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The boundedness and compactness of an integral-type operator recently introduced by the author
from Zygmund-type spaces to the mixed-norm space on the unit ball are characterized here.

1. Introduction

Let � = {z ∈ �
n : |z| < 1} be the open unit ball in �

n , ∂� its boundary, dVN the normalized
volume measure on � , andH(� ) the class of all holomorphic functions on � . Strictly positive,
bounded, continuous functions on � are called weights.

For an f ∈ H(� ) with the Taylor expansion f(z) =
∑

|β|≥0 aβzβ, let

�f(z) =
∑

|β|≥0
∣
∣β
∣
∣aβz

β (1.1)

be the radial derivative of f , where β = (β1, β2, . . . , βn) is a multi-index, |β| = β1 + · · · + βn and
zβ = z

β1
1 · · ·zβnn .
A positive, continuous function ν on the interval [0, 1) is called normal [1] if there are

δ ∈ [0, 1) and a and b, 0 < a < b such that

ν(r)
(1 − r)a

is decreasing on [δ, 1), lim
r→ 1

ν(r)
(1 − r)a

= 0,

ν(r)

(1 − r)b
is increasing on [δ, 1), lim

r→ 1

ν(r)

(1 − r)b
= ∞.

(1.2)
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If we say that a function ν : � → [0,∞) is normal, we also assume that it is radial, that is,
ν(z) = ν(|z|), z ∈ � .

Let μ be a weight. By Zμ(� ) = Zμ, we denote the class of all f ∈ H(� ) such that

z
(
f
)
:= sup

z∈�
μ(z)

∣
∣
∣�2f(z)

∣
∣
∣ < ∞, (1.3)

and call it the Zygmund-type class. The quantity z(f) is a seminorm. A norm on Zμ can be
introduced by ‖f‖Z = |f(0)| + z(f). Zygmund-type class with this norm will be called the
Zygmund-type space.

The little Zygmund-type space on � , denoted byZμ,0(� ) = Zμ,0, is the closed subspace of
Zμ consisting of functions f satisfying the following condition

lim
|z|→ 1

μ(z)
∣
∣
∣�2f(z)

∣
∣
∣ = 0. (1.4)

For 0 < p, q < ∞, and φ normal, the mixed-norm space H(p, q, φ)(� ) = H(p, q, φ)
consists of all functions f ∈ H(� ) such that

∥
∥f

∥
∥
H(p,q,φ) =

(∫1

0
M

p
q

(
f, r

)φp(r)
1 − r

dr

)1/p

< ∞, (1.5)

where

Mq

(
f, r

)
=
(∫

∂�

∣
∣f(rζ)

∣
∣qdσ(ζ)

)1/q

, (1.6)

and dσ is the normalized surface measure on ∂� . For p = q, φ(r) = (1 − r2)(α+1)/p, and α > −1,
the space is equivalent with the weighted Bergman spaceAp

α(� ).
In [2], the present author has introduced products of integral and composition

operators on H(� ) as follows (see also [3–5]). Assume g ∈ H(� ), g(0) = 0, and ϕ is a
holomorphic self-map of � , then we define an operator onH(� ) by

P
g
ϕ

(
f
)
(z) =

∫1

0
f
(
ϕ(tz)

)
g(tz)

dt

t
, f ∈ H(� ) , z ∈ � . (1.7)

The operator is an extension of the operator introduced in [6]. Here, we continue to study
operator P

g
ϕ by characterizing the boundedness and compactness of the operator between

Zygmund-type spaces and the mixed-norm space. For some results on related integral-type
operators mostly in � n , see, for example, [3, 6–27] and the references therein.

In this paper, constants are denoted by C; they are positive and may differ from one
occurrence to the other. The notation a � b means that there is a positive constant C such that
a ≤ Cb. If both a � b and b � a hold, then one says that a 	 b.
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2. Auxiliary Results

In this section, we quote several lemmas which are used in the proofs of the main results.
The first lemma was proved in [2].

Lemma 2.1. Assume that ϕ is a holomorphic self-map of � , g ∈ H(� ), and g(0) = 0. Then, for every
f ∈ H(� ) it holds

�

[
P
g
ϕ

(
f
)]
(z) = f

(
ϕ(z)

)
g(z). (2.1)

The next Schwartz-type characterization of compactness [28] is proved in a standard
way (see, e.g., the proof of the corresponding lemma in [11]), hence we omit its proof.

Lemma 2.2. Assume p, q > 0, ϕ is a holomorphic self-map of � , g ∈ H(� ), g(0) = 0, φ is normal,
and μ is a weight. Then, the operator Pg

ϕ : Zμ (or Zμ,0) → H(p, q, φ) is compact if and only if for
every bounded sequence (fk)k∈� ⊂ Zμ (or Zμ,0) converging to 0 uniformly on compacts of � we have
limk→∞‖Pg

ϕfk‖H(p,q,φ) = 0.

