greatest common biunitary divisor of d and n/d
is 1. We soon calculate that the triunitary divisors of py are 1 and py , except
if y = 3 or 6; those of p axe 1, p, p , and p ; and those of p axe 1, p ,
p and p . In this way, we may also define 4-ary divisors, 5-ary divisors, and
so on. We shall speak in general of k-axy divisors. The lack of a pattern in the
list of k-axy divisors of p} (for small values of k, not 1 or 2, and y ) would
have inhibited a study of these. But as we increase k, in fact a very striking
pattern begins to appear.

Figure 1 shows the k-axy divisors of p> for k = 1, 2, ..., 6, and 0 < y <
30. The asterisks indicate those values of x for which px is a k-axy divisor
of py . Figure 2 is the same for k = 19 and 20, and 0 < y < 80. We notice
that for small values of y, to be characterized later, the k-axy divisors remain
fixed. The pattern for large y is also fixed, and depends on whether k is odd or
even. Finally, in Figure 3, we show the 100-ary divisors of py for 0 < y < 120.
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Figure 3
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The pattern of divisors for the small values of y would now appear to be
established, whatever the value of k, and it is these which we shall be calling
infinitary divisors. Note that the figure shows some collapse in the pattern for
y > 100. The last (decimal) digit of x, where px is a 100-ary divisor of py,
is shown in this figure, so that the actual divisors may be read off; this will be
useful later.

The pattern indicated by Figure 3 has the distinct appearance of a fractal. It
may be compared with Sierpiñski's "arrowhead" or "gasket" (Mandelbrot [8]).
See also Sved [13], where the same fractal appears, also in a number-theoretic
setting.

The pictures would appear to be worth a thousand words. The first aim of
this paper is to describe this unexpected pattern in terms of our definition of
k-axy divisors.

2. Infinitary divisors of prime powers

In the following, all letters denote nonnegative integers, with p reserved for
an arbitrary prime. To put the above on a formal footing, we begin with

Definition 1. A divisor d of an integer n is called a 1-ary divisor of n if the
greatest common divisor of d and n/d is 1; and d is called a k-axy divisor
of n (for k > 2 ) if the greatest common (k - l)-ary divisor of d and n/d
is 1.

For convenience, we shall call d a 0-ary divisor of n if d\n. We write
d\kn to indicate that d is a k-axy divisor of n , and (/, m)k for the greatest
common k-axy divisor of / and m . It has become common to write d\\n in
place of d\xn.

It should be mentioned that different generalizations of unitary divisor have
been given by Suryanarayana [10] (who also used the term "/c-ary divisor") and
Alladi [1].

The following observations are immediate and will be used later without
special reference.

(i) For any n ,  \\kn .
(ii) px\kpy means (px ,py~x)k_x = 1 .

(iii) px\kpy if and only if py~x\kpy .

The permanency of the pattern for the early k-axy divisors of py , described
in § 1, is accounted for in

Theorem 1. For k > y - 1 > 0, px\kpy if and only if px\    xpy .
Proof. The proof is by induction. The result is true when y = 1, since 1 \kp
for all k . We suppose now that it is true for y < Y - 1, and consider y = Y.
For k = Y — 1, there is nothing to prove, so we suppose also that the result is
true for Y - 1 < k < K - 1, and consider k = K.

x Y x YSuppose p \Kp . We must show that p \Y-\P ■ *f m's ls not true> tnen
1 < x < Y - 1 and (px , p ~X)Y_2 - pa , a > 1 . Since pa\Y_2px , the induc-
tion hypotheses show first that p"\x_xpx , and then that pa\K_xpx . Similarly,
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p"\y-2P _l  and Y — x < Y - 1, so pa\Y_x_xp ~x , and then pa\K_xp

Hence (px, p ~X)K_{ > p" > 1, contradicting px\Kp   . Hence, px\Y_xpY , as
required.

x ¡ Y x YSuppose next that p' \Y_{P ■ We must show that p \Kp . If this is not
true, then x < Y - 1 and (px, pY~x)K_x = pb, b > 1. Then p \K_xpx,

and the induction hypotheses give p \x_xpx and then p \Y_2px ■ Similarly,
p \Y_2P ~x , and we are contradicting px\Y_xpY . The proof is complete,   o

We are justified now in making the following

Definition 2. We call px an infinitary divisor of py   (y > 0) if px\v_xpy . We
also define 1 to be an infinitary divisor of 1.

