ON AN INVARIANT BILINEAR FORM ON THE SPACE OF AUTOMORPHIC FORMS VIA ASYMPTOTICS

A DISSERTATION SUBMITTED TO THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF MATHEMATICS

 BYJONATHAN PEIYU WANG

CHICAGO, ILLINOIS
JUNE 2017

Copyright © 2017 by Jonathan Peiyu Wang
All Rights Reserved

To my parents

TABLE OF CONTENTS

ACKNOWLEDGMENTS vii
ABSTRACT viii
1 REDUCTIVE MONOID ASSOCIATED TO A PARABOLIC SUBGROUP 1
1.1 Introduction 1
1.1.1 Motivation 1
1.1.2 Contents 3
1.1.3 Conventions 4
1.2 Recollections on normal reductive monoids 5
1.2.1 Renner cones 5
1.2.2 The monoid $\overline{T_{\text {sub }}}$ 6
1.2.3 The monoid \bar{M} 7
1.3 The monoid associated to a parabolic subgroup 9
1.3.1 The Renner cone of \bar{M} 9
1.3.2 Relation to $\overline{G / U}$ 11
1.3.3 Tannakian description of \bar{M} 15
1.4 Relation to boundary degenerations 17
1.4.1 Boundary degenerations 17
1.4.2 Relation to Vinberg's semigroup 19
2 INVARIANT BILINEAR FORM DEFINED VIA ASYMPTOTICS 26
2.1 Introduction 26
2.1.1 The goal of this chapter 26
2.1.2 Motivation from geometric Langlands 28
2.1.3 Analog of the Aubert-Zelevinsky involution 29
2.1.4 Structure of the chapter 30
2.1.5 Conventions 33
2.2 Local intertwining operators and asymptotics 34
2.2.1 Bounded sets 35
2.2.2 The strongly quasi-affine varieties G / U and \mathbb{X}_{P} 35
2.2.3 Combinatorial setup 36
2.2.4 The space $\mathcal{C}_{b}\left(\mathbb{X}_{P}\right)$ 40
2.2.5 The spaces $\mathcal{C}_{P, \pm}$ 40
2.2.6 Intertwining operator 42
2.2.7 Local asymptotics map 43
2.2.8 Invertibility of R_{P} 45
2.3 Formulas on K-invariants 47
2.3.1 Intertwining operator on K-invariants 47
2.3.2 Satake isomorphism 48
2.3.3 Gindikin-Karpelevich formula 50
2.3.4 Langlands' reformulation 52
2.3.5 Asymptotics on K-invariants 54
2.4 The bilinear form \mathcal{B} 54
2.4.1 Definition of \mathcal{B} 54
2.4.2 Definition of \mathcal{B}_{P} 55
2.4.3 Restriction of \mathcal{B}_{P} to \mathcal{A}_{c}^{K} 57
2.4.4 Geometric interpretation 57
2.5 Global intertwining operators 59
2.5.1 The spaces $\mathcal{C}_{P}, \mathcal{C}_{P, \pm}$ 59
2.5.2 The Harder-Narasimhan-Shatz stratification 61
2.5.3 The constant term operator 61
2.5.4 The operator $R_{P}: \mathcal{C}_{P^{-},+} \rightarrow \mathcal{C}_{P,-}$ 63
2.5.5 Invertibility of R_{P} 64
2.5.6 A formula for \mathcal{B}_{P} in terms of R_{P} 66
2.6 The operator L and its inverse 67
2.6.1 Constant term revisited 68
2.6.2 Eisenstein operator 69
2.6.3 Intertwining operators revisited 69
2.6.4 The composition $\mathrm{CT}_{P^{\prime}} \circ \operatorname{Eis}_{P}$ 71
2.6.5 The operator $L: \mathcal{A}_{c} \rightarrow \mathcal{A}$ 71
2.6.6 The space $\mathcal{A}_{p s-c}$ of "pseudo-compactly" supported functions 75
3 RADON INVERSION FORMULAS OVER LOCAL FIELDS 80
3.1 Introduction 80
3.1.1 Some notation 80
3.1.2 Subject of this chapter 80
3.1.3 Motivation 81
3.1.4 Structure of the chapter 82
3.2 Recollections on the Radon transform 82
3.2.1 The norm on F^{n} 82
3.2.2 The spaces $\mathcal{C}, \mathcal{C}_{C}, \mathcal{C}_{ \pm}$ 83
3.2.3 Radon transform 83
$3.3 \quad F$ non-Archimedean 84
3.3.1 K-finite functions 84
3.3.2 The operator $A_{\beta}: \mathcal{C}_{-} \rightarrow \mathcal{C}_{+}$ 85
3.3.3 Fourier transform 87
3.3.4 Actions on $\mathcal{C}_{ \pm}$ 89
3.3.5 Relation between Radon and Fourier transforms 91
3.3.6 Comparison with Černov's Radon inversion formula 92
$3.4 \quad F$ real 93
3.4.1 Spherical harmonics 93
3.4.2 Decomposing \mathcal{C} into K-isotypes 94
3.4.3 Radon inversion formula 94
3.4.4 A formula for \widetilde{R} in terms of convolution 95
3.4.5 Relation to Fourier transform 96
3.4.6 Proof of Theorem 3.4.4 98
3.4.7 The non- K-finite situation 99
3.5 F complex 101
3.5.1 Spherical harmonics 101
3.5.2 Decomposing \mathcal{C} into K-isotypes 102
3.5.3 Radon inversion formula 102
3.5.4 A formula for \widetilde{R} in terms of convolution 103
3.5.5 Relation to the Fourier transform 104
3.5.6 Proof of Theorem 3.5.4 105
A GEOMETRIC REPRESENTATION THEORY 107
A. 1 Substacks of the Hecke stack 107
A.1.1 Recollections on normal reductive monoids 107
A.1.2 Definition of $\tilde{\mathcal{H}}_{M}$ 109
A.1.3 Affine Grassmannians 111
A.1.4 Slope comparisons 113
A.1.5 The stack \mathcal{H}_{M}^{+} 115
A.1.6 Convolution products 118
A. 2 Factorization algebras in Sph_{M}^{+} 120
A.2.1 Remarks on G 121
A.2.2 Geometric Satake 121
A.2.3 Factorization algebras 122
A.2.4 Cocommutative factorization algebras 123
A.2.5 Commutative factorization algebras 125
A.2.6 Eisenstein series 126
A.2.7 The factorization algebra $\tilde{\Upsilon}\left(\check{\mathfrak{u}}_{P}\right)$ 127
A.2.8 Geometric proof 129
A. 3 The Drinfeld-Lafforgue-Vinberg compactification 131
A.3.1 The Deconcini-Procesi-Vinberg semigroup 132
A.3.2 The stack VinBun ${ }_{G}$ 134
A.3.3 The $T_{\text {adj-action on }} \operatorname{VinBun}_{G}$ 135
A.3.4 Fiber bundles 136
A.3.5 Defect stratification 137
A.3.6 Remarks on the case when $[G, G]$ is not simply connected 139
A.3.7 The function b 146
A.3.8 Compactifications of the diagonal morphism of Bun_{G} 147
A.3.9 The $*$-extension of the constant sheaf 152
A.3.10 Reduction to the Hecke stack 155
A.3.11 Local models
A.3.11 Local models 156 156
A.3.12 Contracting action on $\tilde{y} \dot{y} \dot{P}$ red 158
REFERENCES 160

ACKNOWLEDGMENTS

First and foremost, I thank my advisor Vladimir Drinfeld for his constant guidance, help, and patience throughout graduate school. He has been overwhelmingly generous with both his time and ideas. The support and encouragement that he provided were crucial to my progress during the most difficult periods of my studies. He taught me a great deal of mathematics and showed me how to become a better mathematician.

I thank Sasha Beilinson, Roman Bezrukavnikov, Dennis Gaitsgory, Sam Raskin, Yiannis Sakellaridis, and Simon Schieder for many enlightening conversations during my time at UChicago. I owe a special thanks to Dennis Gaitsgory for his guidance during my undergraduate studies. His courses and mentorship laid the foundations for my work in graduate school. I am also grateful to Ngô Bảo Châu, Matt Emerton, and Victor Ginzburg for their wonderful courses at UChicago - they provided insights for my own research and also broadened my mathematical horizons.

UChicago has provided me an exciting environment to pursue my mathematical passions. I thank my friends and classmates for the camaraderie and many stimulating conversations. I have learned so much from them, and they have filled my last five years with joy. I also thank Plein Air Cafe for providing an inspiring work environment on campus and supplying me with copious amounts of delicious coffee. I thank the National Science Foundation and the Department of Defense for their support during my time at UChicago through the NSF Graduate Research Fellowship and the NDSEG fellowship.

Finally, I owe everything to my parents. They have been an unwavering source of love, encouragement, and support. They have always prioritized my education, and they are always there to listen and give me advice when I need it. Words fail to describe how grateful I am towards them.

ABSTRACT

This thesis concerns the study of a new invariant bilinear form \mathcal{B} on the space of automorphic forms of a split reductive group G over a global field. The form \mathcal{B} is natural from the viewpoint of the geometric Langlands program.

First, we study a certain reductive monoid \bar{M} associated to a parabolic subgroup P of G. The monoid \bar{M} is used implicitly in the study of the geometry of Drinfeld's compactifications of the moduli stacks Bun_{P} and Bun_{G}. We show that \bar{M} is a retract of the affine closure of the quasi-affine variety G / U, and we relate \bar{M} to the Vinberg semigroup of G.

Second, we define the invariant bilinear form \mathcal{B} over a function field using the asymptotics maps defined in Bezrukavnikov-Kazhdan [10] and Sakellaridis-Venkatesh [60] using the geometry of the wonderful compactification of G. We show that \mathcal{B} is related to the miraculous duality functor studied by Drinfeld and Gaitsgory through the functions-sheaves dictionary. In the proof, we use the work of Schieder [62], which concerns the singularities of Drinfeld's compactification of Bun_{G}. We then give an alternate definition of \mathcal{B}, which extends to number fields, using the constant term operator and the inverse of the standard intertwining operator. The form \mathcal{B} defines an invertible operator L from the space of compactly supported automorphic forms to a new space of "pseudo-compactly" supported automorphic forms. We give a formula for L^{-1} in terms of pseudo-Eisenstein series and constant term operators which suggests that L^{-1} is an analog of the Aubert-Zelevinsky involution.

Lastly, we study the Radon transform as an operator $R: \mathcal{C}_{+} \rightarrow \mathcal{C}_{-}$from the space of smooth K-finite functions on $F^{n} \backslash\{0\}$ with bounded support to the space of smooth K finite functions on $F^{n} \backslash\{0\}$ supported away from a neighborhood of 0 , where F is a (possibly Archimedean) local field. When $n=2$, the Radon transform coincides with the standard intertwining operator. We prove that R is an isomorphism and provide explicit formulas for R^{-1}. These formulas in turn give a formula for \mathcal{B} over a number field when $G=\operatorname{SL}(2)$.

CHAPTER 1

REDUCTIVE MONOID ASSOCIATED TO A PARABOLIC SUBGROUP

1.1 Introduction

1.1.1 Motivation

Let G be a connected reductive group over a perfect field k. Let U denote the unipotent radical of a parabolic subgroup P of G. Grosshans proved in [36] that the homogeneous space G / U is a quasi-affine variety and the algebra of regular functions $k[G / U]$ is finitely generated.

In [3], Arzhantsev and Timashev consider affine embeddings of G / U and give a detailed description of the canonical embedding $G / U \hookrightarrow \operatorname{Spec} k[G / U]$ under the assumption that the characteristic of k is 0 . They establish a bijection between these affine embeddings and certain normal algebraic monoids with group of units equal to the Levi factor $M=P / U$. In particular, the canonical embedding corresponds to the monoid \bar{M} defined as the closure of M in $\operatorname{Spec} k[G / U]$. This construction, which we first learned from [5], defines an affine algebraic monoid \bar{M} in any characteristic. It is not a priori clear, however, whether the monoid \bar{M} is normal in positive characteristic.

One of the goals of this chapter is to show that \bar{M} is a normal algebraic monoid with group of units M in any characteristic, and to describe the combinatorial data it corresponds to under the classification of normal reductive monoids in [56, Theorem 5.4].

Let $\overline{G / U}$ denote the spectrum of $k[G / U]$. Then $\overline{G / U}$ is an affine variety of finite type, and it plays a prominent role in the definition of Drinfeld's compactification $\widetilde{\operatorname{Bun}_{P}}$ of the moduli stack of P-bundles over a smooth complete curve. Drinfeld's compactification is used to define the geometric Eisenstein series functors in [13]. As Baranovsky observes in [5, §6], the monoid \bar{M} is used implicitly when studying the stratification of $\widetilde{\operatorname{Bun}}_{P}$. More specifically,
the closed subscheme $\operatorname{Gr}_{M}^{+} \subset \operatorname{Gr}_{M}$ of the affine Grassmannian (cf. [13, §6.2], [12, §1.6]) is just $(\bar{M}(O) \cap M(K)) / M(O)$ inside $M(K) / M(O)$, where O is a complete discrete valuation ring with field of fractions K. The relative version of $\operatorname{Gr}_{M}^{+}$becomes \mathcal{H}_{M}^{+}, the positive part of the Hecke stack (cf. [12, §1.8]).

The stack \mathcal{H}_{M}^{+}is therefore the global model for the formal arc space of the embedding $M \hookrightarrow \bar{M}$, as considered in $[11, \S 2]$. We hope that studying the properties of \bar{M} will provide a better understanding of \mathcal{H}_{M}^{+}.

If P^{-}is a parabolic subgroup opposite to P, then G / U is closely related to the more symmetrically defined variety $\mathbb{X}_{P}=\left(G / U \times G / U^{-}\right) /\left(P \cap P^{-}\right)$, which is also quasi-affine. This variety \mathbb{X}_{P} is called a boundary degeneration of G in [60] (when P is not a Borel subgroup, \mathbb{X}_{P} is an intermediate degeneration), and it is a central object in the geometric proof of Bernstein's Second Adjointness Theorem in the theory of \mathfrak{p}-adic groups given in [10]. We note that this proof and the space \mathbb{X}_{P} are closely related to the study of geometric constant term (and Eisenstein series) functors in [24].

The boundary degeneration \mathbb{X}_{P} and its affine closure $\overline{\mathbb{X}}_{P}:=$ Spec $k\left[\mathbb{X}_{P}\right]$ may be recovered from the Vinberg semigroup corresponding to G. The Vinberg semigroup $\overline{G_{\text {enh }}}$ is used to define the Drinfeld-Lafforgue compactification $\overline{\mathrm{Bun}}_{G}$ (resp. the Drinfeld-Lafforgue-Vinberg compactification $\operatorname{VinBun}_{G}$) of the moduli stack Bun_{G} in [62]. As one might expect, the positive part \mathcal{H}_{M}^{+}of the Hecke stack appears in the stratification of $\overline{\mathrm{Bun}}_{G}\left(\right.$ resp. VinBun $\left.{ }_{G}\right)$, where P ranges over all conjugacy classes of parabolic subgroups, assuming that G is split. In this chapter we attempt to explain the relations between $\bar{M}, \overline{G / U}, \overline{\mathbb{X}}_{P}$, and $\overline{G_{\text {enh }}}$ in hopes that it will elucidate the geometry underlying the aforementioned stratifications.

In [59], Sakellaridis fixes a strictly convex cone in the \mathbb{Q}-vector space spanned by the coweights of a split maximal torus T in G in order to "expand power series" on the boundary degeneration \mathbb{X}_{P}, under the assumption that the characteristic of k is 0 . This cone is precisely the dual of what we call the Renner cone of \bar{M}. Thus the combinatorial description of \bar{M} provides a first step towards generalizing the results of [59] to arbitrary characteristic.

The description of \bar{M} is also of interest in the study of those local unramified automorphic L-functions associated to certain "basic functions" on \bar{M} in the spirit of [11]. Such functions are considered in Chapter 2 in relation to the asymptotics map ${ }^{1}$ and inversion of intertwining operators. The study of \bar{M}, and more generally of the intermediate boundary degenerations \mathbb{X}_{P}, is needed in Chapter 2 to generalize the results of [27], which treats the case when $G=\operatorname{SL}(2)$.

1.1.2 Contents

In $\S 1.2$, we recall the classification of normal reductive monoids proved by L. Renner. Given a reductive group and certain combinatorial data (what we call a Renner cone), we construct the associated normal algebraic monoid.

In $\S 1.3$, we define the normal reductive monoid \bar{M} associated to a parabolic subgroup P of G. The group of units of \bar{M} is the Levi factor M of P. We first give a combinatorial definition of \bar{M} following Renner's classification. We then show in $\S 1.3 .2$ that this monoid may be realized as a retract of $\overline{G / U}$, the spectrum of regular functions on the quasi-affine variety G / U. Lastly in $\S 1.3 .3$ we describe \bar{M} using the Tannakian formalism. This Tannakian description shows how \bar{M} is used implicitly in [13], [12].

In $\S 1.4$, we first recall the definition of the boundary degeneration \mathbb{X}_{P} associated to a pair of opposite parabolics. We show that $\overline{G / U}$ is a retract (and hence a closed subscheme) of $\overline{\mathbb{X}}_{P}:=$ Spec $k\left[\mathbb{X}_{P}\right]$. Using the relation between the boundary degeneration and the Vinberg semigroup of G (i.e., the enveloping semigroup of G), we give another definition of the reductive monoid \bar{M} using the existence of a certain idempotent in the Vinberg semigroup.

[^0]
1.1.3 Conventions

Let k be a perfect field of arbitrary characteristic. All schemes considered will be k-schemes. For a scheme S, let $k[S]$ denote the ring of regular functions $\Gamma\left(S, \mathcal{O}_{S}\right)$.

Fix an algebraic closure \bar{k} of k, and let $\operatorname{Gal}(\bar{k} / k)$ denote its Galois group. For a k-scheme S, let $S_{\bar{k}}$ denote the base change $S \times_{\text {Spec } k} \operatorname{Spec} \bar{k}$, and let $\bar{k}[S]:=\Gamma\left(S_{\bar{k}}, \mathcal{O}_{S_{\bar{k}}}\right)$.

The group G. Let G be a connected reductive group over k. Let T denote its abstract Cartan ${ }^{2}$ and W the corresponding Weyl group. We will denote by $\check{\Lambda}$ (resp. Λ) the weight (resp. coweight) lattice of $T_{\bar{k}}$, which is a $\operatorname{Gal}(\bar{k} / k)$-module.

The semigroup of dominant coweights (resp., weights) will be denoted by Λ_{G}^{+}(resp., by $\left.\check{\Lambda}_{G}^{+}\right)$. The set of vertices of the Dynkin diagram of G will be denoted by Γ_{G}; for each $i \in \Gamma_{G}$ there corresponds a simple coroot α_{i} and a simple root $\check{\alpha}_{i}$. We denote the non-negative integral span of the set of positive coroots (resp. roots) by $\Lambda_{G}^{\text {pos }}$ (resp. $\check{\Lambda}_{G}^{\text {pos }}$). For $\lambda, \mu \in \Lambda$ we will write that $\lambda \geq \mu$ if $\lambda-\mu \in \Lambda_{G}^{\mathrm{pos}}$, and similarly for $\check{\Lambda}_{G}^{\text {pos }}$. Let w_{0} denote the longest element in the Weyl group of G.

Let P be a parabolic subgroup of G. Let U be its unipotent radical and $M:=P / U$ the Levi factor. We use P to identify the abstract Cartan of M with T and let $W_{M} \subset W$ denote the corresponding Weyl group. There is a subdiagram $\Gamma_{M} \subset \Gamma_{G}$. We will denote by $\Lambda_{M}^{\mathrm{pos}} \subset \Lambda_{G}^{\mathrm{pos}}, \Lambda_{M}^{+} \supset \Lambda_{G}^{+}, \geq_{M}, w_{0}^{M} \in W_{M}$, etc. the corresponding objects for M.

Let $\operatorname{Rep}(G)$ denote the abelian category of finite-dimensional G-modules. This category admits a forgetful functor to the abelian category of k-vector spaces. We define the functor

$$
\operatorname{ind}_{P}^{G}: \operatorname{Rep}(P) \rightarrow \operatorname{Rep}(G)
$$

as in [41, §I.3.3]. For a P-module \bar{V}, the induced module $\operatorname{ind}_{P}^{G}(\bar{V})=\left(k[G] \otimes_{k} \bar{V}\right)^{P}$ is finitedimensional by properness of G / P. The functor $\operatorname{ind}_{P}^{G}$ is right adjoint to the restriction
2. When G is quasi-split, the abstract Cartan is defined as B / U_{B} for a Borel subgroup B. The definition is canonical and does not depend on the choice of Borel subgroup. When G is not quasi-split, the abstract Cartan is defined by Galois descent from the quasi-split case.
functor (cf. [41, Proposition I.3.4]). We also denote by $\operatorname{ind}_{P}^{G}$ the corresponding functor $\operatorname{Rep}(M) \rightarrow \operatorname{Rep}(G)$, where an M-module is considered as a P-module with trivial U-action. To a dominant weight $\check{\lambda} \in \check{\Lambda}_{G}^{+}$one attaches the Weyl $G_{\bar{k}}$-module $\Delta(\check{\lambda})$, the dual Weyl module $\nabla(\check{\lambda})$, and the irreducible $G_{\bar{k}}$-module $L(\check{\lambda})$ of highest weight $\check{\lambda}$.

1.2 Recollections on normal reductive monoids

In this section we give a brief review of the classification of normal reductive monoids (i.e., normal, irreducible, affine algebraic monoids whose group of units is reductive), which is proved in [56, Theorem 5.4] by L. Renner. In [56], the base field is assumed to be algebraically closed, but the statements easily generalize to the case of a perfect base field by Galois descent.

To keep notation consistent with the rest of the chapter, we consider a connected reductive group M over k. Let T denote its abstract Cartan and W_{M} the corresponding Weyl group.

1.2.1 Renner cones

We denote by $\check{\Lambda}$ the weight lattice of $T_{\bar{k}}$ (i.e., the lattice of characters). Let $\check{\Lambda} \mathbb{Q}:=\check{\Lambda} \otimes \mathbb{Q}$, which is a \mathbb{Q}-vector space with a $\operatorname{Gal}(\bar{k} / k)$-action.

A Renner cone is a convex rational polyhedral cone in $\check{\Lambda}^{\mathbb{Q}}$ that is stable under the actions of W_{M} and $\operatorname{Gal}(\bar{k} / k)$. As the name suggests, the theorem of L. Renner shows that normal algebraic monoids with group of invertible elements M bijectively correspond to Renner cones generating $\check{\Lambda}^{\mathbb{Q}}$ as a vector space. The correspondence is as follows:

Let \bar{M} be a reductive monoid with group of units M. Fix a Borel subgroup $B \subset M_{\bar{k}}$ and a Cartan subgroup (i.e., maximal torus) $T_{\text {sub }, \bar{k}} \subset B$, both defined over \bar{k}. This gives an identification of $T_{\text {sub }, \bar{k}}$ with the abstract Cartan $T_{\bar{k}}$. Consider the cone $\check{C} \subset \check{\Lambda}^{\mathbb{Q}}$ corresponding by [45] to the closure of $T_{\text {sub, } \bar{k}}$ in $\bar{M}_{\bar{k}}$. The pairs $\left(T_{\text {sub, }, \bar{k}}, B\right)$ of a Cartan subgroup contained in a Borel subgroup are all conjugate by $M(\bar{k})$. Since M acts on \bar{M} by conjugation, \check{C} does
not depend on the choice of $\left(T_{\text {sub }, \bar{k}}, B\right)$. The Weyl group of M acts on $T_{\text {sub }, \bar{k}}$ through the normalizer of $T_{\text {sub, } \bar{k}}$ in M, so \check{C} is preserved by the action of W_{M} on $\check{\Lambda}^{\mathbb{Q}}$. The action of $\operatorname{Gal}(\bar{k} / k)$ on $G_{\bar{k}}$ induces an action on the set of pairs $\left(T_{\text {sub }, \bar{k}}, B\right)$. Since \check{C} is canonically defined independently of the choice of $\left(T_{\mathrm{sub}, \bar{k}}, B\right)$, the Galois action preserves \check{C}. Therefore \check{C} is a Renner cone, and it is the Renner cone corresponding to \bar{M}.

Let $\check{C} \subset \check{\Lambda}^{\mathbb{Q}}$ be a Renner cone. We will construct the corresponding normal reductive monoid \bar{M}. Let us choose a Cartan subgroup (i.e., maximal torus) $T_{\text {sub }}$ of M, defined over k. The construction of \bar{M} will not depend on this choice.

1.2.2 The monoid $\overline{T_{\mathrm{sub}}}$

The characters $\check{\Lambda}$ form a basis of $\bar{k}[T]$. Let R^{\prime} denote the subalgebra of $\bar{k}[T]$ spanned by the characters in $\check{C} \cap \check{\Lambda}$. The choice of a Borel $B \subset M_{\bar{k}}$ containing $T_{\text {sub, } \bar{k}}$ gives an isomorphism $T_{\text {sub }, \bar{k}} \cong T_{\bar{k}}$. All such Borel subgroups are conjugate by the normalizer of $T_{\text {sub }, \bar{k}}$ in $M_{\bar{k}}$. The subalgebra R^{\prime} is preserved by the action of the Weyl group on T, so it defines a corresponding subalgebra $R \subset \bar{k}\left[T_{\text {sub }}\right]$, which does not depend on the choice of a Borel subgroup.

Since \check{C} is Galois stable, so is the subalgebra R. Set $\overline{T_{\text {sub }}}:=\operatorname{Spec}\left(R^{\operatorname{Gal}(\bar{k} / k)}\right)$.
Lemma 1.2.1. (i) $\overline{T_{\mathrm{sub}}}$ is a normal algebraic variety containing $T_{\text {sub }}$ as a dense open subvariety.
(ii) $\overline{T_{\text {sub }}}$ has a (unique) monoidal structure extending the group structure on $T_{\text {sub }}$.

Proof. By Galois descent, it suffices to check the statements over \bar{k}, and we have $\bar{k}\left[\overline{T_{\text {sub }}}\right]=$ R. The submonoid $\check{C} \cap \check{\Lambda}$ is finitely generated and generates $\check{\Lambda}$ as a group. Moreover the submonoid is saturated (i.e., it is the intersection of a rational cone with the lattice). Statement (i) follows from [45, Ch. 1, Thm. 1].

To prove statement (ii), one must show that the map $k\left[T_{\mathrm{sub}}\right] \rightarrow k\left[T_{\text {sub }}\right] \otimes k\left[T_{\text {sub }}\right]$ sends the subalgebra R to $R \otimes R$. This is clear because $R \otimes \bar{k}$ has a basis consisting of characters of $T_{\text {sub }, \bar{k}}$.

1.2.3 The monoid \bar{M}

We will define a normal algebraic monoid \bar{M} with group of units M such that the closure of $T_{\text {sub }}$ in \bar{M} equals $\overline{T_{\text {sub }}}$. The monoid \bar{M} will be the spectrum of a certain subalgebra A of the algebra of regular functions on M.

The algebra A. Let A denote the algebra of all $f \in k[M]$ such that for any $m_{1}, m_{2} \in M(\bar{k})$ the function

$$
t \mapsto f\left(m_{1} t m_{2}\right)
$$

belongs to the algebra R defined in $\S 1.2 .2$. Since all Cartan subgroups of $M_{\bar{k}}$ are $M(\bar{k})-$ conjugate, A does not depend on the choice of the subgroup $T_{\text {sub }} \subset M$.

Proposition 1.2.2. (i) A is a sub-bialgebra of the Hopf algebra $k[M]$.
(ii) The map $M \rightarrow \operatorname{Spec} A$ is an open embedding.
(iii) A is an integrally closed domain.
(iv) The algebra A is finitely generated.
(v) The homomorphism $A \rightarrow k\left[\overline{T_{\text {sub }}}\right]$ that takes a function to its restriction to $T_{\text {sub }}$ is surjective.

Proof. All statements can be checked after base change to \bar{k}, so we will assume that k is algebraically closed.

Let A^{\prime} denote the subalgebra of $k[M]$ generated by the matrix coefficients of a finite collection of Weyl ${ }^{3} M$-modules whose highest weights belong to $\check{C} \cap \check{\Lambda}_{G}^{+}$and generate $\check{\Lambda}_{G}^{+}$as a semigroup. The following properties of A^{\prime} are easy to check:
(a) $A^{\prime} \subset A$;
(a^{\prime}) if k has characteristic 0 then $A^{\prime}=A$;
($\mathrm{a}^{\prime \prime}$) the morphism $M \rightarrow \operatorname{Spec} A^{\prime}$ is an open embedding;
(b) the composition $A^{\prime} \hookrightarrow A \rightarrow R$ is surjective;

[^1](c) the algebra A^{\prime} is finitely generated.

The proof of statement (i) in the proposition is standard. Since $A^{\prime} \subset A \subset k[M]$, property ($\mathrm{a}^{\prime \prime}$) implies statement (ii). Statement (iii) follows from the normality of M and the normality part of Lemma 1.2.1(i). Statement (v) follows from (b).

Let $A^{\prime \prime}$ denote the integral closure of A^{\prime} in the function field of M. Without any assumptions on the characteristic of k, we claim that $A=A^{\prime \prime}$. By (ii)-(iii), it suffices to check that A is contained in the localization O of $A^{\prime \prime}$ at any codimension 1 prime. Let K denote the field of fractions of O, which is also the field of rational functions on M. Then the normalization map Spec $A^{\prime \prime} \rightarrow \operatorname{Spec} A^{\prime}$ induces a map $f^{\prime}: \operatorname{Spec} O \rightarrow \operatorname{Spec} A^{\prime}$ with $f^{\prime}(\operatorname{Spec} K) \subset M$. We wish to lift f^{\prime} to a morphism $f: \operatorname{Spec} O \rightarrow \operatorname{Spec} A$. Since

$$
M(K)=M(O) \cdot T_{\mathrm{sub}}(K) \cdot M(O)
$$

we can assume that $f^{\prime}(\operatorname{Spec} K) \subset T_{\text {sub }}(K)$. Then the existence of f follows from (b), which says that the closure of $T_{\text {sub }}$ in $\operatorname{Spec} A$ maps isomorphically onto the closure of $T_{\text {sub }}$ in Spec A^{\prime}. Therefore $A=A^{\prime \prime}$, and statement (iv) now follows.

The algebraic monoid \bar{M}. Now set $\bar{M}:=\operatorname{Spec} A$.
By Proposition 1.2.2, \bar{M} is a normal affine algebraic monoid equipped with an open embedding $M \hookrightarrow \bar{M}$ with dense image. By part (v) of the proposition, the closed embedding $T_{\text {sub }} \hookrightarrow M$ extends to a closed embedding $\overline{T_{\text {sub }}} \hookrightarrow \bar{M}$. By construction, the Renner cone corresponding to \bar{M} is \check{C}.

Since \bar{M} is an irreducible monoid and M is an open dense subgroup, M is necessarily the group of units of \bar{M}. The classification theorem of L. Renner ([56, Theorem 5.4]) says that every normal algebraic monoid with group of units M is isomorphic to a monoid \bar{M} of the above form.

1.3 The monoid associated to a parabolic subgroup

Let P be a parabolic subgroup of G with Levi quotient $M:=P / U$. We will define a canonical normal reductive monoid \bar{M} with group of units M. This monoid appears implicitly in $[13,12]$, and it is explicitly considered in $[3, \S 3.3]$ (in characteristic 0) and in $[5, \S 6]$.

We identify the abstract Cartans of G and M as follows: for a Borel subgroup $B_{M} \subset M_{\bar{k}}$, the subgroup $B:=B_{M} U \subset G_{\bar{k}}$ is a Borel subgroup, and $T_{\bar{k}}=B / U_{B}=B_{M} / U_{B_{M}}$.

1.3.1 The Renner cone of \bar{M}

We first give a combinatorial definition of \bar{M} using Renner's classification, recalled in $\S 1.2$, by specifying the Renner cone $\check{C} \subset \check{\Lambda}^{\mathbb{Q}}$.

The submonoid $\Lambda_{U}^{\text {pos }}$. Let $\Lambda_{U}^{\text {pos }} \subset \Lambda$ denote the non-negative integral span of the positive coroots of G that are not coroots of M. The submonoid $\Lambda_{U}^{\mathrm{pos}}$ is stable under the actions of W_{M} and $\operatorname{Gal}(\bar{k} / k)$ because M is defined over k.

Let \check{G} (resp. \check{M}) denote the Langlands dual group of G (resp. M) over \mathbb{C}. Fix a maximal torus and a Borel subgroup containing it in the split group \check{G}. Then we may consider \check{M} as a Levi subgroup of \check{G}. Let $\check{\mathfrak{u}}_{P}$ denote the nilpotent Lie algebra corresponding to the positive coroots of G that are not coroots of M. Then the symmetric algebra $\operatorname{Sym}\left(\check{\mathfrak{u}}_{P}\right)$ is a locally finite \check{M}-module by the adjoint action, and its set of weights equals $\Lambda_{U}^{\mathrm{pos}}$.

Lemma 1.3.1. Let $\lambda, \lambda^{\prime} \in \Lambda_{M}^{+}$with $\lambda \leq_{M} \lambda^{\prime}$. If $\lambda^{\prime} \in \Lambda_{U}^{\text {pos }}$, then $\lambda \in \Lambda_{U}^{\text {pos }}$.

Proof. We have a decomposition of $\operatorname{Sym}\left(\check{\mathfrak{u}}_{P}\right)$ into irreducible highest weight \check{M}-modules $L_{\check{M}}(\gamma)$. Therefore λ^{\prime} is a weight in $L_{\check{M}}(\gamma)$ for some $\gamma \in \Lambda_{M}^{+}$, and all the weights of $L_{\check{M}}(\gamma)$ lie in $\Lambda_{U}^{\text {pos }}$. Since $\lambda \in \Lambda_{M}^{+}$and $\lambda \leq_{M} \lambda^{\prime} \leq_{M} \gamma$, we deduce that λ is also a weight of $L_{\check{M}^{\prime}}(\gamma)$. Therefore $\lambda \in \Lambda_{U}^{\text {pos }}$.

Lemma 1.3.2. The subset $\Lambda_{U}^{\mathrm{pos}} \subset \Lambda$ is equal to the intersection of $w\left(\Lambda_{G}^{\mathrm{pos}}\right)$ for all $w \in W_{M}$. Consequently, $\Lambda_{U}^{\mathrm{pos}} \cap\left(-\Lambda_{M}^{+}\right)=\Lambda_{G}^{\mathrm{pos}} \cap\left(-\Lambda_{M}^{+}\right)$.

Proof. Observe that $\Lambda_{U}^{\mathrm{pos}}$ is W_{M}-stable and hence contained in $w\left(\Lambda_{G}^{\mathrm{pos}}\right)$ for all $w \in W_{M}$. To prove containment in the other direction, let $\lambda \in \bigcap_{w \in W_{M}} w\left(\Lambda_{G}^{\mathrm{pos}}\right)$. Replacing λ by an element in the same W_{M}-orbit, we may assume that $\lambda \in-\Lambda_{M}^{+}$. By assumption $\lambda \in \Lambda_{G}^{\text {pos }}$, so we can write $\lambda=\lambda_{1}+\lambda_{2}$ where λ_{1} is a linear combination of α_{i} for $i \in \Gamma_{M}$ and $\lambda_{2} \in \Lambda_{U}^{\text {pos }}$ is a linear combination of α_{j} for $j \in \Gamma_{G} \backslash \Gamma_{M}$. Note that $\lambda_{2} \in \Lambda_{U}^{\mathrm{pos}} \cap\left(-\Lambda_{M}^{+}\right)$and $\lambda \geq_{M} \lambda_{2}$. Then $w_{0}^{M} \lambda_{2} \in \Lambda_{U}^{\mathrm{pos}} \cap \Lambda_{M}^{+}$and $w_{0}^{M} \lambda \leq_{M} w_{0}^{M} \lambda_{2}$. Lemma 1.3.1 implies that $w_{0}^{M} \lambda \in \Lambda_{U}^{\text {pos }}$, and hence $\lambda \in \Lambda_{U}^{\text {pos }}$. One deduces the second statement of the lemma from the first because $\lambda \in-\Lambda_{M}^{+}$satisfies $\lambda \leq_{M} w \lambda$ for all $w \in W_{M}$.

Remark 1.3.3. Lemma 1.3.2 implies that $\Lambda_{U}^{\mathrm{pos}} \cap \Lambda_{M}^{+}=w_{0}^{M}\left(\Lambda_{G}^{\mathrm{pos}}\right) \cap \Lambda_{M}^{+}$. This submonoid of Λ_{M}^{+}is denoted by $\Lambda_{M, G}^{+}$in [13, §6.2.2, Proposition 6.2.3].

Lemma 1.3.4. The submonoid $W_{M} \cdot \check{\Lambda}_{G}^{+} \subset \check{\Lambda}$ is dual to $\Lambda_{U}^{\mathrm{pos}}$, i.e.,

$$
\begin{equation*}
W_{M} \cdot \check{\Lambda}_{G}^{+}=\left\{\check{\lambda} \in \check{\Lambda} \mid\langle\check{\lambda}, \mu\rangle \geq 0 \text { for all } \mu \in \Lambda_{U}^{\mathrm{pos}}\right\} . \tag{1.1}
\end{equation*}
$$

Proof. Let $\left(\Lambda_{U}^{\text {pos }}\right)^{\vee}$ equal the r.h.s. of (1.1), which is evidently W_{M}-stable. If we consider an element in $\left(\Lambda_{U}^{\mathrm{pos}}\right)^{\vee} \cap \check{\Lambda}_{M}^{+}$, then it pairs with positive coroots of M to non-negative integers since the element is M-dominant, and it pairs with all other positive coroots of G to nonnegative integers by definition of the dual. Thus $\left(\Lambda_{U}^{\mathrm{pos}}\right)^{\vee} \cap \check{\Lambda}_{M}^{+}=\check{\Lambda}_{G}^{+}$, which implies that $\left(\Lambda_{U}^{\mathrm{pos}}\right)^{\vee}$ is the union of $w\left(\check{\Lambda}_{G}^{+}\right)$for all $w \in W_{M}$.

Corollary 1.3.5. The submonoid $W_{M} \cdot \check{\Lambda}_{G}^{+}$is saturated in $\check{\Lambda}$.

The Renner cone \check{C}. Set $\check{C} \subset \check{\Lambda}^{\mathbb{Q}}$ to be the convex rational polyhedral cone generated by $W_{M} \cdot \check{\Lambda}_{G}^{+}$. Lemma 1.3.4 implies that \check{C} is preserved by the action of $\operatorname{Gal}(\bar{k} / k)$, and Corollary 1.3 .5 says that $\check{C} \cap \check{\Lambda}=W_{M} \cdot \check{\Lambda}_{G}^{+}$.

Definition of \bar{M}. Set \bar{M} to be the normal reductive monoid with Renner cone \check{C} constructed in Proposition 1.2.2. We will use this notation for the rest of the chapter.

1.3.2 Relation to $\overline{G / U}$

In this subsection, we show (see Corollary 1.3.10) that \bar{M} is isomorphic to the monoid constructed in $[3, \S 3.3]$ and $[5, \S 6]$. First we recall some facts about the homogeneous space G / U.

A scheme S is strongly quasi-affine if the canonical map $S \rightarrow$ Spec $k[S]$ is an open embedding and $k[S]$ is a finitely generated k-algebra.
F. D. Grosshans proved that the quotient variety G / U is strongly quasi-affine in [36]. Recall that $\overline{G / U}=\operatorname{Spec} k[G / U]$, where $k[G / U]$ is the subalgebra of right U-invariant regular functions on G.

Weights of $k[G / U]$. The Levi factor $M:=P / U$ acts on G / U from the right. Therefore we can consider $k[G / U]$ as an M-module and ask what is the set of weights ${ }^{4}$ of this module with respect to the abstract Cartan of M.

Lemma 1.3.6. The set of weights of the M-module $k[G / U]$ equals $W_{M} \cdot \check{\Lambda}_{G}^{+} \subset \Lambda ू$.
Proof. We may assume that k is algebraically closed. Choose a Borel subgroup B contained in P (so B / U is a Borel subgroup of M) and let $T_{\text {sub }} \subset B$ be a maximal torus, which we identify with its image in M. The weights of $k[G / U]$ are the $T_{\text {sub }}$-eigenvalues with respect to right translations. Let $k[G / U]_{\check{\gamma}}, \check{\gamma} \in \check{\Lambda}$, denote a weight space.

Note that $k[G / U]_{\check{\gamma}}$ is a G-module by left translation. Let B^{-}denote the opposite Borel subgroup so that $B \cap B^{-}=T_{\text {sub }}$. By unipotence of U_{B}^{-}, we deduce that $\check{\gamma}$ is a weight of $k[G / U]$ if and only if $k[G / U]_{\check{\gamma}} U_{B}^{-} \neq 0$. Hence we are reduced to studying the weight spaces of $k[G / U]^{U_{B}^{-}}$. By considering the T-action by left translation, we have decompositions

$$
k\left[U_{B}^{-} \backslash G\right]=\bigoplus_{\check{\lambda} \in \tilde{\Lambda}_{G}^{+}} \nabla(\check{\lambda}), \quad k\left[U_{B}^{-} \backslash G\right]^{U}=\bigoplus_{\check{\lambda} \in \check{\Lambda}_{G}^{+}} \nabla(\check{\lambda})^{U}
$$

[^2]where U acts by right translation. Since $U_{B}^{-} P$ is dense in G, the restriction from G to P gives an injection
$$
\nabla(\check{\lambda})^{U} \hookrightarrow \nabla_{M}(\check{\lambda})
$$
where $\nabla_{M}(\check{\lambda})$ is the dual Weyl M-module.
We now prove the 'only if' direction of the lemma. Suppose that $\check{\gamma}$ is a weight of $k[G / U]$. Then $\check{\gamma}$ must be a weight of $\nabla_{M}(\check{\lambda})$ for some $\check{\lambda} \in \check{\Lambda}_{G}^{+}$. There exists $w \in W_{M}$ such that $w(\check{\gamma}) \in \check{\Lambda}_{M}^{+}$. Since the set of weights of $\nabla_{M}(\check{\lambda})$ is W_{M}-stable, $w(\check{\gamma})$ is also a weight. Hence $w(\check{\gamma}) \leq_{M} \check{\lambda}$. Since $\left\langle\check{\alpha}_{i}, \alpha_{j}\right\rangle \leq 0$ for $i \in \Gamma_{M}, j \in \Gamma_{G} \backslash \Gamma_{M}$, we deduce that $w(\check{\gamma}) \in \check{\Lambda}_{G}^{+}$. This proves the 'only if' direction of the lemma.

Conversely, suppose $\check{\gamma}$ is a weight such that $w(\check{\gamma}) \in \check{\Lambda}_{G}^{+}$for some $w \in W_{M}$. Then $\check{\lambda}:=w(\check{\gamma})$ is the highest weight in $\nabla(\check{\lambda})^{U}$. Since the set of weights of an M-module is W_{M}-stable, we conclude that $\check{\gamma}$ is a weight of $k[G / U]$.

Corollary 1.3.7. For any G-module V, the weights of the M-module V^{U} are a subset of $W_{M} \cdot \check{\Lambda}_{G}^{+}$.

Proof. Any finite dimensional G-module V is a submodule of a direct sum of regular representations $k[G]$, so the weights of V^{U} are a subset of the weights of $k[G / U]$.