The next lemma is folklore and can be found, for example, in [6] (one-dimensional
case for standard power weights is due to Flett [29, Theorems 6 and 7]).

Lemma 2.3. Assume that 0 < p, q < ∞, φ is normal, and m ∈ �. Then, the following asymptotic
relationship holds for every f ∈ H(� ),

∫1

0
M

p
q

(
f, r

)φp(r)
1 − r

dr 	 ∣
∣f(0)

∣
∣p +

∫1

0
M

p
q

(
�

mf, r
)
(1 − r)mp φ

p(r)
1 − r

dr. (2.2)

Lemma 2.4. Assume that μ is normal and f ∈ Zμ. Then,

∣
∣f(z)

∣
∣ ≤ C

∥
∥f

∥
∥
Zμ

(

1 +
∫ |z|

0

∫ t

0

ds

μ(s)
dt

)

, z ∈ � . (2.3)

Moreover, if

∫1

0

∫ t

0

ds

μ(s)
dt < ∞, (2.4)

then

∣
∣f(z)

∣
∣ ≤ C

∥
∥f

∥
∥
Zμ
, (2.5)

for any z ∈ � .
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Proof. By Lemma 2.3.1 in [21] applied to�f we have that

∣
∣�f(z)

∣
∣ ≤ C

∥
∥f

∥
∥
Zμ

(

1 +
∫ |z|

0

ds

μ(s)

)

. (2.6)

Hence, for |z| ≥ 1/2, we have that

∣
∣
∣f(z) − f

(z

2

)∣
∣
∣ ≤

∫1

1/2

∣
∣�f(tz)

∣
∣dt

t
≤ C

∥
∥f

∥
∥
Zμ

∫1

1/2

(

1 +
∫ t|z|

0

ds

μ(s)

)
d(t|z|)
|z| , (2.7)

so that

∣
∣f(z)

∣
∣ ≤ M∞

(

f,
1
2

)

+ C
∥
∥f

∥
∥
Zμ

(

1 +
∫ |z|

0

∫ t

0

ds

μ(s)
dt

)

, (2.8)

where M∞(f, 1/2) = max|z|≤1/2|f(z)|.
If |z| ≤ 1/2, then by the mean value property of the function f(z) − f(0) (see [30]),

Jensen’s inequality, and Parseval’s formula, we obtain

max
|z|≤1/2

∣
∣f(z) − f(0)

∣
∣2 ≤ 4n

∫

|z|≤3/4

∣
∣f(w) − f(0)

∣
∣2dVN(w)

≤ 4n
∫

|z|≤3/4

∣
∣�f(w)

∣
∣2dVN(w)

≤ 3n max
|z|≤3/4

∣
∣�f(z)

∣
∣2.

(2.9)

From (2.9) and (2.6), we obtain

M∞
(
f, 1/2

) ≤ ∣
∣f(0)

∣
∣ +

(√
3
)n

max
|z|≤3/4

∣
∣�f(z)

∣
∣

≤ ∣
∣f(0)

∣
∣ +

(√
3
)n

C
∥
∥f

∥
∥
Zμ

(

1 +
∫3/4

0

ds

μ(s)

)

≤ C
∥
∥f

∥
∥
Zμ
.

(2.10)

From (2.8) and (2.10), (2.3) follows, from which by (2.4) the second statement follows.

Lemma 2.5. Assume μ is normal and (2.4) holds. Then, for every bounded sequence (fk)k∈� ⊂ Zμ

converging to 0 uniformly on compacts of � , we have that

lim
k→∞

sup
z∈�

∣
∣fk(z)

∣
∣ = 0. (2.11)
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Proof. From (2.4), we have that for every ε > 0, there is a δ ∈ (0,min{ε, 1/2}) such that

∫ |z|

(1−δ)|z|

∫ t

0

ds

μ(s)
dt < ε, (2.12)

for |z| > 1 − δ.
Hence, from (2.12) it follows that for each k ∈ � and |z| ≥ 1 − δ

∣
∣fk(z) − fk((1 − δ)z)

∣
∣ ≤

∫1

1−δ

∣
∣�fk(tz)

∣
∣dt

t

≤ C
∥
∥fk

∥
∥
Zμ

∫1

1−δ

(

1 +
∫ t|z|

0

ds

μ(s)

)

dt

≤ C
∥
∥fk

∥
∥
Zμ

(

ε +
∫ |z|

(1−δ)|z|

∫ t

0

ds

μ(s)
dt

)

.