We write px\00py when px is an infinitary divisor of py (and px \ 00py
when it is not), and (p1, p1)^ for the greatest common infinitary divisor of p'
and pJ .

Theorem 2.  We have px\00Py if and only if (px , py~x)00 - 1 ■

Proof. This is trivially true if y = 0 or 1, and generally if x = 0 or x — y,
so assume now that y > 2 and that 1 < x < y — 1. Then x — 1 < y - 2 and
y - x - i < y - 2. If px t „y , then px \ y_ xpy , so (px , Py~x)y_2 = pa > \.

Then pa\v_2px, so that, by Theorem 1, p"\x_xpx ; similarly, pa\v_x_xpy~x .
But then p"\00px and pa\00py~x , so (p'v, py~x)00 > p" > 1 • For the converse,

we assume that (px, py~x)ao = P   > 1  and essentially reverse the preceding
argument.   D

The theorems and corollaries which follow will lead to the complete charac-
terization of the infinitary divisors of py . The pattern of Figure 3 (excluding
the top nineteen lines) will thus be fully described, although the characterization
we end with, in Theorem 8, will lead to a more efficient means of constructing
tables of infinitary divisors.

Theorem 3. We have p\oopy if and only if y is odd.

Proof. Using Definition 2, we have pl^p1 and p \ ^p". Also, using Theorem
2, we have, for y > 3 ,

P\ooPy   ^   (/>>/"')oo=  1    ^   P^ocPy~[

The result follows.   D

Theorem 4. If y is even and px\00py , then x is even.
Proof. Suppose x  is odd.   Then y - x  is also odd and, using Theorem 3,
(px , py~x)oc > P ■ This contradicts the statement that px\QOpy ■   □

Theorem 5.  We have px\oopy if and only if p2x\00p2y ■
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Proof. We use induction on y. The result is trivially true if y = 0. Suppose
the theorem is true for y < Y - 1, and consider y = Y. Clearly, we may
assume 1 < x < Y — 1.

x Y Ix 1Y 2y       2Y—2xSuppose p \oop   , but p    \ m/j    . The latter implies that (p ' , p )00 =
pa, say, and, using Theorem 4, a is even and positive. Put a = 2b. Since
p l^p x and p l^p Y~ "x, the induction hypothesis implies that p \oopx and
P \<xP ~X ■  Then (px, p ~x)00 > p   > 1, contradicting the assumption that

x,       Yp Lp ■
Suppose next that px \ ^p   .   Then (px, p    x)00 = pc > 1, from which,

by hypothesis, p c\OQp x and p c\oop "v. It follows that p x \ ^p . This
completes the proof for y = Y, and thus for all y.   D

Theorem 6. If px\aopy and y is divisible by 2J for some j > 0, then x is
divisible by 2J.
Proof. The result is trivial when 7 = 0. Suppose it is true when j - J, and
consider j = J + 1. Put y = 2 + a . By Theorem 4, x is even, say x = 2w .
Then p "l^P " , so that, by Theorem 5, pw\00P a • Then, by the induction
hypothesis, w is divisible by 2   , and the result follows.   D

~*a ~.a

Corollary 1. The infinitary divisors of p    are 1 and p   .
Proof. This is immediate.   D

Corollary 2. For 0 < k < 2J, P^^p2'^ \for 2J < k < 2j+l, p2' \00p2'+k .