The closure of M in $\overline{G / U}$. The subgroup $P \subset G$ induces a closed embedding

$$
\begin{equation*}
M=P / U \hookrightarrow G / U \tag{1.2}
\end{equation*}
$$

i.e., we embed M in G / U by the right M-action on $1 \in G$. Then the closure of M in $\overline{G / U}$ has the structure of an irreducible algebraic monoid ${ }^{5}$, and the right action of M on G / U extends to an action of this monoid on $\overline{G / U}$. We claim that the normalization of this monoid is isomorphic to the monoid \bar{M}.

Lemma 1.3.8. The embedding (1.2) extends to a finite map $\bar{M} \rightarrow \overline{G / U}$.

[^3]Proof. Let $T_{\text {sub }}$ be a Cartan subgroup of M and embed $T_{\text {sub }} \hookrightarrow G / U$ using (1.2). Let $\overline{T_{\text {sub }}}$ denote the closure of $T_{\text {sub }}$ in $\overline{G / U}$. By the classification of normal reductive monoids in [56, Theorem 5.4], it suffices to show that the cone corresponding by [45] to $\overline{T_{\text {sub }}}$ is the Renner cone \check{C} of \bar{M}.

By definition, $\overline{T_{\text {sub }}}$ is the spectrum of the image of the restriction map $k[G / U] \rightarrow k\left[T_{\text {sub }}\right]$. This map is equivariant with respect to right translations by $T_{\text {sub }}$, so $\bar{k}\left[\overline{T_{\text {sub }}}\right]$ decomposes into weight spaces. Let $\check{\gamma}$ be a weight of $\bar{k}[G / U]$. By left translation by G, one can find $f \in \bar{k}[G / U]_{\check{\gamma}}$ such that $f(1)=1$. Therefore the weights of $k\left[\overline{T_{\text {sub }}}\right]$ coincide with the weights of $k[G / U]$, and the claim follows from Lemma 1.3.6.

Fix a parabolic subgroup $P^{-} \subset G$ opposite to P. For the rest of this section we will identify M with the Levi subgroup $P \cap P^{-}$.

Theorem 1.3.9. The composition

$$
\bar{M} \rightarrow \overline{G / U} \rightarrow \operatorname{Spec} k[G]^{U^{-} \times U}
$$

is an isomorphism, where $U^{-} \times U$ acts on $k[G]$ by left and right translations, respectively.
Note that Spec $k[G]^{U^{-}} \times U$ is the affine GIT quotient of $\overline{G / U}$ by the left action of $U^{-} \subset G$.
Corollary 1.3.10. The (unique) map $\bar{M} \rightarrow \overline{G / U}$ extending the embedding (1.2) is a retract. In particular, it is a closed embedding.

Proof. The fact that \bar{M} is a retract of $\overline{G / U}$ follows immediately from the isomorphism in Theorem 1.3.9. To prove that it is a closed subscheme, it suffices to show that the algebra map $k[G / U] \rightarrow k[\bar{M}]$ is surjective. The theorem implies that the subalgebra $k[G]^{U^{-}} \times U \subset k[G / U]$ surjects onto $k[\bar{M}]$.

For the purpose of proving Theorem 1.3.9, let $\tilde{M}=\operatorname{Spec} k[G]^{U^{-}} \times U$. The actions of M on G by left and right translations induce M-actions on \tilde{M}. We have a canonical $M \times M$ equivariant $\operatorname{map} G \rightarrow \tilde{M}$.

Lemma 1.3.11. The composition $M \rightarrow G \rightarrow \tilde{M}$ is an open embedding.

Proof. We may check the assertion after base change to \bar{k}, so we assume k is algebraically closed. Choose Borel subgroups $B \subset P$ and $B^{-} \subset P^{-}$such that $T_{\text {sub }}:=B \cap B^{-} \subset M$ is a maximal torus. Let

$$
\tilde{T}=\operatorname{Spec} k[G]^{U_{B}^{-} \times U_{B}}
$$

Since $k[G]^{U_{B}^{-}}$has a decomposition into dual Weyl G-modules, one deduces that $k[\tilde{T}]$ has a basis formed by $f_{\check{\lambda}}$ for $\check{\lambda} \in \check{\Lambda}_{G}^{+}$, where $f_{\check{\lambda}}(t)=\check{\lambda}(t), t \in T_{\text {sub }}$. From this explicit description, one sees that \tilde{T} is a toric variety containing $T_{\text {sub }}$ as a dense open subscheme.

Consider the composition $G \rightarrow \tilde{M} \rightarrow \tilde{T}$ and let $\stackrel{\circ}{G} \subset G$ denote the preimage of $T_{\text {sub }} \subset \tilde{T}$. Then the preimage of $T_{\text {sub }}$ in \tilde{M}, which we denote $\tilde{\sim}$, is equal to $\operatorname{Spec} k[\stackrel{\circ}{G}]^{U^{-}} \times U$. Observe that $B^{-} B=U_{B}^{-} \times T_{\text {sub }} \times U_{B}$ is an open affine subset contained in $\stackrel{\circ}{G}$. Let us show that $\stackrel{\circ}{G}=B^{-} B$. By definition, $\stackrel{\circ}{G}$ consists of $g \in G$ such that $f_{\check{\lambda}}(g) \neq 0$ for all dominant weights $\check{\lambda}$. By the Bruhat decomposition, it suffices to show that if w belongs to the normalizer of $T_{\text {sub }}$ but not to $T_{\text {sub }}$ (i.e., w corresponds to a nontrivial element of W), then there exists $\check{\lambda}$ with $f_{\check{\lambda}}(w)=0$. Indeed, for a dominant regular weight $\check{\lambda}$ we have $w \check{\lambda} \neq \check{\lambda}$. Thus the left and right T-actions on $w^{-1} f_{\check{\lambda}}$ do not have the same weight, which implies that $f_{\check{\lambda}}(w)=\left(w^{-1} f_{\check{\lambda}}\right)(1)=0$.

Let $B_{M}=B / U=B \cap M$ and $B_{M}^{-}=B^{-} / U^{-}=B^{-} \cap M$. From the equality $\stackrel{\circ}{G}=$ $U_{B}^{-} \times T_{\text {sub }} \times U_{B}$ we deduce that $\tilde{M}=U_{B_{M}}^{-} \times T_{\text {sub }} \times U_{B_{M}}$ is an open dense subset of both M and \tilde{M}. Using left (or right) translations by M, we deduce that the whole group M is an open subset of \tilde{M}.

The field of rational functions on \tilde{M} is contained in ${ }^{6}$ the field of invariants $k(G)^{U^{-} \times U}$. Thus normality of G implies normality of \tilde{M}. Therefore Lemma 1.3.11 implies that \tilde{M} is a normal reductive monoid with group of units M.

[^4]Proof of Theorem 1.3.9. Let $T_{\text {sub }}$ be a Cartan subgroup of $M \subset G$. Since \tilde{M} is a normal reductive monoid with group of units M, it is determined by the closure of $T_{\text {sub }}$ in \tilde{M}, which is the spectrum of the algebra

$$
\tilde{R}:=\operatorname{Im}\left(k[G]^{U^{-} \times U} \rightarrow k\left[T_{\text {sub }}\right]\right) .
$$

By unipotence of U^{-}, the algebra \tilde{R} is the image of the restriction map $k[G / U] \rightarrow k\left[T_{\text {sub }}\right]$. Therefore Spec \tilde{R} is the closure of $T_{\text {sub }}$ in $\overline{G / U}$. By the proof of Lemma 1.3.8, this is also the closure of $T_{\text {sub }}$ in \bar{M}. Since \tilde{M} and \bar{M} are both normal algebraic monoids with unit group M, the classification of normal reductive monoids ([56, Theorem 5.4]) implies that the map $\bar{M} \rightarrow \tilde{M}$ is an isomorphism.

1.3.3 Tannakian description of \bar{M}

Let $\operatorname{Rep}(M)$ denote the monoidal category of finite-dimensional representations of M. Similarly, one has the monoidal category $\operatorname{Rep}(\bar{M})$. Since M is schematically dense in \bar{M}, the monoidal functor

$$
\operatorname{Rep}(\bar{M}) \rightarrow \operatorname{Rep}(M)
$$

corresponding to $M \hookrightarrow \bar{M}$ is fully faithful. So we can consider $\operatorname{Rep}(\bar{M})$ as a full subcategory of $\operatorname{Rep}(M)$.

The usual Tannakian formalism describes \bar{M} in terms of $\operatorname{Rep}(\bar{M})$. Namely, for a test scheme S, an element of the monoid $\operatorname{Hom}(S, \bar{M})$ is a collection of assignments

$$
\bar{V} \in \operatorname{Rep}(\bar{M}) \rightsquigarrow m_{\bar{V}} \in \operatorname{End}_{\mathcal{O}_{S}}\left(\bar{V} \otimes \mathcal{O}_{S}\right),
$$

compatible with morphisms $\bar{V}_{1} \rightarrow \bar{V}_{2}$ in $\operatorname{Rep}(\bar{M})$ and such that $m_{\bar{V}_{1} \otimes \bar{V}_{2}}=m_{\bar{V}_{1}} \otimes m_{\bar{V}_{2}}$. The multiplication in $\operatorname{Hom}(S, \bar{M})$ corresponds to the multiplication in $\operatorname{End}_{\mathcal{O}_{S}}\left(\bar{V} \otimes \mathcal{O}_{S}\right)$.

Our goal is to prove Proposition 1.3.13 below, which describes the subcategory $\operatorname{Rep}(\bar{M})$.

Description of $\operatorname{Rep}(\bar{M})$. Fix a parabolic subgroup $P^{-} \subset G$ opposite to P, and identify the Levi subgroup $P \cap P^{-}$with M.

For an M-module \bar{V}, we consider an element $f \in \operatorname{ind}_{P^{-}}^{G}(\bar{V})$ as a regular map $G \rightarrow \bar{V}$ (cf. [41, §I.3.3]) satisfying $f(g m \bar{u})=m^{-1} f(g)$ for all \bar{k}-points $g \in G, m \in M, \bar{u} \in U^{-}$. Using this description, evaluation at 1 in G defines an M-morphism $\operatorname{ind}_{P^{-}}^{G}(\bar{V}) \rightarrow \bar{V}$.

Lemma 1.3.12. Let $\bar{V} \in \operatorname{Rep}(\bar{M})$. Then evaluation at 1 induces an isomorphism

$$
\begin{equation*}
\operatorname{ind}_{P^{-}}^{G}(\bar{V})^{U} \rightarrow \bar{V} \tag{1.3}
\end{equation*}
$$

Proof. Since $U P^{-}$is a dense open subset of G, the map (1.3) is injective. Let $v \in \bar{V}$. Then we can define a morphism $f: U \times M \times U^{-} \cong U P^{-} \rightarrow \bar{V}$ by $f(u m \bar{u})=m^{-1} v$ for $m \in M, u \in U, \bar{u} \in U^{-}$. For any $\xi \in \bar{V}^{*}$, the pairing $\langle\xi, f(u m \bar{u})\rangle=\left\langle\xi, m^{-1} v\right\rangle$ extends to a regular function in $k[G]^{U \times U^{-}}$by Theorem 1.3.9. Therefore f extends to a U-invariant function in $\operatorname{ind}_{P^{-}}^{G}(\bar{V})$, proving surjectivity of (1.3).

Proposition 1.3.13. Let $\bar{V} \in \operatorname{Rep}(M)$. Then the following are equivalent:
(i) \bar{V} belongs to $\operatorname{Rep}(\bar{M})$.
(ii) The weights of \bar{V} lie in $W_{M} \cdot \check{\Lambda}_{G}^{+} \subset \check{\Lambda}$.
(iii) There exists $V \in \operatorname{Rep}(G)$ such that $\bar{V} \cong V^{U}$.

Proof. The equivalence of (i) and (ii) follows from the definition of \bar{M}. Corollary 1.3.7 proves (iii) implies (ii). Lemma 1.3.12 shows that (i) implies (iii) by setting $V=\operatorname{ind}_{P^{-}}^{G}(\bar{V})$, which is a finite-dimensional G-module.

Remark 1.3.14. Suppose that k is algebraically closed. One can deduce from Lemma 1.3.12 that $\nabla(\check{\lambda})^{U}$ is isomorphic to the dual Weyl M-module $\nabla_{M}(\check{\lambda})$. By [41, Remark II.2.11], the subspace $\nabla(\check{\lambda})^{U}$ also equals the sum of the weight spaces of $\nabla(\check{\lambda})$ with weights $\leq_{M} \check{\lambda}$. Dually, one sees that the sum of the weight spaces of $\Delta(\check{\lambda})$ with weights $\leq_{M} \check{\lambda}$ is isomorphic to $\Delta(\check{\lambda})_{U^{-}}$, which is in turn isomorphic to the Weyl M-module $\Delta_{M}(\check{\lambda})$.

Remark 1.3.15. Let O be a complete discrete valuation ring with field of fractions K and residue field k. By Proposition 1.3.13(iii) and the usual Tannakian formalism, one observes that the closed subscheme $\mathrm{Gr}_{M}^{+} \subset \operatorname{Gr}_{M}=M(K) / M(O)$ defined in [13, §6.2], [12, §1.6] is equal to the subspace $(\bar{M}(O) \cap M(K)) / M(O)$.

1.4 Relation to boundary degenerations

Let P and P^{-}be a pair of opposite parabolic subgroups in G. We identify the Levi subgroup $P \cap P^{-}$with the Levi factor $M=P / U$. Let \bar{M} be the normal reductive monoid with group of units M defined in $\S 1.3$.

In this section we will show that $\overline{G / U}$ embeds as a closed subscheme in the affine closure of the boundary degeneration defined in $[10,60,59]$. We will also describe the relation between the boundary degeneration and the Vinberg semigroup (i.e., enveloping semigroup) of G. This will give an alternate description of \bar{M} as a subscheme of the Vinberg semigroup, using idempotents.

1.4.1 Boundary degenerations

Define the boundary degeneration

$$
\mathbb{X}_{P}:=(G \times G) /\left(P \underset{M}{\times} P^{-}\right)=\left(G / U \times G / U^{-}\right) /\left(P \cap P^{-}\right),
$$

where $P \cap P^{-}$acts diagonally on the right. It is known that \mathbb{X}_{P} is quasi-affine (cf. [24, Proposition 2.4.4]), and $k\left[\mathbb{X}_{P}\right]$ is finitely generated by [36] and Hilbert's theorem on invariants. Therefore \mathbb{X}_{P} is strongly quasi-affine.

Remark 1.4.1. The group $G \times G$ acts on \mathbb{X}_{P} by left translations. Suppose that k is algebraically closed and choose a pair B, B^{-}of opposite Borel subgroups contained in P, P^{-}, respectively. Then the orbit of $B^{-} \times B$ acting on $(1,1) \in \mathbb{X}_{P}$ is a dense open subset. Therefore \mathbb{X}_{P} is a spherical variety with respect to $G \times G$.

Let $\overline{\mathbb{X}}_{P}=\operatorname{Spec} k\left[\mathbb{X}_{P}\right]$. Since \mathbb{X}_{P} is strongly quasi-affine, $\overline{\mathbb{X}}_{P}$ is affine of finite type and the canonical embedding $\mathbb{X}_{P} \hookrightarrow \overline{\mathbb{X}}_{P}$ is open.

Note that $\overline{\mathbb{X}}_{P}$ is the affine GIT quotient of $\overline{G / U} \times \overline{G / U^{-}}$by the diagonal right M-action, but it is not the stack quotient (cf. [65, Tag 044Q] for the definition of quotient stacks).

Consider the map of strongly quasi-affine varieties

$$
\begin{equation*}
G / U \rightarrow \mathbb{X}_{P}: g \mapsto(g, 1) \tag{1.4}
\end{equation*}
$$

The base change of (1.4) under the smooth cover $G \times G \rightarrow \mathbb{X}_{P}$ gives the natural closed embedding $G \times P^{-} \hookrightarrow G \times G$. Therefore (1.4) is also a closed embedding.

The composition $G / U \hookrightarrow \mathbb{X}_{P} \hookrightarrow \overline{\mathbb{X}}_{P}$ induces a map

$$
\begin{equation*}
\overline{G / U} \rightarrow \overline{\mathbb{X}}_{P} \tag{1.5}
\end{equation*}
$$

In characteristic 0 , one easily deduces from [3, Proposition 5] that (1.5) is a closed embedding. In positive characteristic, this is not a priori clear, but the following theorem shows it is still true:

Theorem 1.4.2. The map (1.5) is a closed embedding, and the composition

$$
\overline{G / U} \rightarrow \overline{\mathbb{X}}_{P} \rightarrow \operatorname{Spec} k\left[\mathbb{X}_{P}\right]^{U}
$$

is an isomorphism, where $U \subset G$ acts on \mathbb{X}_{P} by left translations in the second coordinate. Proof. Observe that $k\left[\mathbb{X}_{P}\right]^{U}=\left(k[G / U] \otimes k[G]^{U \times U^{-}}\right)^{M}$ where M acts diagonally by right translations. Using the inversion operator on G in the second coordinate, we get $k\left[\mathbb{X}_{P}\right]^{U} \cong$ $(k[G / U] \otimes k[\bar{M}])^{M}$ where $k[\bar{M}]=k[G]^{U^{-} \times U}$ by Theorem 1.3.9 and M acts anti-diagonally on the right. Since M is dense in \bar{M}, the evaluation at $1 \in \bar{M}$ gives an injection

$$
(k[G / U] \otimes k[\bar{M}])^{M} \hookrightarrow k[G / U] .
$$

On the other hand, \bar{M} is the closure of M in $\overline{G / U}$ by Corollary 1.3.10. The right action of M on G / U therefore extends to a right action of \bar{M} on $\overline{G / U}$, which corresponds to a comodule $\operatorname{map} k[G / U] \rightarrow(k[G / U] \otimes k[\bar{M}])^{M}$. The composition

$$
k[G / U] \rightarrow(k[G / U] \otimes k[\bar{M}])^{M} \hookrightarrow k[G / U]
$$

is the identity, which proves that the composition $\overline{G / U} \rightarrow \operatorname{Spec} k\left[\mathbb{X}_{P}\right]^{U}$ is an isomorphism. It follows that the affine map (1.5) is a closed embedding.

Corollary 1.4.3. Consider the embedding $M \hookrightarrow \mathbb{X}_{P}$ defined as the composition of the embeddings (1.2) and (1.4). The closure of M in $\overline{\mathbb{X}}_{P}$ is isomorphic to \bar{M}. The composition

$$
\bar{M} \rightarrow \overline{\mathbb{X}}_{P} \rightarrow \operatorname{Spec} k\left[\mathbb{X}_{P}\right]^{U^{-}} \times U
$$

is an isomorphism, where $U^{-} \times U \subset G \times G$ acts on \mathbb{X}_{P} by left translations.

Proof. Combine Theorems 1.3.9 and 1.4.2.

1.4.2 Relation to Vinberg's semigroup

Recall that k is an arbitrary perfect field.
We first give a brief review of the standard material on the Vinberg semigroup, which is contained in $[67,58,56]$.

Let $Z(G)$ denote the center of G. Consider the group

$$
G_{\mathrm{enh}}:=(G \times T) / Z(G)
$$

where $Z(G)$ maps to $G \times T$ anti-diagonally. Note that $Z\left(G_{\mathrm{enh}}\right)=T$.
The Vinberg semigroup of G, denoted $\overline{G_{\text {enh }}}$, is a normal reductive k-monoid with group
of units $G_{\text {enh }}$. The Renner cone of $\overline{G_{\text {enh }}}$ is by definition

$$
\begin{equation*}
\left\{\left(\check{\lambda}_{1}, \check{\lambda}_{2}\right) \in \check{\Lambda}^{\mathbb{Q}} \times \check{\Lambda}^{\mathbb{Q}} \mid \check{\lambda}_{2}-w \check{\lambda}_{1} \in \check{\Lambda}_{G}^{\text {pos }, \mathbb{Q}} \text { for all } w \in W\right\} \tag{1.6}
\end{equation*}
$$

where $\check{\Lambda}_{G}^{\mathrm{pos}, \mathbb{Q}}$ is the rational polyhedral cone generated by the positive roots of G. The Vinberg semigroup may be constructed from the Renner cone as described in §1.2.

The canonical homomorphism of algebraic groups $G_{\text {enh }} \rightarrow T_{\text {adj }}:=T / Z(G)$ extends to a homomorphism of algebraic monoids

$$
\bar{\pi}: \overline{G_{\mathrm{enh}}} \rightarrow \overline{T_{\mathrm{adj}}}
$$

where $\overline{T_{\text {adj }}}:=\mathfrak{t}_{\text {adj }}$ is the Cartan Lie algebra of the adjoint group. Let $\bar{\circ} \overline{G_{\text {enh }}}$ denote the non-degenerate locus of $\overline{G_{\text {enh }}}$. It is known that $\overline{G_{\text {enh }}}$ is smooth over $\overline{T_{\text {adj }}}$.

For a parabolic P with Levi factor M, let $\mathbf{c}_{P} \in \overline{T_{\text {adj }}}$ be the point defined by the condition that $\check{\alpha}_{i}\left(\mathbf{c}_{P}\right)=1$ for simple roots $\check{\alpha}_{i}, i \in \Gamma_{M}$, and $\check{\alpha}_{j}\left(\mathbf{c}_{P}\right)=0$ for all other simple roots. Note that \mathbf{c}_{P} is an idempotent with respect to the monoid structure on $\overline{T_{\mathrm{adj}}}$.

Let $\left(\overline{G_{\mathrm{enh}}}\right) \mathbf{c}_{P}$ denote the fiber of $\bar{\pi}$ over \mathbf{c}_{P}. Note that by definition of \mathbf{c}_{P}, the center $Z(M)$ is the stabilizer of T acting on \mathbf{c}_{P} in $\overline{T_{\mathrm{adj}}}$.

Fix a pair of opposite parabolic subgroups P and P^{-}, and identify M with the Levi subgroup $P \cap P^{-}$. Since conjugation by M fixes $Z(M)$, the center of M can be embedded as a subgroup of the abstract Cartan T. Consider the anti-diagonal map

$$
\mathfrak{s}: Z(M) / Z(G) \rightarrow(Z(M) \times T) / Z(G) \hookrightarrow(G \times T) / Z(G)=G_{\mathrm{enh}}
$$

defined by $\mathfrak{s}(t)=\left(t^{-1}, t\right)$. Observe that $Z(M) / Z(G) \subset T / Z(G)=T_{\text {adj }}$ coincides with the subtorus $\left\{t \in T_{\text {adj }} \mid \check{\alpha}_{i}(t)=1, i \in \Gamma_{M}\right\}$. Let $\overline{Z(M) / Z(G)}$ denote the closure of $Z(M) / Z(G)$ in $\overline{T_{\text {adj }}}$.

Lemma 1.4.4. (i) The map \mathfrak{s} extends to a homomorphism

$$
\overline{\mathfrak{s}}: \overline{Z(M) / Z(G)} \rightarrow \overline{G_{\mathrm{enh}}}
$$

of algebraic monoids.
(ii) The composition $\bar{\pi} \circ \overline{\mathfrak{s}}$ is the natural inclusion $\overline{Z(M) / Z(G)} \hookrightarrow \overline{T_{\text {adj }}}$.

Proof. Since we know the composition $\pi \circ \mathfrak{s}$, it suffices to prove statement (i). We may assume that k is algebraically closed.

The weight lattice of $Z(M) / Z(G)$ is the free abelian group $\check{\Lambda}_{Z(M) / Z(G)}$ with basis consisting of the simple roots $\check{\alpha}_{j}$ for $j \in \Gamma_{G} \backslash \Gamma_{M}$. If $\check{\lambda}=\sum_{i \in \Gamma_{G}} n_{i} \check{\alpha}_{i}$ for $n_{i} \in \mathbb{Z}$, let $\operatorname{pr}(\check{\lambda}):=$ $\sum_{j \notin \Gamma_{M}} n_{j} \check{\alpha}_{j}$. Let \check{C} denote the Renner cone (1.6) of $\overline{G_{\text {enh }}}$, and let $\check{C}_{\mathbb{Z}}:=\check{C} \cap(\check{\Lambda} \times \check{\Lambda})$. Fix a Cartan subgroup $T_{\text {sub }} \subset M$ and identify $T_{\text {sub }}$ with T by choosing a Borel. The map \mathfrak{s} lands in $\left(T_{\text {sub }} \times T\right) / Z(G)$, so we have an induced map of weights (restricted to $\check{C}_{\mathbb{Z}}$):

$$
\check{C}_{\mathbb{Z}} \rightarrow \check{\Lambda}_{Z(M) / Z(G)}:\left(\check{\lambda}_{1}, \check{\lambda}_{2}\right) \mapsto \operatorname{pr}\left(\check{\lambda}_{2}-\check{\lambda}_{1}\right)
$$

The image of this map is the non-negative span of the simple roots $\check{\alpha}_{j}, j \notin \Gamma_{M}$. Statement (i) follows.

Remark 1.4.5. If k is algebraically closed, then the map $\overline{\mathfrak{s}}$ we have constructed factors through the section $\overline{T_{\text {adj }}} \rightarrow \bar{\circ}$ (enstructed in [24, Lemma D.5.2], which depends on a choice of Borel subgroup and maximal torus of G. In particular, $\overline{\mathfrak{s}}$ always lands in the non-degenerate locus of the Vinberg semigroup for arbitrary k.

The idempotent e_{P}. Observe that \mathbf{c}_{P} lies in the submonoid $\overline{Z(M) / Z(G)} \subset \overline{T_{\text {adj }}}$. Define the idempotent

$$
e_{P}:=\overline{\mathfrak{s}}\left(\mathbf{c}_{P}\right) \in \bar{\circ} \overline{G_{\mathrm{enh}}}(k),
$$

which satisfies $\bar{\pi}\left(e_{P}\right)=\mathbf{c}_{P}$. In [24, Appendix C$]$, it is shown (by passing to an algebraic
closure \bar{k}) that

$$
P=\left\{g \in G \mid g \cdot e_{P}=e_{P} \cdot g \cdot e_{P}\right\} \quad \text { and } \quad P^{-}=\left\{g \in G \mid e_{P} \cdot g=e_{P} \cdot g \cdot e_{P}\right\},
$$

and the stabilizer of the $P \times P^{-}$action on e_{P} equals $P \times_{M} P^{-}$. Note that if $g \in P \cap P^{-}$, then $g \cdot e_{P}=e_{P} \cdot g \cdot e_{P}=e_{P} \cdot g$. It follows that M is the centralizer of e_{P} in G.

Remark 1.4.6. It is known that $G \cdot e_{P} \cdot G$ is equal to the non-degenerate locus $\left(\overline{G_{\mathrm{enh}}}\right)_{\mathbf{c}_{P}}$ of the fiber (cf. [24, Corollary D.5.4]). One deduces from the above that the $G \times G$-action on e_{P} induces an isomorphism ${ }^{7}$

$$
\mathbb{X}_{P}:=(G \times G) /\left(P \times P_{M}^{-}\right) \cong\left(\frac{\circ}{G_{\mathrm{enh}}}\right)_{\mathbf{c}_{P}}
$$

Remark 1.4.7. Suppose that k is algebraically closed. By a result of M. Putcha (cf. [56, Theorem 4.5]) for general reductive monoids, any idempotent in the non-degenerate locus of $\overline{G_{\mathrm{enh}}}$ is $G(k)$-conjugate to e_{P} for some parabolic P. Moreover, the choice of P and P^{-} determines this idempotent in its conjugacy class.

Relating \bar{M} to the Vinberg semigroup. Consider the map

$$
\begin{equation*}
G \rightarrow\left(\overline{G_{\mathrm{enh}}}\right) \mathbf{c}_{P}: g \mapsto e_{P} \cdot g \cdot e_{P} \tag{1.7}
\end{equation*}
$$

Since $U \cdot e_{P}=e_{P} \cdot U^{-}=\left\{e_{P}\right\}$, this map is $U^{-} \times U$-invariant. By Theorem 1.3.9, we have an isomorphism $\bar{M} \cong \operatorname{Spec} k[G]^{U^{-} \times U}$. Since $\left(\overline{G_{\mathrm{enh}}}\right) \mathbf{c}_{P}$ is affine, the map (1.7) must factor through a map

$$
\begin{equation*}
\bar{M} \rightarrow e_{P} \cdot\left(\overline{G_{\mathrm{enh}}}\right) \mathbf{c}_{P} \cdot e_{P} \tag{1.8}
\end{equation*}
$$

Observe that $e_{P} \cdot\left(\overline{G_{\text {enh }}}\right) \mathbf{c}_{P} \cdot e_{P}$ is an irreducible algebraic monoid with identity e_{P}. The map (1.8) is an extension of the homomorphism of algebraic monoids $M \rightarrow e_{P} \cdot\left(\overline{G_{\mathrm{enh}}}\right) \mathbf{c}_{P} \cdot e_{P}$
7. In fact, we learned from S. Schieder that this induces an isomorphism of affine varieties $\overline{\mathbb{X}}_{P} \cong\left(\overline{G_{\text {enh }}}\right)_{\mathbf{c}_{P}}$. See Lemma A.3.2.
sending $m \mapsto m \cdot e_{P}=e_{P} \cdot m$. Therefore (1.8) must also be a homomorphism of algebraic monoids.

Theorem 1.4.8. The homomorphism (1.8) is an isomorphism of algebraic monoids.

By the definition of (1.7), we see that the image of (1.8) contains $e_{P} \cdot G \cdot e_{P}$. Since the latter map is a homomorphism of monoids, we deduce that the image contains $e_{P} \cdot G \cdot e_{P} \cdot G \cdot e_{P}$. By Remark 1.4.6, we have $G \cdot e_{P} \cdot G=\left(\overline{G_{\mathrm{enh}}}\right) \mathbf{c}_{P}$ is dense in $\left(\overline{G_{\mathrm{enh}}}\right) \mathbf{c}_{P}$. Multiplying on the left and right by e_{P}, we deduce that (1.8) has dense image. On the other hand, the restriction of (1.8) to M is injective. It follows that $M \cdot e_{P}$ is a dense subgroup of $e_{P} \cdot\left(\overline{G_{\mathrm{enh}}}\right) \mathbf{c}_{P} \cdot e_{P}$. Therefore $M \cdot e_{P}$ must be equal to the group of units of $e_{P} \cdot\left(\overline{G_{\mathrm{enh}}}\right) \mathbf{c}_{P} \cdot e_{P}$.

We show that the monoid $e_{P} \cdot\left(\overline{G_{\mathrm{enh}}}\right) \mathbf{c}_{P} \cdot e_{P}$ is normal and then use Renner's classification of normal monoids to prove the theorem.

Consider the larger algebraic monoid $e_{P} \cdot \overline{G_{\mathrm{enh}}} \cdot e_{P}$ with unit e_{P} (where we do not restrict to a fiber). The action of $Z\left(G_{\mathrm{enh}}\right)=T$ on $e_{P} \cdot \overline{G_{\mathrm{enh}}} \cdot e_{P}$ induces an isomorphism

$$
\begin{equation*}
\left(\left(e_{P} \cdot\left(\overline{G_{\mathrm{enh}}}\right) \mathbf{c}_{P} \cdot e_{P}\right) \times T\right) / Z(M) \cong e_{P} \cdot \overline{G_{\mathrm{enh}}} \cdot e_{P} \tag{1.9}
\end{equation*}
$$

so the two aforementioned monoids are closely related.
Since $e_{P} \cdot \overline{G_{\text {enh }}} \cdot e_{P}$ is the closed subscheme of the Vinberg semigroup fixed by left and right multiplications by e_{P}, it is a retract of $\overline{G_{\text {enh }}}$ in the category of schemes. The retraction is given by the formula $x \mapsto e_{P} \cdot x \cdot e_{P}$.

Lemma 1.4.9. Let Y and S be integral affine schemes such that Y is a retract of S (i.e., there exist maps $Y \rightarrow S$ and $S \rightarrow Y$ such that their composition is the identity map on Y). If S is normal then so is Y.

Proof. Since Y is a retract of S, we have an inclusion of algebras $k[Y] \hookrightarrow k[S]$. The algebra $k[S]$ is integrally closed, so if \tilde{Y} denotes the normalization of Y in its field of fractions, then the previous inclusion factors as $k[Y] \hookrightarrow k[\tilde{Y}] \hookrightarrow k[S]$. On the other hand the map $Y \rightarrow S$
induces an algebra map $k[S] \rightarrow k[Y]$ which restricts to the identity on $k[Y]$. Localization implies that the composition $k[\tilde{Y}] \rightarrow k[Y]$ is injective and hence an isomorphism.

Corollary 1.4.10. The algebraic monoid $e_{P} \cdot \overline{G_{\mathrm{enh}}} \cdot e_{P}$ is normal.
Proof. The Vinberg semigroup is normal by definition, and we have observed that $e_{P} \cdot \overline{G_{\text {enh }}}$. e_{P} is a retract of $\overline{G_{\text {enh }}}$.

Corollary 1.4.11. The algebraic monoid $e_{P} \cdot\left(\overline{G_{\mathrm{enh}}}\right) \mathbf{c}_{P} \cdot e_{P}$ is normal.
Proof. We deduce from (1.9) that $e_{P} \cdot \overline{G_{\text {enh }}} \cdot e_{P}$ is smooth locally isomorphic to $\left(e_{P} \cdot\left(\overline{G_{\mathrm{enh}}}\right) \mathbf{c}_{P}\right.$. $\left.e_{P}\right) \times T$. It follows from Corollary 1.4.10 and ascending and descending properties of normality that $e_{P} \cdot\left(\overline{G_{\text {enh }}}\right) \mathbf{c}_{P} \cdot e_{P}$ is normal.

Proof of Theorem 1.4.8. By Corollary 1.4.11 we know that $e_{P} \cdot\left(\overline{G_{\text {enh }}}\right) \mathbf{c}_{P} \cdot e_{P}$ is a normal reductive monoid with group of units $M \cdot e_{P}$. Recall from $\S 1.2$ that normal reductive monoids are classified by their Renner cones. Since \bar{M} is also a normal reductive monoid with group of units M, to prove the theorem it suffices to check that the Renner cones of \bar{M} and $e_{P} \cdot\left(\overline{G_{\mathrm{enh}}}\right) \mathbf{c}_{P} \cdot e_{P}$ are equal. We may assume that k is algebraically closed.

Fix a Cartan subgroup $T_{\text {sub }} \subset M \subset G$. Identify $T_{\text {sub }}$ with the abstract Cartan T by choosing a Borel subgroup. Consider the embedding $T_{\text {sub }} \hookrightarrow \overline{G_{\text {enh }}}$ sending $t \mapsto t \cdot e_{P}$ and let $\overline{T_{\text {sub }} \cdot e_{P}}$ denote the closure of the image. Set $T_{\text {enh }}:=\left(T_{\text {sub }} \times T\right) / Z(G)$, which is a Cartan subgroup of $G_{\text {enh }}$, and let $\overline{T_{\text {enh }}}$ denote its closure in $\overline{G_{\text {enh }}}$. By definition, e_{P} lies in $\overline{T_{\text {enh }}}$, so $T_{\text {sub }} \hookrightarrow \overline{G_{\text {enh }}}$ factors through the homomorphism of monoids

$$
\begin{equation*}
T_{\mathrm{sub}} \hookrightarrow \overline{T_{\mathrm{enh}}}: t \mapsto t \cdot e_{P} \tag{1.10}
\end{equation*}
$$

Let $\check{C} \subset \check{\Lambda}^{\mathbb{Q}} \times \check{\Lambda}^{\mathbb{Q}}$ denote the Renner cone (1.6) of $\overline{G_{\text {enh }}}$. Recall that the weights in $\check{C}_{\mathbb{Z}}:=$ $\check{C} \cap(\check{\Lambda} \times \check{\Lambda})$ form a basis of $k\left[\overline{T_{\text {enh }}}\right]$. Let $\left(\check{\lambda}_{1}, \check{\lambda}_{2}\right) \in \check{C}_{\mathbb{Z}}$. Then $\check{\lambda}_{2}-\check{\lambda}_{1} \in \check{\Lambda}_{G}^{\text {pos }}$, so it may be considered as a regular function on $\overline{T_{\mathrm{adj}}}$. Evaluating this function at \mathbf{c}_{P} gives a number
$\left(\check{\lambda}_{2}-\check{\lambda}_{1}\right)\left(\mathbf{c}_{P}\right)$, which is 1 if $\check{\lambda}_{2}-\check{\lambda}_{1} \in \check{\Lambda}_{M}^{\text {pos }}$ and 0 otherwise. By the definition of e_{P}, one sees that the homomorphism (1.10) corresponds to the map of weights

$$
\begin{equation*}
\check{C}_{\mathbb{Z}} \rightarrow \check{\Lambda}:\left(\check{\lambda}_{1}, \check{\lambda}_{2}\right) \mapsto\left(\check{\lambda}_{2}-\check{\lambda}_{1}\right)\left(\mathbf{c}_{P}\right) \cdot \check{\lambda}_{1} . \tag{1.11}
\end{equation*}
$$

The existence of the map (1.8) implies that the image of (1.11) must land in the Renner cone of \bar{M}, which is generated by the saturated submonoid $W_{M} \cdot \check{\Lambda}_{G}^{+}$. On the other hand, for $\check{\lambda} \in \check{\Lambda}_{G}^{+}$and $w \in W_{M}$, one sees that $(w \check{\lambda}, \check{\lambda}) \mapsto w \check{\lambda}$. Thus the image of (1.11) equals $W_{M} \cdot \check{\Lambda}_{G}^{+}$.

Therefore the Renner cones of \bar{M} and $e_{P} \cdot\left(\overline{G_{\mathrm{enh}}}\right) \mathbf{c}_{P} \cdot e_{P}$ are equal, which proves the theorem.

CHAPTER 2

INVARIANT BILINEAR FORM DEFINED VIA ASYMPTOTICS

2.1 Introduction

2.1.1 The goal of this chapter

In [27], an invariant symmetric bilinear form \mathcal{B} is defined on the space of automorphic forms for $\mathrm{SL}(2)$ over any global field. The goal of this chapter is to generalize the definition of \mathcal{B} and the corresponding theory to any split reductive group G over a function field. The study of \mathcal{B} is motivated by works [25,30] on the geometric Langlands program. There is also a significant connection between \mathcal{B} and the theory of Eisenstein series, as evidenced by [27].

Let G be a split reductive group over \mathbb{F}_{q}. Let X be a geometrically connected smooth projective curve over a finite field \mathbb{F}_{q}, and let F be the field of rational functions on X. Let \mathbb{A} denote the adele ring of F.

For any place v of F, the completion of F with respect to v will be denoted F_{v}. Let \mathfrak{o}_{v} denote the ring of integers of F_{v}, with residue field $\mathbb{F}_{q_{v}}$. We denote the standard maximal compact subgroup of $G\left(F_{v}\right)$ by K_{v}. Set $K:=\prod_{v} K_{v}$; this is a maximal compact subgroup of $G(\mathbb{A})$.

We fix a field E of characteristic 0 . Unless specified otherwise, all functions will take values in E.

Let \mathcal{A} denote the space of K-finite C^{∞} functions on $G(\mathbb{A}) / G(F)$. Let $\mathcal{A}_{c} \subset \mathcal{A}$ denote the subspace of functions with compact support.

In this chapter we define and study a $G(\mathbb{A})$-invariant symmetric bilinear form \mathcal{B} on \mathcal{A}_{c}. (The definition of \mathcal{B} is given in $\S 2.4 .1$.) Fix a Haar measure on $G(\mathbb{A})$. The form \mathcal{B} is defined as an alternating sum of invariant bilinear forms \mathcal{B}_{P} on \mathcal{A}_{c}, where the sum ranges over the conjugacy classes of parabolic subgroups of G. When $P=G$, the form \mathcal{B}_{G} is the naive
pairing

$$
\mathcal{B}_{\text {naive }}\left(f_{1}, f_{2}\right)=\int_{G(\mathbb{A}) / G(F)} f_{1}(x) f_{2}(x) d x, \quad f_{1}, f_{2} \in \mathcal{A}_{c}
$$

The definition of \mathcal{B}_{P} was suggested by Y. Sakellaridis in a private communication, and it uses the local asymptotics maps constructed in [10, 60] using the geometry of the De ConciniProcesi wonderful compactification of G. The asymptotics map is defined in the more general setting of harmonic analysis on spherical varieties in [60]. In [10], the asymptotics map is used to give a geometric proof of Bernstein's theorem on second adjointness. It is also shown ([10, Theorem 7.6]) that the asymptotics map is inverse to the standard (long) intertwining operator in the classical representation theory of \mathfrak{p}-adic groups. Using this relationship, one sees that the computation of the asymptotics of the characteristic function of K_{v} (cf. [59, §6]) goes back to the classical non-Archimedean Gindikin-Karpelevich formula due to $[48,50]$.

In order to study the form \mathcal{B}, we consider certain subspaces $\mathcal{C}_{P, \pm}$ of the space of smooth K-finite functions on $G(\mathbb{A}) / M(F) U(\mathbb{A})$, where $P=M U$ is a standard parabolic subgroup with Levi subgroup M and unipotent radical U. The spaces $\mathcal{C}_{P, \pm}$ may be of independent interest as they are defined with respect to the same rational cones and support conditions as in the definition of Arthur's truncation operator (cf. the definition of $\widehat{\tau}_{P}$ in $[2, \S 6]$). In Proposition 2.5.5, we prove that the standard intertwining operator extends to an isomorphism $R_{P}: \mathcal{C}_{P^{-},+} \rightarrow \mathcal{C}_{P,-}$.

Remark 2.1.1. We only consider the function field case in this chapter, but the reader may check that the definition of \mathcal{B} on K-invariant automorphic forms extends to the number field case using the Archimedean Gindikin-Karpelevich formula. We hope to define \mathcal{B} on the whole space \mathcal{A}_{c} for an arbitrary global field F by better understanding the local Archimedean intertwining operator in the future.

2.1.2 Motivation from geometric Langlands

Let us explain the motivation for the existence of \mathcal{B} from the geometric Langlands program. Here we assume that the field E equals $\overline{\mathbb{Q}}_{\ell}$ for a prime ℓ coprime to the characteristic of F. A remarkable ℓ-adic complex on $\operatorname{Bun}_{G} \times \operatorname{Bun}_{G}$. Let Bun_{G} denote the stack of G bundles on X. Let $\Delta: \operatorname{Bun}_{G} \rightarrow \operatorname{Bun}_{G} \times \operatorname{Bun}_{G}$ be the diagonal morphism. We have the ℓ-adic complex $\Delta_{*}\left(\overline{\mathbb{Q}}_{\ell}\right)$ on $\operatorname{Bun}_{G} \times \operatorname{Bun}_{G}$.

This complex is the ℓ-adic analog of the complex of D-modules $\Delta_{!} \omega_{\mathrm{Bun}_{G}}$, which plays a crucial role in the theory of miraculous duality on Bun_{G}, which was developed in [25, $\S 4.5$] and [30]. Assume for the moment that X is over a ground field k of characteristic 0. Then miraculous duality gives an equivalence between the DG category of (complexes of) D-modules on Bun_{G} and its Lurie dual. Very roughly, the equivalence is defined as the functor

$$
{\operatorname{Ps}-\mathrm{Id}_{\mathrm{Bun}_{G},!}: \mathrm{D}-\bmod \left(\operatorname{Bun}_{G}\right)_{\mathrm{co}} \rightarrow \mathrm{D}-\bmod \left(\operatorname{Bun}_{G}\right)}
$$

given by the kernel $\Delta_{!} \omega_{\operatorname{Bun}_{G}}$ (whereas the identity functor is given by the kernel $\Delta_{*} \omega_{\operatorname{Bun}_{G}}$). The fact that this functor is an equivalence is a highly nontrivial theorem [30, Theorem 0.2.4].