(2.13)

From (2.12) and (2.13), we obtain

∣
∣fk(z)

∣
∣ ≤ sup

|w|≤1−δ

∣
∣fk(w)

∣
∣ + 2Cε sup

k∈�

∥
∥fk

∥
∥
Zμ
. (2.14)

Letting k → ∞ in this inequality, using the assumption that fk converges to 0 on the compact
|w| ≤ 1 − δ, and using the fact that ε is an arbitrary positive number, the lemma follows.

3. The Boundedness and Compactness of Pg
ϕ : Zμ (or Zμ,0) → H(p, q, φ)

The boundedness and compactness of the operator P
g
ϕ : Zμ (or Zμ,0) → H(p, q, φ) are

characterized in this section.

Theorem 3.1. Assume that p, q > 0, ϕ is a holomorphic self-map of � , g ∈ H(� ), g(0) = 0, φ
and μ are normal, and μ satisfies condition (2.4). Let

G(z) =
∫1

0
g(tz)

dt

t
. (3.1)

Then, the following statements are equivalent:
(a) Pg

ϕ : Zμ,0 → H(p, q, φ) is bounded;
(b) Pg

ϕ : Zμ → H(p, q, φ) is bounded;
(c) Pg

ϕ : Zμ,0 → H(p, q, φ) is compact;
(d) Pg

ϕ : Zμ → H(p, q, φ) is compact;
(e) G ∈ H(p, q, φ).

Moreover, if Pg
ϕ : Zμ → H(p, q, φ) is bounded, then the following asymptotic relations hold:

∥
∥
∥P

g
ϕ

∥
∥
∥
Zμ →H(p,q,φ)

	
∥
∥
∥P

g
ϕ

∥
∥
∥
Zμ,0 →H(p,q,φ)

	 ‖G‖H(p,q,φ). (3.2)
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Proof. The implications (d)⇒(b), (b)⇒(a), (d)⇒(c), and (c)⇒(a) are obvious.
(a)⇒ (e) Since P

g
ϕ : Zμ,0 → H(p, q, φ) is bounded and f(z) ≡ 1 ∈ Zμ,0, by Lemma 2.1

we have that G(z) = P
g
ϕ (1)(z) ∈ H(p, q, φ). Moreover,

‖G‖H(p,q,φ) =
∥
∥
∥P

g
ϕ (1)

∥
∥
∥
H(p,q,φ)

≤
∥
∥
∥P

g
ϕ

∥
∥
∥
Zμ,0 →H(p,q,φ)

. (3.3)

(e)⇒ (d) Assume that (fk)k∈� ⊂ Zμ is a bounded sequence converging to 0 uniformly
on compacts of � . Then, by Lemmas 2.1, 2.3, and 2.5, we have

∥
∥
∥P

g
ϕfk

∥
∥
∥
H(p,q,φ)

	
∣
∣
∣P

g
ϕ fk(0)

∣
∣
∣ +

(∫1

0
M

p
q

(
gfk ◦ ϕ, r

) φp(r)

(1 − r)1−p
dr

)1/p

≤ C‖G‖H(p,q,φ) sup
z∈�

∣
∣fk(z)

∣
∣ −→ 0, as k −→ ∞,

(3.4)

which along with Lemma 2.2 implies the compactness of Pg
ϕ : Zμ → H(p, q, φ).

From (2.4) and by Lemmas 2.3 and 2.4, we have

∥
∥
∥P

g
ϕf

∥
∥
∥
H(p,q,φ)

≤ C

(∫1

0
M

p
q

(
gf ◦ ϕ, r) φp(r)

(1 − r)1−p
dr

)1/p

≤ C
∥
∥f

∥
∥
Zμ

(∫1

0
M

p
q

(
g, r

) φp(r)

(1 − r)1−p
dr

)1/p

≤ C
∥
∥f

∥
∥
Zμ
‖G‖H(p,q,φ).

(3.5)

This, together with (3.3) and the inequality

∥
∥
∥P

g
ϕ

∥
∥
∥
Zμ,0 →H(p,q,φ)

≤
∥
∥
∥P

g
ϕ

∥
∥
∥
Zμ →H(p,q,φ)

, (3.6)

implies the asymptotic relations in (3.2), as desired.
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[27] S. Stević, “On an integral operator between Bloch-type spaces on the unit ball,” Bulletin des Sciences

Mathematiques, vol. 134, no. 4, pp. 329–339, 2010.
[28] H. J. Schwartz, Composition operators on Hp, Ph.D. thesis, University of Toledo, Ann Arbor, Mich, USA,

1969.
[29] T.M. Flett, “The dual of an inequality of Hardy and Littlewood and some related inequalities,” Journal

of Mathematical Analysis and Applications, vol. 38, pp. 746–765, 1972.
[30] W. Rudin, Function Theory in the Unit Ball of �

n , vol. 241 of Grundlehren der Mathematischen
Wissenschaften, Springer, New York, NY, USA, 1980.