Proof. The first statement follows from Corollary   1   since,   for these   k,
2'       k(P   ' P )oo = 1 ■ T°e second statement follows from the first.   G

's) ...

Theorem 7. We have p   \oopy if and only if y = 2J or 2J + 1 or 2' + 2 or ■ ■ ■
or 2J+] - 1 (mod 2J+I).

Proof. We have

P2 \ooPy *=> (P2 ' P'~2 )oo = l  ^^ P2 ^oc,Py~      ( by Corollary 1)

<=> (P2' ,P~     )oo > J  ^^ P2 \ooP'~ (by Corollary 1)
2J,        y-2J+'l^^ ■ • • *=> p Lp

where / is chosen to be the largest integer such that y - 2J+ll > 2J. Then
2J < y - 2J+[l < 2' + 2J+l , and the result follows from Corollary 2.   D

The remainder of the identification process for infinitary divisors is carried
out mainly in terms of the binary representations of the exponents on the prime
p. We write a binary representation in general fashion as \^q2} ; the sum is
finite, j > 0, each q. is 0 or 1, and trailing zeros are allowed where required.
A little reflection gives us the following alternative statement of Theorem 7.
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Theorem 7  . Let y = JZy 2. Then p   \n' if and only ify¡ = 1.
J OO J

Theorem 8. Let x = ^2x-2J and y - x = ¿~2 z.2J. Then

PX\ooPy    ifand on[y V    Sxjzj = °-
Proof. Suppose first that ¿~^x¡z¡ / 0.   Then x   = z   = 1  for some j, so

P2 \ooPX and P2 \ooPy~X > by Theorem 7 ' • Hence (px, py~x)00 > p2  > p , so
* L      y

For the converse, suppose px \ 00py, so that (px , py x)0O = pa , say, with
a > 1. Put

a = Y^aj21,    x-a = Y^bj2J,    y -x - a = \S^c¡l1.

Since a > 1, we have a, = 1 for some i. Since pa\„px , we have Y,a,b, = 0
(using the part of this theorem already proved) and it follows that b¡ = 0
and that x¡ - a. + b. for each j. Hence xi = 1 . Similarly, pa\00py~x, so
J2ajc, - 0 > from which c( = 0 and z¡ = ai + ci■ = 1 . Thus J2xjzj ¥" 0 •   □

Corollary 3. The infinitary divisors of p   ~   are all px , 0 < x < 2a - 1.
Proof. Taking y = 2a - 1 in Theorem 8, we see there that if x. = 0 or 1, then
z =1 or 0, respectively, and J2XjZ. = 0.   D

In the next theorem, we prove a very pleasing and useful property, namely,
that infinitary divisors are transitive. This is not true of k-axy divisors in
general. For example, p\5p   and p |5p7,but p\ip1'.

Theorem 9. If px\00py and py\00p:, then px\00pz ■

Proof. The result is trivial if x = 0, so suppose x > 1. Write x = J2xj2J,
y = ¿Zyj2J, y -x = J2rj2J, z - y = ¿Z s^1, and z - x = £ tj2J. We must
show that J2x,tj = 0, given that Y^x.r = 0 and J2y/. = 0. Consider any
particular value of j, say j = k, for which xk = 1 . Since J2xjr, = 0, we
then have rk = 0 and y ■ = x¡ + r for each j, so yk = 1. Then sk = 0. We
note that z - x = (z - y) + (y - x). If k = 0, then ?0 = 50 + rQ = 0. If k > 0,
then ^ = ^ + rfc unless s¿ = r¡. = 1 for some i < k. In that case, y; = 0,
since î^y.5, = 0 > and we cannot have y. = x¡ + r¡. Hence tk = sk + rk = 0, so
XT = 0 for all j, and the proof is finished.   D

Theorem 10. Suppose  2a  < y  <  2a+l .    If px\00Py~2",  then px\00py   and

P2"+XLPy ;  ifx<y-2aand p^/ , then px\00P>"2''.