The function b. Given G-bundles $\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2} \in \operatorname{Bun}_{G}\left(\mathbb{F}_{q}\right)$, let $b\left(\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}\right)$ denote the trace of the geometric Frobenius acting on the $*$-stalk of the complex $\Delta_{*}\left(\overline{\mathbb{Q}}_{\ell}\right)$ over the point $\left(\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}\right) \in\left(\operatorname{Bun}_{G} \times \operatorname{Bun}_{G}\right)\left(\overline{\mathbb{F}}_{q}\right)$. Using results of [62], we deduce a formula for b in terms of the asymptotics maps (see Theorem A.3.12).

Relation between \mathcal{B} and b. The quotient $K \backslash G(\mathbb{A}) / G(F)$ identifies with $\left|\operatorname{Bun}_{G}\left(\mathbb{F}_{q}\right)\right|$, the set of isomorphism classes of G-bundles on X. So the function b can be considered as a function on $(G(\mathbb{A}) / G(F)) \times(G(\mathbb{A}) / G(F))$. The following theorem is one of our main results. The proof is given in §2.4.4.

Theorem 2.1.2. Let $E=\overline{\mathbb{Q}}_{\ell}$ for ℓ coprime to the characteristic of F. Normalize the Haar
measure on $G(\mathbb{A})$ so that K has measure 1. Then for any $f_{1}, f_{2} \in \mathcal{A}_{c}^{K}$, one has

$$
\begin{equation*}
\mathcal{B}\left(f_{1}, f_{2}\right)=\int_{(G \times G)(\mathbb{A}) /(G \times G)(F)} b\left(g_{1}, g_{2}\right) f_{1}\left(g_{1}\right) f_{2}\left(g_{2}\right) d g_{1} d g_{2} \tag{2.1}
\end{equation*}
$$

By non-degeneracy of the naive pairing $\mathcal{B}_{\text {naive }}$, defining the bilinear form \mathcal{B} is equivalent to defining an operator $L: \mathcal{A}_{c} \rightarrow \mathcal{A}$ such that

$$
\mathcal{B}\left(f_{1}, f_{2}\right)=\mathcal{B}_{\text {naive }}\left(L f_{1}, f_{2}\right), \quad f_{1}, f_{2} \in \mathcal{A}_{c}
$$

Theorem 2.1.2 implies that the miraculous duality functor $\operatorname{Ps}-\operatorname{Id}_{\mathrm{Bun}_{G},!}$ is a D-module analog of the operator $q^{-\operatorname{dim} \operatorname{Bun}_{G} L}$ via the functions-sheaves dictionary.

2.1.3 Analog of the Aubert-Zelevinsky involution

In $\S 2.6 .6$, we define a subspace $\mathcal{A}_{p s-c} \subset \mathcal{A}$ of "pseudo-compactly" supported functions using the constant term operators and the spaces $\mathcal{C}_{P,+}$. We prove that the operator L above sends \mathcal{A}_{c} to $\mathcal{A}_{p s-c}$, and the operator $L: \mathcal{A}_{c} \rightarrow \mathcal{A}_{p s-c}$ is an isomorphism (Theorem 2.6.12). The invertibility of L may be considered as a function-theoretic analog of the main result (Theorem 0.2.4) of [30].

Moreover, we give an explicit formula

$$
L^{-1} f=\sum_{P}(-1)^{\operatorname{dim} Z(M)}\left(\operatorname{Eis}_{P} \circ \mathrm{CT}_{P}\right)(f), \quad f \in \mathcal{A}_{p s-c}
$$

for the inverse, where $\operatorname{Eis}_{P}, \mathrm{CT}_{P}$ denote respectively, the (pseudo-)Eisenstein operator and constant term operator. By considering $\mathrm{Eis}_{P}, \mathrm{CT}_{P}$ as global analogs of the parabolic induction functor and Jacquet functor, respectively, in the theory of smooth representations of a \mathfrak{p}-adic group, one can view the formula for L^{-1} as an analog of the formula for the Aubert-Zelevinsky involution on the Grothendieck group of smooth representations of finite length (see Remark 2.6.13). This involution was first defined and studied for $G=\mathrm{GL}(n)$
by Zelevsinky [70] and later for general reductive groups by Aubert [4]. On Iwahori fixed vectors, it also corresponds to the Iwahori-Matsumoto involution (cf. [44]). There is an analogous involution for representations of a finite Chevalley group, often called the Alvis-Curtis involution, which was studied earlier in [1, 21].

The Aubert-Zelevinsky involution can be studied at the level of complexes. Such complexes were considered in [22] for representations of a finite Chevalley group. For every smooth representation M one can form a complex

$$
0 \rightarrow M \rightarrow \bigoplus_{P} i_{P}^{G} r_{P}^{G}(M) \rightarrow \cdots \rightarrow i_{B}^{G} r_{B}^{G}(M) \rightarrow 0
$$

where i_{P}^{G}, r_{P}^{G} denote, respectively, the parabolic induction and Jacquet functors, and the sum in the i-th term runs over standard parabolic subgroups of corank i in G. We call this complex the Deligne-Lusztig complex associated to M and denote it by $\mathrm{DL}(M)$. Aubert showed that for an irreducible module M, the complex $\mathrm{DL}(M)$ has cohomology in only one degree, which implies that the Aubert-Zelevsinky involution sends irreducible modules to irreducible modules (up to a sign). A new proof of this result was recently given in [9] using asymptotics maps and the geometry of the wonderful compactification of G.

2.1.4 Structure of the chapter

General remark. In the main body of the article we work with classical functions on $G\left(F_{v}\right)$ and $G(\mathbb{A}) / G(F)$. These are, however, heavily motivated by geometric definitions and results appearing in the geometric Langlands program. We review the relevant geometry in Appendices A.1-A.3.

The main body of the chapter.

In Section 2.2, we study the asymptotics map and its relation to the intertwining operator over a local non-Archimedean field. In order to elucidate the support conditions of various functions, we give a combinatorial description of the bounded subsets of the boundary
degenerations of G.
In Section 2.3, we compute the asymptotics of the characteristic function of K_{v} by reducing to the non-Archimedean Gindikin-Karpelevich formula using intertwining operators on K_{v}-invariants. To do so, we extend the classical Satake isomorphism to an isomorphism between certain completed Hecke algebras.

In Section 2.4, we define the bilinear form \mathcal{B}. After giving a geometric interpretation of the restriction of \mathcal{B} to \mathcal{A}_{c}^{K}, we prove Theorem 2.1.2.

The definition of \mathcal{B} we give differs slightly from the definition given in [27] for $G=\mathrm{SL}(2)$. In our definition, we use local asymptotics (which is essentially equivalent to local inverse intertwining operators) and then apply a local-to-global procedure.

In Section 2.5, we provide an alternate definition of \mathcal{B}, which directly generalizes the one in [27]. For a parabolic subgroup P with Levi factor M, we define subspaces $\mathcal{C}_{P, \pm}$ of the space of K-finite C^{∞} functions on $G(\mathbb{A}) / M(F) U(\mathbb{A})$. The definitions are such that the constant term operator CT_{P} (whose definition we recall) sends \mathcal{A}_{c} to $\mathcal{C}_{P,-}$. The intertwining operator R_{P} (which is of local nature) is defined as a map $\mathcal{C}_{P^{-},+} \rightarrow \mathcal{C}_{P,-}$, and we show that R_{P} is an isomorphism. Let \langle,$\rangle denote the natural pairing between functions in \mathcal{C}_{P^{-}}$(when convergent). We prove the following in $\S 2.5 .6$:

Theorem 2.1.3. For any $f_{1}, f_{2} \in \mathcal{A}_{c}$, one has

$$
\begin{equation*}
\mathcal{B}\left(f_{1}, f_{2}\right)=\sum_{P}(-1)^{\operatorname{dim} Z(M)}\left\langle R_{P}^{-1} \mathrm{CT}_{P}\left(f_{1}\right), \mathrm{CT}_{P^{-}}\left(f_{2}\right)\right\rangle, \tag{2.2}
\end{equation*}
$$

where the sum ranges over conjugacy classes of parabolic subgroups of G.

In Section 2.6, we use Theorem 2.1.3 to define the operator $L: \mathcal{A}_{c} \rightarrow \mathcal{A}$ and the subspace $\mathcal{A}_{p s-c} \subset \mathcal{A}$ of "pseudo-compactly" supported functions. We show that L sends \mathcal{A}_{c} to $\mathcal{A}_{p s-c}$, and in Theorem 2.6.12 we prove that the operator $L: \mathcal{A}_{c} \rightarrow \mathcal{A}_{p s-c}$ is invertible. We give a
formula (2.53) for L^{-1}, which is in fact simpler than the formula for L. This formula may be viewed as an analog of the definition of the Aubert-Zelevinsky involution.

Appendices A.1-A.3. In Appendix A.1, we consider the global model for the formal arc space of a group embedding into an algebraic monoid. This model was also used in [11, $\S 2]$. We realize the global model as a substack of a symmetrized version of the Hecke stack. We give a bound on the difference of the Harder-Narasimhan coweights of the two bundles corresponding to a point of the Hecke stack (Lemma A.1.7). In this article, we are primarily interested in the stack \mathcal{H}_{M}^{+}attached to the monoid \bar{M}, defined as the closure of M in the affine closure of G / U, where P is a parabolic subgroup with Levi factor M. The stack \mathcal{H}_{M}^{+}is a graded Ran version (in the sense of [29]) of the closed substack of the Hecke stack studied in [13] and $[12, \S 1.8]$. The Hecke stack is a twisted product of Bun_{M} and the BeilinsonDrinfeld (factorizable) affine Grassmannian, and it is more convenient to use the latter to talk about factorization properties. We briefly review the relevant notation and properties of the factorizable affine Grassmannian - we use a symmetrized version that does not explicitly mention the Ran space.

In Appendix A.2, we review the definition of the factorization algebras on the affine Grassmannian introduced in $[14,29]$ that act on geometric Eisenstein series. The main goal of this Appendix is to highlight the connection (via Grothendieck's functions-sheaves dictionary) between certain measures (related to unramified intertwining operators) appearing in the classical non-Archimedean Gindikin-Karpelevich formula and Gaitsgory's factorization algebras (see Proposition A.2.4, Lemma A.2.5). From this perspective, we point out how the main theorem of [12] may be interpreted as a categorical or geometric version of (Langlands' interpretation of) the Gindikin-Karpelevich formula.

In Appendix A.3, we study the compactification of the diagonal morphism of Bun_{G} using the results of [62]. The compactification $\overline{\operatorname{Bun}}_{G}$ we define is slightly different from the one found in the literature. We review the definition and relevant properties of the Drinfeld-Lafforgue-Vinberg degeneration of Bun_{G}. In particular we highlight the connection between
the geometric Bernstein asymptotics studied in loc. cit. and Gaitsgory's factorization algebras to deduce that for an arbitrary parabolic subgroup, the geometric Bernstein asymptotics corresponds to the classical asymptotics of the characteristic function of K via the functionssheaves dictionary.

2.1.5 Conventions

Throughout the chapter, G will be a connected split reductive group over \mathbb{F}_{q}. Fix a split torus $T \subset G$ and a Borel B containing T. Let W be the Weyl group of T. Let $\check{\Lambda}($ resp. $\Lambda)$ denote the weight (resp. coweight) lattice of T.

The monoid of dominant weights (resp., coweights) will be denoted by $\check{\Lambda}_{G}^{+}$(resp., by $\left.\Lambda_{G}^{+}\right)$. The set of vertices of the Dynkin diagram of G will be denoted by Γ_{G}; for each $i \in \Gamma_{G}$ there corresponds a simple coroot α_{i} and a simple root $\check{\alpha}_{i}$. The set of coroots (resp. positive coroots) will be denoted by Φ_{G} (resp. Φ_{G}^{+}) and the positive span of Φ_{G}^{+}inside Λ by $\Lambda_{G}^{\text {pos }}$. Let $\check{\Delta}_{G}$ (resp. $\check{\Phi}_{G}^{+}, \check{\Phi}_{G}^{-}, \check{\Phi}_{G}$) denote the simple (resp. positive, negative, all) roots of G. By $2 \check{\rho} \in \check{\Lambda}$ (resp. $2 \rho \in \Lambda$) we will denote the sum of the positive roots (coroots) of G and by w_{0} the longest element in the Weyl group of G. For $\lambda, \mu \in \Lambda$ we will write that $\lambda \geq \mu$ if $\lambda-\mu \in \Lambda_{G}^{\mathrm{pos}}$, and similarly for $\check{\Lambda}_{G}^{\mathrm{pos}}$.

We will only consider parabolic subgroups that contain T. Let P be a standard ${ }^{1}$ parabolic subgroup, i.e., P contains B. Then the Levi quotient can be canonically realized as a subgroup $M \subset P$. We have $P=M U$ where U is the unipotent radical of P. There is a unique parabolic P^{-}such that $P \cap P^{-}=M$. To M there corresponds a subdiagram $\Gamma_{M} \subset \Gamma_{G}$, coroots $\Phi_{M} \subset \Phi_{G}$, and positive coroots $\Phi_{M}^{+} \subset \Phi_{G}^{+}$. We will denote by $\Lambda_{M}^{+} \supset \Lambda_{G}^{+}$, $\Lambda_{M}^{\mathrm{pos}} \subset \Lambda_{G}^{\mathrm{pos}}, 2 \check{\rho}_{M} \in \check{\Lambda}, \geq_{M}$, etc. the corresponding objects for M.

Let $\operatorname{Rep}(G)$ denote the abelian category of finite-dimensional G-modules.
Given two G-spaces Y, Z such that the diagonal action of G on $Y \times Z$ is free, we let

[^5]$Y \times{ }^{G} Z$ denote the quotient of $Y \times Z$ by the diagonal G-action.
For a scheme or stack y, we let $D(y)$ denote the DG category of bounded constructible $\overline{\mathbb{Q}}_{\ell}$-sheaves on y. We will use 'sheaf' to mean a complex of sheaves. All functors between sheaves are derived functors. When y is a stack over $\operatorname{Spec} \mathbb{F}_{q}$, we assume that ℓ is coprime to q. Choose a square root of q in $\overline{\mathbb{Q}}_{\ell}$ once and for all. The intersection cohomology sheaves are normalized so that they are pure of weight 0 . In other words, for a smooth \mathbb{F}_{q}-stack y of dimension $n, \mathrm{IC}_{\mathrm{y}} \cong\left(\overline{\mathbb{Q}}_{\ell}\left(\frac{1}{2}\right)[1]\right)^{\otimes n}$.

2.2 Local intertwining operators and asymptotics

In this section, we work over a non-Archimedean local field F_{v}, and G is a connected split reductive group over F_{v}. The subscript v is only present to keep notation consistent throughout this article - the presence of a global field is not assumed, and the characteristic of F_{v} is arbitrary (and possibly zero).

Let $\|_{v}$ denote the absolute value on F_{v}, let \mathfrak{o}_{v} denote the ring of integers of F_{v}, and let q_{v} be the cardinality of the residue field. We will use G, P, \mathbb{X}_{P}, etc. to also denote the topological groups/spaces of F_{v}-points of the corresponding algebraic groups or varieties, e.g., $G=G\left(F_{v}\right), P=P\left(F_{v}\right), \mathbb{X}_{P}=\mathbb{X}_{P}\left(F_{v}\right)$. Let $K=K_{v}$ denote the standard maximal compact subgroup of G, and K_{M} denotes the standard maximal compact subgroup of M.

In $\S 2.2 .1-2.2 .3$, we define the space \mathbb{X}_{P} and describe how to consider bounded subsets of G / U and \mathbb{X}_{P} in terms of subsets of the lattice Λ. In $\S 2.2 .4-2.2 .7$, we review some definitions and results from [10] to introduce the local asymptotics map Asymp ${ }_{P}$, which is "essentially the same" as the inverse of the standard intertwining operator. We observe that Asymp P_{P} is determined by a generalized function ξ_{P} on \mathbb{X}_{P}. In $\S 2.2 .5-2.2 .8$, we give a formula for the inverse of the intertwining operator in terms of ξ_{P}.

2.2.1 Bounded sets

Let \mathbb{X} be a quasi-affine variety over F_{v} (i.e., there exists a locally closed embedding of \mathbb{X} into a finite dimensional affine space). We say that a subset $S \subset \mathbb{X}\left(F_{v}\right)$ is bounded if the following equivalent conditions are satisfied:
(i) for any regular function $f \in F_{v}[\mathbb{X}]:=\Gamma\left(\mathbb{X}, \mathcal{O}_{\mathbb{X}}\right)$, the function $|f|_{v}$ is bounded on S,
(ii) for any locally closed embedding (in the sense of algebraic geometry) of \mathbb{X} into an affine space, the image of S is bounded (with respect to the norm induced by the absolute value on F_{v}),
(iii) for any open embedding (in the sense of algebraic geometry) of X into an affine variety, the image of S is relatively compact (for the "usual" topology induced by the topology on F_{v}).

Recall that an F_{v}-scheme \mathbb{X} is strongly quasi-affine if the canonical morphism

$$
\mathbb{X} \rightarrow \operatorname{Spec} F_{v}[\mathbb{X}]
$$

is an open embedding and $F_{v}[\mathbb{X}]$ is a finitely generated F_{v}-algebra. For a strongly quasi-affine variety \mathbb{X}, in condition (iii) it suffices to consider only the open embedding $\mathbb{X} \hookrightarrow \operatorname{Spec} F_{v}[\mathbb{X}]$.

2.2.2 The strongly quasi-affine varieties G / U and \mathbb{X}_{P}

Fix a standard parabolic subgroup $P \subset G$ with Levi subgroup M and unipotent radical U.
The quotient varieties G / U and G / U^{-}are strongly quasi-affine by [36]. Let $\overline{G / U}:=$ Spec $F_{v}[G / U]$ and $\overline{G / U^{-}}:=\operatorname{Spec} F_{v}\left[G / U^{-}\right]$denote the affine closures.

We review the definition of the variety \mathbb{X}_{P} introduced in [10, $\left.\S 2.2 .1\right]$ below.
Define the boundary degeneration

$$
\mathbb{X}_{P}:=(G \times G) /\left(P \times{ }_{M} P^{-}\right)=\left(G / U \times G / U^{-}\right) / M,
$$

where M acts diagonally on the right. Recall (cf. [24, Proposition 2.4.4]) that \mathbb{X}_{P} is a quasiaffine variety; let $\overline{\mathbb{X}}_{P}:=\operatorname{Spec} F_{v}\left[\mathbb{X}_{P}\right]$ denote the affine closure. By [36], $F_{v}\left[G / U \times G / U^{-}\right]$ is finitely generated. Therefore Hilbert's theorem on invariants implies that $F_{v}\left[\mathbb{X}_{P}\right]=$ $F_{v}\left[G / U \times G / U^{-}\right]^{M}$ is finitely generated (i.e., \mathbb{X}_{P} is strongly quasi-affine). Thus a subset $S \subset \mathbb{X}_{P}$ is bounded if and only if $f(S) \subset F_{v}$ is bounded for every $f \in F_{v}\left[\mathbb{X}_{P}\right]$.

2.2.3 Combinatorial setup

We give a combinatorial description of bounded subsets of \mathbb{X}_{P} in Proposition 2.2.2 below.
By the Cartan decomposition, $K_{M} \backslash M / K_{M}=\left(T / K_{T}\right) / W_{M}$. We have an isomorphism

$$
\operatorname{ord}_{T}: T / K_{T} \rightarrow \Lambda
$$

sending $\lambda(x) \mapsto \lambda \otimes\left(-\log _{q_{v}}|x|_{v}\right)$ where $\lambda \in \Lambda, x \in F_{v}^{\times}$. This induces an isomorphism

$$
\begin{equation*}
\operatorname{ord}_{M}: K_{M} \backslash M / K_{M} \rightarrow \Lambda_{M}^{+} \tag{2.3}
\end{equation*}
$$

By the Iwasawa decomposition, $G=K \cdot P=K \cdot P^{-}$. Therefore (2.3) induces the projections

$$
\begin{equation*}
\operatorname{ord}_{M}: G / U \rightarrow K \backslash(G / U) / K_{M}=K_{M} \backslash M / K_{M}=\Lambda_{M}^{+} \tag{2.4}
\end{equation*}
$$

and $\operatorname{ord}_{M}: G / U^{-} \rightarrow \Lambda_{M}^{+}$. We have a left $G \times G$-action on \mathbb{X}_{P}. Using (2.3) again, we also define the projection

$$
\begin{equation*}
\operatorname{ord}_{M}: \mathbb{X}_{P} \rightarrow(K \times K) \backslash \mathbb{X}_{P}=K_{M} \backslash M / K_{M}=\Lambda_{M}^{+} \tag{2.5}
\end{equation*}
$$

where the first equality sends $\left(m_{1}, m_{2}\right) \mapsto m_{1}^{-1} m_{2}$ when $m_{1}, m_{2} \in M$.

Lemma 2.2.1. Let $g_{1} \in G / U$ and $g_{2} \in G / U^{-}$. Consider the image of $\left(g_{1}, g_{2}\right)$ in \mathbb{X}_{P}. Then

$$
w_{0}^{M} \operatorname{ord}_{M}\left(g_{1}, g_{2}\right) \leq_{M} \operatorname{ord}_{M}\left(g_{2}\right)-\operatorname{ord}_{M}\left(g_{1}\right) \leq_{M} \operatorname{ord}_{M}\left(g_{1}, g_{2}\right)
$$

Proof. Let $\lambda_{1}=\operatorname{ord}_{M}\left(g_{1}\right), \lambda_{2}=\operatorname{ord}_{M}\left(g_{2}\right)$, and $\theta=\operatorname{ord}_{M}\left(g_{1}, g_{2}\right)$. It follows from the definitions that $\theta\left(\varpi_{v}\right) \in K_{M} \lambda_{1}\left(\varpi_{v}\right)^{-1} K_{M} \lambda_{2}\left(\varpi_{v}\right) K_{M}$, where $\varpi_{v} \in \mathfrak{o}_{v}$ is a uniformizer. This is equivalent to $\lambda_{2}\left(\varpi_{v}\right) \in K_{M} \lambda_{1}\left(\varpi_{v}\right) K_{M} \theta\left(\varpi_{v}\right) K_{M}$. The usual properties of the (spherical) Hecke algebra imply that $\lambda_{2} \leq_{M} \lambda_{1}+\theta$. Similarly, we also have $\lambda_{1}\left(\varpi_{v}\right) \in$ $K_{M} \lambda_{2}\left(\varpi_{v}\right) K_{M} \theta\left(\varpi_{v}\right)^{-1} K_{M}$, which implies that $\lambda_{1} \leq_{M} \lambda_{2}-w_{0}^{M} \theta$.

Let $\Lambda^{\mathbb{Q}}:=\mathbb{Q} \otimes_{\mathbb{Z}} \Lambda$. Let $\Lambda_{G}^{\text {pos, } \mathbb{Q}} \subset \Lambda^{\mathbb{Q}}$ denote the rational cone corresponding to $\Lambda_{G}^{\text {pos }}$. We define the rational ordering $\leq_{G}^{\mathbb{Q}}$ by $\mu \leq_{G}^{\mathbb{Q}} \lambda$ if and only if $\lambda-\mu \in \Lambda_{G}^{\text {pos } \mathbb{Q}}$.

Let $\check{\Lambda}_{G}^{+}, \mathbb{Q} \subset \check{\Lambda}^{\mathbb{Q}}:=\mathbb{Q} \otimes_{\mathbb{Z}} \check{\Lambda}$ denote the rational cone corresponding to $\check{\Lambda}_{G}^{+}$.
We say that a subset $S \subset \Lambda^{\mathbb{Q}}$ is bounded below (with respect to $\leq_{G}^{\mathbb{Q}}$) if the following equivalent conditions are satisfied:
(i) For any $\check{\lambda} \in \check{\Lambda}_{G}^{+}$, the subset $\check{\lambda}(S) \subset \mathbb{Q}$ is bounded below.
(ii) There exists a subset $S_{0} \subset \Lambda^{\mathbb{Q}}$ with compact closure in $\mathbb{R} \otimes_{\mathbb{Z}} \Lambda$ such that $S \subset$ $S_{0}+\Lambda_{G}^{\mathrm{pos}, \mathbb{Q}}$.
Define $S \subset \Lambda_{G}^{\mathbb{Q}}$ to be bounded above if $-S$ is bounded below.
Proposition 2.2.2. A subset $S \subset \mathbb{X}_{P}$ is bounded if and only if $\operatorname{ord}_{M}(S) \subset \Lambda_{M}^{+}$is bounded above.

Proof. Consider the embedding $T \hookrightarrow \mathbb{X}_{P}: t \mapsto(t, 1)$ and let \bar{T} denote the closure of T in $\overline{\mathbb{X}}_{P}$. Let $S_{T} \subset T$ denote the preimage of $(K \times K) \cdot S \subset \mathbb{X}_{P}$ under the previous embedding. Then S is bounded if and only if S_{T} is bounded in \bar{T}. Note that S_{T} is W_{M}-stable, and $\operatorname{-ord}_{T}\left(S_{T}\right)=W_{M} \cdot \operatorname{ord}_{M}(S)$. It is shown in Corollary 1.4.3 that $F_{v}[\bar{T}] \subset F_{v}[T]$ has a basis formed by the characters in $W_{M} \cdot \Lambda_{G}^{+}$. For a weight $\check{\lambda} \in \check{\Lambda}_{G}^{+}$and $t \in T$, we have $-\log _{q_{v}}|\check{\lambda}(t)|_{v}=\left\langle\check{\lambda}, \operatorname{ord}_{T}(t)\right\rangle$. Therefore S_{T} is bounded in \bar{T} if and only if $-\operatorname{ord}_{T}\left(S_{T}\right)$ is
bounded above. Since $\operatorname{ord}_{M}(S) \subset \Lambda_{M}^{+}$, we conclude that $W_{M} \cdot \operatorname{ord}_{M}(S)$ is bounded above if and only if $\operatorname{ord}_{M}(S)$ is bounded above.

The rational cone $\Lambda_{U}^{\operatorname{pos}, \mathbb{Q}}$. We introduce the rational cone $\Lambda_{U}^{\text {pos, } \mathbb{Q}}$, which is used throughout this chapter, and review some of its properties, which are proved in Chapter 1.

Let $\Lambda_{U}^{\mathrm{pos}} \subset \Lambda$ denote the non-negative integral span of the positive coroots of G that are not coroots of M. The submonoid $\Lambda_{U}^{\mathrm{pos}}$ is stable under the actions of W_{M}. Let $\Lambda_{U}^{\mathrm{pos}, \mathbb{Q}}$ denote the corresponding rational cone.

Remark 2.2.3. Let X_{P} denote an \mathfrak{o}_{v}-model of \mathbb{X}_{P}, and set $\bar{X}_{\mathbf{P}}:=\operatorname{Spec} \Gamma\left(X_{P}, \mathcal{O}_{X_{P}}\right)$. Then $\bar{X}_{\mathrm{P}} \times{ }_{\text {Spec } \mathfrak{o}_{v}} \operatorname{Spec} F_{v}=\overline{\mathbb{X}}_{P}$, and $\bar{X}_{\mathrm{P}}\left(\mathfrak{o}_{v}\right)$ is a $K \times K$-stable subset of $\overline{\mathbb{X}}_{P}\left(F_{v}\right)$. The proof of Proposition 2.2.2 shows that

$$
\bar{X}_{\mathrm{P}}\left(\mathfrak{o}_{v}\right) \cap \mathbb{X}_{P}\left(F_{v}\right) \subset \operatorname{ord}_{M}^{-1}\left(\left(-\Lambda_{U}^{\operatorname{pos}, \mathbb{Q}}\right) \cap \Lambda_{M}^{+}\right)
$$

where $\Lambda_{U}^{\text {pos }, \mathbb{Q}}$ is the dual cone of $W_{M} \cdot \check{\Lambda}_{G}^{+, \mathbb{Q}}$ by Lemma 1.3.4.
We recall the definition of the Langlands retraction $\mathfrak{L}: \Lambda^{\mathbb{Q}} \rightarrow \Lambda_{G}^{+, \mathbb{Q}}$, which goes back to [49]. It is defined as follows: for $\lambda \in \Lambda^{\mathbb{Q}}$, let $\mathfrak{L}(\lambda)$ be the least element ${ }^{2}$ in the set $\left\{\theta \in \Lambda_{G}^{+, \mathbb{Q}} \mid \lambda \leq_{G}^{\mathbb{Q}} \theta\right\}$ in the sense of the $\leq_{G}^{\mathbb{Q}}$ ordering. We refer the reader to [23] for further properties of the Langlands retraction.

Let $\Lambda_{M}^{+, \mathbb{Q}} \subset \Lambda^{\mathbb{Q}}$ denote the rational cone corresponding to Λ_{M}^{+}.
Lemma 2.2.4. Let $\lambda \in \Lambda_{M}^{+, \mathbb{Q}}$. Then $\mathfrak{L}(\lambda)-\lambda \in \Lambda_{U}^{\mathrm{pos}, \mathbb{Q}} \cap\left(-\Lambda_{M}^{+, \mathbb{Q}}\right)$.
Proof. Recall from [23, Proposition 2.1] that \mathfrak{L} is piecewise linear, with linearity domains C_{J} indexed by subsets $J \subset \Gamma_{G}$: Let $V_{J}^{\perp}=\left\{\lambda \in \Lambda^{\mathbb{Q}} \mid\left\langle\check{\alpha}_{j}, \lambda\right\rangle=0, j \in J\right\}$. Then C_{J} is the closed convex cone generated by $-\alpha_{j}, j \in J$ and $V_{J}^{\perp} \cap \Lambda_{G}^{+, \mathbb{Q}}$.

Suppose that $\lambda \in \Lambda_{M}^{+, \mathbb{Q}}$ lies in C_{J}. Then $\lambda-\mathfrak{L}(\lambda)$ belongs to the closed convex cone generated by $-\alpha_{j}$ for $j \in J$, and $\mathfrak{L}(\lambda) \in V_{J}^{\perp}$ by [23, Lemma 2.3]. Therefore $\left\langle\check{\alpha}_{j}, \lambda-\mathfrak{L}(\lambda)\right\rangle=$

[^6]$\left\langle\check{\alpha}_{j}, \lambda\right\rangle \geq 0$ for $j \in \Gamma_{M} \cap J$. Since $\left\langle\check{\alpha}_{i}, \alpha_{j}\right\rangle<0$ for $i \in \Gamma_{G}-J, j \in J$, we also have $\left\langle\check{\alpha}_{i}, \lambda-\mathfrak{L}(\lambda)\right\rangle \geq 0$ for $i \in \Gamma_{G}-J$. Hence $\lambda-\mathfrak{L}(\lambda) \in\left(-\Lambda_{G}^{\operatorname{pos}, \mathbb{Q}}\right) \cap \Lambda_{M}^{+, \mathbb{Q}}$. By Lemma 1.3.2, we have the equality $\left(-\Lambda_{G}^{\operatorname{pos}, \mathbb{Q}}\right) \cap \Lambda_{M}^{+, \mathbb{Q}}=\left(-\Lambda_{U}^{\text {pos, } \mathbb{Q}}\right) \cap \Lambda_{M}^{+, \mathbb{Q}}$.

Let $\Lambda^{\mathbb{R}}:=\mathbb{R} \otimes_{\mathbb{Z}} \Lambda$ and let $\Lambda_{G}^{+, \mathbb{R}}, \Lambda_{G}^{\text {pos }, \mathbb{R}}$ denote the real cones corresponding to $\Lambda_{G}^{+}, \Lambda_{G}^{\mathrm{pos}}$. Corollary 2.2.5. A subset $S \subset \Lambda_{M}^{+, \mathbb{Q}}$ is bounded above if and only if there exists a compact subset $S_{0} \subset \Lambda_{G}^{+, \mathbb{R}}$ such that S is contained in the set $\left\{\theta-\mu \mid \theta \in S_{0}, \mu \in \Lambda_{U}^{\mathrm{pos}, \mathbb{Q}}\right\}$.

Proof. Suppose $S \subset \Lambda_{M}^{+, \mathbb{Q}}$ is bounded above. Then there exists a compact subset $S_{1} \subset \Lambda^{\mathbb{R}}$ such that S is contained in $\left\{\theta-\mu \mid \theta \in S_{1}, \mu \in \Lambda_{G}^{\text {pos, } \mathbb{Q}}\right\}$. Let S_{0} denote the closure of $\mathfrak{L}(S)$ in $\Lambda^{\mathbb{R}}$. Then S_{0} is contained in $\Lambda_{G}^{+, \mathbb{R}} \cap\left\{\theta-\mu \mid \theta \in S_{1}, \mu \in \Lambda_{G}^{\text {pos, } \mathbb{R}}\right\}$, which is a compact set. Lemma 2.2.4 implies that S is contained in $\left\{\theta-\mu \mid \theta \in S_{0}, \mu \in \Lambda_{U}^{\mathrm{pos}, \mathbb{Q}}\right\}$. The other direction is evident.

The closed embedding $G \times P^{-} \hookrightarrow G \times G$ induces a closed embedding $G / U \hookrightarrow \mathbb{X}_{P}$ sending $g_{1} \mapsto\left(g_{1}, 1\right)$. By Corollary 1.4.3, this embedding extends to a closed embedding of affine closures $\overline{G / U} \hookrightarrow \overline{\mathbb{X}}_{P}$. Similarly, the closed embedding $G / U^{-} \hookrightarrow \mathbb{X}_{P}: g_{2} \mapsto\left(1, g_{2}\right)$ extends to a closed embedding $\overline{G / U^{-}} \hookrightarrow \overline{\mathbb{X}}_{P}$. Using these embeddings, we deduce the combinatorial description for bounded subsets of G / U and G / U^{-}from Proposition 2.2.2:

Proposition 2.2.6. (i) A subset $S \subset G / U$ is bounded if and only if there exists a finite subset $S_{0} \subset \Lambda$ such that $\operatorname{ord}_{M}(S) \subset S_{0}+\Lambda_{U}^{\text {pos, } \mathbb{Q}}$.
(ii) A subset $S \subset G / U^{-}$is bounded if and only if there exists a finite subset $S_{0} \subset \Lambda$ such that $\operatorname{ord}_{M}(S) \subset\left\{\theta-\mu \mid \theta \in S_{0}, \mu \in \Lambda_{U}^{\operatorname{pos}, \mathbb{Q}}\right\}$.

Proof. Let $g_{1} \in G / U$. Then $\operatorname{ord}_{M}\left(g_{1}\right)=-w_{0}^{M} \cdot \operatorname{ord}_{M}\left(g_{1}, 1\right)$. Using the closed embedding $\overline{G / U} \hookrightarrow \overline{\mathbb{X}}_{P}$, we deduce (i) from Proposition 2.2.2 and Corollary 2.2.5. For $g_{2} \in G / U^{-}$, we have $\operatorname{ord}_{M}\left(g_{2}\right)=\operatorname{ord}_{M}\left(1, g_{2}\right)$, so we can similarly deduce (ii) using the closed embedding $G / U^{-} \hookrightarrow \overline{\mathbb{X}}_{P}$.

2.2.4 The space $\mathfrak{C}_{b}\left(\mathbb{X}_{P}\right)$

We review the definitions of the space $\mathcal{C}_{b}\left(\mathbb{X}_{P}\right)$ from [10] in the context of our combinatorial setup.

Let $S^{*}\left(\mathbb{X}_{P}\right)$ denote the space of distributions on \mathbb{X}_{P}. Using our fixed choice of Haar measures, we identify distributions and generalized functions on \mathbb{X}_{P}. Given a generalized function $\xi \in S^{*}\left(\mathbb{X}_{P}\right)$, one can define a map $T_{\xi}: C_{c}^{\infty}(G / U) \rightarrow C^{\infty}\left(G / U^{-}\right)$by the formula

$$
\begin{equation*}
T_{\xi}(\varphi)\left(g_{2}\right)=\int_{G / U} \varphi\left(g_{1}\right) \xi\left(g_{1}, g_{2}\right) d g_{1}, \quad \varphi \in C_{c}^{\infty}(G / U), g_{2} \in G / U^{-} \tag{2.6}
\end{equation*}
$$

Let $\mathcal{C}\left(\mathbb{X}_{P}\right)$ denote the space of $K \times K$-finite C^{∞} functions on \mathbb{X}_{P}.
Let $\mathcal{C}_{b}\left(\mathbb{X}_{P}\right) \subset \mathcal{C}\left(\mathbb{X}_{P}\right)$ denote the subspace of functions with bounded support. Proposition 2.2.2 implies that $\mathcal{C}_{b}\left(\mathbb{X}_{P}\right)$ is the set of functions $\xi \in \mathcal{C}\left(\mathbb{X}_{P}\right)$ such that $\operatorname{ord}_{M}(\operatorname{supp} \xi)$ is bounded above.

We say that a generalized function $\xi \in S^{*}\left(\mathbb{X}_{P}\right)$ has essentially bounded support if the convolution of ξ with any element of $C_{c}^{\infty}(G) \otimes C_{c}^{\infty}(G)$ has bounded support. Let $S_{b}^{*}\left(\mathbb{X}_{P}\right)^{G}$ denote the space of generalized function with essentially bounded support that are invariant under the diagonal G-action on \mathbb{X}_{P}.

2.2.5 The spaces $\mathcal{C}_{P, \pm}$

Let $\Lambda_{G, P}^{\mathbb{Q}}=\Lambda_{M /[M, M]}^{\mathbb{Q}}$. This vector space is the quotient of $\Lambda^{\mathbb{Q}}$ by the subspace spanned by the coroots of M. For $\lambda \in \Lambda^{\mathbb{Q}}$, let $[\lambda]_{P}$ denote the projection of λ to $\Lambda_{G, P}^{\mathbb{Q}}$. We define the map

$$
\operatorname{deg}_{P}: G / U \rightarrow \Lambda_{G, P}^{\mathbb{Q}}
$$

by $\operatorname{deg}_{P}(x)=\left[\operatorname{ord}_{M}(x)\right]_{P}$.
Let $\Lambda_{G, P}^{\text {pos, } \mathbb{Q}}$ denote the image of $\Lambda_{G}^{\text {pos, } \mathbb{Q}}$ (equivalently $\Lambda_{U}^{\text {pos, } \mathbb{Q}}$) under the projection $\Lambda^{\mathbb{Q}} \rightarrow$ $\Lambda_{G, P}^{\mathbb{Q}}$.

Let \mathcal{C}_{P} denote the space of K-finite C^{∞} functions on G / U. Let $\mathcal{C}_{P, c} \subset \mathcal{C}_{P}$ stand for the subspace of compactly supported functions.

Let $\mathcal{C}_{P,+} \subset \mathcal{C}_{P}$ denote the set of all functions $\varphi \in \mathcal{C}_{P}$ such that $\operatorname{deg}_{P}(\operatorname{supp} \varphi)$ is contained in $S_{0}+\Lambda_{G, P}^{\text {pos, } \mathbb{Q}}$ for some finite subset $S_{0} \subset \Lambda_{G, P}^{\mathbb{Q}}$. Similarly, let $\mathcal{C}_{P,-} \subset \mathcal{C}_{P}$ denote the set of all $\varphi \in \mathcal{C}_{P}$ such that $-\operatorname{deg}_{P}(\operatorname{supp} \varphi)$ is contained in $S_{0}+\Lambda_{G, P}^{\text {pos, } \mathbb{Q}}$ for some finite set S_{0}.

One similarly defines the spaces $\mathcal{C}_{P^{-}, \pm} \subset \mathcal{C}_{P^{-}}$. We emphasize that $\mathcal{C}_{P^{-},+}$is defined with respect to the cone $-\Lambda_{G, P}^{\operatorname{pos}, \mathbb{Q}}$. So $\mathcal{C}_{P^{-}, \pm}$is the set of all $\varphi \in \mathcal{C}_{P^{-}} \operatorname{such}$ that $\mp \operatorname{deg}_{P^{-}}(\operatorname{supp} \varphi)$ is contained in $S_{0}+\Lambda_{G, P}^{\mathrm{pos}, \mathbb{Q}}$ for some finite set S_{0}.

Lemma 2.2.7. Let $\xi \in S_{b}^{*}\left(\mathbb{X}_{P}\right)^{G}$ be a generalized function with essentially bounded support. Then formula (2.6) defines a map $T_{\xi}: \mathcal{C}_{P,-} \rightarrow \mathcal{C}_{P^{-},+}$.

Proof. Let $\varphi \in \mathcal{C}_{P,--}$. Since φ is K-finite, there exists a compact open subgroup $K^{\prime} \subset K$ such that φ is K^{\prime}-invariant. Let $\delta_{K^{\prime}} \in C_{c}^{\infty}(G)$ equal $\frac{1}{\operatorname{mes}\left(K^{\prime}\right)}$ times the characteristic function of K^{\prime}. Then

$$
\xi^{\prime}:=\left(\delta_{K^{\prime}} \otimes 1\right) * \xi=\left(1 \otimes \delta_{K^{\prime}}\right) * \xi \in C_{b}^{\infty}\left(\mathbb{X}_{P}\right)
$$

is a smooth function with bounded support, and it suffices to show that $T_{\xi^{\prime}}(\varphi)=T_{\xi}(\varphi)$ is well-defined and belongs to $\mathcal{C}_{P^{-},+}$.

Fix $g_{2} \in G / U^{-}$. For any $g_{1} \in G / U$, Lemma 2.2 .1 gives the inequality $\operatorname{ord}_{M}\left(g_{1}\right) \leq_{M}$ $\operatorname{ord}_{M}\left(g_{2}\right)-w_{0}^{M} \operatorname{ord}_{M}\left(g_{1}, g_{2}\right)$. Then Corollary 2.2.5 implies that there is a finite subset $S_{0} \subset \Lambda$ such that if $\xi^{\prime}\left(g_{1}, g_{2}\right) \neq 0$, then $\operatorname{ord}_{M}\left(g_{1}\right) \subset S_{0}+w_{0}^{M} \Lambda_{G}^{\text {pos, } \mathbb{Q}}$. From this combinatorial description, we deduce that the function sending $g_{1} \in G / U$ to $\varphi\left(g_{1}\right) \xi^{\prime}\left(g_{1}, g_{2}\right)$ is compactly supported. Therefore $T_{\xi^{\prime}}(\varphi)$ is well-defined.

Moreover, if $T_{\xi^{\prime}}(\varphi)\left(g_{2}\right) \neq 0$, then there must exist $g_{1} \in G / U$ such that $g_{1} \in \operatorname{supp} \varphi$ and $\left(g_{1}, g_{2}\right) \in \operatorname{supp} \xi^{\prime} \subset \mathbb{X}_{P}$. Observe that $\operatorname{deg}_{P^{-}}\left(g_{2}\right)=\operatorname{deg}_{P}\left(g_{1}\right)+\left[\operatorname{ord}_{M}\left(g_{1}, g_{2}\right)\right]_{P}$ in $\Lambda_{G, P}^{\mathbb{Q}}$. Since ξ^{\prime} has bounded support, $\left[\operatorname{ord}_{M}\left(\operatorname{supp} \xi^{\prime}\right)\right]_{P}$ is contained in $-\Lambda_{G, P}^{\text {pos, } \mathbb{Q}}+S_{1}$ for a finite set S_{1}. By definition of $\mathcal{C}_{P,-}$, we deduce that $\operatorname{deg}_{P^{-}}\left(g_{2}\right)$ must lie in $-\Lambda_{G, P}^{\text {pos, } \mathbb{Q}}+S_{2}$ for some finite set S_{2}. Thus $T_{\xi^{\prime}}(\varphi) \in \mathcal{C}_{P^{-},+}$.

2.2. 6 Intertwining operator

Define the intertwining operator $R_{P}: C_{c}^{\infty}\left(G / U^{-}\right) \rightarrow C^{\infty}(G / U)$ by the formula

$$
\begin{equation*}
R_{P}(\varphi)(g)=\int_{U} \varphi(g u) d u, \quad g \in G \tag{2.7}
\end{equation*}
$$

Let \mathbb{X}_{P}^{-}denote the space $\left(G / U^{-} \times G / U\right) / M$. Any generalized function $\eta \in S^{*}\left(\mathbb{X}_{P}^{-}\right)$ defines a map $T_{\eta}: C_{c}^{\infty}\left(G / U^{-}\right) \rightarrow C^{\infty}(G / U)$ as in formula (2.6). Let $\eta_{P} \in S^{*}\left(\mathbb{X}_{P}^{-}\right)$denote the generalized function such that $R_{P}=T_{\eta_{P}}$, i.e.,

$$
\begin{equation*}
\int_{U} \varphi\left(g_{2} u\right) d u=\int_{G / U^{-}} \varphi\left(g_{1}\right) \eta_{P}\left(g_{1}, g_{2}\right) d g_{1}, \quad \varphi \in C_{c}^{\infty}\left(G / U^{-}\right), g_{2} \in G \tag{2.8}
\end{equation*}
$$

Define the projection

$$
\operatorname{ord}_{M}: \mathbb{X}_{P}^{-} \rightarrow(K \times K) \backslash \mathbb{X}_{P}^{-}=\Lambda_{M}^{+}
$$

by sending $\left(m_{1}, m_{2}\right) \mapsto \operatorname{ord}_{M}\left(m_{1}^{-1} m_{2}\right)$ for $m_{1}, m_{2} \in M$.
Lemma 2.2.8. The subset $\operatorname{ord}_{M}\left(\operatorname{supp} \eta_{P}\right)$ is contained in $\left(-\Lambda_{U}^{\operatorname{pos}, \mathbb{Q}}\right) \cap \Lambda_{M}^{+}$. In particular, $\operatorname{ord}_{M}\left(\operatorname{supp} \eta_{P}\right)$ is bounded above.

Proof. Suppose that $\left(k_{1} a, k_{2}\right) \in \operatorname{supp} \eta_{P}$ for $k_{1}, k_{2} \in K$ and $a \in T$ with $\operatorname{ord}_{T}(a) \in \Lambda_{M}^{+}$. Then by definition of η_{P}, there exists $u \in U$ such that $u \in k a U^{-}$for $k=k_{2}^{-1} k_{1}$.

Fix a dominant weight $\check{\lambda} \in \check{\Lambda}_{G}^{+}$. Let $\Delta(\check{\lambda})$ denote the Weyl G-module with highest weight $\check{\lambda}$. This F_{v}-vector space is the extension of scalars of a free \mathfrak{o}_{v}-module, and the latter determines a K-invariant norm $\|_{v}$ on $\Delta(\check{\lambda})$. We give $\Delta(\check{\lambda})^{*}$ the dual norm.

Let $\phi \in \Delta(\check{\lambda})^{*}$ be a norm 1 weight vector of weight $-w_{0}^{M} \check{\lambda}$. Since $-w_{0}^{M} \check{\lambda} \geq_{M}-\check{\lambda}$ and all weights of $\Delta(\check{\lambda})^{*}$ are $\geq_{G}-\check{\lambda}$, we observe that ϕ is U^{-}-invariant. By orthogonality of weight spaces, there exists a weight vector $\xi \in \Delta(\check{\lambda})$ of weight $w_{0}^{M} \check{\lambda}$ and norm 1 such that
$\langle\phi, \xi\rangle=1$. Note that ξ is automatically U-invariant. We have the inequality

$$
0=\log _{q_{v}}|\langle u \cdot \phi, \xi\rangle|_{v}=\left\langle w_{0}^{M} \check{\lambda}, \operatorname{ord}_{T}(a)\right\rangle+\log _{q_{v}}|\langle k \cdot \phi, \xi\rangle|_{v} \leq\left\langle w_{0}^{M} \check{\lambda}, \operatorname{ord}_{T}(a)\right\rangle
$$

Since $w \check{\lambda} \geq_{M} w_{0}^{M} \check{\lambda}$ for any $w \in W_{M}$ and $\operatorname{ord}_{T}(a) \in \Lambda_{M}^{+}$, we conclude that $\operatorname{ord}_{T}(a) \in$ $w \Lambda_{G}^{\text {pos }, \mathbb{Q}}$ for all $w \in W_{M}$. Lemma 1.3.2 implies that $\operatorname{ord}_{T}(a) \in \Lambda_{U}^{\text {pos, } \mathbb{Q}}$. Observe that $\operatorname{ord}_{M}\left(k_{1} a, k_{2}\right)=-w_{0}^{M} \operatorname{ord}_{T}(a)$, so we are done.

The following result is [10, Corollary 7.4, Proposition 7.5(a)]. We give a proof using our combinatorial description of bounded subsets of \mathbb{X}_{P}.

Proposition 2.2.9. Formula (2.7) defines an operator $R_{P}: \mathcal{C}_{P^{-},+} \rightarrow \mathcal{C}_{P,-}$.

Proof. The proof is exactly the same as the proof of Lemma 2.2.7. We repeat the argument for completeness: Let $\varphi \in \mathcal{C}_{P^{-},+}$. Fix $g_{2} \in G / U$. For any $g_{1} \in G / U^{-}$, Lemma 2.2.1 gives the inequality $\operatorname{ord}_{M}\left(g_{1}\right) \leq_{M} \operatorname{ord}_{M}\left(g_{2}\right)-w_{0}^{M} \operatorname{ord}_{M}\left(g_{1}, g_{2}\right)$. Since $\operatorname{ord}_{M}\left(\operatorname{supp} \eta_{P}\right) \subset$ $-\Lambda_{U}^{\text {pos, } \mathbb{Q}}$, the inequality implies that if $\xi^{\prime}\left(g_{1}, g_{2}\right) \neq 0$, then $\operatorname{ord}_{M}\left(g_{1}\right)=\operatorname{ord}_{M}\left(g_{2}\right)+\mu$ for some $\mu \in w_{0}^{M} \Lambda_{G}^{\mathrm{pos}, \mathbb{Q}}$. From this combinatorial description, we deduce that the function sending $g_{1} \in G / U^{-}$to $\varphi\left(g_{1}\right) \eta_{P}\left(g_{1}, g_{2}\right)$ is compactly supported. Therefore (2.8) is well-defined.

Moreover, if $R_{P}(\varphi)\left(g_{2}\right) \neq 0$, then there must exist $g_{1} \in G / U^{-}$such that $g_{1} \in \operatorname{supp} \varphi$ and $\left(g_{1}, g_{2}\right) \in \operatorname{supp} \eta_{P} \subset \mathbb{X}_{P}^{-}$. Observe that $\operatorname{deg}_{P}\left(g_{2}\right)=\operatorname{deg}_{P^{-}}\left(g_{1}\right)+\left[\operatorname{ord}_{M}\left(g_{1}, g_{2}\right)\right]_{P}$ in $\Lambda_{G, P}^{\mathbb{Q}}$. Lemma 2.2.8 shows that $\left[\operatorname{ord}_{M}\left(\operatorname{supp} \eta_{P}\right)\right]_{P}$ is contained in $-\Lambda_{G, P}^{\text {pos, } \mathbb{Q}}$. By definition of $\mathcal{C}_{P^{-},+}$, we deduce that $\operatorname{deg}_{P}\left(g_{2}\right)$ must lie in $-\Lambda_{G, P}^{\mathrm{pos}, \mathbb{Q}}+S_{0}$ for some finite set S_{0}. Thus $R_{P}(\varphi) \in \mathcal{C}_{P,-}$.

2.2.7 Local asymptotics map

The work [10] gives a geometric proof of the second adjointness between parabolic induction and restriction (Jacquet) functors by defining the Bernstein map B : $C_{c}^{\infty}\left(\mathbb{X}_{P}\right) \rightarrow C_{c}^{\infty}(G)$. If F_{v} has characteristic 0, this map is the "asymptotics" map constructed in [60] in the more
general setting of spherical varieties. The dual of B gives a map

$$
\operatorname{Asymp}_{P}: S^{*}(G) \rightarrow S^{*}\left(\mathbb{X}_{P}\right)
$$

where $S^{*}(G), S^{*}\left(\mathbb{X}_{P}\right)$ are the spaces of distributions on G, \mathbb{X}_{P}, respectively.
Fix the Haar measures on G, M, U so that $K, K_{M}, K \cap U$ have measure 1. Using these measures, we identify distributions and generalized functions on G, \mathbb{X}_{P}.

The Bernstein map B is $G \times G$-equivariant, and hence so is Asymp_{P}. Therefore Asymp_{P} preserves $K \times K$-finiteness, and [10, Proposition 7.1] shows that it restricts to a map

$$
\operatorname{Asymp}_{P}: C_{c}^{\infty}(G) \rightarrow \mathcal{C}_{b}\left(\mathbb{X}_{P}\right)
$$

Let $\delta_{g} \in S^{*}(G)$ denote the delta (generalized) function at $g \in G$. Set

$$
\begin{equation*}
\xi_{P}:=\operatorname{Asymp}_{P}\left(\delta_{1}\right) \in S^{*}\left(\mathbb{X}_{P}\right) \tag{2.9}
\end{equation*}
$$

which we consider as a generalized function on \mathbb{X}_{P}. Let $f_{1}, f_{2} \in C_{c}^{\infty}(G)$ and set $f_{2}^{\vee}(g)=$ $f_{2}\left(g^{-1}\right)$. Then $G \times G$-equivariance of Asymp $_{P, v}$ implies that

$$
\begin{equation*}
\left(f_{1}, f_{2}\right) * \xi_{P}=\operatorname{Asymp}_{P}\left(f_{1} * f_{2}^{\vee}\right) \tag{2.10}
\end{equation*}
$$

where $*$ denotes convolution with respect to the $G \times G$-action on \mathbb{X}_{P} (resp. the usual convolution on G). In particular, ξ_{P} has essentially bounded support in the sense that the convolution of ξ_{P} with any element of $C_{c}^{\infty}(G)$ has bounded support.

Note that ξ_{P} depends on the choice of Haar measure on G.
We have the following relationship between the asymptotics map and the intertwining operator:

Theorem 2.2.10 ([10, Theorem 7.6]). Let $\varphi \in C_{c}^{\infty}(G / U)$. We have an equality

$$
\varphi=\left(R_{P} \circ T_{\xi_{P}}\right)(\varphi)
$$

In particular, the integral defining $\left(R_{P} \circ T_{\xi_{P}}\right)(\varphi)$ converges.

The theorem is stated for the case $P=B$ in [10], but one can check that the proof generalizes to the case of an arbitrary parabolic subgroup.

2.2.8 Invertibility of R_{P}

We use Theorem 2.2.10 to show that R_{P} is an isomorphism in Proposition 2.2.13 below.
Let $\widetilde{\mathcal{C}}_{P,-}$ denote the smooth part of the linear dual representation $\mathcal{C}_{P,-}^{*}$. Let

$$
R_{P}^{*}: \widetilde{\mathfrak{C}}_{P,-} \rightarrow \widetilde{\mathfrak{C}}_{P^{-},+}
$$

denote the linear dual of the operator R_{P}. Using the measure on G / U determined by the fixed Haar measures on G and U, we identify $\widetilde{\mathcal{C}}_{P,-}$ with a subspace of \mathcal{C}_{P} containing $\mathcal{C}_{P, c}$. Similarly, we consider $\widetilde{\mathcal{C}}_{P^{-},+} \subset \mathcal{C}_{P^{-}}$.

Let $R_{P^{-}}: \mathcal{C}_{P,+} \rightarrow \mathcal{C}_{P^{-},-}$denote the intertwining operator with respect to the opposite parabolic P^{-}(i.e., we integrate over U^{-}in formula (2.7)).

Lemma 2.2.11. We have an equality $R_{P}^{*}=R_{P^{-}}: \mathcal{C}_{P, c} \rightarrow \mathcal{C}_{P^{-}}$.

Proof. Let $\tilde{\varphi}, \varphi \in \mathcal{C}_{P, c}$. Then

$$
\begin{aligned}
\left\langle R_{P}^{*}(\tilde{\varphi}), \varphi\right\rangle=\int_{G / U} \tilde{\varphi}(g) \int_{U} \varphi(g u) d u d g= & \int_{G} \tilde{\varphi}(g) \varphi(g) d g \\
& =\int_{G / U^{-}} \int_{U^{-}} \tilde{\varphi}(g \bar{u}) \varphi(g) d \bar{u} d g=\left\langle R_{P^{-}}(\tilde{\varphi}), \varphi\right\rangle
\end{aligned}
$$

where all the integrals are finite. This proves the lemma.

Let $\xi_{P} \in S^{*}\left(\mathbb{X}_{P}\right)$ be the generalized function defined in (2.9). Note that $\xi_{P} \in S_{b}^{*}\left(\mathbb{X}_{P}\right)^{G}$, so Lemma 2.2 .7 defines a map $T_{\xi_{P}}: \mathcal{C}_{P,-} \rightarrow \mathcal{C}_{P^{-},+}$. Theorem 2.2.10 has the following reformulation:

Lemma 2.2.12. We have the equality $R_{P} \circ T_{\xi_{P}}=\operatorname{id}$ on $\mathcal{C}_{P,-}$.
Proof. Let $\varphi \in \mathcal{C}_{P,-}$. Since φ is K-finite, there exists a compact open subgroup $K^{\prime} \subset K$ such that φ is K^{\prime}-invariant. The proof of Lemma 2.2.7 shows that

$$
\operatorname{ord}_{M}\left(\operatorname{supp} T_{\xi_{P}}(\varphi)\right) \subset S:=\left\{\lambda+\theta-\mu \mid \lambda \in \operatorname{ord}_{M}(\operatorname{supp} \varphi), \theta \in S_{0}, \mu \in \Lambda_{G}^{\mathrm{pos}, \mathbb{Q}}\right\}
$$

where $S_{0} \subset \Lambda$ is a finite subset depending only on K^{\prime} and not φ. The proof of Proposition 2.2.9 shows that $\operatorname{ord}_{M}\left(\operatorname{supp} R_{P}\left(T_{\xi_{P}}(\varphi)\right)\right)$ is also contained in S. Therefore we deduce that it suffices to prove that $\varphi=R_{P}\left(T_{\xi_{P}}(\varphi)\right)$ for compactly supported $\varphi \in \mathcal{C}_{P, c}$, which is Theorem 2.2.10.

Proposition 2.2.13. The map $R_{P}: \mathcal{C}_{P^{-},+} \rightarrow \mathcal{C}_{P,-}$ is an isomorphism. The inverse is given by the formula

$$
\begin{equation*}
R_{P}^{-1}(\varphi)\left(g_{2}\right)=\int_{G / U} \varphi\left(g_{1}\right) \xi_{P}\left(g_{1}, g_{2}\right) d g_{1}, \quad \varphi \in \mathcal{C}_{P,-}, g_{2} \in G / U^{-} \tag{2.11}
\end{equation*}
$$

Remark 2.2.14. Our proof of Proposition 2.2.13 is different from the one in [10, Proposition 7.5(b)]. This proof was suggested by V. Drinfeld.

We give a separate, self-contained proof of invertibility of $R_{P}^{K}: \mathcal{C}_{P^{-},+}^{K} \rightarrow \mathcal{C}_{P,-}^{K}$ with explicit formulas in Corollary 2.3.7.

Proof. Lemma 2.2.12 implies that R_{P} has a right inverse given by (2.11). It remains to show that R_{P} has a left inverse. Apply Lemma 2.2.12 to the opposite parabolic P^{-}to get a map $T_{\xi_{P^{-}}}: \mathcal{C}_{P^{-},-} \rightarrow \mathcal{C}_{P,+}$ such that $R_{P^{-}} \circ T_{\xi_{P^{-}}}=$id on $\mathcal{C}_{P^{-},-}$. Taking the dual operators gives an equality

$$
\begin{equation*}
T_{\xi_{P^{-}}}^{*} \circ R_{P^{-}}^{*}=\mathrm{id} \tag{2.12}
\end{equation*}
$$

on $\mathcal{C}_{P^{-}, c} \subset \widetilde{\mathcal{C}}_{P^{-},-}$. Let $\varphi \in \mathcal{C}_{P^{-}, c}$. Lemma 2.2.11 (applied to P^{-}) implies that $R_{P^{-}}^{*}(\varphi)=$ $R_{P}(\varphi)$. Define $\tilde{\xi} \in S_{b}^{*}\left(\mathbb{X}_{P}\right)^{G}$ by

$$
\tilde{\xi}\left(g_{1}, g_{2}\right)=\xi_{P^{-}}\left(g_{2}, g_{1}\right)
$$

It follows formally from the definition of $T_{\xi_{P^{-}}}$that $T_{\xi_{P^{-}}}^{*}\left(R_{P}(\varphi)\right)=T_{\tilde{\xi}}\left(R_{P}(\varphi)\right)$, where the map $T_{\tilde{\xi}}: \mathcal{C}_{P,-} \rightarrow \mathcal{C}_{P^{-},+}$is defined by Lemma 2.2.7. Therefore (2.12) implies that $T_{\tilde{\xi}} \circ R_{P}=\mathrm{id}$ on $\mathcal{C}_{P^{-}, c}$. Then the same argument as in the proof of Lemma 2.2.12 shows that $T_{\tilde{\xi}} \circ R_{P}=\mathrm{id}$ on $\mathcal{C}_{P^{-},+}$, , so we conclude that R_{P} has a left inverse.

2.3 Formulas on K-invariants

Let F_{v} be an arbitrary non-Archimedean local field. We use the same notation and conventions as in $\S 2.2$ (e.g., $G=G\left(F_{v}\right), K=K_{v}$, etc.).

Restricting to K-invariants, we see that the intertwining operator is essentially convolution with a measure μ_{M} on M. We compute the Satake transform of μ_{M} using the nonArchimedean Gindikin-Karpelevich formula. We give a formula for $\operatorname{Asymp}_{P}\left(\delta_{K}\right)$, where δ_{K} is the characteristic function of K, in terms of the convolution inverse of μ_{M}.

Fix the Haar measures on G, M, T, U, U^{-}so that $K, K_{M}, K_{T}, K \cap U, K \cap U^{-}$all have measure 1.

2.3.1 Intertwining operator on K-invariants

Let $K \subset G$ act on $G / U, G / U^{-}$on the left. Recall that $K \backslash G / U=K \backslash G / U^{-}=K_{M} \backslash M$.
The measure μ_{M}. Let $\bar{\mu}$ denote the direct image of the Haar measure on U under the map

$$
\begin{equation*}
U \hookrightarrow G \rightarrow K \backslash G / U^{-}=K_{M} \backslash M, \tag{2.13}
\end{equation*}
$$

where $G=K \cdot M \cdot U^{-}$by the Iwasawa decomposition. In other words, $\bar{\mu}(\Omega)$ is the measure
of $U \cap\left(K \cdot \Omega \cdot U^{-}\right) \subset U$, where $\Omega \subset K_{M} \backslash M$. Since (2.13) is equivariant with respect to the action of K_{M} by conjugation, $\bar{\mu}$ is right K_{M}-invariant. Define μ_{M} to be the K_{M}-bi-invariant measure on M whose pushforward to $K_{M} \backslash M$ equals $\bar{\mu}$.

A formula in terms of convolution. Let R_{P}^{K} denote the restriction of the intertwining operator (2.7) to $\mathcal{C}_{P^{-},+}^{K} \rightarrow \mathcal{C}_{P,-\cdot}^{K}$. Then we have the formula

$$
\begin{equation*}
R_{P}^{K}(\varphi)(m)=\delta_{P}(m)^{-1} \int_{U} \varphi(u m) d u=\delta_{P}(m)^{-1} \int_{M} \varphi\left(m_{1} m\right) \mu_{M}\left(m_{1}\right) \tag{2.14}
\end{equation*}
$$

where $\varphi \in \mathcal{C}_{P^{-},+}^{K}, m \in M$.
Comparing with (2.8), we see that

$$
\begin{equation*}
\left(\left(\delta_{K} \otimes 1\right) * \eta_{P}\right)(m, 1)=\mu_{M}(m), \quad m \in M \tag{2.15}
\end{equation*}
$$

where we consider μ_{M} as a K_{M}-bi-invariant function using the fixed Haar measure on M.

2.3.2 Satake isomorphism

We extend the classical Satake isomorphism to an isomorphism between certain larger algebras (defined below) that are convenient for our purposes.

The completed Hecke algebra. Let H_{M}^{+}denote the space of K_{M}-bi-invariant measures on M (with values in E) whose support is contained in $\operatorname{ord}_{M}^{-1}\left(\Lambda_{U}^{\operatorname{pos}, \mathbb{Q}} \cap \Lambda_{M}^{+}\right)$, where $\Lambda_{U}^{\operatorname{pos}, \mathbb{Q}}$ is the rational cone defined in $\S 2.2 .3$.

Remark 2.3.1. Lemma 2.2.8 and (2.15) imply that μ_{M} belongs to H_{M}^{+}.
Lemma 2.3.2. (i) Suppose that Σ is a submonoid of Λ_{M}^{+}such that if $\lambda \in \Lambda_{M}^{+}$and there exists $\nu \in \Sigma$ such that $\lambda \leq_{M} \nu$, then $\lambda \in \Sigma$. Then the vector space of compactly supported K_{M}-bi-invariant measures on M whose support is contained in $\operatorname{ord}_{M}^{-1}(\Sigma)$ is closed under the convolution product, so the vector space becomes an algebra.
(ii) If, in addition, Σ generates a strongly convex cone and the intersection of Σ with
any shift of $\Lambda_{M}^{\mathrm{pos}}$ is finite, then convolution extends, by continuity, to the space of all $K_{M^{-}}$ bi-invariant measures on M whose support is contained in $\operatorname{ord}_{M}^{-1}(\Sigma)$. Then this space is also an algebra.

Proof. The lemma follows from the usual properties of the Hecke algebra.
Lemma 1.3.1 implies that $\Sigma=\Lambda_{U}^{\text {pos } \mathbb{Q}} \cap \Lambda_{M}^{+}$satisfies the condition in Lemma 2.3.2(i), and one observes from the definition that Λ_{U}^{+}also satisfies condition (ii). Therefore H_{M}^{+}is an algebra with respect to convolution.

Let H_{T}^{+}denote the space of K_{T}-bi-invariant measures on T whose support is contained in $\operatorname{ord}_{T}^{-1}\left(\Lambda_{U}^{\operatorname{pos}, \mathbb{Q}} \cap \Lambda\right)$. Lemma 2.3.2(ii) implies that H_{T}^{+}is an algebra with respect to convolution. Observe that the Weyl group of M acts on H_{T}^{+}.

Using our fixed Haar measures, we identify locally constant functions on M (resp. T) with locally constant measures on M (resp. T). We also fix the Haar measure on $U_{B}^{-} \cap M$ such that $U_{B}^{-} \cap K_{M}$ has measure 1.

Lemma 2.3.3. The usual Satake transform extends to an isomorphism CT : $H_{M}^{+} \rightarrow$ $\left(H_{T}^{+}\right)^{W_{M}}$ given by the formula

$$
\begin{equation*}
\mathrm{CT}(h)(t)=\delta_{B \cap M}(t)^{-1 / 2} \int_{U_{B}^{-} \cap M} h(t \bar{n}) d \bar{n}, \tag{2.16}
\end{equation*}
$$

where $h \in H_{M}^{+}$is considered as a function on M.

Here CT stands for 'constant term'. Since the image of the Satake transform is $W_{M^{-}}$ invariant, (2.16) does not depend on the choice of Borel subgroup of M.

Proof. Let $1_{\operatorname{ord}_{M}^{-1}(\lambda)}$ denote the characteristic function of $\operatorname{ord}_{M}^{-1}(\lambda) \subset M$ for $\lambda \in \Lambda_{M}^{+}$. It is known (cf. [17, §4.2]) that $\mathrm{CT}\left(1_{\operatorname{ord}_{M}^{-1}(\lambda)}\right)$ does not vanish on $\operatorname{ord}_{T}^{-1}\left(\lambda^{\prime}\right), \lambda^{\prime} \in \Lambda_{M}^{+}$, only if $\lambda^{\prime} \leq_{M} \lambda$. Thus we deduce that CT is well-defined and an isomorphism from the usual Satake isomorphism and the fact that $\Lambda_{U}^{\text {pos }, \mathbb{Q}} \cap \Lambda_{M}^{+}$satisfies Lemma 2.3.2.

Remark 2.3.4. Note that the algebra H_{T}^{+}is isomorphic to the completion of the semigroup algebra of $\Lambda_{U}^{\text {pos }, \mathbb{Q}} \cap \Lambda$ at the augmentation ideal. In particular, it is a local ring, and $\hat{h} \in H_{T}^{+}$ is a unit if and only if $\hat{h}(1) \neq 0$. We deduce that H_{M}^{+}and $\left(H_{T}^{+}\right)^{W_{M}}$ are also complete local rings.

2.3.3 Gindikin-Karpelevich formula

In this subsection we rewrite the non-Archimedean Gindikin-Karpelevich formula ${ }^{3}$ as a formula for $\mathrm{CT}\left(\mu_{M}\right) \in\left(H_{T}^{+}\right)^{W_{M}}$.

Recall that we defined $\delta_{P}(m)=\left|\operatorname{det} \operatorname{Ad}_{\operatorname{Lie}(U)}(m)\right|$ for $m \in M$. Let $2 \check{\rho}_{P}:=2 \check{\rho}-2 \check{\rho}_{M}$ be the sum of the positive roots in G that are not roots of M. For $m \in M$, we have $\delta_{P}(m)=q_{v}^{-\left\langle 2 \check{\rho}_{P}, \operatorname{ord}_{M}(m)\right\rangle}$.

For $\lambda \in \Lambda$, let $1_{\text {ord }_{T}^{-1}(\lambda)}$ denote the characteristic function of $\operatorname{ord}_{T}^{-1}(\lambda) \subset T$. Set

$$
e^{\lambda}=q_{v}^{\left\langle\check{\rho}_{P}, \lambda\right\rangle} \cdot 1_{\operatorname{ord}_{T}^{-1}(\lambda)} \in H_{T}^{+}
$$

Proposition 2.3.5. We have

$$
\begin{equation*}
\operatorname{CT}\left(\mu_{M}\right)=\prod_{\alpha \in \Phi_{G}^{+}-\Phi_{M}} \frac{1-q_{v}^{-1} e^{\alpha}}{1-e^{\alpha}} \tag{2.17}
\end{equation*}
$$

where the r.h.s. is considered as an element of $\left(H_{T}^{+}\right)^{W_{M}}$ by Remark 2.3.4.

Proof. For the purpose of this proof, we may assume $E=\mathbb{Q}\left(\right.$ since μ_{M} takes values in $\left.\mathbb{Q}\right)$. Let $\check{\lambda} \in \check{\Lambda} \otimes \mathbb{C}$ satisfy $\operatorname{Re}\langle\check{\lambda}, \alpha\rangle>0$ for every positive coroot α of G. Let $\chi_{\check{\lambda}}$ be the unramified character $T \rightarrow \mathbb{C}^{\times}$sending $t \mapsto q_{v}^{-\left\langle\check{\lambda}, \operatorname{ord}_{T}(t)\right\rangle}$. Define the function $\phi_{K, \check{\lambda}}$ on G by

$$
\phi_{K, \check{\lambda}}(k \cdot t \cdot \bar{n})=\chi_{\check{\lambda}}(t) \delta_{B}^{1 / 2}(t), \quad k \in K, t \in T, \bar{n} \in U\left(B^{-}\right)
$$

[^7]where $G=K \cdot B^{-}$by the Iwasawa decomposition. The Gindikin-Karpelevich formula for non-Archimedean local fields [48, p. 18] implies that
$$
\int_{M} \phi_{K, \check{\lambda}}(m) \mu_{M, v}(m)=\int_{U} \phi_{K, \check{\lambda}}(u) d u=\prod_{\alpha \in \Phi^{+}-\Phi_{M}} \frac{1-q_{v}^{-1-\langle\check{\lambda}, \alpha\rangle}}{1-q_{v}^{-\langle\check{\lambda}, \alpha\rangle}}
$$
where the l.h.s. converges absolutely. Integrating over $M=K_{M} \cdot\left(B^{-} \cap M\right)$ using the Iwasawa decomposition (cf. [17, Equations (5), (10)]), the l.h.s. equals $\int_{T} \chi_{\check{\lambda}}(t) \delta_{P}^{1 / 2}(t) \mathrm{CT}\left(\mu_{M, v}\right)(t) d t$. Note that for $\nu \in \Lambda$, we have $\int_{T} \chi_{\check{\lambda}}(t) \delta_{P}^{1 / 2}(t) e^{\nu}(t) d t=q_{v}^{-\langle\check{\lambda}, \nu\rangle}$. Therefore equation (2.17) holds after integrating against $\chi_{\check{\lambda}}$ for any $\check{\lambda} \in \check{\Lambda} \otimes \mathbb{C}$ satisfying $\operatorname{Re}\langle\check{\lambda}, \alpha\rangle>0$ for all $\alpha \in \Phi_{G}^{+}$. This implies the equality (2.17) of elements in $\left(H_{T}^{+}\right)^{W_{M}}$.

Corollary 2.3.6. The measure μ_{M} is invertible in H_{M}^{+}.
Proof. The Gindikin-Karpelevich formula (2.17) implies that $\mathrm{CT}\left(\mu_{M}\right)(1)=1$, so $\mathrm{CT}\left(\mu_{M}\right)$ is invertible by Remark 2.3.4. The extended Satake isomorphism (2.16) then implies that μ_{M} is invertible.

Let $\nu_{M} \in H_{M}^{+}$denote the convolution inverse of μ_{M}. We consider it as a K_{M}-bi-invariant measure on M.

Corollary 2.3.7. The operator $R_{P}^{K}: \mathcal{C}_{P^{-},+}^{K} \rightarrow \mathcal{C}_{P,-}^{K}$ is an isomorphism. The inverse is given by the formula

$$
\begin{equation*}
\left(R_{P}^{K}\right)^{-1}(\varphi)(m)=\int_{M} \delta_{P}\left(m_{1} m\right) \varphi\left(m_{1} m\right) \nu_{M}\left(m_{1}\right) \tag{2.18}
\end{equation*}
$$

where $\varphi \in \mathcal{C}_{P,-}^{K}, m \in M$.
Proof. Define $\xi \in \mathcal{C}_{b}\left(\mathbb{X}_{P}\right)^{K \times K}$ by $\xi(m, 1)=\nu_{M}(m)$ for $m \in M$. The fact that ν_{M} belongs to H_{M}^{+}implies that ξ indeed has bounded support. Then the r.h.s. of (2.18) equals $T_{\xi}(\varphi)$, where $T_{\xi}: \mathcal{C}_{P,-} \rightarrow \mathcal{C}_{P^{-},+}$is defined in Lemma 2.2.7. In particular, the r.h.s. of (2.18) is well-defined. Note that by the Iwasawa decomposition, $\mathcal{C}_{P^{-},+}^{K}$ and $\mathcal{C}_{P,-}^{K}$ identify with the
same space of K_{M}-invariant functions on M. Equation (2.14) expresses R_{P}^{K} in terms of the convolution action of μ_{M} on $\mathcal{C}_{P^{-},+}^{K}=\mathcal{C}_{P,-}^{K}$. This action is compatible with the convolution product of H_{M}^{+}. Thus we deduce from invertibility of μ_{M} that R_{P}^{K} is an isomorphism with inverse given by (2.18).

2.3.4 Langlands' reformulation

We will reformulate the Gindikin-Karpelevich formula in terms of Langlands' reinterpretation of the classical Satake isomorphism.

Let \check{G} (resp. $\check{M}, \check{T})$ denote the Langlands dual group of G (resp. M, T) over E. Let $\check{\mathfrak{u}}_{P}$ be the Lie algebra corresponding to the roots $\Phi_{G}^{+}-\Phi_{M}$ in \check{G}, so $\check{\mathfrak{u}}_{P}$ is a \check{M}-module by the adjoint action $\operatorname{Ad}_{\mathfrak{u}_{P}}$.

The map $1_{\text {ord }_{T}^{-1}(\lambda)} \mapsto \lambda$ defines an isomorphism $C_{c}^{\infty}(T)^{K_{T}} \cong E[\check{T}]$, which is compatible with the W_{M}-action. Recall that $E[\check{T}]^{W_{M}}=E[\check{M}]^{\check{M}}$, where \check{M} acts on itself by conjugation. Let $\mathbf{K}(\operatorname{Rep}(\check{M}))$ denote the Grothendieck group of the abelian category of finite dimensional \check{M}-modules. Give $\operatorname{K}(\operatorname{Rep}(\check{M}))$ the tensor product multiplication. Then we have an algebra isomorphism by taking characters:

$$
\mathbf{K}(\operatorname{Rep}(\check{M})) \underset{\mathbb{Z}}{\otimes} E \xrightarrow{\mathrm{Ch}} E[\check{M}]^{\check{M}}:[V] \mapsto \operatorname{tr}(\sigma, V), \quad \sigma \in \check{M} .
$$

Let $\operatorname{Rep}^{+}(\check{M})$ denote the subcategory of \check{M}-modules with weights contained in $\Lambda_{U}^{\text {pos, } \mathbb{Q}}$. Since $2 \check{\rho}_{P} \in \check{\Lambda}$ is perpendicular to all coroots of M, we may consider it as a central cocharacter of \check{M}. We have a non-negative grading of the Grothendieck group $\mathbf{K}\left(\operatorname{Rep}^{+}(\check{M})\right)$ by the eigenvalues of $2 \check{\rho}_{P}$. Let $\mathbf{K}^{+}(\operatorname{Rep}(\check{M}))$ be the completion of $\mathbf{K}\left(\operatorname{Rep}^{+}(\check{M})\right)$ with respect to the augmentation ideal of this grading. Then one sees that $\mathrm{Ch}^{-1} \circ \mathrm{CT}$ extends to an algebra isomorphism

$$
\mathcal{S}: H_{M}^{+} \rightarrow \mathbf{K}^{+}(\operatorname{Rep}(\check{M})) \hat{\otimes} E
$$

where $\hat{\otimes}$ is the completed tensor product.

Let $V \in \operatorname{Rep}(\check{M})$. Consider the expression $\sum_{n} t^{n}\left[\operatorname{Sym}^{n} V\right]$, which is a formal series in $\mathbf{K}(\operatorname{Rep}(\check{M})) \llbracket t \rrbracket$. Here t is a formal parameter (that is unrelated to the torus). It is well-known that the inverse of this series equals

$$
\Lambda(t, V):=\sum_{n}(-t)^{n}\left[\wedge^{n} V\right]
$$

If we consider coefficients in $E[t]$ rather than E, we have $\operatorname{tr}(\sigma, \Lambda(t, V))=\operatorname{det}(\operatorname{Id}-\sigma \cdot t, V)$ for $\sigma \in \check{M}(E)$.

Suppose that the weights of V are contained in $\Lambda_{U}^{\text {pos } \mathbb{Q}}-\{0\}$. Let $\tau \in E^{\times}$. Then the series

$$
\mathrm{S}(\tau, V):=\sum_{n} \tau^{n}\left[\operatorname{Sym}^{n} V\right]
$$

is a well-defined element of the completed Grothendieck group $\mathbf{K}^{+}(\operatorname{Rep}(\check{M})) \hat{\otimes} E$, and it is the inverse of $\Lambda(\tau, V) \in \mathbf{K}^{+}(\operatorname{Rep}(\check{M})) \hat{\otimes} E$.

The central cocharacter $2 \check{\rho}_{P}$ defines a non-negative \check{M}-module grading of $\check{\mathfrak{u}}_{P}$ by the eigenspace decomposition. Let $\operatorname{gr}^{i}\left(\check{\mathfrak{u}}_{P}\right)$ denote the eigenspace of $\operatorname{Ad}_{\mathfrak{u}_{P}}\left(2 \check{\rho}_{P}\right)$ with weight $2 a_{i}$, where a_{i} is a positive integer. Then in the above language, equation (2.17) and its multiplicative inverse have the reformulations

$$
\begin{equation*}
\mathcal{S}\left(\mu_{M, v}\right)=\prod_{i} \frac{\Lambda\left(q_{v}^{-1+a_{i}}, \operatorname{gr}^{i}\left(\check{\mathfrak{u}}_{P}\right)\right)}{\Lambda\left(q_{v}^{a_{i}}, \operatorname{gr}^{i}\left(\check{\mathfrak{u}}_{P}\right)\right)}, \quad \mathcal{S}\left(\nu_{M, v}\right)=\prod_{i} \frac{\Lambda\left(q_{v}^{a_{i}}, \operatorname{gr}^{i}\left(\check{\mathfrak{u}}_{P}\right)\right)}{\Lambda\left(q_{v}^{-1+a_{i}}, \operatorname{gr}^{i}\left(\check{\mathfrak{u}}_{P}\right)\right)} . \tag{2.19}
\end{equation*}
$$

The formula for $\mathcal{S}\left(\mu_{M, v}\right)$ essentially appears in [48, p. 33].
Using the equality $\Lambda\left(q_{v}^{-1+a_{i}}, \operatorname{gr}^{i}\left(\check{\mathfrak{u}}_{P}\right)\right)^{-1}=\mathrm{S}\left(q_{v}^{-1+a_{i}}, \operatorname{gr}^{i}\left(\check{\mathfrak{u}}_{P}\right)\right)$, we have the expansion

$$
\begin{align*}
& \quad \frac{\Lambda\left(q_{v}^{a_{i}}, \operatorname{gr}^{i}\left(\check{\mathfrak{u}}_{P}\right)\right)}{\Lambda\left(q_{v}^{-1+a_{i}}, \operatorname{gr}^{i}\left(\check{\mathfrak{u}}_{P}\right)\right)}=\left(\sum_{n}(-1)^{n}\left[\wedge^{n} \operatorname{gr}^{i}\left(\check{\mathfrak{u}}_{P}\right)\right] \cdot q_{v}^{a_{i} n}\right)\left(\sum_{n}\left[\operatorname{Sym}^{n} \operatorname{gr}^{i}\left(\check{\mathfrak{u}}_{P}\right)\right] \cdot q_{v}^{-n+a_{i} n}\right) \tag{2.20}\\
& \text { in } \mathbf{K}^{+}(\operatorname{Rep}(\check{M})) \hat{\otimes} E .
\end{align*}
$$

2.3.5 Asymptotics on K-invariants

Let $\delta_{K} \in C_{C}^{\infty}(G)$ denote the characteristic function of K. Note that $\operatorname{Asymp}_{P}\left(\delta_{K}\right)=$ $\left(\delta_{K} \otimes 1\right) * \xi_{P}=\left(1 \otimes \delta_{K}\right) * \xi_{P}$ is $K \times K$-invariant. Using (2.18) and (2.11), we deduce the formula

$$
\begin{equation*}
\operatorname{Asymp}_{P}\left(\delta_{K}\right)(m, 1)=\nu_{M}(m) \tag{2.21}
\end{equation*}
$$

When $P=B$ is a Borel subgroup and F_{v} has characteristic $0,(2.21)$ is proved in [59, Theorem 6.8] in the more general setting of spherical varieties.

Remark 2.3.8. Note that $\nu_{M}(1)=\mathrm{CT}\left(\nu_{M}\right)(1)=1$ by the explicit formula (2.17). Thus (2.21) implies that $\operatorname{Asymp}_{P}\left(\delta_{K}\right)$ takes constant value 1 on the $K \times K$ orbit of $(1,1) \in \mathbb{X}{ }_{P}$.

In the notation of Remark 2.2.3 we also see that $\operatorname{Asymp}_{P}\left(\delta_{K}\right)$ has support contained in $\bar{X}_{\mathbf{P}}\left(\mathfrak{o}_{v}\right)$ since $\nu_{M} \in H_{M}^{+}$.

2.4 The bilinear form \mathcal{B}

We work over the function field F with adele ring \mathbb{A}. Let X be the corresponding geometrically connected smooth projective curve over \mathbb{F}_{q}. In this section, we define the bilinear form \mathcal{B} and prove Theorem 2.1.2.

In our notation, we will add a subscript v when referring to the objects or spaces defined in $\S 2.2$ over F_{v} (e.g., \mathcal{C}_{P} becomes $\mathcal{C}_{P, v}$, Asymp $_{P}$ becomes Asymp $_{P, v}$).

2.4.1 Definition of \mathcal{B}

Fix a Haar measure on $G(\mathbb{A})$. For $f_{1}, f_{2} \in \mathcal{A}_{c}$, set

$$
\begin{equation*}
\mathcal{B}\left(f_{1}, f_{2}\right):=\sum_{P}(-1)^{\operatorname{dim} Z(M)} \cdot \mathcal{B}_{P}\left(f_{1}, f_{2}\right) \tag{2.22}
\end{equation*}
$$

where the sum ranges over standard parabolic subgroups $P \subset G$ with Levi subgroup M, and \mathcal{B}_{P} is a $G(\mathbb{A})$-invariant bilinear form defined in $\S 2.4 .2$ below. The form \mathcal{B} is $G(\mathbb{A})$-invariant
since each \mathcal{B}_{P} is. It will also be evident that \mathcal{B} is symmetric. Let us note that \mathcal{B}_{P} and \mathcal{B} slightly depend on the choice of a Haar measure on $G(\mathbb{A})$.

2.4.2 Definition of \mathcal{B}_{P}

Fix a standard parabolic subgroup P. Define the boundary degeneration

$$
\mathbb{X}_{P}=(G \times G) /\left(P \times P^{-}\right)
$$

as in $\S 2.2 .2$, where \mathbb{X}_{P} is now a strongly quasi-affine variety over \mathbb{F}_{q}. Let $\overline{\mathbb{X}}_{P}$ denote the affine closure.

The topological space $\mathbb{X}_{P}(\mathbb{A})$ is isomorphic to the restricted product of $\mathbb{X}_{P}\left(F_{v}\right)$ with respect to the compact subspaces $\mathbb{X}_{P}\left(\mathfrak{o}_{v}\right)$. The topological space $\overline{\mathbb{X}}_{P}(\mathbb{A})$ is isomorphic to the restricted product of $\overline{\mathbb{X}}_{P}\left(F_{v}\right)$ with respect to $\overline{\mathbb{X}}_{P}\left(\mathfrak{o}_{v}\right)$. Recall that the topology on $\mathbb{X}_{P}(\mathbb{A})$ is not the subspace topology induced from $\overline{\mathbb{X}}_{P}(\mathbb{A})$.

We say that a function on $\mathbb{X}_{P}(\mathbb{A})$ has bounded support if the support is relatively compact in $\overline{\mathbb{X}}_{P}(\mathbb{A})$. Let $\mathcal{C}_{b}\left(\mathbb{X}_{P}(\mathbb{A})\right)$ denote the space of $K \times K$-finite C^{∞} functions on $\mathbb{X}_{P}(\mathbb{A})$ with bounded support.

Note that the action of $P^{-} \times P$ on $1 \in G$ and $(1,1) \in \mathbb{X}_{P}$ have the same stabilizer equal to the diagonal embedding of M. Fix the measure on $\mathbb{X}_{P}(\mathbb{A})$ to be the unique $G(\mathbb{A}) \times G(\mathbb{A})$ invariant measure such that on the $P^{-}(\mathbb{A}) \times P(\mathbb{A})$-orbit of $(1,1)$, it coincides with the restriction of the chosen Haar measure on $G(\mathbb{A})$ to $P^{-}(\mathbb{A}) \cdot P(\mathbb{A})$.