Proof. Assume px\CX)Py~   ■  Since 2" < y < 2a+i , Theorem l' implies that
p2 \00py , so py~2 \00py , and so px\00py , by Theorem 9.

Now put x = ¿Zx^ and y - 2a - x = £ z,-2J. We have x < y - 2a <
2fl+1 - 2a = 2a  and 2fl < 2a + x < 2a+1 , so 2a + x has the proper binary
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representation 2" + 2~Z-*,2;. By Theorem 8, ¿~lxjzj = 0> and so, by the same

theorem, p2 ^l^'.
For the second part, suppose p \ oopy~ , and let x and y - 2a - x be as

before. Then x  = z  = 0 for j > a and xk = zk = \ for some /c < a (by
Theorem 8). But then y - x = 2a + J2 z¡2} and the right-hand side is a proper
binary representation; since xk = zk = 1, we have px \ oopy , as required.   D

Theorem 11. // 2a < y < 2a+1 and y - 2a < x < 2a, then px \ ^ .

Proof. Since y - 2a < x < 2a , we also have y-2a<y-x<2a. Then, putting
x = J2X:2J and y - x = J2 zj2> > we mav assume in each sum that j < a — 1.
Put also y = y]y,2"'. If x,z. = 0 for all /, then y, = x, + z¡ for all /, and
it is impossible to have ya - 1,, which we require since 2a < y < 2a+ . Hence
x = zj = 1 for some j , implying, by Theorem 8, that px \ oopy .   D

Theorems 10 and 11 imply the "arrowhead" of Figure 3. In particular, The-
orem 11 accounts for the large empty triangles.

We can use Theorem 10 to find the infinitary divisors of prime powers very
quickly (that is, in polynomial time). For example, the infinitary divisors of p
axe the infinitary divisors px of p , i.e., p   , and each p    +x . Use Fig-
ure 3 for the infinitary divisors of p     or calculate them from those of p
i.e., p . The infinitary divisors of p   are px for x = 0, 2, 4, 6 ; so those of

22 I SOp     have x = 0, 2, 4, 6, 16, 18, 20, 22. Then the infinitary divisors of p
are px  for x = 0, 2, 4, 6, 16, 18, 20, 22, 128, 130, 132, 134, 144, 146,
148, 150.

The simplest means of constructing the Sierpiñski arrowhead is by means of
Pascal's triangle, where only the parity of the binomial coefficients need be noted
(Sved [13]). This gives immediately the following unexpected characterization
of infinitary divisors.

Theorem 12. We have px\00Py if and only if (yx) is odd.

3. Infinitary divisors of integers
The simplest and quickest way to introduce infinitary divisors in general is

as follows.

Definition 3. Let d be a divisor of n and write n = Y['j=xp/ , for distinct
primes p{ , p2, ... , pt, and  d = n'j=xPjJ   (where 0 < Xj < y¿,  j = I,
2, ... ,t).   Then d  is an infinitary divisor of n  if p/l^p/  for each j =
1,2,...,?.

We write dl^n if d is an infinitary divisor of n .
A more fundamental approach, parallel to what has been done for prime

powers, would be to write, say,

h(n) = maxy,
/II«
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404 G. L. COHEN

and to define d to be an infinitary divisor of n if d\h,n)_xn . It could then be
shown that d\kn for any k > h(n) - 1 and after some work we would obtain
the result assumed by Definition 3. Conversely, the results just alluded to can
be shown to be a consequence of our definition.