Define $\operatorname{Asymp}_{P}: C_{c}^{\infty}(G(\mathbb{A})) \rightarrow \mathcal{C}_{b}\left(\mathbb{X}_{P}(\mathbb{A})\right)$ by

$$
\begin{equation*}
\operatorname{Asymp}_{P}\left(\underset{v}{\otimes} f_{v}\right)=\underset{v}{\otimes} \operatorname{Asymp}_{P, v}\left(f_{v}\right) \tag{2.23}
\end{equation*}
$$

where $f_{v} \in C_{c}^{\infty}\left(G\left(F_{v}\right)\right)$ and $f_{v}=\delta_{K_{v}}$ is the characteristic function of K_{v} for almost all v. Observe that Asymp_{P} is well-defined since $\operatorname{Asymp}_{P, v}\left(\delta_{K_{v}}\right)$ equals 1 on $\mathbb{X}_{P}\left(\mathfrak{o}_{v}\right)$ by Remark 2.3.8. The product $\otimes_{v} \operatorname{Asymp}_{P, v}\left(f_{v}\right)$ has bounded support in $\mathbb{X}_{P}(\mathbb{A})$ because the
support of $\operatorname{Asymp}_{P, v}\left(\delta_{K_{v}}\right)$ is contained in $\overline{\mathbb{X}}_{P}\left(\mathfrak{o}_{v}\right)$ by Remark 2.3.8.
Define the generalized function $\xi_{P} \in S^{*}\left(\mathbb{X}_{P}(\mathbb{A})\right)$ by

$$
\begin{equation*}
\xi_{P}={\underset{v}{\otimes}}_{\otimes} \xi_{P, v} \tag{2.24}
\end{equation*}
$$

where $\xi_{P, v} \in S^{*}\left(\mathbb{X}_{P}\left(F_{v}\right)\right)$ is defined by (2.9). Equation (2.24) is well-defined because any element of $C_{c}^{\infty}\left(\mathbb{X}_{P}(\mathbb{A})\right)$ is K_{v}-invariant for almost all v, and $\delta_{K_{v}} * \xi_{P, v}=\operatorname{Asymp}_{P, v}\left(\delta_{K_{v}}\right)$ equals 1 on $\mathbb{X}_{P}\left(\mathfrak{o}_{v}\right)$ by Remark 2.3.8. From (2.10) we also deduce that ξ_{P} has essentially bounded support, i.e., for any $\tilde{f} \in C_{c}^{\infty}(G(\mathbb{A}))$, the convolution $(\tilde{f} \otimes 1) * \xi_{P}=\left(1 \otimes \tilde{f}^{\vee}\right) * \xi_{P}=$ $\operatorname{Asymp}_{P}(\tilde{f})$ has bounded support, where $\tilde{f}^{\vee}(g):=\tilde{f}\left(g^{-1}\right)$.

Define a bilinear form $\tilde{\mathcal{B}}_{P}: C_{c}^{\infty}(G(\mathbb{A})) \otimes C_{c}^{\infty}(G(\mathbb{A})) \rightarrow E$ by the formula

$$
\begin{equation*}
\tilde{\mathcal{B}}_{P}\left(\tilde{f}_{1}, \tilde{f}_{2}\right):=\sum_{x \in \mathbb{X}_{P}(F)} \operatorname{Asymp}_{P}\left(\tilde{f}_{1}^{\vee} * \tilde{f}_{2}\right)(x), \quad \tilde{f}_{1}, \tilde{f}_{2} \in C_{c}^{\infty}(G(\mathbb{A})) \tag{2.25}
\end{equation*}
$$

where $\tilde{f}_{1}^{\vee}(g):=\tilde{f}_{1}\left(g^{-1}\right)$, and $*$ denotes convolution over $G(\mathbb{A})$. The sum is finite because $\operatorname{Asymp}_{P}\left(\tilde{f}_{1}^{\vee} * \tilde{f}_{2}\right)$ has bounded support, and the intersection of the discrete subset $\mathbb{X}_{P}(F) \subset$ $\overline{\mathbb{X}}_{P}(\mathbb{A})$ with a bounded subset of $\mathbb{X}_{P}(\mathbb{A})$ is finite.

Using (2.10), one can also write (2.25) as

$$
\begin{equation*}
\tilde{\mathcal{B}}_{P}\left(\tilde{f}_{1}, \tilde{f}_{2}\right)=\sum_{x \in \mathbb{X}_{P}(F)} \int_{(G \times G)(\mathbb{A})} \tilde{f}_{1}\left(g_{1}\right) \tilde{f}_{2}\left(g_{2}\right) \xi_{P}\left(\left(g_{1}, g_{2}\right) x\right) d g_{1} d g_{2} \tag{2.26}
\end{equation*}
$$

For $g \in G(\mathbb{A})$, let δ_{g} denote the delta (generalized) function at g. Observe that

$$
\begin{equation*}
\tilde{\mathcal{B}}_{P}\left(\delta_{g} * \tilde{f}_{1}, \delta_{g} * \tilde{f}_{2}\right)=\tilde{\mathcal{B}}_{P}\left(\tilde{f}_{1}, \tilde{f}_{2}\right), \quad g \in G(\mathbb{A}) \tag{2.27}
\end{equation*}
$$

By $(G \times G)(\mathbb{A})$-equivariance of Asymp_{P}, we have

$$
\begin{equation*}
\tilde{\mathcal{B}}_{P}\left(\tilde{f}_{1} * \delta_{g_{1}}, \tilde{f}_{2} * \delta_{g_{2}}\right)=\tilde{\mathcal{B}}_{P}\left(\tilde{f}_{1}, \tilde{f}_{2}\right), \quad g_{1}, g_{2} \in G(F) \tag{2.28}
\end{equation*}
$$

We define the bilinear form $\mathcal{B}_{P}: \mathcal{A}_{c} \otimes \mathcal{A}_{c} \rightarrow E$ as follows. For $f_{1}, f_{2} \in \mathcal{A}_{c}$, there exist $\tilde{f}_{1}, \tilde{f}_{2} \in C_{c}^{\infty}(G(\mathbb{A}))$ whose direct images are f_{1}, f_{2}. Set

$$
\begin{equation*}
\mathcal{B}_{P}\left(f_{1}, f_{2}\right)=\tilde{\mathcal{B}}_{P}\left(\tilde{f}_{1}, \tilde{f}_{2}\right) \tag{2.29}
\end{equation*}
$$

which does not depend on the choices of $\tilde{f}_{1}, \tilde{f}_{2}$ by (2.28). The form \mathcal{B}_{P} is $G(\mathbb{A})$-invariant by (2.27). Formula (2.29) was suggested by Y. Sakellaridis in a private communication.

2.4.3 Restriction of \mathcal{B}_{P} to \mathcal{A}_{c}^{K}

Fix the Haar measure on $G(\mathbb{A})$ so that K has measure 1. Let $\tilde{f}_{1}, \tilde{f}_{2} \in C_{c}^{\infty}(G(\mathbb{A}))^{K}$ be left K-invariant functions. Let $\delta_{K}=\otimes \delta_{K_{v}}$ denote the characteristic function of K on $G(\mathbb{A})$. Note that averaging $\delta_{K} * \delta_{1}=\delta_{1} * \delta_{K}=\delta_{K}$. Let $f_{1}, f_{2} \in \mathcal{A}_{c}^{K}$ denote the direct images of $\tilde{f}_{1}, \tilde{f}_{2}$. We deduce from (2.26) that

$$
\begin{equation*}
\mathcal{B}_{P}\left(f_{1}, f_{2}\right)=\int_{(G \times G)(\mathbb{A}) /(G \times G)(F)} f_{1}\left(g_{1}\right) f_{2}\left(g_{2}\right) b_{P}\left(g_{1}, g_{2}\right) d g_{1} d g_{2} \tag{2.30}
\end{equation*}
$$

where $b_{P}\left(g_{1}, g_{2}\right)=\sum_{\mathbb{X}_{P}(F)} \operatorname{Asymp}_{P}\left(\delta_{K}\right)\left(\left(g_{1}, g_{2}\right) x\right)$.
Observe that b_{P} is obtained from $\operatorname{Asymp}_{P}\left(\delta_{K}\right) \in \mathcal{C}_{b}\left(\mathbb{X}_{P}(\mathbb{A})\right)^{K \times K}$ by pull-push along the diagram

$$
\begin{equation*}
(G \times G)(\mathbb{A}) /(G \times G)(F) \leftarrow(G \times G)(\mathbb{A})^{(G \times G)(F)} \times \mathbb{X}_{P}(F) \rightarrow \mathbb{X}_{P}(\mathbb{A}) \tag{2.31}
\end{equation*}
$$

2.4.4 Geometric interpretation

As explained in [32, §1.2.3, Remark 1.2.17], we can identify ${ }^{4}$ the double cosets $K \backslash G(\mathbb{A}) / G(F)$ with $\left|\operatorname{Bun}_{G}\left(\mathbb{F}_{q}\right)\right|$, the isomorphism classes of G-bundles on X. Let us give a geometric

[^8]interpretation of b_{P} as a function on $\left(\operatorname{Bun}_{G} \times \operatorname{Bun}_{G}\right)\left(\mathbb{F}_{q}\right)$.
Let $\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2} \in \operatorname{Bun}_{G}\left(\mathbb{F}_{q}\right)$ be G-bundles. Fixing trivializations of $\mathcal{F}_{G}^{i} \times{ }_{X} \operatorname{Spec}\left(\mathfrak{o}_{v}\right)$ for all places v, we get lifts of $\mathcal{F}_{G}^{i} \in K \backslash G(\mathbb{A}) / G(F)$ to $g_{i} \in G(\mathbb{A}) / G(F)$ for $i=1,2$. The pre-image of $\left(g_{1}, g_{2}\right)$ in $(G \times G)(\mathbb{A}) \times(G \times G)(F) \mathbb{X}_{P}(F)$ under the left arrow of (2.31) is in bijection with the set of rational sections of the morphism
$$
\left(\mathbb{X}_{P}\right)_{\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}}:=\left(\mathcal{F}_{G}^{1} \times \mathcal{F}_{G}^{2}\right)^{G \times G}{ }^{G} \mathbb{X}_{P} \rightarrow X
$$

Given a rational section $\beta \in\left(\mathbb{X}_{P}\right)_{\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}}(F)$, we can restrict to $\left(\mathbb{X}_{P}\right)_{\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}}\left(F_{v}\right)$ for any place v, which is isomorphic to $\mathbb{X}_{P}\left(F_{v}\right)$ by the trivializations of $\mathcal{F}_{G}^{i} \times_{X} \operatorname{Spec}\left(\mathfrak{o}_{v}\right), i=1,2$. This describes the right arrow in (2.31).

Let $\left(\overline{\mathbb{X}}_{P}\right)_{\mathcal{F}_{G}^{1}}, \mathcal{F}_{G}^{2}:=\overline{\mathbb{X}}_{P} \stackrel{G \times G}{\times}\left(\mathcal{F}_{G}^{1} \underset{X}{\times} \mathcal{F}_{G}^{2}\right)$. We have an isomorphism $\left(\overline{\mathbb{X}}_{P}\right)_{\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}}\left(\mathfrak{o}_{v}\right) \cong$ $\overline{\mathbb{X}}_{P}\left(\mathfrak{o}_{v}\right)$ compatible with the aforementioned identification $\left(\mathbb{X}_{P}\right)_{\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}}\left(F_{v}\right) \cong \mathbb{X}_{P}\left(F_{v}\right)$.

Remark 2.3.8 implies that the support of $\operatorname{Asymp}_{P}\left(\delta_{K}\right)$ is contained in $\mathbb{X}_{P}(\mathbb{A}) \cap \overline{\mathbb{X}}_{P}\left(\mathfrak{o}_{\mathbb{A}}\right)$. Therefore $\operatorname{Asymp}_{P}\left(\delta_{K}\right)$ does not vanish at the image of β in $\mathbb{X}_{P}(\mathbb{A})$ only if β extends to a regular section $X \rightarrow\left(\overline{\mathbb{X}}_{P}\right)_{\mathcal{F}_{G}^{1}, \mathfrak{F}_{G}^{2}}$. Such an extension is unique since $\overline{\mathbb{X}}_{P}$ is separated. Thus

$$
\begin{equation*}
b_{P}\left(\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}\right)=\sum_{\beta} \prod_{v} \operatorname{Asymp}_{P, v}\left(\delta_{K_{v}}\right)\left(\beta_{v}\right) \tag{2.32}
\end{equation*}
$$

where the sum is over sections $\beta: X \rightarrow\left(\overline{\mathbb{X}}_{P}\right)_{\mathcal{F}_{G}^{1}, \mathscr{F}_{G}^{2}}$ that generically land in the nondegenerate locus $\left(\mathbb{X}_{P}\right)_{\mathcal{F}_{G}^{1}}, \mathcal{F}_{G}^{2}$, and $\beta_{v} \in \mathbb{X}_{P}\left(F_{v}\right)$ is the image of β under the right arrow in (2.31). The $K_{v} \times K_{v}$-orbit of β_{v} does not depend on the choice of trivializations.

Note that $\operatorname{Asymp}_{P, v}\left(\delta_{K_{v}}\right)\left(\beta_{v}\right)=1$ if $\beta_{v} \in \mathbb{X}_{P}\left(\mathfrak{o}_{v}\right)$. Thus the product is only over those places v that β sends to the degenerate locus $\left(\overline{\mathbb{X}}_{P}\right)_{\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}}-\left(\mathbb{X}_{P}\right)_{\mathcal{F}_{G}^{1}}, \mathcal{F}_{G}^{2}$.
Remark 2.4.1. The product $\prod_{v} \operatorname{Asymp}_{P, v}\left(\delta_{K_{v}}\right)\left(\beta_{v}\right)$ is a K-invariant function on $\mathbb{X}_{P}(\mathbb{A}) \cap$ $\overline{\mathbb{X}}_{P}\left(\mathfrak{o}_{\mathbb{A}}\right)$. Its value does not depend on the choice of trivializations of $\mathcal{F}_{G}^{i} \times_{X} \operatorname{Spec}\left(\mathfrak{o}_{v}\right)$, so we may also consider it as a function $\operatorname{Asymp}_{P}\left(\delta_{K}\right)(\beta)$ of β.

Remark 2.4.2. Theorem A.3.16 interprets $\operatorname{Asymp}_{P}\left(\delta_{K}\right)(\beta)$ as the trace of the geometric Frobenius acting on the $*$-stalks of an ℓ-adic sheaf.

Proof of Theorem 2.1.2. Let $\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2} \in \operatorname{Bun}_{G}\left(\mathbb{F}_{q}\right)$. Using the geometric interpretation (2.32) and Theorem A.3.12, we get the equality

$$
b\left(\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}\right)=\sum_{P}(-1)^{\operatorname{dim} Z(M)} b_{P}\left(\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}\right)
$$

where the sum ranges over standard parabolic subgroups. The theorem now follows from the definition of \mathcal{B} and the formula (2.30).

2.5 Global intertwining operators

Let P denote a standard parabolic subgroup. We define the subspaces $\mathcal{C}_{P, \pm}$ of functions on $G(\mathbb{A}) / M(F) U(\mathbb{A})$ and recall the definition of the constant term operator. We show that the product of the local intertwining operators induces an operator $R_{P}: \mathcal{C}_{P^{-},+} \rightarrow \mathcal{C}_{P,-}$, and we prove that R_{P} is invertible (Proposition 2.5.5). We prove Theorem 2.1.3 at the end of the section.

We continue to add a subscript v to the notation of $\S 2.2$ when appropriate.

$$
\text { 2.5.1 The spaces } \mathcal{C}_{P}, \mathcal{C}_{P, \pm}
$$

Let \mathcal{C}_{P} denote the space of K-finite C^{∞} functions on $G(\mathbb{A}) / M(F) U(\mathbb{A})$. Let $\mathcal{C}_{P, c} \subset \mathcal{C}_{P}$ stand for the subspace of compactly supported functions.

As in $\S 2.4 .4$, the quotient $K_{M} \backslash M(\mathbb{A}) / M(F)$ identifies with $\left|\operatorname{Bun}_{M}\left(\mathbb{F}_{q}\right)\right|$, the set of isomorphism classes of M-bundles on X. Recall that this identification uses the fact that any M-bundle on X is generically trivial. Since we have an exact sequence

$$
0=H^{1}(\operatorname{Spec} F, U) \rightarrow H^{1}(\operatorname{Spec} F, P) \rightarrow H^{1}(\operatorname{Spec} F, M)
$$

we deduce that any P-bundle on X is also generically trivial. This allows us to make the identification $K \backslash G(\mathbb{A}) / P(F)=\left|\operatorname{Bun}_{P}\left(\mathbb{F}_{q}\right)\right|$ by the decomposition $G(\mathbb{A})=K \cdot P(\mathbb{A})$. This space projects to $K \backslash G(\mathbb{A}) / M(F) U(\mathbb{A})=\left|\operatorname{Bun}_{M}\left(\mathbb{F}_{q}\right)\right|$.

Let $\Lambda_{G, P}=\pi_{1}(M)$ denote the quotient of Λ by the subgroup generated by the coroots of M. It is well-known that there is a bijection $\operatorname{deg}_{M}: \pi_{0}\left(\operatorname{Bun}_{M}\right) \simeq \pi_{1}(M)$. Note that $\Lambda_{G, P}^{\mathbb{Q}}:=\Lambda_{G, P} \otimes \mathbb{Q}=\Lambda_{M /[M, M]}^{\mathbb{Q}}=\Lambda_{Z_{0}(M)}^{\mathbb{Q}}$. We call the composition

$$
\operatorname{Bun}_{M} \rightarrow \pi_{1}(M) \rightarrow \Lambda_{G, P}^{\mathbb{Q}}
$$

the slope map. We define the map

$$
\operatorname{deg}_{P}^{\mathbb{Q}}: G(\mathbb{A}) / U(\mathbb{A}) \rightarrow \Lambda_{G, P}^{\mathbb{Q}}
$$

by setting $\operatorname{deg}_{P}^{\mathbb{Q}}(g)$ equal to the slope of the M-bundle corresponding to $g \in G(\mathbb{A})$. Equivalently, if $g=\left(g_{v}\right), g_{v} \in G\left(F_{v}\right)$, then $\operatorname{deg}_{P}^{\mathbb{Q}}(g)=\sum_{v} \operatorname{deg}_{P, v}\left(g_{v}\right)$, where $\operatorname{deg}_{P, v}$ is as defined in $\S 2.2 .5$.

Let $\Lambda_{G, P}^{\mathrm{pos}, \mathbb{Q}}$ denote the image of $\Lambda_{G}^{\mathrm{pos}, \mathbb{Q}}$ under the projection $\Lambda^{\mathbb{Q}} \rightarrow \Lambda_{G, P}^{\mathbb{Q}}$. We define the global spaces $\mathcal{C}_{P, \pm}$ analogously to the definitions of the local spaces $\mathcal{C}_{P, \pm, v}$ in $\S 2.2 .5$:

Let $\mathcal{C}_{P,+} \subset \mathcal{C}_{P}$ be the set of all functions $\varphi \in \mathcal{C}_{P}$ such that $\operatorname{deg}_{P}^{\mathbb{Q}}(\operatorname{supp} \varphi)$ is contained in $S_{0}+\Lambda_{G, P}^{\text {pos, } \mathbb{Q}}$ for some finite subset $S_{0} \subset \Lambda_{G, P}^{\mathbb{Q}}$. Similarly, let $\mathcal{C}_{P,-} \subset \mathcal{C}_{P}$ denote the set of all $\varphi \in \mathcal{C}_{P}$ such that $-\operatorname{deg}_{P}^{\mathbb{Q}}(\operatorname{supp} \varphi)$ is contained in $S_{0}+\Lambda_{G, P}^{\text {pos, } \mathbb{Q}}$ for some finite set S_{0}.

One similarly defines the spaces $\mathcal{C}_{P^{-}, \pm} \subset \mathcal{C}_{P^{-}}$. We emphasize that $\mathcal{C}_{P^{-},+}$is defined with respect to the cone $-\Lambda_{G, P}^{\mathrm{pos}, \mathbb{Q}}$. So $\mathcal{C}_{P^{-}, \pm}$is the space of all $\varphi \in \mathcal{C}_{P^{-}}$such that $\mp \operatorname{deg}_{P^{-}}^{\mathbb{Q}}(\operatorname{supp} \varphi)$ is contained in $S_{0}+\Lambda_{G, P}^{\mathrm{pos}, \mathbb{Q}}$ for some finite set S_{0}.

Remark 2.5.1. In the case $P=G$, we have $\Lambda_{G, G}^{\text {pos }}=0$. So we observe that $\mathcal{C}_{G,+}=\mathcal{C}_{G,-} \subset \mathcal{A}$ is the set of functions $f \in \mathcal{A}$ such that $\operatorname{deg}_{G}^{\mathbb{Q}}(\operatorname{supp} f)$ is finite.

2.5.2 The Harder-Narasimhan-Shatz stratification

Before discussing the constant term operator, we need to recall some reduction theory, which we state in terms of the Harder-Narasimhan-Shatz stratification of Bun_{M}. This stratification of Bun_{M} was defined in $[38,63,64]$ in the case $M=\mathrm{GL}(n)$. For any reductive M it was defined in $[52,53,54]$ and $[7,6]$. We also refer the reader to [61].

Let $\Lambda_{M}^{+, \mathbb{Q}}$ denote the rational cone corresponding to the monoid Λ_{M}^{+}. For $\lambda \in \Lambda_{M}^{+, \mathbb{Q}}$, we follow the notation of [25, Theorem 7.4.3] and let $\operatorname{Bun}_{M}^{(\lambda)} \subset \operatorname{Bun}_{M}$ denote ${ }^{5}$ the quasicompact locally closed reduced substack of M-bundles with Harder-Narasimhan coweight λ. We have a map $\mathrm{HN}:\left|\operatorname{Bun}_{M}\left(\mathbb{F}_{q}\right)\right| \rightarrow \Lambda_{M}^{+\mathbb{Q}}$, which sends an M-bundle to its unique Harder-Narasimhan coweight. We will also use HN to denote the composition

$$
\mathrm{HN}: G(\mathbb{A}) / M(F) U(\mathbb{A}) \rightarrow\left|\operatorname{Bun}_{M}\left(\mathbb{F}_{q}\right)\right| \rightarrow \Lambda_{M}^{+, \mathbb{Q}}
$$

The map HN will be our global analog of the map $\operatorname{ord}_{M, v}$ defined in (2.4).
For $\lambda \in \Lambda^{\mathbb{Q}}$, let $[\lambda]_{P}$ denote the projection of λ to $\Lambda_{G, P}^{\mathbb{Q}}$. Then for $x \in G(\mathbb{A}) / M(F) U(\mathbb{A})$, we have $[\operatorname{HN}(x)]_{P}=\operatorname{deg}_{P}^{\mathbb{Q}}(x)$.

Remark 2.5.2. There exists an integer N such that the image of HN lies in $\frac{1}{N} \Lambda_{M}^{+}$.

2.5.3 The constant term operator

We will always fix the Haar measure on $U(\mathbb{A})$ so that $U(\mathbb{A}) / U(F)$ has measure 1.
In $\S 2.1 .1$, we defined the spaces \mathcal{A} and $\mathcal{A}_{c} \subset \mathcal{A}$. The constant term operator $\mathrm{CT}_{P}: \mathcal{A} \rightarrow$ \mathcal{C}_{P} is defined by the formula

$$
\begin{equation*}
\mathrm{CT}_{P}(f)(g)=\int_{U(\mathbb{A}) / U(F)} f(g u) d u, \quad f \in \mathcal{A}, g \in G(\mathbb{A}) \tag{2.33}
\end{equation*}
$$

[^9]In other words, CT_{P} is the pull-push along the diagram

$$
\begin{equation*}
G(\mathbb{A}) / G(F) \leftarrow G(\mathbb{A}) / P(F) \rightarrow G(\mathbb{A}) / M(F) U(\mathbb{A}) \tag{2.34}
\end{equation*}
$$

Recall from $\S 2.2 .3$ what it means for a subset of $\Lambda^{\mathbb{Q}}$ to be bounded above (resp. below) with respect to the partial (rational) ordering $\leq_{G}^{\mathbb{Q}}$.

Lemma 2.5.3. Let $f \in \mathcal{A}_{c}$. Then $\mathrm{HN}\left(\operatorname{supp} \mathrm{CT}_{P}(f)\right) \subset \Lambda_{M}^{+, \mathbb{Q}}$ is bounded above. Consequently, $\mathrm{CT}_{P}: \mathcal{A} \rightarrow \mathcal{C}_{P}$ sends \mathcal{A}_{c} to $\mathcal{C}_{P,-}$.

Proof. If we pass to K-orbits in the diagram (2.34), then we get the \mathbb{F}_{q}-points of the diagram of stacks

$$
\begin{equation*}
\operatorname{Bun}_{G} \leftarrow \operatorname{Bun}_{P} \rightarrow \operatorname{Bun}_{M} . \tag{2.35}
\end{equation*}
$$

For $\theta \in \Lambda_{G}^{+, \mathbb{Q}}$, let $\operatorname{Bun}_{G}^{(\leq \theta)} \subset \operatorname{Bun}_{G}$ denote the open substack of G-bundles having HarderNarasimhan coweight $\leq_{G}^{\mathbb{Q}} \theta$. Let $f \in \mathcal{A}_{c}$. Then the K-orbits of its support are contained in

$$
\bigcup_{\theta \in S} \operatorname{Bun}_{G}^{(\leq \theta)}\left(\mathbb{F}_{q}\right)
$$

for a finite subset $S \subset \Lambda_{G}^{+, \mathbb{Q}}$. It follows from the definition of Harder-Narasimhan coweight that the image of

$$
\operatorname{Bun}_{P}^{(\lambda)}:=\operatorname{Bun}_{P} \underset{\operatorname{Bun}_{M}}{\times \operatorname{Bun}_{M}^{(\lambda)}, \quad \lambda \in \Lambda_{M}^{+, \mathbb{Q}}, ~}
$$

intersects $\operatorname{Bun}_{G}^{(\leq \theta)}$ only if $\lambda \leq{ }_{G}^{\mathbb{Q}} \theta$ (cf. [25, Theorem 7.4.3(3)]). Now by pull-push along the diagram (2.35), we conclude that $\mathrm{HN}\left(\operatorname{supp} \mathrm{CT}_{P}(f)\right)$ is contained in the set of $\lambda \in \Lambda_{M}^{+, \mathbb{Q}}$ such that $\lambda \leq_{G}^{\mathbb{Q}} \theta$ for some $\theta \in S$. Therefore $\operatorname{HN}\left(\operatorname{supp} \mathrm{CT}_{P}(f)\right)$ is bounded above.

Since $[\mathrm{HN}(x)]_{P}=\operatorname{deg}_{P}^{\mathbb{Q}}(x)$, we deduce that $\operatorname{deg}_{P}^{\mathbb{Q}}\left(\operatorname{supp} \mathrm{CT}_{P}(f)\right) \subset\left\{[\theta]_{P}-\mu \mid \theta \in S, \mu \in\right.$ $\left.\Lambda_{G, P}^{\text {pos }, \mathbb{Q}}\right\}$. By definition, this means that $\mathrm{CT}_{P}(f) \in \mathcal{C}_{P,-}$.

2.5.4 The operator $R_{P}: \mathcal{C}_{P^{-},+} \rightarrow \mathcal{C}_{P,-}$

Let Z denote the space of pairs $\left(g_{1}, g_{2}\right)$, where $g_{1} \in G(\mathbb{A}) / P^{-}(F), g_{2} \in G(\mathbb{A}) / P(F)$ have equal image in $G(\mathbb{A}) /\left(P^{-} \cdot P\right)(F)$. We have projections from Z to $G(\mathbb{A}) / P^{-}(F)$ and $G(\mathbb{A}) / P(F)$.

Define $R_{P}: \mathcal{C}_{P^{-},+} \rightarrow \mathcal{C}_{P}$ to be the pull-push along the diagram

$$
G(\mathbb{A}) / M(F) U^{-}(\mathbb{A}) \leftarrow G(\mathbb{A}) / P^{-}(F) \leftarrow Z \rightarrow G(\mathbb{A}) / P(F) \rightarrow G(\mathbb{A}) / M(F) U(\mathbb{A})
$$

Equivalently, R_{P} is given by the explicit formula

$$
\begin{equation*}
R_{P}(\varphi)(g)=\int_{U(\mathbb{A})} \varphi(g u) d u, \quad \varphi \in \mathcal{C}_{P^{-},+}, g \in G(\mathbb{A}) \tag{2.36}
\end{equation*}
$$

It is evident from the definition that R_{P} is $G(\mathbb{A})$-equivariant.

Proposition 2.5.4. The operator $R_{P}: \mathcal{C}_{P^{-},+} \rightarrow \mathcal{C}_{P}$ is well-defined, and the image of R_{P} is contained in $\mathcal{C}_{P,--}$. More specifically, for $\varphi \in \mathcal{C}_{P^{-},+}$we have

$$
\mathrm{HN}\left(\operatorname{supp} R_{P}(\varphi)\right) \subset\left\{\lambda-\mu \mid \lambda \in \operatorname{HN}(\operatorname{supp} \varphi), \mu \in \Lambda_{G}^{\mathrm{pos}, \mathbb{Q}}\right\} .
$$

Proof. Let $\left(g_{1}, g_{2}\right) \in Z$. The quotient $(K \times K) \backslash Z$ identifies with the set of isomorphism classes of the \mathbb{F}_{q}-points of the stack $\operatorname{Maps}^{\circ}\left(X, P^{-} \backslash G / P\right)$ of maps generically landing in $P^{-} \backslash\left(P^{-} \cdot P\right) / P$. By [12, Proposition 3.2], the stack $\operatorname{Maps}^{\circ}\left(X, P^{-} \backslash G / P\right)$ is isomorphic to the relative version of the open Zastava space ${\stackrel{\circ}{\sim} \operatorname{Bun}_{M}}$. In particular, there is a map $\stackrel{\circ}{Z}_{\mathrm{Bun}_{M}} \rightarrow$ \mathcal{H}_{M}^{+}, where $\mathcal{H}_{M}^{+}:=\operatorname{Maps}^{\circ}(X, M \backslash \bar{M} / M)$ is the Hecke substack introduced in §A.1.5. This map is induced from the contraction $G \rightarrow \bar{M}$. The image of g_{1} in $K \backslash G(\mathbb{A}) / M(F) U^{-}(\mathbb{A})=$ $\left|\operatorname{Bun}_{M}\left(\mathbb{F}_{q}\right)\right|$ defines an M-bundle \mathcal{F}_{M}^{1}. Similarly, the image of g_{2} in $K \backslash G(\mathbb{A}) / M(F) U(\mathbb{A})=$ $\left|\operatorname{Bun}_{M}\left(\mathbb{F}_{q}\right)\right|$ defines \mathcal{F}_{M}^{2}. Then $\left(g_{1}, g_{2}\right) \in Z$ maps to a point $\left(\mathcal{F}_{M}^{1}, \mathcal{F}_{M}^{2}, \beta_{M}\right) \in \mathcal{H}_{M}^{+}\left(\mathbb{F}_{q}\right)$, where β_{M} is an \bar{M}-morphism $\mathcal{F}_{M}^{2} \rightarrow \mathcal{F}_{M}^{1}$ in the language of \S A.1.1.

Let $\lambda_{1}, \lambda_{2} \in \Lambda_{M}^{+, \mathbb{Q}}$ be the Harder-Narasimhan coweights of $\mathcal{F}_{M}^{1}, \mathcal{F}_{M}^{2}$ respectively. Then Remark A.1.9 implies that $\lambda_{1}-\lambda_{2} \in w_{0}^{M} \Lambda_{G}^{\text {pos, } \mathbb{Q}}$. The definition of $\mathcal{C}_{P^{-},+}$implies that the set of $\lambda_{1} \in \Lambda_{M}^{+, \mathbb{Q}}$ for which $\varphi\left(g_{1}\right) \neq 0$ satisfy $-\left[\lambda_{1}\right]_{P} \in S_{0}+\Lambda_{G, P}^{\mathrm{pos}, \mathbb{Q}}$ for a finite set S_{0}. We deduce that the intersection of $\operatorname{HN}(\operatorname{supp} \varphi)$ with $\lambda_{2}+w_{0}^{M} \Lambda_{G}^{\text {pos, } \mathbb{Q}}$ is finite. Thus $R_{P}(\varphi)\left(g_{2}\right)$ is an integral over the K-orbits of $G(\mathbb{A}) / M(F) U^{-}(\mathbb{A})$ corresponding to the union of $\operatorname{Bun}_{M}^{\left(\lambda_{1}\right)}\left(\mathbb{F}_{q}\right)$ ranging over a finite set of λ_{1}, i.e., $R_{P}(\varphi)$ is well-defined.

Remark A.1.9 also gives the inequality $\lambda_{2} \leq_{G}^{\mathbb{Q}} \lambda_{1}$, which proves the second statement of the proposition. It immediately follows that $R_{P}(\varphi) \in \mathcal{C}_{P,-}$.

2.5.5 Invertibility of R_{P}

Below we will prove Proposition 2.5.5, which says that the operator $R_{P}: \mathcal{C}_{P^{-},+} \rightarrow \mathcal{C}_{P,-}$ is invertible. We deduce the proposition from the local results of $\S 2.2$.

Fix the Haar measure on $G(\mathbb{A})$. Recall that we defined a generalized function ξ_{P} on $\mathbb{X}_{P}(\mathbb{A})$ by (2.24), which slightly depends on the choice of measure on $G(\mathbb{A})$. The Haar measures on $G(\mathbb{A})$ and $U(\mathbb{A})$ induce a $G(\mathbb{A})$-invariant measure on $G(\mathbb{A}) / U(\mathbb{A})$.

Proposition 2.5.5. The map $R_{P}: \mathfrak{C}_{P^{-},+} \rightarrow \mathcal{C}_{P,-}$ is an isomorphism. The inverse is given by the formula

$$
\begin{equation*}
R_{P}^{-1}(\varphi)\left(g_{2}\right)=\int_{G(\mathbb{A}) / U(\mathbb{A})} \varphi\left(g_{1}\right) \xi_{P}\left(g_{1}, g_{2}\right) d g_{1}, \quad \varphi \in \mathcal{C}_{P,-}, g_{2} \in G(\mathbb{A}) \tag{2.37}
\end{equation*}
$$

Proof. Let us first show that the right hand side of (2.37) is well-defined for any $\varphi \in \mathcal{C}_{P,-}$ and $g_{2} \in G(\mathbb{A})$. Since φ is K-finite, there exists a compact open subgroup $K^{\prime}=\prod K_{v}^{\prime} \subset K$ such that φ is K^{\prime}-invariant. Let $\delta_{K^{\prime}} \in C_{c}^{\infty}(G(\mathbb{A}))$ equal $\frac{1}{\operatorname{mes}\left(K^{\prime}\right)}$ times the characteristic function of K^{\prime}. Recall that $\left(\delta_{K^{\prime}} \otimes 1\right) * \xi_{P}=\operatorname{Asymp}_{P}\left(\delta_{K^{\prime}}\right) \in \mathcal{C}_{b}\left(\mathbb{X}_{P}(\mathbb{A})\right)$, where Asymp_{P} is defined in $\S 2.4 .2$. Thus the r.h.s. of (2.37) equals

$$
\int_{G(\mathbb{A}) / U(\mathbb{A})} \varphi\left(g_{1}\right) \operatorname{Asymp}_{P}\left(\delta_{K^{\prime}}\right)\left(g_{1}, g_{2}\right) d g_{1}
$$

Let $\operatorname{ord}_{M, v}: \mathbb{X}_{P}\left(F_{v}\right) \rightarrow \Lambda_{M}^{+}$be the map (2.5). Proposition 2.2.2 implies that for every v there exists a finite subset $S_{v} \subset \Lambda$ such that

$$
\operatorname{ord}_{M, v}\left(\operatorname{supp}\left(\operatorname{Asymp}_{P, v}\left(\delta_{K_{v}^{\prime}}\right)\right)\right) \subset\left\{\theta-\mu \mid \theta \in S_{v}, \mu \in \Lambda_{U}^{\operatorname{pos}, \mathbb{Q}}\right\}
$$

and we can take $S_{v}=\{0\}$ for almost all v by Remark 2.3.8. For $g_{1} \in G(\mathbb{A}) / U(\mathbb{A})$, consider the image of $\left(g_{1}, g_{2}\right)$ in $\mathbb{X}_{P}(\mathbb{A})$. Let $\mathcal{F}_{M}^{1} \in \operatorname{Bun}_{M}^{\left(\lambda_{1}\right)}\left(\mathbb{F}_{q}\right)\left(\right.$ resp. $\left.\mathcal{F}_{M}^{2} \in \operatorname{Bun}_{M}^{\left(\lambda_{2}\right)}\left(\mathbb{F}_{q}\right)\right)$ be the image of g_{1} in $K \backslash G(\mathbb{A}) / M(F) U(\mathbb{A})$ (resp. g_{2} in $K \backslash G(\mathbb{A}) / M(F) U^{-}(\mathbb{A})$). Lemma A.1.7 implies that

$$
\begin{equation*}
-\sum_{v} \log _{q}\left(q_{v}\right) \cdot \operatorname{ord}_{M, v}\left(g_{1}, g_{2}\right) \leq \stackrel{Q}{M}_{\mathbb{Q}}^{\lambda_{1}}-\lambda_{2} \leq_{M}^{\mathbb{Q}}-w_{0}^{M} \sum_{v} \log _{q}\left(q_{v}\right) \cdot \operatorname{ord}_{M, v}\left(g_{1}, g_{2}\right) \tag{2.38}
\end{equation*}
$$

Let $S=\left\{\sum_{v} \log _{q}\left(q_{v}\right) \cdot \lambda_{v} \mid \lambda_{v} \in S_{v}\right\}$. Suppose $\operatorname{Asymp}_{P}\left(\delta_{K^{\prime}}\right)\left(g_{1}, g_{2}\right) \neq 0$. Then we have

$$
\begin{align*}
& \lambda_{1} \in\left\{\lambda_{2}-w_{0}^{M} \theta+\mu \mid \theta \in S, \mu \in w_{0}^{M} \Lambda_{G}^{\mathrm{pos}, \mathbb{Q}}\right\} \tag{2.39}\\
& \lambda_{2} \in\left\{\lambda_{1}+\theta-\mu \mid \theta \in S, \mu \in \Lambda_{G}^{\mathrm{pos}, \mathbb{Q}}\right\} \tag{2.40}
\end{align*}
$$

and we emphasize that S is a finite set depending only on the stabilizer in K of φ. From (2.39) and the definition of $\varphi \in \mathcal{C}_{P,-}$, we conclude that the r.h.s. of (2.37) is a finite integral, which we temporarily denote $T(\varphi)\left(g_{2}\right)$. From (2.40) we deduce that $T(\varphi)$ defines an element in $\mathcal{C}_{P^{-},+}$.

It remains to show that $T: \mathcal{C}_{P,-} \rightarrow \mathcal{C}_{P^{-},+}$is inverse to R_{P}. Let $\varphi \in \mathcal{C}_{P,-}$. Then (2.40) implies that $\operatorname{HN}(\operatorname{supp} T(\varphi)) \subset\left\{\lambda+\theta-\mu \mid \lambda \in \operatorname{HN}(\operatorname{supp} \varphi), \theta \in S, \mu \in \Lambda_{G}^{\operatorname{pos}, \mathbb{Q}}\right\}$. Proposition 2.5.4 implies in turn that

$$
\mathrm{HN}\left(\operatorname{supp} R_{P}(T \varphi)\right) \subset\left\{\lambda+\theta-\mu \mid \lambda \in \operatorname{HN}(\operatorname{supp} \varphi), \theta \in S, \mu \in \Lambda_{G}^{\mathrm{pos}, \mathbb{Q}}\right\}
$$

Therefore we deduce that to show $R_{P} \circ T=\mathrm{id}$, it suffices to check the equality for $\varphi \in \mathcal{C}_{P, c}$.

Any such φ is the pushforward of an element in $C_{c}^{\infty}(G(\mathbb{A}) / U(\mathbb{A}))$, which is isomorphic to the restricted tensor product of $\mathcal{C}_{P, c, v}$ over all places v. Since $R_{P} \circ T$ is defined as a product of local integrals, $\left(R_{P} \circ T\right)(\varphi)=\varphi$ follows from Proposition 2.2.13.

Similarly, it suffices to check that $T \circ R_{P}=\operatorname{id}$ on $\varphi \in \mathcal{C}_{P^{-}, c}$. This again follows from the corresponding local statement Proposition 2.2.13.

2.5.6 A formula for \mathcal{B}_{P} in terms of R_{P}

We give a formula for the bilinear form \mathcal{B}_{P} defined in $\S 2.4 .2$ in terms of the global intertwining operator R_{P}. This formula is the analog of [27, Definition 3.1.1] for a general reductive group G.

Fix some Haar measure on $G(\mathbb{A})$, and fix the Haar measure on $U^{-}(\mathbb{A})$ such that the measure of $U^{-}(\mathbb{A}) / U^{-}(F)$ equals 1 . Then we get an invariant measure on $G(\mathbb{A}) / M(F) U^{-}(\mathbb{A})$ and therefore a pairing between $\mathcal{C}_{P^{-}, c}$ and $\mathcal{C}_{P^{-}}$defined by

$$
\begin{equation*}
\left\langle\varphi_{1}, \varphi_{2}\right\rangle:=\int_{G(\mathbb{A}) / M(F) U^{-}(\mathbb{A})} \varphi_{1}(x) \varphi_{2}(x) d x \tag{2.41}
\end{equation*}
$$

Lemma 2.5.3 implies that this pairing is well-defined when $\varphi_{1} \in \mathcal{C}_{P^{-},+}$and $\varphi_{2} \in \mathrm{CT}_{P^{-}}\left(\mathcal{A}_{c}\right)$.

Proposition 2.5.6. For any $f_{1}, f_{2} \in \mathcal{A}_{c}$, one has

$$
\begin{equation*}
\mathcal{B}_{P}\left(f_{1}, f_{2}\right)=\left\langle R_{P}^{-1} \mathrm{CT}_{P}\left(f_{1}\right), \mathrm{CT}_{P^{-}}\left(f_{2}\right)\right\rangle . \tag{2.42}
\end{equation*}
$$

Proof. Choose $\tilde{f}_{1}, \tilde{f}_{2} \in C_{c}^{\infty}(G(\mathbb{A}))$ that pushforward to f_{1}, f_{2}. Then

$$
\mathrm{CT}_{P}\left(f_{1}\right)(g)=\sum_{\gamma \in G(F) / U(F)} \int_{U(\mathbb{A})} \tilde{f}_{1}\left(g u \gamma^{-1}\right) d u, \quad g \in G(\mathbb{A})
$$

The formula (2.37) directly gives

$$
\left(R_{P}^{-1} \circ \mathrm{CT}_{P}\right)\left(f_{1}\right)\left(g_{2}\right)=\sum_{\gamma \in G(F) / U(F)} \int_{G(\mathbb{A})} \tilde{f}_{1}\left(g_{1} \gamma^{-1}\right) \xi_{P}\left(g_{1}, g_{2}\right) d g_{1}
$$

Let $\tilde{f}_{1}^{\vee}(g):=\tilde{f}_{1}\left(g^{-1}\right)$. By left $G(\mathbb{A})$-equivariance of Asymp_{P}, the right hand side of (2.42) equals

$$
\begin{aligned}
& \int_{G(\mathbb{A}) / P^{-}(F)} \sum_{\gamma \in G(F) / U(F)} \operatorname{Asymp}_{P}\left(\tilde{f}_{1}^{\vee}\right)(\gamma, g) f_{2}(g) d g \\
&=\int_{G(\mathbb{A}) / G(F)} \sum_{x \in \mathbb{X}_{P}(F)} \operatorname{Asymp}_{P}\left(\tilde{f}_{1}^{\vee}\right)((1, g) x) f_{2}(g) d g
\end{aligned}
$$

By right $G(\mathbb{A})$-equivariance of Asymp_{P} and (2.25), we conclude that the right hand side equals $\mathcal{B}_{P}\left(f_{1}, f_{2}\right)$.

Proof of Theorem 2.1.3. The theorem follows immediately from (2.22) and Proposition 2.5.6.

2.6 The operator L and its inverse

We first recall basic facts from the theory of Eisenstein series. Then we define the operator $L: \mathcal{A}_{c} \rightarrow \mathcal{A}$ in terms of the Eisenstein operator, the inverse of the standard intertwining operator, and the constant term operator. Motivated by a characterization of \mathcal{A}_{c} due to Harder, we define the subspace $\mathcal{A}_{p s-c} \subset \mathcal{A}$ of "pseudo-compactly" supported functions in §2.6.6. We check that L sends \mathcal{A}_{c} to this new subspace $\mathcal{A}_{p s-c}$. Lastly, we prove that L : $\mathcal{A}_{c} \rightarrow \mathcal{A}_{p s-c}$ is invertible in Theorem 2.6.12 and give the formula for its inverse.

We will continue to use the notation from $\S 2.5$. In this section, we will assume that the field of coefficients E equals \mathbb{C}.

2.6.1 Constant term revisited

Recall that in Lemma 2.5.3, we showed that the constant term operator $\mathrm{CT}_{P}: \mathcal{A} \rightarrow \mathcal{C}_{P}$ sends \mathcal{A}_{c} to $\mathcal{C}_{P,-}$ for all parabolic subgroups P. The proof of [37, Theorem 1.2.1] shows that the converse is also true:

Lemma 2.6.1. For $f \in \mathcal{A}$, we have f is compactly supported if and only if $\mathrm{CT}_{P}(f)$ lies in $\mathcal{C}_{P,-}$ for all standard parabolics P.

Proof. The "only if" direction is proven by Lemma 2.5.3.
Note that if $f \in \mathcal{C}_{G,-} \subset \mathcal{A}$, then $\operatorname{deg}_{G}^{\mathbb{Q}}(\operatorname{supp} f)$ is finite. Therefore to prove the "if" direction, we may assume that $f \in \mathcal{A}$ and there is a fixed $\theta \in \Lambda^{\mathbb{Q}}$ such that

$$
\operatorname{deg}_{P}^{\mathbb{Q}}\left(\operatorname{supp} \mathrm{CT}_{P}(f)\right) \subset-\Lambda_{G, P}^{\mathrm{pos}, \mathbb{Q}}+[\theta]_{P}
$$

for all standard parabolics P. By reduction theory, there exists a number c such that any $x \in G(\mathbb{A}) / G(F)$ has a representative $g \in G(\mathbb{A})$ with $\left\langle\check{\alpha}, \operatorname{deg}_{B}^{\mathbb{Q}}(g)\right\rangle>c$ for all simple roots $\check{\alpha}$ of G. Suppose $f(g) \neq 0$ for $g \in G(\mathbb{A})$ with $\lambda=\operatorname{deg}_{B}^{\mathbb{Q}}(g) \in \Lambda^{\mathbb{Q}}$ as above. By [51, Lemma I.2.7] (cf. [37, Lemma 1.2.2]), there exists c^{\prime} such that if $\langle\check{\alpha}, \lambda\rangle>c^{\prime}$ for all simple roots $\check{\alpha}$ which are not simple roots of M for some standard parabolic P with Levi M, then $\mathrm{CT}_{P}(f)(g)=f(g)$. Let M be the Levi such that the simple roots of M are precisely the simple roots $\check{\alpha}$ of G such that $\langle\check{\alpha}, \lambda\rangle \leq c^{\prime}$. Then $\operatorname{CT}_{P}(f)(g)=f(g) \neq 0$ implies that $\operatorname{deg}_{P}^{\mathbb{Q}}(g)=[\lambda]_{P}$ lies in $-\Lambda_{G, P}^{\mathrm{pos}, \mathbb{Q}}+[\theta]_{P}$. On the other hand the choice of M implies that λ belongs in a translate of $-\Lambda_{M}^{+, \mathbb{Q}} \subset-\Lambda_{M}^{\mathrm{pos}, \mathbb{Q}}+\Lambda_{Z(M)}^{\mathbb{Q}}$. We deduce that the set of all possible λ is bounded above. We also have $\langle\check{\alpha}, \lambda\rangle>c$ for all simple roots $\check{\alpha}$, so there are in fact only finitely many possibilities for λ. We conclude that f is compactly supported.

For $P=M U$ a standard parabolic, we also use the notation $\mathrm{CT}_{M}^{G}:=\mathrm{CT}_{P}$ below.
Let $P_{1} \subset P$ be standard parabolic subgroups with Levi subgroups $M_{1} \subset M$. Then the constant term operator $\mathrm{CT}_{M_{1}}^{M}$ can be considered as an operator $\mathrm{CT}_{M_{1}}^{M}: \mathcal{C}_{P} \rightarrow \mathcal{C}_{P_{1}}$. We say
that $\varphi \in \mathcal{C}_{P}$ is M-cuspidal if $\mathrm{CT}_{M_{1}}^{M}(\varphi)=0$ for all standard Levi subgroups $M_{1} \subset M$.

2.6.2 Eisenstein operator

Let $P=M U$ be a parabolic subgroup of G. We define the Eisenstein operator ${ }^{6} \operatorname{Eis}_{P}$: $\mathcal{C}_{P, c} \rightarrow \mathcal{A}_{c}$ to be the pull-push along the diagram

$$
\begin{equation*}
G(\mathbb{A}) / M(F) U(P)(\mathbb{A}) \leftarrow G(\mathbb{A}) / P(F) \rightarrow G(\mathbb{A}) / G(F) \tag{2.43}
\end{equation*}
$$

where the left arrow is proper. Explicitly,

$$
\operatorname{Eis}_{P}(\varphi)(g):=\sum_{\gamma \in G(F) / P(F)} \varphi(g \gamma), \quad \varphi \in \mathcal{C}_{P, c}, g \in G(\mathbb{A})
$$

We also use the notation $\operatorname{Eis}_{M}^{G}:=\operatorname{Eis}_{P}$ for P standard.
It is well known that

$$
\begin{equation*}
\left\langle\mathrm{CT}_{P}\left(f_{1}\right), \varphi_{2}\right\rangle=\mathcal{B}_{\text {naive }}\left(f_{1}, \operatorname{Eis}_{P}\left(\varphi_{2}\right)\right) \tag{2.44}
\end{equation*}
$$

for $f_{1} \in \mathcal{A}, \varphi_{2} \in \mathcal{C}_{P, c}$. By this adjunction, we see that it is actually possible to define $\operatorname{Eis}_{P}\left(\varphi_{2}\right)$ for any φ_{2} such that $\left\langle\varphi_{1}, \varphi_{2}\right\rangle$ is finite for all $\varphi_{1} \in \operatorname{CT}_{P}\left(\mathcal{A}_{c}\right)$. Lemma 2.5.3 implies that all $\varphi_{2} \in \mathcal{C}_{P,+}$ satisfy this condition. Thus Eis P extends to an operator

$$
\operatorname{Eis}_{P}: \mathcal{C}_{P,+} \rightarrow \mathcal{A} .
$$

2.6.3 Intertwining operators revisited

In this section we recall some facts about the standard intertwining operators corresponding to elements of the Weyl group.
6. The authors of [51] call it "pseudo-Eisenstein".

Let $P=M U$ and $P^{\prime}=M^{\prime} U^{\prime}$ be standard parabolic subgroups such that $M^{\prime}=w M w^{-1}$ for some $w \in W$. Then the intertwining operator ${ }^{7} R_{w}$ is an operator $\mathcal{C}_{P, c} \rightarrow \mathcal{C}_{P^{\prime}}$ defined by the explicit formula

$$
\begin{equation*}
\left(R_{w} \varphi\right)(g)=\int_{U^{\prime}(\mathbb{A}) /\left(U^{\prime}(\mathbb{A}) \cap w U(\mathbb{A}) w^{-1}\right)} \varphi(g u w) d u \tag{2.45}
\end{equation*}
$$

Proposition 2.6.4 below implies that if $\varphi \in \mathcal{C}_{P, c}$, then $R_{w} \varphi \in \mathcal{C}_{P^{\prime},-}$. The same proposition also implies that $R_{w} \varphi \in \mathcal{C}_{P^{\prime}}$ converges absolutely for any $\varphi \in \mathcal{C}_{P,+}$.

We will use the extra notation $R_{M, w}^{G}=R_{w}$ when necessary for clarity (note that the standard parabolic P^{\prime} is determined by its Levi $w M w^{-1}$).

When $P=M U$ and $P^{\prime}=M^{\prime} U^{\prime}$ are two (not necessarily standard) parabolic subgroups containing T and $M^{\prime}=w M w^{-1}$ for $w \in W$, we will use the notation

$$
R_{P^{\prime}: P, w}: \mathcal{C}_{P, c} \rightarrow \mathcal{C}_{P^{\prime},-}
$$

for the intertwining operator, which is defined by the same formula (2.45). We also use $R_{P^{\prime}: P}$ to denote $R_{P^{\prime}: P, 1}$. So the operator R_{P} considered in $\S 2.5$.4 is now denoted by $R_{P: P^{-}}$.

Let $V \subset \mathcal{C}_{P}$ denote the subspace of functions $\varphi \in \mathcal{C}_{P}$ such that $R_{P^{\prime}: P, w}(\varphi)$ converges absolutely. Let $V^{\prime} \subset V$ denote the subspace of $\varphi \in V$ such that $R_{P^{\prime}: P, w}(\varphi)$ is compactly supported.

Proposition 2.6.2. The map $R_{P^{\prime}: P, w}: V^{\prime} \rightarrow \mathcal{C}_{P^{\prime}, c}$ is an isomorphism. The inverse map $R_{P^{\prime}: P, w}^{-1}: \mathcal{C}_{P^{\prime}, c} \rightarrow \mathcal{C}_{P}$ is an integral operator.

Proof. It suffices to consider the case $w=1$. Let $\varphi \in V^{\prime}$. Then $\varphi^{\prime}:=R_{P^{\prime}: P} \varphi \in \mathcal{C}_{P^{\prime}, c}$ and $R_{P^{-}: P^{\prime}}\left(\varphi^{\prime}\right) \in \mathcal{C}_{P^{-},-}$must equal $R_{P^{-}: P} \varphi$. The operator $R_{P^{-}: P}: \mathcal{C}_{P,+} \rightarrow \mathcal{C}_{P^{-},-}$is invertible by Proposition 2.5.5, so we have $\left(R_{P^{-}: P}^{-1} \circ R_{P^{-}: P^{\prime}}\right)\left(R_{P^{\prime}: P} \varphi\right)=\varphi$, which proves injectivity.

[^10]Now take $\varphi^{\prime} \in \mathcal{C}_{P^{\prime}, c}$. Since $\mathcal{C}_{P^{\prime}, c} \subset \mathcal{C}_{P^{\prime},-}$, we have $R_{P^{\prime}: P^{\prime-}}^{-1}\left(\varphi^{\prime}\right) \in \mathcal{C}_{P^{\prime-},+}$. Then $\varphi:=$ $\left(R_{P: P^{\prime-} \circ} R_{P^{\prime}: P^{\prime-}}^{-1}\right)\left(\varphi^{\prime}\right) \in \mathcal{C}_{P}$ is well-defined. Moreover, $R_{P^{\prime}: P}(\varphi)=\left(R_{P^{\prime}: P^{\prime-}} \circ R_{P^{\prime}: P^{\prime-}}^{-1}\right)\left(\varphi^{\prime}\right)=$ φ^{\prime}. Hence $\varphi \in V^{\prime}$, and we have shown surjectivity of $R_{P^{\prime}: P}$.

Remark 2.6.3. The operators $R_{P^{\prime}: P, w}$ and $R_{P^{\prime}: P, w}^{-1}$ are defined on larger spaces of functions, but we will not consider the corresponding support conditions in this article.

2.6.4 The composition $\mathrm{CT}_{P^{\prime}} \circ \operatorname{Eis}_{P}$

Let $P=M U$ and $P^{\prime}=M^{\prime} U^{\prime}$ be standard parabolic subgroups of G. Let $\check{\Phi}_{M}^{+}$denote the set of positive roots of M.

Let $\varphi \in \mathcal{C}_{P, c}$ be M-cuspidal. Then [51, Proposition II.1.7] gives the formula

$$
\begin{equation*}
\left(\mathrm{CT}_{P^{\prime}} \circ \operatorname{Eis}_{P}\right)(\varphi)=\sum_{w \in W\left(M, M^{\prime}\right)}\left(\operatorname{Eis}_{w M w^{-1}}^{M^{\prime}} \circ R_{M, w}^{G}\right)(\varphi) \tag{2.46}
\end{equation*}
$$

where $W\left(M, M^{\prime}\right):=\left\{w \in W \mid w^{-1} \check{\alpha}>0, \forall \check{\alpha} \in \check{\Phi}_{M^{\prime}}^{+}\right.$and $w M w^{-1}$ is a standard Levi of $\left.M^{\prime}\right\}$.

Proposition 2.6.4. Let $\varphi \in \mathcal{C}_{P,+}$ be arbitrary. Then one has

$$
\begin{equation*}
\left(\operatorname{CT}_{P^{\prime}} \circ \operatorname{Eis}_{P}\right)(\varphi)=\sum_{w \in W_{M, M^{\prime}}^{\bullet}}\left(\operatorname{Eis}_{w M_{1} w^{-1}}^{M^{\prime}} \circ R_{M_{1}, w}^{G} \circ \operatorname{CT}_{M_{1}}^{M}\right)(\varphi) \tag{2.47}
\end{equation*}
$$

where $W_{M, M^{\prime}}^{\bullet}:=\left\{w \in W \mid \forall \check{\alpha} \in \check{\Phi}_{M}^{+}\right.$, w̌̆ $\left.>0, \forall \check{\alpha} \in \check{\Phi}_{M^{\prime}}^{+}, w^{-1} \check{\alpha}>0\right\}$ and $M_{1}:=$ $M \cap w^{-1} M^{\prime} w$, and every term on the right hand side converges absolutely.

Proof. See the proof of [51, Proposition II.1.7].

$$
\text { 2.6.5 The operator } L: \mathcal{A}_{c} \rightarrow \mathcal{A}
$$

One has the operators

$$
\mathcal{A}_{c} \xrightarrow{\mathrm{CT}_{P}} \mathcal{C}_{P,-} \xrightarrow{R_{P: P^{--}}^{-1}} \mathcal{C}_{P^{-},+} \xrightarrow{\mathrm{Eis}_{P^{-}}} \mathcal{A} .
$$

Thus we deduce that

$$
\begin{equation*}
\mathcal{B}\left(f_{1}, f_{2}\right)=\mathcal{B}_{\text {naive }}\left(L f_{1}, f_{2}\right) \tag{2.48}
\end{equation*}
$$

where the operator $L: \mathcal{A}_{c} \rightarrow \mathcal{A}$ is defined by

$$
L:=\sum_{P}(-1)^{\operatorname{dim} Z(M)} \operatorname{Eis}_{P^{-}} \circ R_{P: P^{-}}^{-1} \circ \mathrm{CT}_{P}
$$

and the sum ranges over the standard parabolic subgroups. Unlike the form \mathcal{B}, the operator L does not depend on the choice of Haar measure on $G(\mathbb{A})$.

Observe that for $f \in \mathcal{A}_{c}$ cuspidal, we have $L f=(-1)^{\operatorname{dim} Z(G)} f$.
Remark 2.6.5. Theorem 2.1.2 implies that the miraculous duality functor Ps- $\operatorname{Id}_{\mathrm{Bun}_{G} \text {,! }}$, defined
 invariants via the functions-sheaves dictionary (cf. [27, §A.8.4]).

The following proposition shows the interplay between the operator L and the Eisenstein operators.

Proposition 2.6.6. Let P be a standard parabolic subgroup. Let $\varphi \in \mathcal{C}_{P, c}$ be M-cuspidal. Then

$$
\left(L \circ \operatorname{Eis}_{P}\right)(\varphi)=(-1)^{\operatorname{dim} Z(M)}\left(\operatorname{Eis}_{P^{-}} \circ R_{P: P^{-}}^{-1}\right)(\varphi) .
$$

Proof. Let P^{\prime} be another standard parabolic subgroup. By formula (2.46),

$$
\begin{equation*}
\left(\operatorname{Eis}_{P^{\prime-}} \circ R_{P^{\prime}: P^{\prime-}}^{-1} \circ \operatorname{CT}_{P^{\prime}} \circ \operatorname{Eis}_{P}\right)(\varphi)=\sum_{w \in W\left(M, M^{\prime}\right)}\left(\operatorname{Eis}_{P^{\prime-}} \circ R_{P^{\prime}: P^{\prime-}}^{-1} \circ \operatorname{Eis}_{w M w^{-1}}^{M^{\prime}} \circ R_{M, w}^{G}\right)(\varphi) \tag{2.49}
\end{equation*}
$$

and each term on the r.h.s. converges absolutely. Let $P_{1}^{\prime} \subset M^{\prime}$ be the standard parabolic subgroup with Levi $w M w^{-1}$, so $\operatorname{Eis}_{w M w^{-1}}^{M^{\prime}}=\operatorname{Eis}_{P_{1}^{\prime}}$. One can check that

$$
R_{P^{\prime}: P^{\prime-}}^{-1} \circ \operatorname{Eis}_{P_{1}^{\prime}}=\operatorname{Eis}_{P_{1}^{\prime}} \circ R_{P_{1}^{\prime} U^{\prime}: P_{1}^{\prime} U^{\prime-}}^{-1}
$$

when either side converges absolutely (recall that $R_{P^{\prime}: P^{\prime-}}^{-1}$ is defined as a product of local integrals by (2.37)). Let $P_{2}^{\prime}=w_{0}^{M^{\prime}} P_{1}^{\prime-} w_{0}^{M^{\prime}} \subset M^{\prime}$. Let $Q=P_{2}^{\prime} U^{\prime}$ be the standard parabolic subgroup of G with Levi $w^{\prime} M w^{\prime-1}, w^{\prime}=w_{0}^{M^{\prime}} w$. Then $\operatorname{Eis}_{P_{1}^{\prime}} \circ R_{P_{1}^{\prime} U^{\prime}: P_{1}^{\prime} U^{\prime-}}^{-1}=$ $\operatorname{Eis}_{P_{2}^{\prime-}} \circ R_{P_{2}^{\prime-} U^{\prime}: Q^{-}}^{-1} \circ w_{0}^{M^{\prime}}$, where $w_{0}^{M^{\prime}}$ denotes right translation by a representative of $w_{0}^{M^{\prime}}$ in $M^{\prime}(F)$.

From the definition (2.45), we have

$$
\left(w_{0}^{M^{\prime}} \circ R_{M, w}^{G}\right)(\varphi)(g)=\int_{\left(U_{P_{2}^{\prime}}^{-} U^{\prime}\right)(\mathbb{A}) \cap w^{\prime} U^{-}(\mathbb{A}) w^{\prime-1}} \varphi\left(g u w^{\prime}\right) d u, \quad g \in G(\mathbb{A})
$$

If $\check{\alpha}$ is a positive root of G not in M, then $w^{\prime} \check{\alpha}=w_{0}^{M^{\prime}} w \check{\alpha}$ must be negative if it is a root of M^{\prime}, by definition of $W\left(M, M^{\prime}\right)$. Thus $U_{P_{2}^{\prime}}^{-} U^{\prime} \cap w^{\prime} U^{-} w^{\prime-1}=U^{\prime} \cap w^{\prime} U^{-} w^{\prime-1}$ and $U_{P_{2}^{\prime}} U^{\prime} \cap w^{\prime} U w^{\prime-1}=U^{\prime} \cap w^{\prime} U w^{\prime-1}$. We deduce that $R_{P_{2}^{\prime-} U^{\prime}: Q^{-}}=w_{0}^{M^{\prime}} \circ R_{M, w}^{G} \circ R_{P: Q^{-}, w^{\prime-1}}$ and therefore

$$
\left(R_{P_{1}^{\prime} U^{\prime}: P_{1}^{\prime} U^{\prime-}}^{-1} \circ w_{0}^{M^{\prime}} \circ R_{M, w}^{G}\right)(\varphi)=R_{P: Q^{-}, w^{\prime-1}}^{-1}(\varphi)
$$

for $\varphi \in \mathcal{C}_{P, c}$. Next, observe that $\operatorname{Eis}_{P^{\prime-}} \circ \operatorname{Eis}_{P_{2}^{\prime-}}=\operatorname{Eis}_{Q^{-}}$. Thus the r.h.s. of (2.49) equals

$$
\sum_{w \in W\left(M, M^{\prime}\right)}\left(\operatorname{Eis}_{Q^{-}} \circ R_{P: Q^{-}, w^{\prime-1}}^{-1}\right)(\varphi) .
$$

Note that Q depends only on $w^{\prime} M w^{\prime-1}$ and not on M^{\prime}. Summing over all standard parabolics P^{\prime}, we get the formula

$$
\begin{equation*}
\left(L \circ \operatorname{Eis}_{P}\right)(\varphi)=\sum_{w^{\prime} \in W}\left(\sum_{\substack{M^{\prime} \cap B^{-} \subset w^{\prime} B w^{\prime-1} \\ w^{\prime} M w^{\prime-1} \subset M^{\prime}}}(-1)^{\operatorname{dim} Z\left(M^{\prime}\right)}\right)^{M^{\prime}}\left(\operatorname{Eis}_{Q^{-}} \circ R_{P: Q^{-}, w^{\prime-1}}^{-1}\right)(\varphi) \tag{2.50}
\end{equation*}
$$

Fixing $w^{\prime} \in W$, let us classify all M^{\prime} such that $M^{\prime} \cap B^{-} \subset w^{\prime} B w^{\prime-1}$ and $w^{\prime} M w^{\prime-1} \subset M^{\prime}$. The two conditions above are equivalent to requiring $\check{\Delta}_{M^{\prime}} \subset w^{\prime} \check{\Phi}_{G}^{-}$and $\check{\Delta}_{G} \cap w^{\prime} \check{\Phi}_{M} \subset \check{\Delta}_{M^{\prime}}$.

Thus the inner sum in (2.50) equals

$$
(1+(-1))^{\left|\check{\Delta}_{G} \cap w^{\prime}\left(\check{\Phi}_{G}^{-}-\breve{\Phi}_{M}\right)\right|}
$$

which vanishes unless $w^{\prime}\left(\check{\Phi}_{G}^{-}-\check{\Phi}_{M}\right)$ contains no simple roots. If $w^{\prime} \notin W_{M}$, then $B \not \subset$ $w^{\prime} P w^{\prime-1}$, so $w^{\prime}\left(\check{\Phi}_{G}^{+} \cup \check{\Phi}_{M}\right)$ does not contain all the simple roots, i.e., $w^{\prime}\left(\check{\Phi}_{G}^{-}-\check{\Phi}_{M}\right)$ contains a simple root. Therefore in order for the sum to not vanish, w^{\prime} must be in W_{M} and $M \cap B^{-} \subset$ $w^{\prime} B w^{\prime-1}$. Hence $w^{\prime}=w_{0}^{M}$, and we have $M^{\prime}=M, Q=P$. Since $R_{P: P^{-}, w_{0}^{M}}=R_{P: P^{-}}$by $M(F)$-invariance, we get $\left(L \circ \operatorname{Eis}_{P}\right)(\varphi)=(-1)^{\operatorname{dim} Z(M)}\left(\operatorname{Eis}_{P^{-}} \circ R_{P: P^{-}}^{-1}\right)(\varphi)$.

For a standard parabolic P, define the "second Eisenstein" operator $\operatorname{Eis}_{P}^{\prime}: \mathcal{C}_{P,-} \rightarrow \mathcal{A}$ by

$$
\operatorname{Eis}_{P}^{\prime}:=\operatorname{Eis}_{P^{-}} \circ R_{P: P^{-}}^{-1}
$$

Let \mathcal{A}^{M} denote the space of smooth K-finite functions on $M(\mathbb{A}) / M(F)$. Let $L^{M}: \mathcal{A}_{c}^{M} \rightarrow$ \mathcal{A}^{M} denote the operator L with respect to the reductive group M. Applying ind ${ }_{P(\mathbb{A})}^{G(\mathbb{A})}$, we also let L^{M} denote the induced operator $\mathcal{C}_{P, c} \rightarrow \mathcal{C}_{P}$. Recall that L^{M} is $(-1)^{\operatorname{dim} Z(M)}$ times the identity on M-cuspidal functions in $\mathcal{C}_{P, c}$.

Corollary 2.6.7. One has the equality

$$
\begin{equation*}
L \circ \operatorname{Eis}_{P}=\operatorname{Eis}_{P}^{\prime} \circ L^{M}: \mathcal{C}_{P, c} \rightarrow \mathcal{A} . \tag{2.51}
\end{equation*}
$$

The operator L is self-adjoint with respect to $\mathcal{B}_{\text {naive }}$, so (2.51) gives

$$
\begin{equation*}
\mathrm{CT}_{P} \circ L=L^{M} \circ \mathrm{CT}_{P}^{\prime}: \mathcal{A}_{c} \rightarrow \mathcal{C}_{P} \tag{2.52}
\end{equation*}
$$

where $\mathrm{CT}_{P}^{\prime}: \mathcal{A}_{c} \rightarrow \mathcal{C}_{P,+}$ is defined by $\mathrm{CT}_{P}^{\prime}=R_{P^{-}: P}^{-1} \circ \mathrm{CT}_{P^{-}}$.
Remark 2.6.8. As explained in [27, §A.11.7], equation (2.51) is an analog of the "strange" functional equation for geometric Eisenstein series stated in [30, Theorem 4.1.2].

Remark 2.6.9. Observe that for any $f \in \mathcal{A}_{c}$, we have $\operatorname{deg}_{G}^{\mathbb{Q}}(\operatorname{supp} f)=\operatorname{deg}_{G}^{\mathbb{Q}}(\operatorname{supp} L f) \subset \Lambda_{G, G}^{\mathbb{Q}}$ from the definitions (i.e., L does not change the connected component of the image of the support in Bun_{G}). As a consequence, for any $\varphi \in \mathcal{C}_{P}$ on which $L^{M} \varphi$ converges, we have $\operatorname{deg}_{P}^{\mathbb{Q}}(\operatorname{supp} \varphi)=\operatorname{deg}_{P}^{\mathbb{Q}}\left(\operatorname{supp} L^{M} \varphi\right)$.

2.6.6 The space $\mathcal{A}_{p s-c}$ of "pseudo-compactly" supported functions

We are inspired by Lemma 2.6.1 to make the following definition.

Definition 2.6.10. Let $\mathcal{A}_{p s-c}$ be the space of all functions $f \in \mathcal{A}$ such that $\operatorname{CT}_{P}(f) \in \mathcal{C}_{P,+}$ for all standard parabolic subgroups $P \subset G$.

Proposition 2.6.11. For any $f \in \mathcal{A}_{c}$, one has $L f \in \mathcal{A}_{p s-c}$.

Proof. Let $P=M U$ be a standard parabolic subgroup of G. By (2.52), we have $\mathrm{CT}_{P}(L f)=$ $L^{M}\left(\mathrm{CT}_{P}^{\prime}(f)\right)$ and $\mathrm{CT}_{P}^{\prime}(f) \in \mathcal{C}_{P,+}$. Remark 2.6.9 implies that $L^{M}\left(\mathrm{CT}_{P}^{\prime}(f)\right) \in \mathcal{C}_{P,+}$ as well. Hence $\mathrm{CT}_{P}(L f) \in \mathcal{C}_{P,+}$ and $L f \in \mathcal{A}_{p s-c}$.

Theorem 2.6.12. The operator $L: \mathcal{A}_{c} \rightarrow \mathcal{A}_{p s-c}$ is invertible. For $f \in \mathcal{A}_{p s-c}$ one has

$$
\begin{equation*}
L^{-1} f=\sum_{P}(-1)^{\operatorname{dim} Z(M)}\left(\operatorname{Eis}_{P} \circ \mathrm{CT}_{P}\right)(f) \tag{2.53}
\end{equation*}
$$

where the sum ranges over standard parabolic subgroups.

Proof. For $f \in \mathcal{A}_{p s-c}$, set $L^{\prime} f$ equal to the r.h.s. of (2.53). First we need to check that $L^{\prime} f \in \mathcal{A}_{c}$. Let P^{\prime} be another standard parabolic. Then by (2.47),

$$
\left(\mathrm{CT}_{P^{\prime}} \circ \operatorname{Eis}_{P} \circ \mathrm{CT}_{P}\right)(f)=\sum_{w \in W_{M, M^{\prime}}^{\bullet}}\left(\operatorname{Eis}_{w M_{1} w^{-1}}^{M^{\prime}} \circ R_{M_{1}, w}^{G} \circ \mathrm{CT}_{M_{1}}^{G}\right)(f)
$$

where $W_{M, M^{\prime}}^{\bullet}=\left\{w \in W \mid w \check{\alpha}>0, \forall \check{\alpha} \in \check{\Phi}_{M}^{+}, w^{-1} \check{\alpha}>0, \forall \check{\alpha} \in \check{\Phi}_{M^{\prime}}^{+}\right\}$is a set of
representatives for $W_{M^{\prime}} \backslash W / W_{M}$, and $M_{1}=M \cap w^{-1} M^{\prime} w$. Summing over P, we have

$$
\begin{aligned}
\mathrm{CT}_{P^{\prime}}\left(L^{\prime} f\right)= & \sum_{w \in W} \sum_{M_{1} \mid w M_{1} w^{-1} \subset M^{\prime}} \\
& \left(\begin{array}{l}
\sum_{\substack{M_{1}=M \cap w^{-1} M^{\prime} w \\
w \in W_{M, M^{\prime}}^{\circ}}}(-1)^{\operatorname{dim} Z(M)} \\
\end{array}\right)\left(\operatorname{Eis}_{w M_{1} w^{-1}}^{M^{\prime}} \circ R_{M_{1}, w}^{G} \circ \mathrm{CT}_{M_{1}}^{G}\right)(f) .
\end{aligned}
$$

Note that $\check{\Delta}_{M_{1}}$ is any subset of $w^{-1} \check{\Phi}_{M^{\prime}}^{+} \cap \check{\Delta}_{G}$, while $\check{\Delta}_{M}-\check{\Delta}_{M_{1}}$ is any subset of $w^{-1}\left(\check{\Phi}_{G}^{+}-\right.$ $\left.\check{\Phi}_{M^{\prime}}^{+}\right) \cap \check{\Delta}_{G}$. Thus the inner sum over M vanishes unless $w^{-1}\left(\check{\Phi}_{G}^{+}-\check{\Phi}_{M^{\prime}}^{+}\right)$contains no simple roots. This only occurs if $w=w_{0}^{M^{\prime}} w_{0}$ and $M_{1}=M$. By considering $M_{1}^{\prime}=w_{0}^{M^{\prime}} w_{0} M_{1} w_{0} w_{0}^{M^{\prime}}$ instead of M_{1}, we see that

$$
\begin{equation*}
\mathrm{CT}_{P^{\prime}}\left(L^{\prime} f\right)=\sum_{M_{1}^{\prime} \subset M^{\prime}}(-1)^{\operatorname{dim} Z\left(M_{1}^{\prime}\right)}\left(\operatorname{Eis}_{M_{1}^{\prime}}^{M^{\prime}} \circ R_{P_{1}^{\prime}:\left(M^{\prime} \cap P_{1}^{\prime}\right) U^{\prime-}} \circ \mathrm{CT}_{\left(M^{\prime} \cap P_{1}^{\prime}\right) U^{\prime-}}\right)(f) \tag{2.54}
\end{equation*}
$$

where the sum is over all Levi subgroups of M^{\prime}, and P_{1}^{\prime} is the standard parabolic subgroup of G with Levi M_{1}^{\prime}. Let $Q=\left(M^{\prime} \cap P_{1}^{\prime}\right) U^{\prime-}$. Then $w_{0} w_{0}^{M^{\prime}} Q w_{0}^{M^{\prime}} w_{0}$ is a standard parabolic subgroup. Since $f \in \mathcal{A}_{p s-c}$, we have $\mathrm{CT}_{Q}(f) \in \mathcal{C}_{Q,+}$. Observe that $\operatorname{Eis}_{M_{1}^{\prime}}^{M^{\prime}} \circ R_{P_{1}^{\prime}: Q}=R_{P^{\prime}: P^{\prime-}} \circ$ $\operatorname{Eis}_{M_{1}^{\prime}}^{M^{\prime}}$ when either side converges absolutely. Also note that $\operatorname{deg}_{P^{\prime}}^{\mathbb{Q}}\left(\operatorname{supp} \operatorname{Eis}_{M_{1}^{\prime}}^{M^{\prime}}\left(\mathrm{CT}_{Q} f\right)\right)=$ $\operatorname{deg}_{P^{\prime}}^{\mathbb{Q}}\left(\operatorname{supp}\left(\mathrm{CT}_{Q} f\right)\right)$. From this we deduce that $\left(\operatorname{Eis}_{M_{1}^{\prime}}^{M^{\prime}} \circ \mathrm{CT}_{Q}\right)(f) \in \mathcal{C}_{P^{\prime-},+}$. Therefore

$$
\left(R_{P^{\prime}: P^{\prime-}} \circ \operatorname{Eis}_{M_{1}^{\prime}}^{M^{\prime}} \circ \mathrm{CT}_{Q}\right)(f) \in \mathcal{C}_{P^{\prime},-}
$$

Consequently, $\mathrm{CT}_{P^{\prime}}\left(L^{\prime} f\right) \in \mathcal{C}_{P^{\prime},-}$ and L^{\prime} defines an operator $\mathcal{A}_{p s-c} \rightarrow \mathcal{A}_{c}$.
Now we check that L^{\prime} is inverse to L. For $f \in \mathcal{A}_{p s-c}$, it follows from (2.54) and the
ensuing discussion that

$$
\begin{aligned}
L L^{\prime} f= & \sum_{P^{\prime}} \sum_{P_{1}^{\prime} \subset P^{\prime}} \\
& (-1)^{\operatorname{dim} Z\left(M^{\prime}\right)-\operatorname{dim} Z\left(M_{1}^{\prime}\right)\left(\operatorname{Eis}_{P^{\prime-}} \circ R_{P^{\prime}: P^{\prime-}}^{-1} \circ R_{P^{\prime}: P^{\prime-}} \circ \operatorname{Eis}_{M_{1}^{\prime}}^{M^{\prime}} \circ \mathrm{CT}_{\left(M^{\prime} \cap P_{1}^{\prime}\right) U^{\prime-}}\right)(f) .} .
\end{aligned}
$$

Observe that $\operatorname{Eis}_{P^{\prime-}} \circ \operatorname{Eis}_{M_{1}^{\prime}}^{M^{\prime}}=\operatorname{Eis}_{\left(M^{\prime} \cap P_{1}^{\prime}\right) U^{\prime-}} . \operatorname{Set} M_{2}^{\prime}:=w_{0}^{M^{\prime}} M_{1}^{\prime} w_{0}^{M^{\prime}}$ and let P_{2}^{\prime} be the corresponding standard parabolic subgroup. Then $\operatorname{Eis}_{\left(M^{\prime} \cap P_{1}^{\prime}\right) U^{\prime-}} \circ \mathrm{CT}_{\left(M^{\prime} \cap P_{1}^{\prime}\right) U^{\prime-}}=$ Eis $_{P_{2}^{\prime-}} \circ \mathrm{CT}_{P_{2}^{\prime-}}$. Hence

$$
L L^{\prime} f=\sum_{P_{2}^{\prime}}\left(\sum_{P_{2}^{\prime} \subset P^{\prime}}(-1)^{\operatorname{dim} Z\left(M^{\prime}\right)-\operatorname{dim} Z\left(M_{2}^{\prime}\right)}\right)\left(\operatorname{Eis}_{P_{2}^{\prime-}} \circ \mathrm{CT}_{P_{2}^{\prime-}}\right)(f) .
$$

The inner sum vanishes unless $P_{2}^{\prime}=G$. Therefore $L L^{\prime} f=f$.
For $f \in \mathcal{A}_{c}$, we apply (2.52) to get

$$
L^{\prime} L f=\sum_{P} \sum_{M_{1} \subset M}(-1)^{\operatorname{dim} Z(M)-\operatorname{dim} Z\left(M_{1}\right)}\left(\operatorname{Eis}_{\left(M \cap P_{1}^{-}\right) U} \circ \mathrm{CT}_{M \cap P_{1}^{-}}^{\prime M} \circ \mathrm{CT}_{P}^{\prime}\right)(f),
$$

where $P=M U$ ranges over the standard parabolic subgroups, M_{1} ranges over Levi subgroups of M, and $P_{1} \subset G$ is the standard parabolic subgroup with Levi M_{1}. Observe that $\mathrm{CT}_{M \cap P_{1}^{-}}^{M} \circ \mathrm{CT}_{P}^{\prime}=\mathrm{CT}_{\left(M \cap P_{1}^{-}\right) U^{\prime}}$. Conjugating by w_{0}^{M}, one sees that

$$
\operatorname{Eis}_{\left(M \cap P_{1}^{-}\right) U} \circ \mathrm{CT}_{\left(M \cap P_{1}^{-}\right) U}^{\prime}=\operatorname{Eis}_{P_{2}} \circ \mathrm{CT}_{P_{2}}^{\prime},
$$

where P_{2} is the standard parabolic subgroup with Levi $M_{2}:=w_{0}^{M} M_{1} w_{0}^{M}$. Then

$$
L^{\prime} L f=\sum_{P_{2}}\left(\sum_{P_{2} \subset P}(-1)^{\operatorname{dim} Z(M)-\operatorname{dim} Z\left(M_{2}\right)}\right)\left(\operatorname{Eis}_{P_{2}} \circ \mathrm{CT}_{P_{2}}^{\prime}\right)(f)
$$

and the inner sum vanishes unless $P_{2}=G$. Therefore $L^{\prime} L f=f$, and we have proved that
L^{\prime} is the inverse of L.

Remark 2.6.13. We observe that formula (2.53) for L^{-1} may be thought of as an analog of the Aubert-Zelevinsky involution for smooth representatives of a \mathfrak{p}-adic group: Let F_{v} denote a non-Archimedean local field. For every smooth $G\left(F_{v}\right)$-module M one can form a complex

$$
0 \rightarrow M \rightarrow \bigoplus_{P} i_{P}^{G} r_{P}^{G}(M) \rightarrow \cdots \rightarrow i_{B}^{G} r_{B}^{G}(M) \rightarrow 0
$$

where i_{P}^{G}, r_{P}^{G} denote, respectively, the parabolic induction and Jacquet functors, and the sum in the i-th term runs over standard parabolic subgroups of corank i in G. We call this complex the Deligne-Lusztig complex associated to M and denote it by DL(M). Analogous complexes were considered in [22] for representations of a finite Chevalley group. In the Grothendieck group, we have

$$
[\mathrm{DL}(M)]=\sum_{P}(-1)^{\operatorname{dim} Z(G)-\operatorname{dim} Z(M)}\left[i{ }_{P}^{G} r_{P}^{G}(M)\right]
$$

where the sum ranges over standard parabolic subgroups. In fact, this defines an involution of the Grothendieck group, which is often called the Aubert-Zelevinsky involution. If one considers $\operatorname{Eis}_{P}, \mathrm{CT}_{P}$ as global analogs of i_{P}^{G}, r_{P}^{G}, respectively, then formula (2.53) suggests that L^{-1} is a global analog of the Aubert-Zelevinsky involution (although L^{-1} is no longer an involution).

Remark 2.6.14. The main result of [30] (namely, Theorem 0.1.6) says that the stack Bun ${ }_{G}$ is miraculous, i.e., the functor ${\mathrm{Ps}-\mathrm{Id}_{\mathrm{Bun}_{G},}!: \mathrm{D}-\bmod \left(\operatorname{Bun}_{G}\right)_{\mathrm{co}} \rightarrow \mathrm{D}-\bmod \left(\operatorname{Bun}_{G}\right) \text { is an equiv- }}$ alence. This equivalence is a D-module analog of the part of Theorem 2.6.12 that says that the operator $L^{K}: \mathcal{A}_{c}^{K} \rightarrow \mathcal{A}^{K}$ induces an isomorphism $\mathcal{A}_{c}^{K} \rightarrow \mathcal{A}_{p s-c}^{K}$.

The formula (2.53) for L^{-1} may be useful in describing the functor inverse to $\operatorname{Ps}-\operatorname{Id}_{\mathrm{Bun}_{G}}$, (we expect that one can mimic the construction of the Deligne-Lusztig complex using the functors Eis ${ }_{P}^{\text {enh }}, \mathrm{CT}_{P}^{\text {enh }}$ defined in $\left.[31, \S 6]\right)$. We refer the reader to [27, Conjecture C.2.1] for
an explicit conjecture in the case $G=\mathrm{SL}(2)$.

CHAPTER 3

RADON INVERSION FORMULAS OVER LOCAL FIELDS

3.1 Introduction

3.1.1 Some notation

Let F be a local field (i.e., F is either non-Archimedean or \mathbb{R} or \mathbb{C}). Let G denote the topological group $\mathrm{GL}_{n}(F)$ for an integer $n \geq 2$.

Let K be the standard maximal compact subgroup of G (i.e., if F is non-Archimedean then $K=\operatorname{GL}_{n}(\mathcal{O})$, where $\mathcal{O} \subset F$ is the ring of integers, if $F=\mathbb{R}$ then $K=O(n)$, and if $F=\mathbb{C}$ then $K=U(n))$.

We fix a field E of characteristic 0 ; if F is Archimedean we assume that E equals \mathbb{C}. Unless otherwise specified, all functions will take values in E.

Let \mathcal{C} denote the space of K-finite C^{∞} functions on $F^{n} \backslash\{0\}$. In $\S 3.2 .2$ we define the subspace $\mathcal{C}_{+} \subset \mathcal{C}$ consisting of functions with bounded support and the subspace $\mathcal{C}_{-} \subset \mathcal{C}$ consisting of functions supported away from a neighborhood of 0 .

3.1.2 Subject of this chapter

In this chapter we consider the Radon transform as an operator

$$
R: \mathcal{C}_{+} \rightarrow \mathcal{C}_{-} .
$$

When F is non-Archimedean, R is known to be an isomorphism [10]. An explicit formula for the inverse was, however, not present in the literature. There is a 'classical' inversion formula due to Černov [20] on the space of Schwartz functions, but its relation to R^{-1} is not obvious. We formulate and prove a simple formula for R^{-1} in the non-Archimedean case and relate it to Černov's formula.

In the Archimedean case, the invertibility of R was a priori unclear due to the nonstandard nature of the function spaces $\mathcal{C}_{ \pm}$. We prove that R is indeed an isomorphism when F is Archimedean and provide formulas for R^{-1} (here K-finiteness of \mathcal{C} plays a crucial role).