4. Functions of infinitary divisors

We denote the number of infinitary divisors of n by t («) and their sum
by <r (/i). Essentially the same discussion as that for the example following
Theorem 11 gives us

Theorem 13. Let y = ^£ly¡21. Then

too(/) = 2^,        ajp") = U (l +/) .
y.= \   V /

Proof. Suppose 2a < y < 2a+ . Then, by Theorem 10,

U/) = 2t0O(/_2°),     <U/) = <U/~2") +Pro00(py~2a).

v—2"Applying the same argument to the infinitary divisors of p , and repeating
it as often as necessary, gives the theorem.   D

This theorem in fact gives a direct means of finding the infinitary divisors of
py . For example, since 150= 128+ 16 + 4 + 2, we have

/    150\        it    ,      2\/i    ,      4wi    ,       16w,    ,       128,°oo(P       ) = (l+P  )(1+P  )(1+P     )(i+P       )•

The terms in the sum, after the product on the right is multiplied out, are the
infinitary divisors of p

The functions t^ and a^ axe easily seen to be multiplicative, so general ex-
pressions for t^n) and o^n) may be written down with the aid of Theorem
13.

5. Infinitary perfect and multiperfect numbers

We define an integer n to be infinitary perfect if o^n) — 2« and infinitary
multiperfect if u^ffl) = sn for some s > 2 .

It is apparent from Theorem 13 that for values of n which are not, to take the
extreme case, products of powers of primes of the form p , there is generally
a rich algebraic factorization of o^n), so that more freedom is to be expected
in searching for infinitary perfect numbers than is the case for k-axy perfect
numbers for particular (small) k . (We say n is k-axy perfect if the sum of all
k-axy divisors of « is 2n .) The only biunitary perfect numbers are 6, 60, and
90 (Wall [15]) and only five unitary perfect numbers are known (Wall [16]).
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Without too intensive a search, we have found the following infinitary perfect
numbers:

2-3, 2634537213- 17-41,

2-325, 28335- 11 -43-257,

223-5, 21032527-11-13-43-257,

24335 -17, 21034537211 • 13 • 41 • 43 • 257,

25347 • 17 • 41, 212357 • 11 • 17 • 41 • 43 • 257,

2632527- 13-17, 212365 -7-11 • 17 • 41 • 43 • 257,

26345-7- 17-41, 2I236537211 -13-17-41 -43-257.

Assuming the validity of the pomments following the statement of Definition
3, it will be observed, for example, that the last of the above numbers is k-axy
perfect for all k > 11 .

The next thirteen numbers satisfy o^n) = 7>n :

233-5, 21134537211 • 13-41 • 43 • 257,

25335- 17, 213357- 11- 17-41 -43-257,

2732527- 13-17, 213365-7-ll • 17 ■ 41 • 43 • 257,

27345-7- 17-41, 21336537211- 13 • 17 • 41 • 43 • 257,

2734537213- 17-41, 214355-7-ll • 17 • 41 -43 • 257,

29335- 11-43-257, 21435537211 -13- 17-41-43-257.

2U32527- 11 • 13-43-257,

The next seven numbers satisfy a^n) - 4n :

2733527- 13-17, 2n355372ll • 13 • 41 • 43 • 257,

27355-7- 17-41, 213375-7- 11 • 17 • 41 • 43 • 257,

2735537213-17-41, 21337537211 -13-17-41 -43-257.

2U33527- 11 • 13-43-257,

The next two numbers satisfy o^n) - 5« :

215375-7- 11 -17-41 -43-257,     21537537211 • 13 • 17 • 41 • 43 • 257.

There is no prize for finding further examples of infinitary multiperfect num-
bers. The above examples are all even: a simple adjustment of the proof of The-
orem 1 in Hagis [6] shows that there are no odd infinitary multiperfect numbers.
We conjecture further that there are no infinitary multiperfect numbers not di-
visible by 3.

It is not difficult to devise methods of generating new infinitary multiperfect
numbers from known ones. The following are two results in this direction.
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Theorem 14. Suppose o^n) = qn, where q is prime, and that q2a\\n, for some
a. Then o^qn) = (q + l)qn .
Proof. Using Theorem 13 and the multiplicativity of a   , we have

(7oo(^") = CToo (<?2a+1 • 4r) = (« + ^oo^Voo (4t

= (« + l)ff00(ii) = (9 + l)tjn,

as required.   D

For example, given that n = 2 3 5 7-13-17 is infinitary perfect (it appears
in the first list above), we immediately expect to find 2« in the second list and
6« in the third list, as is the case.

Theorem 15. Suppose o^n) = sn, and that I and m satisfy

/aoo(m) = mrj0O(/),    l\\n,    (m,n/l) = l.

Then a^mn/l) = s(mn/l).
Proof. We have

imn\ .   ,      tn\     o  (m)      . .     m      . .       mn
OO ^    '

Numbers / and m to satisfy the conditions of this theorem may be obtained
as follows. Suppose o^u) = tu and o^v) = tv for some t, and that u\v .
Set w = (u, v)x , I = u/w , m = v/w . Since w is a unitary divisor of u, we
have (w , u/w) = 1 ; that is, (/, w) = 1 and similarly (m, w) = 1. Then

' " ffoo(") fToo(/W) O')

If there is some number « with ox{n) = sn, l\\n, and (m, n/l) = 1 , then
Theorem 15 implies that mn/l is also infinitary multiperfect.

For example, the infinitary perfect numbers 2 3 5-7-17-41 and 2357-
13 • 17-41 may be taken as u and v. Then w - 263417 • 41 , / = 5 • 7,
and m — 5 7 13. In the above lists, there are seven later occurrences of in-
finitary multiperfect numbers n such that l\\n and (m, n/l) = 1 , and conse-
quently there are seven corresponding infinitary multiperfect numbers mn/l =
527-13-/î.

Despite the apparent ease of finding infinitary multiperfect numbers, it seems
to be difficult to show that all such numbers of a desired shape have been found.
We do not know, for example, if there are any infinitary perfect numbers divis-
ible by 8 but not 16. We can, however, prove

Theorem 16. The only infinitary perfect numbers not divisible by 8 are 6, 60, and
90.
Proof. Let n be an infinitary perfect number. If n — 2m and m is odd, then
the proof that n = 6 or 90 is similar to what follows, but easier, and is omitted.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON AN INTEGER'S INFINITARY DIVISORS 407

Suppose n - 4m , with m odd. Since a^ is multiplicative and 0^(72) = 2« ,
we have

(1) 5^(771) = 8m.

Then 5|w and iWa^m). The latter implies, by Theorem 13, that m can have
at most three distinct prime factors. There are thus three possibilities for the
shape of m , and we consider them in turn.

Case 1: m = 5a . From (1), 0^(5") = 8 • 5a_1 . Since the left-hand side is
not divisible by 5, we must have a = 1. But then we have no solution.

Case 2: m - 5aq , where q is a prime, not 2 or 5. By Theorem 13, (1)
must take one of the following forms:

(2) (5a + l)(/+l) = 8-5a-1^, ab>\,

(3) (5a+l)(<7''+l)(/+l) = 8-5a"y+rf,       fl>l,rf>c>l,
(4) (5C+\)(5d+ l)(qh+l) = S-5c+d~lqb,       b>l, d>c>l.

If (2) holds, then 5a + q  +1 = 3- 5a~'<?  , and so, since a > 1 ,

q  =-¡-< 3.3-5a-'-l"

Then q = 3 and, from (2), a = 1 . We thus obtain the solution n = 223 ■ 5 =
60, and this is the only solution to arise this way.

c dSuppose (3) holds. Neither q + 1 nor q + 1 can be divisible by 4, since
the right-hand side of (3) is not divisible by 16, so we must have qc > 9 and
qd > 81. Then

4^8-5fl-1 _(qc+l)(qd + l) _        1      J_        1
3 -  5a + 1 q<+* qc     qd     qc+d

I     _L       1     _ 820-    + 9 + 81 + 729 ~ 729'

This is a contradiction.
Next, suppose (4) holds. Then q  + 1 cannot be divisible by 4, so q   > 9.