3.1.3 Motivation

Our interest in the operator R originates from the classical theory of automorphic forms. Let G denote the algebraic group SL_{2} and U (resp. U^{-}) the subgroup of strictly upper (resp. lower) triangular matrices and T the maximal torus of diagonal matrices. Let B denote the subgroup of upper triangular matrices. Then $G(F) / U(F)=F^{2} \backslash\{0\}$ and $G(F) / U^{-}(F)=$ $F^{2} \backslash\{0\}$. The operator R coincides with the (local) intertwining operator $R_{B}: \mathcal{C}_{B^{-},+} \rightarrow$ $\mathcal{C}_{B,-}$ defined in $\S 2.2 .6$. The spaces $\mathcal{C}_{ \pm}$also coincide with $\mathcal{C}_{B, \pm}$ as defined in $\S 2.2 .5$

While we work only with the local field F, one also has the global analog of R defined in Section 2.5. The global intertwining operator plays an important role in the theory of Eisenstein series and their constant terms [16, §3.7]. The constant terms of automorphic forms reside in the space $\mathcal{C}_{-}(G(\mathbb{A}) / T(F) U(\mathbb{A}))$, which makes it a natural space to study in this setting. The results of this chapter are used to prove invertibility of the global intertwining operator in [27]. This in turn gives explicit formulas for the bilinear form \mathcal{B} defined in Chapter 2 in the case $G=\mathrm{SL}(2)$ over any global field. These results may also be reinterpreted as explicit formulas for the distributions ξ_{P} defined in §2.2.7. In particular, they give definitions of ξ_{P} over an Archimedean local field, while ξ_{P} was a priori defined only over non-Archimedean local fields.

In the situation where F is a non-Archimedean local field, the operator R^{-1} is essentially the same as the 'Bernstein map' introduced in [10, Definition 5.3]; the precise relation between the two is explained in [10, Theorem 7.5]. The Bernstein map is also studied in [60] (there it is called the asymptotic map) in the more general context of spherical varieties.

In the real case, the Radon transform has been studied extensively by analysts ([33], [39], [40]) over slightly different function spaces.

3.1.4 Structure of the chapter

In $\S 3.2$ we define the subspaces $\mathcal{C}_{ \pm} \subset \mathcal{C}$ and recall the definition of the Radon transform over a general local field F.

In $\S 3.3$, we consider the case when F is non-Archimedean. We prove that R is invertible and give a formula for R^{-1} in Theorem 3.3.6. This is done by relating the Radon transform to the Fourier transform (§3.3.3-3.3.5). We deduce the previously known Radon inversion formula of Černov [20] from Theorem 3.3.6 in §3.3.6.

We consider the real case in $\S 3.4$. The formula for R^{-1} is given on each K-isotypic component of \mathcal{C}_{-}in Theorem 3.4.2 in terms of convolution with a distribution on $\mathbb{R}_{>0}$. The Mellin transform of this distribution is computed in Theorem 3.4.4. The proof of the theorems is in §3.4.6. The invertibility of R heavily relies on the K-finiteness assumption in the definition of \mathcal{C}. In $\S 3.4 .7$, we prove (Corollary 3.4.8) that the analog of R is not surjective when K-finiteness is dropped from the definitions.

In $\S 3.5$, the complex case is developed in the same way as the real case. The inversion formula is given in Theorem 3.5.2 and the reformulation using the Mellin transform is Theorem 3.5.4.

3.2 Recollections on the Radon transform

3.2.1 The norm on F^{n}

Let $|\cdot|$ denote the normalized absolute value on F when F is non-Archimedean and the usual absolute value ${ }^{1}$ when F is Archimedean. For $a \in F^{\times}$, set $v(a):=-\log |a|$. If F is non-Archimedean \log stands for $\log _{q}$, where q is the order of the residue field of F. If F is Archimedean, \log is understood as the natural logarithm.

We define a norm $\|\cdot\|$ on F^{n} as follows. If F is non-Archimedean, then $\|\cdot\|$ is the norm

[^11]induced by the standard lattice \mathcal{O}^{n} (i.e., $\|x\|$ is the maximum of the absolute values of the coordinates of $x \in F^{n}$). If F is Archimedean, then $\|\cdot\|$ is induced by the standard Euclidean/Hermitian inner product (i.e., the square root of the sum of the absolute values squared).

For $x \in F^{n} \backslash\{0\}$, set $v(x):=-\log \|x\|$.

3.2.2 The spaces $\mathfrak{C}, \mathfrak{C}_{c}, \mathfrak{C}_{ \pm}$

Let \mathcal{C} denote the space of K-finite C^{∞} functions on $F^{n} \backslash\{0\}$ (recall that if F is nonArchimedean, C^{∞} means locally constant). Let $\mathcal{C}_{c} \subset \mathcal{C}$ be the subspace of compactly supported functions on $F^{n} \backslash\{0\}$.

Given a real number N, let $\mathcal{C}_{\leq N} \subset \mathcal{C}$ denote the set of all functions $\varphi \in \mathcal{C}$ such that $\varphi(\xi) \neq 0$ only if $v(\xi) \leq N$. Similarly, we have $\mathcal{C}_{\geq N}, \mathcal{C}_{>N}$, and so on. Let \mathcal{C}_{-}denote the union of the subspaces $\mathcal{C}_{\leq N}$ for all N. Let \mathcal{C}_{+}denote the union of the subspaces $\mathcal{C}_{\geq N}$ for all N. Clearly $\mathcal{C}_{-} \cap \mathcal{C}_{+}=\mathcal{C}_{c}$ and $\mathcal{C}_{-}+\mathcal{C}_{+}=\mathcal{C}$.

3.2.3 Radon transform

Equip F with the following Haar measure: if F is non-Archimedean we require that mes $(\mathcal{O})=$ 1; if F is Archimedean we use the usual Lebesgue measure. Let the measure on F^{n} be the product of the measures on n copies of F. Fix the Haar measure on F^{\times}to be $d^{\times} t:=\frac{d t}{|t|}$.

Let $f \in \mathcal{C}_{+}$. The Radon transform $\mathcal{R} f(\xi, s)$, for $\xi \in F^{n} \backslash\{0\}$ and $t \in F^{\times}$, is defined by the formula

$$
\mathcal{R} f(\xi, t)=\int_{F^{n}} f(x) \delta(\xi \cdot x-t) d x
$$

where $\xi \cdot x=\xi_{1} x_{1}+\cdots+\xi_{n} x_{n}$ and δ is the delta distribution on F. The expression for $\mathcal{R} f(\xi, t)$ can also be written directly as

$$
\mathcal{R} f(\xi, t)=\int_{\xi \cdot x=t} f(x) d \mu_{\xi}
$$

where $d \mu_{\xi}$ is the measure on the hyperplane $\xi \cdot x=t$ such that $d \mu_{\xi} d t=d x$. We get an operator $R: \mathcal{C}_{+} \rightarrow \mathcal{C}_{-}$by setting

$$
\begin{equation*}
R f(\xi)=\int_{\xi \cdot x=1} f(x) d \mu_{\xi} \tag{3.1}
\end{equation*}
$$

Proposition 3.2.1. For any number N one has $R\left(\mathcal{C}_{\geq N}\right) \subset \mathcal{C}_{\leq-N}$.
Proof. Let $f \in \mathcal{C}_{\geq N}$ and $\xi \in F^{n} \backslash\{0\}$ with $v(\xi)>-N$. Then $\xi \cdot x=1$ implies $v(x)<N$, so $f(x)=0$. Therefore $R f \in \mathcal{C}_{\leq-N}$.

The natural action of G on $F^{n} \backslash\{0\}$ induces a G-action on \mathcal{C} by $(g \cdot f)(x):=f\left(g^{-1} x\right)$ for $g \in G, f \in \mathcal{C}, x \in F^{n} \backslash\{0\}$. Then

$$
\begin{equation*}
R(g \cdot f)=|\operatorname{det} g|^{d}\left(g^{T}\right)^{-1} R f \tag{3.2}
\end{equation*}
$$

for $f \in \mathcal{C}_{+}$and $g \in G$, where g^{T} is the transpose matrix, and $d=1$ if $F \neq \mathbb{C}$ and $d=2$ if $F=\mathbb{C}$ (i.e., $|\operatorname{det} g|^{d}$ is the normalized absolute value of $\operatorname{det} g$).

3.3 F non-Archimedean

In this section we consider the case when F is a non-Archimedean local field. Let \mathcal{O} the ring of integers, \mathfrak{p} the maximal ideal, ϖ a uniformizer, and \mathbb{F}_{q} the residue field of F.

The main result of this section is Theorem 3.3.6. In order to state the theorem, we must first define a new operator $A_{\beta}: \mathcal{C}_{-} \rightarrow \mathcal{C}_{+}$, which is done in $\S 3.3 .2$.

3.3.1 K-finite functions

The action of G on $F^{n} \backslash\{0\}$ is continuous and transitive. Since F is non-Archimedean, K is an open subgroup of G, and we have the following description of K-finite functions.

Lemma 3.3.1. A C^{∞} function φ on $F^{n} \backslash\{0\}$ is K-finite if and only if there exists an open subgroup $H \subset K$ such that $\varphi(h \xi)=\varphi(\xi)$ for all $h \in H$ and $\xi \in F^{n} \backslash\{0\}$.

Proof. Let W denote the span of the K translates of f. By assumption W is finite dimensional, and this implies that there exists a compact open subset X of $F^{n} \backslash\{0\}$ such that the restriction map $W \rightarrow C^{\infty}(X)$ is injective. Any locally constant function on X is fixed by an open subgroup of K, which proves the lemma.

One may sometimes wish to consider the group $\mathrm{SL}_{n}(F)$ rather than $\mathrm{GL}_{n}(F)$ acting on $F^{n} \backslash\{0\}$. The next lemma shows that this does not change the corresponding subspaces of invariant functions in \mathcal{C}.

Lemma 3.3.2. For an integer $r>0$, set $K_{r}:=\operatorname{ker}\left(\operatorname{GL}_{n}(\mathcal{O}) \rightarrow \operatorname{GL}_{n}\left(\mathcal{O} / \mathfrak{p}^{r}\right)\right)$. Then the following properties of a function φ on $F^{n} \backslash\{0\}$ are equivalent for $n \geq 2$:
(i) φ is stabilized by $K_{r} \cap \mathrm{SL}_{n}(F)$,
(ii) $\varphi\left(\xi^{\prime}\right)=\varphi(\xi)$ for $\xi, \xi^{\prime} \in F^{n} \backslash\{0\}$ satisfying $v\left(\xi^{\prime}-\xi\right) \geq v(\xi)+r$,
(iii) φ is stabilized by K_{r}.

Proof. Suppose that φ is stabilized by $K_{r} \cap G$. Take $\xi, \xi^{\prime} \in F^{n} \backslash\{0\}$ with $v\left(\xi^{\prime}-\xi\right) \geq v(\xi)+r$. We can find a basis v_{1}, \ldots, v_{n} of \mathcal{O}^{n} with $v_{1}=\varpi^{-v(\xi)} \xi$ and $v_{2}=\varpi^{-v\left(\xi^{\prime}-\xi\right)}\left(\xi^{\prime}-\xi\right)$. Let g send v_{1} to $v_{1}+\varpi^{v\left(\xi^{\prime}-\xi\right)-v(\xi)} v_{2}$ and v_{k} to v_{k} for $k>1$. Then $g \in K_{r} \cap G$ and $g \xi=\xi^{\prime}$. Thus $\varphi\left(\xi^{\prime}\right)=\varphi(\xi)$. This proves (i) implies (ii). The other implications are easy.

3.3.2 The operator $A_{\beta}: \mathcal{C}_{-} \rightarrow \mathcal{C}_{+}$

Let $\mathcal{S}_{b}^{\prime}(F)$ denote the space of distributions β on F such that for any open subgroup $U \subset$ \mathcal{O}^{\times}, the multiplicative U-average ${ }^{2} \beta_{U}$ has compact support and $\left\langle\beta_{U}, 1\right\rangle=0$. Note that if $\left\langle\beta_{U}, 1\right\rangle=0$ for some U, then it is true for all U.

We would like to define $A_{\beta}: \mathcal{C}_{-} \rightarrow \mathcal{C}_{+}$for $\beta \in \mathcal{S}_{b}^{\prime}(F)$ by

$$
\left(A_{\beta} \varphi\right)(x)=\int_{F^{n}} \beta(\xi \cdot x) \varphi(\xi) d \xi
$$

2. The multiplicative U-average β_{U} is defined by $\beta_{U}(t)=\frac{1}{\operatorname{mes}(U)} \int_{U} \beta(u t) d^{\times} u$.
but we must explain the meaning of the r.h.s.
Fix $\varphi \in \mathcal{C}_{-}$and $x \in F^{n} \backslash\{0\}$. For any open compact subgroup $\Lambda \subset F^{n}$ let

$$
I(\Lambda):=\int_{\Lambda} \beta(\xi \cdot x) \varphi(\xi) d \xi
$$

Lemma 3.3.3. There exists Λ such that $I\left(\Lambda^{\prime}\right)=I(\Lambda)$ for any Λ^{\prime} containing Λ.
Proof. Choose $\xi_{0} \in F^{n}$ such that $\xi_{0} \cdot x=1$ and $v\left(\xi_{0}\right)=-v(x)$. Then $F^{n}=F \xi_{0} \oplus H$ where H is the hyperplane $\{\xi \mid \xi \cdot x=0\}$. Lemma 3.3.1 implies that $\varphi \in \mathcal{C}_{-}$is fixed by the homothety actions of an open subgroup $U \subset \mathcal{O}^{\times}$. Therefore we can replace β by the multiplicative average β_{U}. Let $\mathfrak{p}^{i} \subset F$ be a fractional ideal containing the support of β_{U}. Lemma 3.3.2(ii) implies that $\varphi\left(s \xi_{0}+\xi\right)=\varphi(\xi)$ if $s \in \mathfrak{p}^{i}$ and $v(\xi) \leq v\left(\xi_{0}\right)+i-r$, where φ is stabilized by the congruence subgroup K_{r}. Put $a:=r-i$. Let $\Lambda:=\mathfrak{p}^{i} \xi_{0} \oplus\{\xi \in H \mid v(\xi) \geq-v(x)-a\}$.

Now suppose Λ^{\prime} is a subgroup containing Λ. Define $\Lambda^{\prime \prime}=\left\{\xi \in \Lambda^{\prime} \mid \xi \cdot x \in \mathfrak{p}^{i}\right\} \supset \Lambda$. Then $I\left(\Lambda^{\prime}\right)=I\left(\Lambda^{\prime \prime}\right)$ since \mathfrak{p}^{i} contains the support of β. Now $\Lambda^{\prime \prime}=\mathfrak{p}^{i} \xi_{0} \oplus\left(\Lambda^{\prime \prime} \cap H\right)$. Thus

$$
I\left(\Lambda^{\prime \prime}\right)-I(\Lambda)=\int_{\xi \in\left(\Lambda^{\prime \prime} \backslash \Lambda\right) \cap H} \int_{\mathfrak{p}^{i}} \beta_{U}(s) \varphi\left(s \xi_{0}+\xi\right)\left|\xi_{0}\right| d s d \mu_{x}
$$

Note that $\xi \in\left(\Lambda^{\prime \prime} \backslash \Lambda\right) \cap H$ satisfies $v(\xi)<-v(x)-a$ and hence $\varphi\left(s \xi_{0}+\xi\right)=\varphi(\xi)$. We conclude that $I\left(\Lambda^{\prime \prime}\right)=I(\Lambda)$ since $\left\langle\beta_{U}, 1\right\rangle=0$.

Put $\left(A_{\beta} \varphi\right)(x):=I(\Lambda)$ where Λ is as in Lemma 3.3.3.
Corollary 3.3.4. Let N be any number. If $\varphi \in \mathcal{C}_{\leq-N}$, then $A_{\beta} \varphi \in \mathcal{C}_{\geq N-a}$, where a is an integer depending only on β and the stabilizer of φ in G.

Proof. We use the notation from the proof of Lemma 3.3.3. Note that the choice of a is independent of $x \in F^{n} \backslash\{0\}$. It follows from our definition above and the proof of Lemma 3.3.3 that

$$
\left(A_{\beta} \varphi\right)(x)=\int_{v(\xi) \geq-v(x)-a}^{\xi \in H} \int_{\mathfrak{p}^{i}} \beta_{U}(t) \varphi\left(s \xi_{0}+\xi\right)\left|\xi_{0}\right| d s d \mu_{x}
$$

which is zero if $v(x)<N-a$.

Thus we have defined an operator $A_{\beta}: \mathcal{C}_{-} \rightarrow \mathcal{C}_{+}$.
Remark 3.3.5. For $\varphi \in \mathcal{C}_{-}$we have $A_{\beta}(g \varphi)=|\operatorname{det} g|\left(g^{T}\right)^{-1}\left(A_{\beta} \varphi\right)$ where g^{T} is the transpose. In other words, the operator $\mathcal{C}_{-} \rightarrow\left\{\right.$ measures on $\left.\left(F^{n}\right)^{*} \backslash\{0\}\right\}$ defined by $\varphi \mapsto\left(A_{\beta} \varphi\right) d x$ is equivariant with respect to the action of G.

The goal of this section is to prove the following.

Theorem 3.3.6. The operator $R: \mathcal{C}_{+} \rightarrow \mathcal{C}_{-}$is an isomorphism. The inverse of R is A_{β}, where β is the compactly supported distribution on F equal to

$$
\frac{1-q^{n-1}}{1-q^{-n}}\left(|s-1|^{-n}-|s|^{-n}\right)
$$

The distributions $|s-1|^{-n}$ and $|s|^{-n}$ are defined as in [34, Ch. 2, §2.3], i.e.,

$$
\left.\left.\langle | s\right|^{-n}, f\right\rangle=\int_{F}|s|^{-n}(f(s)-f(0)) d s
$$

for a test function $f \in C_{c}^{\infty}(F)$.
We prove Theorem 3.3.6 in §3.3.5.
Remark 3.3.7. Let β be as defined in Theorem 3.3.6. Then the integral of β along any compact open subset of F has value in $\mathbb{Z}\left[\frac{1}{q}\right]$. This is not true for the distribution $\frac{1-q^{n-1}}{1-q^{-n}}|s|^{-n}$.

3.3.3 Fourier transform

We assume without loss of generality that E contains all roots of unity. Choose a nontrivial additive character ψ of F which is trivial on \mathcal{O} but nontrivial on $\varpi^{-1} \mathcal{O}$. The Haar measure we chose for F is self-dual with respect to ψ. Note that $\psi \in \mathcal{S}_{b}^{\prime}(F)$. Define the Fourier transform $\mathcal{F}: \mathcal{C}_{-} \rightarrow \mathcal{C}_{+}$by

$$
\mathcal{F}:=A_{\psi} .
$$

On the other hand, we also have an operator $\mathcal{F}^{\prime}: \mathcal{C}_{+} \rightarrow \mathcal{C}_{-}$defined by

$$
\begin{equation*}
\mathcal{F}^{\prime} f(\xi)=\int_{F^{n}} f(x)(\psi(-\xi \cdot x)-1) d x \tag{3.3}
\end{equation*}
$$

Moreover for any number N, one observes that $\mathcal{F}^{\prime}\left(\mathcal{C}_{\geq N}\right) \subset \mathcal{C}_{<-N}$.

Proposition 3.3.8. The operators \mathcal{F} and \mathcal{F}^{\prime} are mutually inverse.

Proof. Proposition 3.2.1 and Corollary 3.3.4 imply that

$$
\mathcal{F} \mathcal{F}^{\prime}\left(\mathfrak{C}_{\geq N}\right) \subset \mathfrak{C}_{\geq N+a} \quad \text { and } \quad \mathcal{F}^{\prime} \mathcal{F}\left(\mathfrak{C}_{\leq-N}\right) \subset \mathfrak{C}_{\leq-N-a}
$$

on functions stabilized by K_{r} for a fixed $r>0$. As a consequence, it is enough to check the equalities $\mathcal{F F}^{\prime}=\mathrm{id}$ and $\mathcal{F}^{\prime} \mathcal{F}=\mathrm{id}$ on the subspace $\mathcal{C}_{c}=\mathcal{C}_{+} \cap \mathcal{C}_{-}$.

Let $f \in \mathcal{C}_{c}$. Then the usual Fourier transform \hat{f} is a compactly supported function on F^{n}. Note that $\mathcal{F}^{\prime} f(\xi)=\hat{f}(\xi)-\hat{f}(0)$. By the definition of \mathcal{F}, we have

$$
\mathcal{F}^{\prime} f(x)=\int_{\Lambda}(\hat{f}(\xi)-\hat{f}(0)) \psi(\xi \cdot x) d \xi
$$

for any sufficiently large open compact subgroup $\Lambda \subset F^{n}$. Since \hat{f} is compactly supported, the usual Fourier inversion formula implies that $\int_{\Lambda} \hat{f}(\xi) \psi(\xi \cdot x) d \xi=f(x)$ if Λ contains the support of \hat{f}. Since x is nonzero, $\int_{\Lambda} \psi(\xi \cdot x) d \xi=0$ for Λ large enough. Therefore $\mathcal{F} \mathcal{F}^{\prime} f=f$.

In the other direction, let $\varphi \in \mathfrak{C}_{c}$. Then $\mathcal{F} \varphi(x)=\hat{\varphi}(-x)$ is compactly supported on F^{n}. Again the Fourier inversion formula implies that

$$
\mathcal{F}^{\prime} \mathcal{F} \varphi(\xi)=\int_{F^{n}} \hat{\varphi}(x) \psi(-\xi \cdot x) d x-\int_{F^{n}} \hat{\varphi}(x) d x=\varphi(\xi)-\varphi(0)=\varphi(\xi)
$$

3.3.4 Actions on $\mathcal{C}_{ \pm}$

For any real number a, let $\mathcal{A}_{\leq a}$ be the space of generalized functions α on F^{\times}whose support is contained in $\left\{t \in F^{\times} \mid v(t) \leq a\right\}$. Let \mathcal{A}_{-}denote the union of all $\mathcal{A}_{\leq a}$ for all a. Then \mathcal{A}_{-} becomes an algebra under convolution using the measure $d^{\times} t$.

We have an action of \mathcal{A}_{-}on \mathcal{C}_{-}defined by

$$
(\alpha * \varphi)(\xi)=\int_{F^{\times}} \alpha(t) \varphi\left(t^{-1} \xi\right) d^{\times} t
$$

for $\alpha \in \mathcal{A}_{-}, \varphi \in \mathcal{C}_{-}$, and $\xi \in F^{n} \backslash\{0\}$. One similarly defines $\mathcal{A}_{\geq a}, \mathcal{A}_{+}$, and an action of \mathcal{A}_{+}on \mathcal{C}_{+}. There is an isomorphism $\sigma: \mathcal{A}_{\leq a} \rightarrow \mathcal{A}_{\geq-a}$ defined by

$$
\sigma(\alpha)(t)=\alpha\left(t^{-1}\right)|t|^{-n}
$$

We would like to define a multiplicative convolution action of \mathcal{A}_{+}on $\mathcal{S}_{b}^{\prime}(F)$ by

$$
(\widetilde{\alpha} * \beta)(s)=\int_{F^{\times}} \widetilde{\alpha}(t) \beta\left(t^{-1} s\right) d^{\times} t
$$

for $\widetilde{\alpha} \in \mathcal{A}_{+}$and $\beta \in \mathcal{S}_{b}^{\prime}(F)$, but we must explain the meaning of this formula as a distribution on F. Let $\mathcal{S}(F)$ denote the space of locally constant, compactly supported functions on F.

Lemma 3.3.9. Let $f \in \mathcal{S}(F)$ and $t \in F^{\times}$. Then $\int_{F} \beta\left(t^{-1} s\right) f(s) d s=0$ if $v(t)$ is sufficiently large.

Proof. Since $f \in \mathcal{S}(F)$, there exists an open subgroup $U \subset \mathcal{O}^{\times}$that stabilizes f under homotheties. Thus we can replace β by the multiplicative average β_{U}, which is compactly supported. Then $\int_{F} \beta\left(t^{-1} s\right) f(s) d s=|t| \int_{\operatorname{supp} \beta_{U}} \beta_{U}(s) f(t s) d s$. If $v(t)$ is large enough such that f is constant on $t\left(\operatorname{supp} \beta_{U}\right)$, the integral vanishes since $\left\langle\beta_{U}, 1\right\rangle=0$.

Define the distribution $\widetilde{\alpha} * \beta \in \mathcal{S}_{b}^{\prime}(F)$ by putting the value at $f \in \mathcal{S}(F)$ to be

$$
\langle\widetilde{\alpha} * \beta, f\rangle=\int_{F^{\times}} \widetilde{\alpha}(t)\left(\int_{F} \beta\left(t^{-1} s\right) f(s) d s\right) d^{\times} t
$$

which is well-defined by Lemma 3.3.9 and the fact that $\widetilde{\alpha} \in \mathcal{A}_{+}$.
Remark 3.3.10. Observe that $\mathcal{A}_{\leq a} * \mathcal{C}_{\leq N} \subset \mathcal{C}_{\leq N+a}$ and $\mathcal{A}_{\geq a} * \mathcal{C}_{\geq N} \subset \mathcal{C}_{\geq N+a}$ for any numbers a and N. Moreover if $\widetilde{\alpha} \in \mathcal{A}_{\geq a}$ and $\beta \in \mathcal{S}_{b}^{\prime}(F)$ has support contained in \mathfrak{p}^{i}, then the support of $\widetilde{\alpha} * \beta$ is contained in \mathfrak{p}^{a+i}.

Remark 3.3.11. The convolution action of \mathcal{A}_{+}on $\mathcal{S}_{b}^{\prime}(F)$ is indeed an action, i.e., $\widetilde{\alpha}_{1} *\left(\widetilde{\alpha}_{2} * \beta\right)=$ $\left(\widetilde{\alpha}_{1} * \widetilde{\alpha}_{2}\right) * \beta$ for $\widetilde{\alpha}_{1}, \widetilde{\alpha}_{2} \in \mathcal{A}_{+}$and $\beta \in S_{b}^{\prime}(F)$. One sees this by restricting β to F^{\times} and identifying \mathcal{A}_{+}with the space of distributions on F^{\times}with bounded support using the measure $d^{\times} t$.

Lemma 3.3.12. Let $\alpha \in \mathcal{A}_{-}, \beta \in \mathcal{S}_{b}^{\prime}(F)$, and $\varphi \in \mathcal{C}_{-}$. Then

$$
A_{\beta}(\alpha * \varphi)=\sigma(\alpha) * A_{\beta} \varphi=A_{\sigma(\alpha) * \beta}(\varphi)
$$

Proof. By Corollary 3.3.4 and Remark 3.3.10, we reduce to the case where $\alpha \in \mathcal{A}_{-} \cap \mathcal{A}_{+}$ and $\varphi \in \mathcal{C}_{c}$. Consequently, $\alpha * \varphi \in \mathcal{C}_{c}$. Fix $x \in F^{n} \backslash\{0\}$. We have

$$
A_{\beta}(\alpha * \varphi)(x)=\int_{F^{n}} \beta(\xi \cdot x) \int_{F^{\times}} \alpha(t) \varphi\left(t^{-1} \xi\right) d^{\times} t d \xi=\int_{F^{\times}} \alpha(t)|t|^{n} \int_{F^{n}} \beta(\xi \cdot t x) \varphi(\xi) d \xi d^{\times} t
$$

by a change of variables. Substituting t with t^{-1} in the last integral shows that $A_{\beta}(\alpha * \varphi)=$ $\sigma(\alpha) * A_{\beta} \varphi$. One observes that $\sigma(\alpha) * A_{\beta} \varphi=A_{\sigma(\alpha) * \beta}(\varphi)$ essentially by definition.

Remark 3.3.13. One easily checks that if $\alpha \in \mathcal{A}_{-}$and $f \in \mathcal{C}_{+}$, then $R(\sigma(\alpha) * f)=\alpha * R f$.

3.3.5 Relation between Radon and Fourier transforms

Note that \mathcal{F}^{\prime} and R are both operators $\mathcal{C}_{+} \rightarrow \mathcal{C}_{-}$. Comparing formulas (3.1) and (3.3), we deduce the formula

$$
\begin{equation*}
\mathcal{F}^{\prime} f=\alpha * R f \tag{3.4}
\end{equation*}
$$

where $f \in \mathcal{C}_{+}$and $\alpha(t):=\psi(-t)-1$ for $t \in F^{\times}$.
Let β be the distribution defined in Theorem 3.3.6.

Lemma 3.3.14. We have an equality of distributions

$$
\beta=\sigma(\alpha) * \psi
$$

Proof. Let $f \in \mathcal{S}(F)$. Then $\langle\sigma(\alpha) * \psi, f\rangle=\int_{F^{\times}}|t|^{n}(\psi(t)-1)\left(\int_{F} f(s) \psi(-t s) d s\right) d^{\times} t$. This is the value at f of the Fourier transform of $|t|^{n-1}(\psi(t)-1)$ considered as a distribution on F. It is well-known [34, Ch. 2, §2.5-6] that the Fourier transform of $|t|^{n-1}$ is $\frac{1-q^{n-1}}{1-q^{-n}}|s|^{-n}$. Therefore we conclude that $\sigma(\alpha) * \psi=\beta$.

Observe that $\mathcal{F}=A_{\psi}$ and A_{β} are both operators $\mathcal{C}_{-} \rightarrow \mathcal{C}_{+}$. Let $\varphi \in \mathcal{C}_{-}$. From Lemmas 3.3.12 and 3.3.14, we deduce the equality

$$
\begin{equation*}
A_{\beta} \varphi=\sigma(\alpha) * \mathcal{F} \varphi \tag{3.5}
\end{equation*}
$$

Proof of Theorem 3.3.6. We deduce from (3.4) and Proposition 3.3.8 that R has a left inverse sending $\varphi \in \mathcal{C}_{-}$to $\mathcal{F}(\alpha * \varphi)$. Lemma 3.3.12 and (3.5) together say that $\mathcal{F}(\alpha * \varphi)=A_{\beta} \varphi$. Applying R to (3.5) and using Remark 3.3.13, we see that $R A_{\beta}=\mathcal{F}^{\prime} \mathcal{F}=$ id. Therefore A_{β} is both left and right inverse to R.

3.3.6 Comparison with Černov's Radon inversion formula

Let f be a Schwartz (i.e., compactly supported C^{∞}) function on F^{n}. Recall that the Radon transform $\mathcal{R} f(\xi, s)$ is a C^{∞} function on $\left(F^{n} \backslash\{0\}\right) \times F$ (in particular it is defined at $s=0$), and $\mathcal{R} f(\xi, s)=0$ if $\|s \xi\|^{-1}$ is sufficiently large. The following "non-archimedean Cavalieri's condition" is also well-known:

Lemma 3.3.15. The integral $\int_{F} \mathcal{R} f(\xi, s) d s$ does not depend on ξ.

Proof. The integral of f over F^{n} along a pencil of parallel hyperplanes does not depend on the direction of the pencil.

It was previously known ([20, Theorem 5], [46, formula (8)]) that the following inversion formula holds:

$$
\begin{equation*}
\left.f(x)=\left.\frac{1-q^{n-1}}{\left(1-q^{-1}\right)\left(1-q^{-n}\right)} \int_{\|\eta\|=1}\langle | s\right|^{-n}, \mathcal{R} f(\eta, s+\eta \cdot x)\right\rangle d \eta \tag{3.6}
\end{equation*}
$$

where $x \in F^{n} \backslash\{0\}$ and η ranges over norm 1 vectors in F^{n}.
We will deduce formula (3.6) from Theorem 3.3.6. Since f is compactly supported on F^{n}, we have $f \in \mathcal{C}_{+}$and Theorem 3.3.6 implies that

$$
f(x)=A_{\beta} R f(x)=\int_{v(\xi) \geq N} \beta(\xi \cdot x) R f(\xi) d \xi
$$

for $x \in F^{n} \backslash\{0\}$ and N a sufficiently large number. We can write $\xi=t^{-1} \eta$ where $t \in F^{\times}$ and $\eta \in F^{n}$ with $\|\eta\|=1$. This gives the equality

$$
f(x)=\int_{v(t) \leq-N} \int_{\|\eta\|=1} \beta\left(t^{-1} \eta \cdot x\right) R f\left(t^{-1} \eta\right)|t|^{-n} d \eta d^{\times} t
$$

Homogeneity of $\mathcal{R} f$ implies that $|t|^{-1} R f\left(t^{-1} \eta\right)=\mathcal{R} f(\eta, t)$. Therefore we have the formula

$$
\begin{equation*}
f(x)=\frac{1-q^{n-1}}{\left(1-q^{-1}\right)\left(1-q^{-n}\right)} \int_{v(t) \leq-N} \int_{\|\eta\|=1}\left(|\eta \cdot x-t|^{-n}-|\eta \cdot x|^{-n}\right) \mathcal{R} f(\eta, t) d \eta d t . \tag{3.7}
\end{equation*}
$$

Choose $\eta_{0} \in F^{n}$ with $v\left(\eta_{0}\right)=-v(x)$ and $\eta_{0} \cdot x=1$. Then $\eta \cdot x-t=\left(\eta-t \eta_{0}\right) \cdot x$. Note that if $v(t)>v(x)$, then translation by $t \eta_{0}$ preserves the unit sphere of norm 1 vectors. Moreover smoothness of $\mathcal{R} f$ implies that $\mathcal{R} f\left(\eta+t \eta_{0}, t\right)=\mathcal{R} f(\eta, t)$ if $v(t)$ is sufficiently large. Therefore the inner integral of (3.7) is zero if $v(t)$ is sufficiently large. Thus we may integrate over all $t \in F$ and switch the order of integration.

Lemma 3.3.16. The integral $\int_{\|\eta\|=1}|\eta \cdot x|^{-n} d \eta$ equals zero.

Proof. Using the G-action, we may assume that $x=(1,0, \ldots, 0)$. Then $\eta \cdot x=\eta_{1}$, the first coordinate of η. One sees that $\int_{\|\eta\|=1}\left|\eta_{1}\right|^{-n} d \eta=\left(1-q^{-1}\right)+\int_{\mathfrak{p}}\left|\eta_{1}\right|^{-n} d \eta_{1}\left(1-q^{1-n}\right)$. A simple calculation shows that the latter expression vanishes.

Lemmas 3.3.15 and 3.3.16 imply that $\int_{\|\eta\|=1}|\eta \cdot x|^{-n} \int_{F} \mathcal{R} f(\eta, t) d t d \eta=0$, so the $|\eta \cdot x|^{-n}$ term in (3.7) vanishes. After a change of variables $s=t-\eta \cdot x$, the formula (3.7) becomes equal to Černov's formula (3.6).

$3.4 \quad F$ real

In this section we prove the invertibility of R when $F=\mathbb{R}$. Recall that in this case $K=$ $O(n)$. The inversion formula is given in Theorem 3.4.2, and a reformulation using the Mellin transform is given in Theorem 3.4.4. The K-finiteness of \mathcal{C} plays a crucial role in the proofs, so we begin by recalling the classification of the K-isotypic components of \mathcal{C}.

The non- K-finite situation is considered in $\S 3.4 .7$.

3.4.1 Spherical harmonics

Let S^{n-1} denote the unit sphere centered at the origin in \mathbb{R}^{n}, which has a natural action by $O(n)$. Let $\mathcal{C}\left(S^{n-1}\right)$ be the space of smooth K-finite functions on S^{n-1}. For a nonnegative integer k, let H^{k} denote the space of harmonic polynomials on \mathbb{R}^{n} of degree k.

Theorem 3.4.1 ([39, Theorem I.3.1], [42, Theorem 3.1], [47]). Let $H^{k} \mid S^{n-1}$ denote the space of harmonic polynomials restricted to S^{n-1}. Then
(i) the restriction map $H^{k} \rightarrow H^{k} \mid S^{n-1}$ is an isomorphism,
(ii) $\mathcal{C}\left(S^{n-1}\right)=\bigoplus_{k \geq 0} H^{k} \mid S^{n-1}$ as $O(n)$-representations,
(iii) the $O(n)$-representations H^{k} are irreducible and not isomorphic to each other.

3.4.2 Decomposing \mathcal{C} into K-isotypes

We have a decomposition $\mathbb{R}^{n} \backslash\{0\}=\mathbb{R}_{>0} \times S^{n-1}$, with $O(n)$ acting on the S^{n-1} component. Let $\mathcal{C}\left(\mathbb{R}_{>0}\right)$ denote the space of smooth functions on $\mathbb{R}_{>0}$ and define the subspaces $\mathcal{C}_{ \pm}\left(\mathbb{R}_{>0}\right), \mathcal{C}_{c}\left(\mathbb{R}_{>0}\right)$ as in $\S 3.2 .2$.

Theorem 3.4.1 implies that there is a decomposition

$$
\mathcal{C}=\bigoplus_{k \geq 0} \mathcal{C}\left(\mathbb{R}_{>0}\right) \otimes H^{k}
$$

For $u \in \mathcal{C}\left(\mathbb{R}_{>0}\right)$ and $Y \in H^{k}$, we define $u \otimes Y \in \mathcal{C}$ by $(u \otimes Y)(x):=u(|x|) \cdot Y\left(\frac{x}{|x|}\right)$.

3.4.3 Radon inversion formula

We have an isomorphism Inv: $\mathcal{C}_{-} \rightarrow \mathcal{C}_{+}$defined by

$$
(\operatorname{Inv} \varphi)(x)=\|x\|^{-n} \varphi\left(\frac{x}{\|x\|^{2}}\right)
$$

Set $\widetilde{R}:=\operatorname{Inv}^{-1} \circ R$. Consider $\mathbb{R}_{>0}$ as a subgroup of diagonal matrices in G. Then it follows from (3.2) that \widetilde{R} is a $K \times \mathbb{R}_{>0}$ equivariant operator from \mathcal{C}_{+}to \mathcal{C}_{+}.

Let A denote the space of distributions on $\mathbb{R}_{>0}$ supported on $(0,1]$. Then A is an algebra under the convolution product $*$ induced by the multiplication operation on $\mathbb{R}_{>0}$. The action of $\mathbb{R}_{>0}$ on \mathcal{C}_{+}induces an action of A.

Theorem 3.4.2. The operator $R: \mathcal{C}_{+} \rightarrow \mathcal{C}_{-}$is an isomorphism. For $\varphi \in \mathcal{C}_{-}\left(\mathbb{R}_{>0}\right) \otimes H^{k}$, the inverse $R^{-1}: \mathcal{C}_{-} \rightarrow \mathcal{C}_{+}$is given by the formula

$$
R^{-1} \varphi=\beta_{k} * \operatorname{Inv}(\varphi)
$$

where β_{k} is the distribution on $\mathbb{R}_{>0}$ defined by

$$
\begin{equation*}
\beta_{k}(t)=\frac{1}{2^{n+k-2} \pi^{\frac{n-1}{2}} \Gamma\left(\frac{n+2 k-1}{2}\right)} t^{k-1}\left(-\frac{d}{d t}\right)^{n+k-1}\left(t^{-k+1}\left(1-t^{2}\right)_{+}^{\frac{n+2 k-3}{2}}\right) d t \tag{3.8}
\end{equation*}
$$

The derivative $\frac{d}{d t}$ is applied in the sense of generalized functions. For $\lambda \in \mathbb{C}$ with $\operatorname{Re}(\lambda)>-1$, the generalized function $(1-t)_{+}^{\lambda}$ is defined by $\left\langle(1-t)_{+}^{\lambda}, f_{0}(t) d t\right\rangle=\int_{0}^{1}(1-t)^{\lambda} f_{0}(t) d t$ for $f_{0} \in \mathcal{C}_{C}\left(\mathbb{R}_{>0}\right)$. This generalized function can be analytically continued to all $\lambda \in \mathbb{C}$ not equal to a negative integer [35, §I.3.2]. We define $\left(1-t^{2}\right)_{+}^{\lambda}=(1+t)^{\lambda} \cdot(1-t)_{+}^{\lambda}$.

Corollary 3.4.3. For any number N one has $R^{-1}\left(\mathcal{C}_{\leq-N}\right) \subset \mathcal{C}_{\geq N}$.

Proof. Observe that β_{k} is supported on $(0,1]$ for all k.

3.4.4 A formula for \widetilde{R} in terms of convolution

For $t \in(-1,1)$, define $A_{t}: \mathcal{C}\left(S^{n-1}\right) \rightarrow \mathcal{C}\left(S^{n-1}\right)$ such that $\left(A_{t} f\right)(x)$ is the average value of f on the $(n-2)$-sphere $\left\{\omega \in S^{n-1} \mid \omega \cdot x=t\right\}$. Then A_{t} is $O(n)$-equivariant, so by Schur's lemma it acts on $H^{k} \mid S^{n-1}$ by a scalar $a_{k}(t)$. Since H^{k} is stable under complex conjugation, $a_{k}(t)$ is real valued. One observes that a_{k} is a smooth function on $(-1,1),\left|a_{k}(t)\right| \leq 1$ for all $t \in(-1,1)$, and $\lim _{t \rightarrow 1} a_{k}(t)=1$.

Suppose that $f \in \mathcal{C}\left(\mathbb{R}_{>0}\right) \otimes H^{k}$ and there exists $C>0$ and $\sigma>n-1$ such that $|f(x)| \leq C\|x\|^{-\sigma}$ for all x with $\|x\| \geq 1$. Since the intersection of S^{n-1} with the hyperplane $\{\omega \mid \omega \cdot x=t\}$ has radius $\left(1-t^{2}\right)^{1 / 2}$ for a unit vector x, we deduce that

$$
\begin{equation*}
\widetilde{R} f=\alpha_{k} * f \tag{3.9}
\end{equation*}
$$

where α_{k} is the measure $\operatorname{mes}\left(S^{n-2}\right) \cdot t^{-n} \cdot a_{k}(t)\left(1-t^{2}\right)^{\frac{n-3}{2}} d t$ on the interval $(0,1)$ extended by zero to the whole $\mathbb{R}_{>0}$. The convolution $\alpha_{k} * f$ is well-defined because of the bound on $|f(x)|$, and $\operatorname{mes}\left(S^{n-2}\right)$ denotes the surface area of the $(n-2)$-sphere. In fact, [33, Proposition 2.11] says that $a_{k}(t)$ is the scalar multiple of the Gegenbauer polynomial $C_{k}^{\left(\frac{n-2}{2}\right)}(t)$ normalized by $a_{k}(1)=1$.

The Mellin transform $\mathfrak{M} \alpha_{k}$ is defined for $s \in \mathbb{C}$ by integrating t^{s} against α_{k} if $\operatorname{Re}(s)>$ $n-1$.

Theorem 3.4.4. The distribution α_{k} is invertible in A. The inverse β_{k} is defined by (3.8). The Mellin transforms are given by

$$
\begin{equation*}
\mathfrak{M} \beta_{k}(s)=\frac{1}{\mathfrak{M} \alpha_{k}(s)}=2^{1-n-k} \pi^{\frac{1-n}{2}} \frac{\Gamma(s+k)}{\Gamma(s-n+1)} \cdot \frac{\Gamma\left(\frac{s-n-k}{2}+1\right)}{\Gamma\left(\frac{s+k+1}{2}\right)} . \tag{3.10}
\end{equation*}
$$

Theorem 3.4.4 implies Theorem 3.4.2.

3.4.5 Relation to Fourier transform

Let $\mathcal{S}\left(\mathbb{R}^{n}\right)$ denote the space of Schwartz functions on \mathbb{R}^{n} and $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ the dual space of tempered distributions on \mathbb{R}^{n}. The Fourier transform is defined for an integrable function f on \mathbb{R}^{n} by

$$
\mathcal{F} f(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i \xi \cdot x} d x
$$

This definition can be extended $[66, \S 1.3]$ to the space of tempered distributions. After this extension, \mathcal{F} becomes an isomorphism $\mathcal{F}: \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$.