In that case,

9 qb (5C-H)(5'+1)_5 /        1      J_        1
1Í1  -      /l        . „     rr+d-\ 0   I      +  «c +   ,//  +10-^+1 S-5c+d~{ »V       5£     5d     5c+d

^ 5 /,     1      1        1  \     39
£8    1 + 5 + 25 + T25    =50'

which is a contradiction
Case 3:  m = 5'

( 1 ) takes the form
Case 3:   m = 5aí¡r V , where <? and r are distinct primes, not 2 or 5. Now

(5) (5û+l)(^ + l)(rc+l) = 8.5fl-Vrc.
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Neither q  + 1 nor rc + 1 can be divisible by 4, so we may take qb > 9 and
rc > 13. Then

4     8-5a_1      (qb + 1)(/ + 1) 111
~ <   ,„ .  .   =-r4--= 1 + ^- + ^ +3 -   5a + 1 9V ~     V     rc     ^V

1   _L   _L   112-    +9 + 13 + 117 ~ 117'
This is a contradiction.

With the comment above that all infinitary multiperfect numbers are even,
the proof is now complete.   D

6. Infinitary amicable pairs and aliquot cycles

We call two integers m and n infinitary amicable if a^m) - m + n -
o^n). A more general notion is that of an infinitary aliquot sequence {n }°^0 :
given the "leader" n0 , we define n-, for j > 1, by «. = (r0O(nJ_l) - «•_, . An
infinitary aliquot cycle of order r is a subsequence nk , nk+x, ... , nk+r_x with
the property that nk+r = nk . Such cycles of order 1 are infinitary perfect
numbers, and cycles of order 2 are infinitary amicable pairs.

A computer run, in which each integer less than 10 was considered in turn
as leader, found 62 infinitary amicable pairs, eight infinitary aliquot cycles of
order 4, three of order 6, and one of order 11. These are all given below. In this
search, there were 36172 infinitary aliquot sequences whose eventual behavior
was unknown in that a term of the sequence exceeded the imposed bound of

1 29-10 .Of the remaining sequences, many terminated in cycles with smallest
member greater than 10 . There was no systematic search for these, so they are
not listed, but the longest observed infinitary aliquot cycle was of order 23 and
had smallest member 12647808. The computations showed that there are no
other cycles of order less than 17 which have smallest member less than 106.

Most of the theorems of Hagis [4, 6] concerned with the corresponding no-
tions for unitary and biunitary divisors may be easily adjusted to apply also
to infinitary divisors. These give means of obtaining new amicable pairs and
aliquot cycles from known ones. A survey of the extensive literature on the
corresponding topic for ordinary and unitary divisors will be found in Guy [3].

The following is a list of all infinitary amicable pairs with smaller member
less than 106:

114 = 2-3-19 126 = 2-327
594 = 2-33ll 846 = 2-3247

1140 = 223 -5-19 1260 = 22325-7

4320 = 25335 7920 = 24325-11

5940 = 22335 - 11 8460 = 22325-47

8640 = 26335 11760 = 243-5-72

10744 = 2317-79 10856 = 2323 • 59
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12285 = 3 5-7-13
13500 = 223353

25728 = 273- 67

35712 = 273231

44772 = 223-7- 13-41
60858 = 2•337223

62100 = 22335223

67095 = 335-7-71
67158 = 2•327-13-41
74784 = 253- 19-41
79296 = 263-7- 59
79650 = 2-335259

79750 = 2- 5311 -29

86400 = 273352

92960 = 255 -7-83
118500 = 223-5379
118944 = 25327-59
142310 = 2-5-7- 19- 107
143808 = 263-7- 107
177750 = 2-325379

185368 = 2317-29-47
204512 = 257- 11-83

215712 = 25327 • 107

298188 = 223311-251
308220 = 223-5- 11-467
356408 = 2313-23- 149
377784 = 233411 -53

420640 = 255- 11-239
462330 = 2-325-11-467
476160 = 2l03-5-31

482720 = 255- 7 -431

487296 = 273447

14595
17700

3-5-7-139
223-5259

43632 = 2433101

45888 = 2 3-239
,249308 = 2 3

83142 = 2-3
62700 223

71145 = 335
73962 = 2-3
96576 = 263
83904 263

7-587
31-149
5211 - 19

17-31
7-587
503
19-23

107550 = 2-3252239

88730 = 2-5- 19-467
178800 243-52149

112672 = 2 7-503
131100 = 223 • 5219 • 23
125856 = 253219-23
168730 = 2-5-47-359
149952 = 263- 11-71

196650 = 2■325219 • 23
203432 = 2359-431
206752 = 257- 13-71

224928 = 253211 -71

306612 = 223317- 167
365700 = 223-5223- 53
399592
419256

2 199-251
2334647

460640 = 2 5 • 2879
548550 = 2-325223-53
510720 = 283-5-7-19
574816 = 2511-23-71
516384 = 253211 • 163
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545238 = 2-3 23-439
576882 = 2-351187

600392 = 2313- 23 -251
608580 = 22335-7223

609928 = 2311 -29-239
624184 = 2311 -41 -173
635624 = 2311 - 31 • 233
643336 = 2329-47-59
643776 = 263-7-479
669900 = 223-527- 11-29

671580 = 22325-7- 13-41
726104 = 2317 - 19-281
784224 25327-389

785148 = 2"3 • 7 - 13 - 719
796500 = 22335359

815100 = 223-5211 •13- 1«

863360 = 275 -19-71
898216 = 2311 -59- 173
916200 233252509

947835
974400

3 5-7- 17-59
263 • 527 -29

988038 = 2-3 19-107
998104 = 2317 - 41 • 179

721962 = 2-3-19-2111
592110 = 2-345- 17-43

669688 = 2397-863
831420 = 22325-31- 149

686072 = 23191-449
691256 = 2371•1217
712216 = 23127- 701

652664 = 2317-4799
661824 = 2633383
827700 = 223-5231 -89

22325-7-587

2 53-1879
739620
796696
806976 = 2633467

827652 = 223-7-59-167
1075500 = 223253239

932100 = 223-5213-239
1339840 = 265 -53-79

980984 = 2347-2609
1072800 S    1    22 3-5-I49
1125765 = 335-31 -269
1147200 = 263-52239

1137402 = 2-347- 17-59
1043096 = 2323-5669

A scanning of this list suggests that it would be interesting to investigate why
the two members of an infinitary amicable pair often have such similar prime
factorizations. The analogues of the theorems in Hagis [6] and the methods of
te Riele [14] go part of the way in explaining this.

The eight infinitary aliquot cycles of order 4 with smallest member less than
106 are:

(1026, 1374, 1386, 1494),
(10098, 15822, 19458, 15102),
(10260, 13740, 13860, 14940),
(41800, 51800, 66760, 83540),
(45696, 101184, 94656, 88944),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON AN INTEGER'S INFINITARY DIVISORS 411

(100980, 158220, 194580, 151020),
(241824, 321216, 331584, 313056),
(685440, 1517760, 1419840, 1334160).

The three of order 6 are:

(12420, 16380, 17220, 23100, 26820, 18180),
(512946, 869454, 891906, 933918, 933930, 769374),
(830568, 1245912, 1868928, 3288192, 5447088, 1076832).

Finally, the only other infinitary aliquot cycle of order less than 17 with least
member less than 10   is:

(448800,696864, 1124448, 1651584, 3636096,6608784,
5729136, 3736464,2187696,1572432, 895152).
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