Let $F: \mathcal{S}^{\prime}(\mathbb{R}) \rightarrow \mathcal{S}^{\prime}(\mathbb{R})$ denote the 1-dimensional Fourier transform. For $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, one gets the Fourier transform from the Radon transform by

$$
\begin{equation*}
\mathcal{F} f(r \omega)=F(\mathcal{R} f(\omega, t))(r) \tag{3.11}
\end{equation*}
$$

where F is the Fourier transform with respect to the t variable, $r \in \mathbb{R}$, and $\omega \in S^{n-1}$ is a
unit vector.
Lemma 3.4.5. Let f be a locally integrable function on \mathbb{R}^{n} for which there exist $C>0$ and $\sigma>n-1$ such that $|f(x)| \leq C\|x\|^{-\sigma}$ for all x with $\|x\| \geq 1$. Then:
(i) $\mathcal{R} f$ is a locally integrable function on $S^{n-1} \times \mathbb{R}$.
(ii) $\mathcal{R} f(\omega, t)$ is bounded for $|t| \geq 1$.
(iii) The right hand side of (3.11) is well-defined as a generalized function on $\mathbb{R} \times S^{n-1}$.
(iv) Equation (3.11) holds as an equality between generalized functions on $\mathbb{R}_{>0} \times S^{n-1}$.

Proof. Since $\mathcal{R} f$ is defined by integrating f on a hyperplane of dimension $n-1$, the bound on $|f(x)|$ implies that $\mathcal{R} f$ is well-defined on $S^{n-1} \times \mathbb{R}$. One also uses this bound and local integrability of f to deduce that $\mathcal{R} f$ is locally integrable. If $\omega \in S^{n-1}$ and $t \in \mathbb{R}$ with $|t| \geq 1$, then integrating in the radial direction on the hyperplane $\omega \cdot x=t$, we see that $|\mathcal{R} f(\omega, t)|$ is bounded by a constant times $\int_{0}^{\infty}\left(r^{2}+t^{2}\right)^{-\sigma / 2} r^{n-2} d r$, which is equal to a constant times $|t|^{n-1-\sigma}$. This proves (ii). Property (iii) follows immediately from properties (i)-(ii).

Let φ be a compactly supported smooth function on $\mathbb{R}^{n} \backslash\{0\}=\mathbb{R}_{>0} \times S^{n-1}$. Consider f as a tempered distribution on \mathbb{R}^{n}. By the definition of $\mathcal{F} f$,

$$
\begin{equation*}
\int_{\mathbb{R}_{>0} \times S^{n-1}} \mathcal{F} f(r \omega) \varphi(r \omega) r^{n-1} d r d \omega=\int_{\mathbb{R}^{n}} f(x) \int_{\mathbb{R}_{>0} \times S^{n-1}} \varphi(r \omega) e^{-2 \pi i r(\omega \cdot x)} r^{n-1} d r d \omega d x \tag{3.12}
\end{equation*}
$$

Since $t \mapsto \int_{\mathbb{R}_{>0}} \varphi(r \omega) e^{-2 \pi i r t} r^{n-1} d r$ is a Schwartz function on \mathbb{R}, we deduce from the decomposition $d x=d \mu_{\omega} d t$ and property (ii) applied to $|f|$ that the integral

$$
\int_{S^{n-1}} \int_{\mathbb{R}^{n}}\left|f(x) \int_{\mathbb{R}_{>0}} \varphi(r \omega) e^{-2 \pi i r(\omega \cdot x)} r^{n-1} d r\right| d x d \omega
$$

converges. Then the Fubini-Tonelli theorem implies that (3.12) is equal to

$$
\int_{S^{n-1}} \int_{\mathbb{R}} \int_{\mathbb{R}_{>0}} \mathcal{R} f(\omega, t) e^{-2 \pi i r t} \varphi(r \omega) r^{n-1} d r d t d \omega
$$

which proves (iv).

3.4.6 Proof of Theorem 3.4.4

Let $Y \in H^{k}$ and define $f(x)=\|x\|^{-s} \cdot Y\left(\frac{x}{\|x\|}\right)$ for $s \in \mathbb{C}$. If $n-1<\operatorname{Re}(s)<n$, then f is locally integrable on \mathbb{R}^{n} and satisfies the hypothesis of Lemma 3.4.5. Moreover by (3.9) and homogeneity of f we see that

$$
\mathcal{R} f(\omega, t)=\operatorname{sgn}(t)^{k}|t|^{n-1-s} R f(\omega)=\operatorname{sgn}(t)^{k}|t|^{n-1-s} \mathfrak{M} \alpha_{k}(s) Y(\omega)
$$

as a locally integrable function on $S^{n-1} \times \mathbb{R}$. Then Lemma 3.4.5 implies that

$$
\mathcal{F} f(r \omega)=F\left(\operatorname{sgn}(t)^{k}|t|^{n-1-s}\right)(r) \mathfrak{M} \alpha_{k}(s) Y(\omega) .
$$

It is well-known $[35, \S I I .2 .3]$ that

$$
F\left(\operatorname{sgn}(t)^{k}|t|^{n-1-s}\right)(r)=i^{k}(2 \pi)^{s-n+1} \frac{\sin \left(\pi \frac{(s-n-k+1)}{2}\right)}{\pi} \Gamma(n-s) \operatorname{sgn}(r)^{k}|r|^{s-n} .
$$

On the other hand, one can compute the Fourier transform of f directly:

Theorem 3.4.6 ([66, Theorem IV.4.1]). If $0<\operatorname{Re}(s)<n$, then $\mathcal{F} f(x)=\gamma\|x\|^{s-n} Y\left(\frac{x}{\|x\|}\right)$, where $\gamma=i^{-k} \pi^{s-\frac{n}{2}} \Gamma\left(\frac{n+k-s}{2}\right) / \Gamma\left(\frac{s+k}{2}\right)$.

Comparing constant multiples in the two formulas for $\mathcal{F} f$ above and applying Euler's reflection formula, we have

$$
\mathfrak{M} \alpha_{k}(s)=2^{n-1-s} \pi^{n / 2-1} \frac{\Gamma\left(\frac{n+k-s}{2}\right) \Gamma\left(\frac{s-n-k+1}{2}\right) \Gamma\left(\frac{n+k+1-s}{2}\right)}{\Gamma\left(\frac{s+k}{2}\right) \Gamma(n-s)}
$$

for $n-1<\operatorname{Re}(s)<n$. By analytic continuation, we deduce the equality for all $s \in \mathbb{C}$ away from poles. The duplication formula for the Γ-function implies that

$$
\begin{equation*}
\mathfrak{M} \alpha_{k}(s)=2^{n+k-1} \pi^{\frac{n-1}{2}} \frac{\Gamma(s-n+1)}{\Gamma(s+k)} \cdot \frac{\Gamma\left(\frac{s+k+1}{2}\right)}{\Gamma\left(\frac{s-n-k}{2}+1\right)}, \tag{3.13}
\end{equation*}
$$

as stated in Theorem 3.4.4. To finish the proof of Theorem 3.4.4, it remains to show that $\left(\mathfrak{M} \beta_{k}\right)^{-1}$ equals the right hand side of (3.13). By considering the Beta function we see that $\Gamma\left(\frac{s-n-k}{2}+1\right) / \Gamma\left(\frac{s+k+1}{2}\right)$ is the Mellin transform of $\nu(t) d t$, where

$$
\begin{equation*}
\nu(t)=\frac{2}{\Gamma\left(\frac{n+2 k-1}{2}\right)} t^{1-n-k}\left(1-t^{2}\right)_{+}^{\frac{n+2 k-3}{2}} \tag{3.14}
\end{equation*}
$$

The generalized function $\left(1-t^{2}\right)_{+}^{\frac{n+2 k-3}{2}}$ is defined in the paragraph after Theorem 3.4.2. Multiplying the right hand side of (3.14) by $\Gamma(s+k) / \Gamma(s-n+1)=(s-n+1) \cdots(s+k-1)$ amounts to replacing ν by $L_{k}(\nu)$, where $L_{k}:=\left(-\frac{d}{d t} \cdot t-n+1\right) \cdots\left(-\frac{d}{d t} \cdot t+k-1\right)$. Observe that $L_{k}=t^{k-1}\left(-\frac{d}{d t}\right)^{n+k-1} t^{n}$. Therefore $\mathfrak{M} \beta_{k}=\left(\mathfrak{M} \alpha_{k}\right)^{-1}$, where β_{k} is defined by (3.8). This proves Theorem 3.4.4.

In the case $n=2$, the formula (3.13) is well-known (cf. [68, Lemma 7.17], [16, Proposition 2.6.3]).

3.4.7 The non-K-finite situation

In this subsection we consider the situation where we remove K-finiteness from the definitions of \mathcal{C}_{+}and \mathcal{C}_{-}. Let \mathscr{C}_{+}be the space of smooth functions on $\mathbb{R}^{n} \backslash\{0\}$ with bounded support, and let \mathscr{C}_{-}be the space of smooth functions on $\left(\mathbb{R}^{n}\right)^{*} \backslash\{0\}$ supported away from a neighborhood of 0 .

We have the operator $\mathscr{R}: \mathscr{C}_{+} \rightarrow \mathscr{C}_{-}$defined by

$$
\mathscr{R} f(\xi)=\int_{\langle\xi, x\rangle=1} f(x) d \mu_{\xi}
$$

(cf. formula (3.1)). One can deduce that \mathscr{R} is injective from the injectivity of $R: \mathcal{C}_{+} \rightarrow \mathcal{C}_{-}$. However we will show below that \mathscr{R} is not surjective, and hence not an isomorphism.

Let $f \in \mathscr{C}_{+}$. Define $C_{f}=\operatorname{supp}(f) \cup\{0\}$, which is a compact subset of \mathbb{R}^{n}. Let \widehat{C}_{f} denote its convex hull.

Let $C \subset \mathbb{R}^{n}$ be a convex set containing 0 . Define $C^{*} \subset\left(\mathbb{R}^{n}\right)^{*}$ to be the set of ξ such that the hyperplane $\langle\xi, x\rangle=1$ is disjoint from C. By convexity,

$$
C^{*}=\{\xi \mid\langle\xi, x\rangle<1 \text { for all } x \in C\} .
$$

Observe that C^{*} is a convex set ${ }^{3}$ containing 0 . If $\check{C} \subset\left(\mathbb{R}^{n}\right)^{*}$ is a convex set containing 0 , one similarly defines the dual $\check{C}^{*} \subset \mathbb{R}^{n}$. Taking duals gives mutually inverse maps between the collection of compact convex subsets of \mathbb{R}^{n} containing 0 and the collection of open convex subsets of $\left(\mathbb{R}^{n}\right)^{*}$ containing 0 .

Proposition 3.4.7. The connected component of $\left(\mathbb{R}^{n}\right)^{*} \backslash \operatorname{supp}(\mathscr{R} f)$ containing 0 is equal to $\left(\widehat{C}_{f}\right)^{*}$. In particular, it is convex.

Corollary 3.4.8. The operator $\mathscr{R}: \mathscr{C}_{+} \rightarrow \mathscr{C}_{-}$is not surjective.

Lemma 3.4.9. Let $\xi_{0} \in\left(\mathbb{R}^{n}\right)^{*} \backslash\{0\}$. If $\mathscr{R} f$ vanishes on a neighborhood of the segment $\left[0, \xi_{0}\right]:=\left\{t \xi_{0} \mid 0 \leq t \leq 1\right\}$, then f vanishes on the half-space $\left\langle\xi_{0}, x\right\rangle \geq 1$.

Proof. By replacing f by a compactly supported function that is equal to f outside of a small neighborhood of 0 , we may assume that f is compactly supported. There exists an open convex neighborhood \check{C} of $\left[0, \xi_{0}\right]$ such that $\mathscr{R} f$ vanishes on \check{C}. Then $C=\check{C}^{*}$ is a compact convex subset of \mathbb{R}^{n} and $C^{*}=\check{C}$, so the integral of f along any hyperplane disjoint from C vanishes. Therefore [40, Corollary 2.8] implies that supp $f \subset C$. Since $\xi_{0} \in \check{C}$, one sees that C is contained in the half-space $\left\langle\xi_{0}, x\right\rangle<1$.

We have the support function $H:\left(\mathbb{R}^{n}\right)^{*} \rightarrow \mathbb{R}$ associated to C_{f}, which is defined by

$$
H(\xi)=\sup \left\{\langle\xi, x\rangle \mid x \in C_{f}\right\} .
$$

[^12]For $\xi \neq 0$, the set $\{x \mid\langle\xi, x\rangle=H(\xi)\}$ is a supporting hyperplane of \widehat{C}_{f}. The function H uniquely determines the compact convex set \widehat{C}_{f}, and $\left(\widehat{C}_{f}\right)^{*}=H^{-1}\left(\mathbb{R}_{<1}\right)$.

Proof of Proposition 3.4.7. It is clear that $H^{-1}\left(\mathbb{R}_{<1}\right)$ is an open subset of $\left(\mathbb{R}^{n}\right)^{*} \backslash \operatorname{supp}(\mathscr{R} f)$. Note that since $\operatorname{supp}(\mathscr{R} f)$ is closed, Lemma 3.4.9 implies that if $H(\xi)=1$ then $\xi \in$ $\operatorname{supp}(\mathscr{R} f)$. Thus $\left(\widehat{C}_{f}\right)^{*}=H^{-1}\left(\mathbb{R}_{<1}\right)$ is also closed in $\left(\mathbb{R}^{n}\right)^{*} \backslash \operatorname{supp}(\mathscr{R} f)$.

3.5 F complex

In this section we prove the invertibility of R when $F=\mathbb{C}$. Recall that in this case $K=$ $U(n)$. The inversion formula is given in Theorem 3.5.2, and a reformulation using the Mellin transform is given in Theorem 3.5.4. The K-finiteness of \mathcal{C} plays a crucial role in the proofs, so we begin by recalling the classification of the K-isotypic components of \mathcal{C}.

3.5.1 Spherical harmonics

Let $S^{2 n-1}$ denote unit sphere of norm 1 vectors in $\mathbb{C}^{n}=\mathbb{R}^{2 n}$, which has a natural action by $U(n)$. Let $\mathcal{C}\left(S^{2 n-1}\right)$ be the space of smooth K-finite functions on $S^{2 n-1}$. For nonnegative integers p, q, let $H^{p, q}$ denote the homogeneous polynomials of degree $p+q$ on $\mathbb{R}^{2 n}$ that are harmonic and satisfy

$$
Y\left(\lambda z_{1}, \ldots, \lambda z_{n}\right)=\lambda^{p} \bar{\lambda}^{q} Y\left(z_{1}, \ldots, z_{n}\right)
$$

for $\lambda \in \mathbb{C},\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}=\mathbb{R}^{2 n}$.

Theorem 3.5.1 ([42, Theorem 3.1], [47]). Let $H^{p, q} \mid S^{2 n-1}$ denote the space of harmonic polynomials restricted to $S^{2 n-1}$. Then
(i) $\mathcal{C}\left(S^{2 n-1}\right)=\bigoplus_{p, q \geq 0} H^{p, q} \mid S^{2 n-1}$ as $U(n)$-representations,
(ii) the $U(n)$-representations $H^{p, q}$ are irreducible and not isomorphic to each other.

3.5.2 Decomposing \mathcal{C} into K-isotypes

We have a decomposition $\mathbb{C}^{n} \backslash\{0\}=\mathbb{R}_{>0} \times S^{2 n-1}$, with $O(2 n)$ (and hence $\left.U(n)\right)$ acting on the $S^{2 n-1}$ component. Let $\mathcal{C}\left(\mathbb{R}_{>0}\right)$ denote the space of smooth functions on $\mathbb{R}_{>0}$ and define the subspaces $\mathcal{C}_{ \pm}\left(\mathbb{R}_{>0}\right), \mathcal{C}_{c}\left(\mathbb{R}_{>0}\right)$ as in $\S 3.2 .2$.

Theorem 3.5.1 implies that there is a decomposition

$$
\mathcal{C}=\bigoplus_{p, q \geq 0} \mathcal{C}\left(\mathbb{R}_{>0}\right) \otimes H^{p, q}
$$

For $u \in \mathcal{C}\left(\mathbb{R}_{>0}\right)$ and $Y \in H^{p, q}$, we define $u \otimes Y \in \mathcal{C}$ by $(u \otimes Y)(x):=u(\|x\|) \cdot Y\left(\frac{x}{\|x\|}\right)$.

3.5.3 Radon inversion formula

We have an isomorphism Inv: $\mathcal{C}_{-} \rightarrow \mathcal{C}_{+}$defined by

$$
(\operatorname{Inv} \varphi)(x)=\|x\|^{-2 n} \varphi\left(\frac{\bar{x}}{\|x\|^{2}}\right)
$$

where \bar{x} is coordinate-wise conjugation. Set $\widetilde{R}:=\operatorname{Inv}^{-1} \circ M$. Consider $\mathbb{R}_{>0}$ as a subgroup of diagonal matrices in G. Then it follows from (3.2) that \widetilde{R} is a $K \times \mathbb{R}_{>0}$ equivariant operator from \mathcal{C}_{+}to \mathcal{C}_{+}.

Let A be the space of distributions on $\mathbb{R}_{>0}$ supported on (0,1$]$ (see $\S 3.4 .3$). The action of $\mathbb{R}_{>0}$ on \mathcal{C}_{+}induces an action of A.

Theorem 3.5.2. The operator $R: \mathcal{C}_{+} \rightarrow \mathcal{C}_{-}$is an isomorphism. For $\varphi \in \mathcal{C}_{-}\left(\mathbb{R}_{>0}\right) \otimes H^{p, q}$, the inverse $R^{-1}: \mathcal{C}_{-} \rightarrow \mathcal{C}_{+}$is given by the formula

$$
R^{-1} \varphi=\beta_{p, q} * \operatorname{Inv}(\varphi)
$$

where $\beta_{p, q}$ is the distribution on $\mathbb{R}_{>0}$ defined by

$$
\begin{equation*}
\beta_{p, q}(t)=\frac{1}{2^{n+m-2} \pi^{n-1} \Gamma(m)} \prod_{j=1}^{n+m-1}\left(-\frac{d}{d t} \cdot t+p+q-2 j\right)\left(t^{-p-q-2 n+1}\left(1-t^{2}\right)_{+}^{m-1}\right) d t \tag{3.15}
\end{equation*}
$$

where $m=\min (p, q)$.

The derivative $\frac{d}{d t}$ is applied in the sense of generalized functions. The generalized function $\left(1-t^{2}\right)_{+}^{\lambda}$ is defined by analytic continuation for $\lambda \in \mathbb{C}$ (see the paragraph following the statement of Theorem 3.4.2). In particular, the regularization of $\frac{2}{\Gamma(m)}\left(1-t^{2}\right)_{+}^{m-1} d t$ at $m=0$ is equal to $\delta(1-t)$.

Corollary 3.5.3. For any number N one has $R^{-1}\left(\mathcal{C}_{\leq-N}\right) \subset \mathcal{C}_{\geq N}$.

Proof. Observe that $\beta_{p, q}$ is supported on $(0,1]$ for all p, q.

3.5.4 A formula for \widetilde{R} in terms of convolution

We consider the dot product on $S^{2 n-1} \subset \mathbb{C}^{n}$ induced by the dot product on \mathbb{C}^{n}. For $t \in(-1,1)$, define $A_{t}: \mathcal{C}\left(S^{2 n-1}\right) \rightarrow \mathcal{C}\left(S^{2 n-1}\right)$ such that $\left(A_{t} f\right)(x)$ is the average value of f on the $(2 n-3)$-sphere $\left\{\omega \in S^{2 n-1} \mid \omega \cdot \bar{x}=t\right\}$. Then A_{t} is $U(n)$-equivariant, so by Schur's lemma it acts on $H^{p, q} \mid S^{2 n-1}$ by a scalar $a_{p, q}(t)$. One observes that $a_{p, q}$ is a smooth function on $(-1,1),\left|a_{p, q}(t)\right| \leq 1$ for all $t \in(-1,1)$, and $\lim _{t \rightarrow 1} a_{p, q}(t)=1$.

Suppose that $f \in \mathcal{C}\left(\mathbb{R}_{>0}\right) \otimes H^{p, q}$ and there exist $C>0$ and $\sigma>n-1$ such that $|f(x)| \leq C\|x\|^{-2 \sigma}$ for all x with $\|x\| \geq 1$. One can deduce as in the real case that

$$
\begin{equation*}
\widetilde{R} f=\alpha_{p, q} * f \tag{3.16}
\end{equation*}
$$

where $\alpha_{p, q}$ is the measure $\operatorname{mes}\left(S^{2 n-3}\right) \cdot t^{1-2 n} \cdot a_{p, q}(t)\left(1-t^{2}\right)^{n-2} d t$ on the interval $(0,1)$ extended by zero to the whole $\mathbb{R}_{>0}$. The convolution $\alpha_{p, q} * f$ is well-defined due to the bound on $|f(x)|$, and $\operatorname{mes}\left(S^{2 n-3}\right)$ denotes the surface area of the $(2 n-3)$-sphere. By considering
zonal spherical functions, one can check [69, Lemma 1.2] that $a_{p, q}(t)$ is the scalar multiple of the Jacobi polynomial $P_{\min (p, q)}^{(n-2,|p-q|)}\left(2 t^{2}-1\right)$ normalized by $a_{p, q}(1)=1$.

The Mellin transform $\mathfrak{M} \alpha_{p, q}$ is defined for $s \in \mathbb{C}$ by integrating t^{s} against $\alpha_{p, q}$ if $\operatorname{Re}(s)>$ $2 n-2$.

Theorem 3.5.4. The distribution $\alpha_{p, q}$ is invertible in A. The inverse $\beta_{p, q}$ is defined by (3.15). The Mellin transforms are given by

$$
\begin{equation*}
\mathfrak{M} \beta_{p, q}(s)=\frac{1}{\mathfrak{M} \alpha_{p, q}(s)}=\pi^{1-n} \frac{\Gamma\left(\frac{s+p+q}{2}\right)}{\Gamma\left(\frac{s+|p-q|}{2}-n+1\right)} \cdot \frac{\Gamma\left(\frac{s-p-q}{2}-n+1\right)}{\Gamma\left(\frac{s-|p-q|}{2}-n+1\right)} . \tag{3.17}
\end{equation*}
$$

Theorem 3.5.4 implies Theorem 3.5.2.

3.5.5 Relation to the Fourier transform

Let $\mathcal{S}\left(\mathbb{C}^{n}\right)$ denote the space of Schwartz functions on \mathbb{C}^{n} and $\mathcal{S}^{\prime}\left(\mathbb{C}^{n}\right)$ the dual space of tempered distributions on \mathbb{C}^{n}. The Fourier transform is defined for an integrable function f on \mathbb{C}^{n} by

$$
\mathcal{F} f(\xi)=\int_{\mathbb{C}^{n}} f(x) e^{-2 \pi i \operatorname{Re}(\xi \cdot \bar{x})} d x
$$

This definition coincides with the one from $\S 3.4 .5$ by identifying $\mathbb{C}^{n}=\mathbb{R}^{2 n}$. The Fourier transform can be extended to an isomorphism of tempered distributions $\mathcal{F}: \mathcal{S}^{\prime}\left(\mathbb{C}^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{C}^{n}\right)$

Let $F: \mathcal{S}^{\prime}(\mathbb{C}) \rightarrow \mathcal{S}^{\prime}(\mathbb{C})$ denote the Fourier transform over \mathbb{C}. For $f \in \mathcal{S}\left(\mathbb{C}^{n}\right)$, one gets $\mathcal{F} f$ from the Radon transform by

$$
\begin{equation*}
\mathcal{F} f(r \omega)=F(\mathcal{R} f(\bar{\omega}, t))(r) \tag{3.18}
\end{equation*}
$$

where F is the Fourier transform with respect to the t variable, $r \in \mathbb{C}$, and $\omega \in S^{2 n-1}$ is a unit vector. We have the following complex analog of Lemma 3.4.5, which is proved in exactly the same way.

Lemma 3.5.5. Let f be a locally integrable function on \mathbb{C}^{n} for which there exist $C>0$ and $\sigma>n-1$ such that $|f(x)| \leq C\|x\|^{-2 \sigma}$ for all x with $\|x\| \geq 1$. Then:
(i) $\mathcal{R} f$ is a locally integrable function on $S^{2 n-1} \times \mathbb{C}$.
(ii) $\mathcal{R} f(\omega, t)$ is bounded for $|t| \geq 1$.
(iii) The right hand side of (3.18) is well-defined as a generalized function on $\mathbb{C} \times S^{2 n-1}$.
(iv) Equation (3.18) holds as an equality between generalized functions on $\mathbb{R}_{>0} \times S^{2 n-1}$.

3.5.6 Proof of Theorem 3.5.4

Let $Y \in H^{p, q}$ and define $f(x)=\|x\|^{-s} \cdot Y\left(\frac{x}{\|x\|}\right)$ for $s \in \mathbb{C}$. If $2 n-2<\operatorname{Re}(s)<2 n$, then f is locally integrable on \mathbb{C}^{n} and satisfies the hypothesis of Lemma 3.5.5. Moreover by (3.16) and homogeneity of f we see that

$$
\mathcal{R} f(\bar{\omega}, t)=t^{p} \bar{t}^{q}|t|^{2 n-2-p-q-s} \widetilde{R} f(\omega)=t^{p} \bar{t}^{q}|t|^{2 n-2-p-q-s} \mathfrak{M} \alpha_{p, q}(s) Y(\omega)
$$

as a locally integrable function on $S^{2 n-1} \times \mathbb{C}$. Then Lemma 3.5.5 implies that

$$
\mathcal{F} f(r \omega)=F\left(t^{p} \bar{t}^{q}|t|^{2 n-2-p-q-s}\right)(r) \mathfrak{M} \alpha_{p, q}(s) Y(\omega)
$$

as generalized functions on $\mathbb{R}_{>0} \times S^{2 n-1}$.

Lemma 3.5.6. If $2 n-2<\operatorname{Re}(s)<2 n$, then

$$
F\left(t^{p} \bar{t}^{q}|t|^{2 n-2-p-q-s}\right)(r)=\pi^{s-2 n+1} i^{-|p-q|} \frac{\Gamma\left(\frac{2 n+|p-q|-s}{2}\right)}{\Gamma\left(\frac{s-2 n+2+|p-q|}{2}\right)} r^{p} \bar{r}^{q}|r|^{s-2 n-p-q}
$$

as locally integrable functions on \mathbb{C}.

Proof. Apply Theorem 3.4.6 for $n=2, k=|p-q|$, and $Y\left(x_{1}, x_{2}\right)=\left(x_{1}+i x_{2}\right)^{p-q}$ if $p \geq q$ or $Y\left(x_{1}, x_{2}\right)=\left(x_{1}-i x_{2}\right)^{q-p}$ if $p \leq q$.

Alternatively, we can use Theorem 3.4.6 to find that $\mathcal{F} f(x)=\gamma\|x\|^{s-2 n} Y\left(\frac{x}{\|x\|}\right)$, where 105
$\gamma=i^{-p-q} \pi^{s-n} \Gamma\left(\frac{2 n+p+q-s}{2}\right) / \Gamma\left(\frac{s+p+q}{2}\right)$. Comparing the two formulas we have derived for $\mathcal{F} f$ and applying Euler's reflection formula, we conclude that

$$
\begin{equation*}
\mathfrak{M} \alpha_{p, q}(s)=\pi^{n-1} \frac{\Gamma\left(\frac{s+|p-q|}{2}-n+1\right) \Gamma\left(\frac{s-|p-q|}{2}-n+1\right)}{\Gamma\left(\frac{s+p+q}{2}\right) \Gamma\left(\frac{s-p-q}{2}-n+1\right)}, \tag{3.19}
\end{equation*}
$$

as stated in Theorem 3.5.4. The equation holds a priori for $2 n-2<\operatorname{Re}(s)<2 n$, and we deduce by analytic continuation that it holds for all $s \in \mathbb{C}$, away from poles.

To finish the proof of Theorem 3.5.4, it remains to show that $\left(\mathfrak{M} \beta_{p, q}\right)^{-1}$ is equal to the right hand side of (3.19). By considering the Beta function we see that $\Gamma\left(\frac{s-p-q}{2}-n+\right.$ 1) $/ \Gamma\left(\frac{s-|p-q|}{2}-n+1\right)$ is the Mellin transform of $\nu(t) d t$, where

$$
\begin{equation*}
\nu(t)=\frac{2}{\Gamma(m)} t^{-p-q-2 n+1}\left(1-t^{2}\right)_{+}^{m-1} \tag{3.20}
\end{equation*}
$$

for $m=\min (p, q)$. Note that if $m=0$, then $\nu(t) d t=\delta(1-t)$. Multiplying the right hand side of (3.20) by $\Gamma\left(\frac{s+p+q}{2}\right) / \Gamma\left(\frac{s+|p-q|}{2}-n+1\right)=\prod_{j=1}^{n+m-1}\left(\frac{s+p+q}{2}-j\right)$ amounts to replacing ν by $L_{p, q}(\nu)$, where $L_{p, q}$ is the differential operator

$$
2^{1-n-m} \prod_{j=1}^{n+m-1}\left(-\frac{d}{d t} \cdot t+p+q-2 j\right)
$$

Theorem 3.5.4 is proved.
In the case $n=2$, the formula (3.19) is well-known (cf. [68, Lemma 7.23], [28, Proposition III.3.7]).

APPENDIX A GEOMETRIC REPRESENTATION THEORY

A. 1 Substacks of the Hecke stack

To keep the notation consistent throughout this chapter, in this section M denotes an arbitrary connected split reductive group over a perfect field k.

We will attach to any algebraic normal irreducible monoid \tilde{M} with group of units M a substack of a symmetrized version of the Hecke stack. This substack is the global model for the formal arc space of the embedding $M \hookrightarrow \tilde{M}$, and it was also considered in [11, §2]. We are particularly interested in the case when M is the Levi factor of a parabolic subgroup of G and $\tilde{M}=\bar{M}$ is the closure of the M-orbit of the coset U in $\overline{G / U}$. The monoid \bar{M} is studied in detail in Chapter 1.

We recall the relation between the Hecke stack and the Beilinson-Drinfeld Grassmannian. We use a symmetrized factorizable version of the affine Grassmannian. A detailed exposition on the factorizable version of the affine Grassmannian over the Ran space can be found in [71].

A.1.1 Recollections on normal reductive monoids

Let \tilde{M} be an algebraic normal irreducible monoid with group of units M.
Fix a maximal torus $T \subset M$. The Renner cone $\check{C} \subset \check{\Lambda}^{\mathbb{Q}}$ of \tilde{M} is the rational convex cone corresponding by [45] to the closure of T in \tilde{M} after base changing to an algebraic closure of k. This cone is stable under the actions of W_{M} and $\operatorname{Gal}(\bar{k} / k)$. The Renner cone is canonical and only depends on the abstract Cartan of M (which identifies with T after choosing a Borel subgroup). L. Renner showed in [56, Theorem 5.4] that algebraic normal irreducible monoids with group of units M bijectively correspond (via the Renner cone) to convex rational polyhedral cones generating $\check{\Lambda}^{\mathbb{Q}}$ as a vector space and stable under the actions of W_{M} and $\operatorname{Gal}(\bar{k} / k)$.

Since M is scheme-theoretically dense in \tilde{M}, the restriction functor

$$
\operatorname{Rep}(\tilde{M}) \rightarrow \operatorname{Rep}(M)
$$

is fully faithful, so we may consider $\operatorname{Rep}(\tilde{M})$ as a full subcategory of $\operatorname{Rep}(M)$.
We will consider the algebraic stack $M \backslash \tilde{M} / M$ which sends a test scheme S to the groupoid of pairs of M-bundles $\mathcal{F}_{M}^{1}, \mathcal{F}_{M}^{2}$ on S equipped with a section

$$
\left.\beta_{M}: S \rightarrow \tilde{M}^{M \times M} \times \mathcal{F}_{M}^{1} \underset{S}{\times} \mathcal{F}_{M}^{2}\right)
$$

Such a section β_{M} will be called an \tilde{M}-morphism from \mathcal{F}_{M}^{2} to \mathcal{F}_{M}^{1}. By the Tannakian formalism, giving an \tilde{M}-morphism β_{M} is the same as giving a collection of assignments

$$
V \in \operatorname{Rep}(\tilde{M}) \rightsquigarrow \beta_{M}^{V}: V_{\mathcal{F}_{M}^{2}} \rightarrow V_{\mathcal{F}_{M}^{1}}
$$

where β_{M}^{V} is \mathcal{O}_{S}-linear, and the Plücker relations hold. This means that for V being the trivial representation, β_{M}^{V} is the identity map $\mathcal{O}_{S} \rightarrow \mathcal{O}_{S}$, and for an M-morphism $V_{1} \otimes V_{2} \rightarrow V_{3}$, the diagram

commutes. Observe that the Plücker relations imply that the assignments β_{M}^{V} are functorial in V.

Observe that the fiber bundle $M \times{ }^{M \times M}\left(\mathcal{F}_{M}^{1} \times{ }_{S} \mathcal{F}_{M}^{2}\right)$ canonically identifies with the scheme of isomorphisms $\operatorname{Isom}\left(\mathcal{F}_{M}^{2}, \mathcal{F}_{M}^{1}\right)$ over S. In other words, an M-morphism is an isomorphism of M-bundles. Therefore the stack $M \backslash \tilde{M} / M$ contains the open substack $M \backslash M / M$, which canonically identifies with the classifying stack $\mathbb{B} M=M \backslash$ pt of M.

A.1.2 Definition of $\tilde{\mathcal{H}}_{M}$

Let X be a smooth projective geometrically connected curve over a field k. We consider the mapping stack $\operatorname{Maps}(X, M \backslash \tilde{M} / M)$ whose value on a test scheme S is the groupoid of all maps $X \times S \rightarrow M \backslash \tilde{M} / M$. Such a map is said to be non-degenerate if the preimage of $M \backslash M / M \subset M \backslash \tilde{M} / M$ is a subset of $X \times S$ whose projection on S is surjective. We will denote

$$
\tilde{\mathcal{H}}_{M}:=\operatorname{Maps}^{\circ}(X, M \backslash \tilde{M} / M) \subset \operatorname{Maps}(X, M \backslash \tilde{M} / M)
$$

the open substack consisting of non-degenerate maps. A map $X \times S \rightarrow M \backslash \tilde{M} / M$ is the datum of a pair of M-bundles $\mathcal{F}_{M}^{1}, \mathcal{F}_{M}^{2}$ on $X \times S$ and an \tilde{M}-morphism $\beta_{M}: \mathcal{F}_{M}^{2} \rightarrow \mathcal{F}_{M}^{1}$ between them. In the Tannakian language, β_{M} is non-degenerate if and only if for every geometric point $s \rightarrow S$, the restriction of β_{M}^{V} to the fiber $X \times s$ is generically an isomorphism. The last condition is equivalent to requiring that β_{M}^{V} is an embedding of coherent sheaves such that the quotient is S-flat.

Relation to the full Hecke stack. The projection $M \rightarrow M /[M, M]$ induces an inclusion $\check{\Lambda}_{M /[M, M]} \subset \check{\Lambda}$. Recall that \check{C} denotes the Renner cone of \tilde{M}, which is a $W_{M^{-s t a b l e}}$ convex polyhedral cone that generates $\check{\Lambda}^{\mathbb{Q}}$ as a group. If $M /[M, M]$ is not finite (i.e., M is not semisimple), then there exists a character $\check{\lambda} \in \check{\Lambda}$ that lies in the interior of the cone $\check{C} \cap \check{\Lambda}_{M /[M, M]}^{\mathbb{Q}}$. If M is semisimple, we put $\check{\lambda}=0$ (in this case \tilde{M} must equal M).

Considering $\check{\lambda}$ as a homomorphism $\tilde{M} \rightarrow \mathbb{A}^{1}$, the open subscheme $\check{\lambda}^{-1}\left(\mathbb{G}_{m}\right)$ coincides with $M \subset \tilde{M}$. The closed subscheme $\check{\lambda}^{-1}(0)$ has the same reduced scheme structure as $(\tilde{M}-M)_{\text {red }}$.

Let Div+ denote the scheme of relative effective divisors of X. The map $\check{\lambda}: \tilde{M} \rightarrow \mathbb{A}^{1}$ induces a map

$$
\begin{equation*}
\tilde{\mathcal{H}}_{M} \rightarrow \operatorname{Div}_{+} . \tag{A.1}
\end{equation*}
$$

More explicitly, an S-point $X \times S \rightarrow M \backslash \tilde{M} / M$ is sent to the preimage of $M \backslash \check{\lambda}^{-1}(0) / M$, which is a relative effective divisor of $X \times S$.

Define the stack Hecke $(M)_{\text {Div }_{+}}$as follows: its S-points are quadruples $\left(D, \mathcal{F}_{M}^{1}, \mathcal{F}_{M}^{2}, \beta_{M}\right)$ where D is a relative effective divisor on $X \times S, \mathcal{F}_{M}^{1}$ and \mathcal{F}_{M}^{2} are two M-bundles on $X \times S$, and β_{M} is an isomorphism of M-bundles on the restrictions

$$
\left.\left.\mathcal{F}_{M}^{2}\right|_{X \times S-D} \cong \mathcal{F}_{M}^{1}\right|_{X \times S-D}
$$

From this definition it is evident that we have a closed embedding of stacks

$$
\tilde{\mathcal{H}}_{M} \hookrightarrow \operatorname{Hecke}(M)_{\operatorname{Div}_{+}}
$$

Remark A.1.1. The above inclusion slightly depends on the choice of $\check{\lambda}$, which is used to define (A.1). This choice goes away if we consider Ran versions of the corresponding Hecke stacks, since a point of $\operatorname{Hecke}(M)_{\text {Div }_{+}}$only depends on the reduced structure $D_{\text {red }}$ of the divisor D.

We let $\overleftarrow{h}, \vec{h}$ denote the two forgetful maps $\tilde{\mathcal{H}}_{M} \rightarrow \operatorname{Bun}_{M}$. We use the convention where \overleftarrow{h} is the map corresponding to \mathcal{F}_{M}^{1}.

Proposition A.1.2. The morphism $\tilde{\mathcal{H}}_{M} \rightarrow \operatorname{Bun}_{M} \times \operatorname{Bun}_{M}$ is schematic, quasi-affine, and of finite presentation.

Proof. Consider a test scheme S and a map $S \rightarrow \operatorname{Bun}_{M} \times \operatorname{Bun}_{M}$ corresponding to M bundles $\mathcal{F}_{M}^{1}, \mathcal{F}_{M}^{2}$ on $X \times S$. Then the fiber product $\tilde{\mathcal{H}}_{M} \underset{\operatorname{Bun}_{M} \times \operatorname{Bun}_{M}}{\times} S$ is isomorphic to an open subspace of the space of sections of the map

$$
\left.\tilde{M}^{M \times M} \times \mathcal{F}_{M}^{1} \underset{X \times S}{\times} \mathcal{F}_{M}^{2}\right) \rightarrow X \times S
$$

This map is affine and of finite presentation because \tilde{M} is, which implies that the space of sections is representable by a scheme affine and of finite presentation over S.

The monoid structure on \tilde{M} allows us to compose two \tilde{M}-morphisms $\mathcal{F}_{M}^{2} \rightarrow \mathcal{F}_{M}^{1}$ and
$\mathcal{F}_{M}^{3} \rightarrow \mathcal{F}_{M}^{2}$ to get an \tilde{M}-morphism $\mathcal{F}_{M}^{3} \rightarrow \mathcal{F}_{M}^{1}$. The composition of two non-degenerate morphisms is non-degenerate. This defines a map

$$
\operatorname{comp}: \tilde{\mathcal{H}}_{M} \underset{h, \operatorname{Bun}_{M}, \stackrel{\leftarrow}{h}}{\times} \tilde{\mathcal{H}}_{M} \rightarrow \tilde{\mathcal{H}}_{M}
$$

Remark A.1.3. The map (A.1) takes the composition of \tilde{M}-morphisms into the sum of effective divisors (which is a proper map $\operatorname{Div}_{+} \times \operatorname{Div}_{+} \rightarrow \operatorname{Div}_{+}$). Hence Proposition A.1.6 below implies that comp is a proper map.

Lemma A.1.4. Let $\mathcal{F}_{M} \in \operatorname{Bun}_{M}(S)$ for a k-scheme S. Any non-degenerate \tilde{M}-morphism $\beta_{M}: \mathcal{F}_{M} \rightarrow \mathcal{F}_{M}$ is an M-bundle automorphism.

Proof. Let $V \in \operatorname{Rep}(\tilde{M})$. Then $\beta_{M}^{V}: V_{\mathcal{F}_{M}} \rightarrow V_{\mathcal{F}_{M}}$ is generically an isomorphism on geometric fibers of $X \times S$. The same is true for $\operatorname{det}\left(\beta_{M}^{V}\right)$, and $\Gamma\left(X, \mathcal{O}_{X}\right)=k$ implies that β_{M}^{V} is an isomorphism. Since M is the group of units of \tilde{M}, we conclude that β_{M} is an automorphism of \mathcal{F}_{M}.

Corollary A.1.5. Suppose there exist \tilde{M}-morphisms $\beta_{M}: \mathcal{F}_{M}^{2} \rightarrow \mathcal{F}_{M}^{1}$ and $\beta_{M}^{\prime}: \mathcal{F}_{M}^{1} \rightarrow \mathcal{F}_{M}^{2}$. Then $\beta_{M}, \beta_{M}^{\prime}$ are both isomorphisms.

A.1.3 Affine Grassmannians

In this section, we explain the relation between the Hecke stack and the Beilinson-Drinfeld affine Grassmannian. We refer the reader to [71] for a far more complete treatment of the affine Grassmannian.

For this purpose we introduce the divisor version of the jet group $M(\mathfrak{o})$. For $D \in \operatorname{Div}_{+}(S)$, let \hat{D} denote the formal completion of D in $X \times S$ (which is a formal scheme). Define

$$
M(\mathfrak{o})_{\operatorname{Div}_{+}}=\left\{(D, \gamma) \mid D \in \operatorname{Div}_{+}(S), \gamma \in M(\hat{D})\right\}
$$

which is representable by a scheme affine over Div $+_{+}$(cf. [71, Proposition 3.1.6]).

We define the symmetrized version of the Beilinson-Drinfeld affine Grassmannian as

$$
\operatorname{Gr}_{M, \operatorname{Div}+}:=\operatorname{Spec}(k) \underset{\mathcal{F}_{M}^{0}, \operatorname{Bun}_{M}, \stackrel{\leftarrow}{h}}{\times} \operatorname{Hecke}(M)_{\operatorname{Div}_{+}}
$$

where $\mathcal{F}_{M}^{0} \in \operatorname{Bun}_{M}(k)$ is the trivial bundle.
The Hecke stack Hecke $(M)_{\text {Div }_{+}}$can be regarded as a twisted product $\operatorname{Bun}_{M} \tilde{\times} \operatorname{Gr}_{M, \operatorname{Div}_{+}}$. More precisely, consider the stack

$$
y=\left\{\left.\left(D, \mathcal{F}_{M}^{1}, \tilde{\gamma}\right)\left|D \in \operatorname{Div}_{+}, \mathcal{F}_{M}^{1} \in \operatorname{Bun}_{M}, \tilde{\gamma}: \mathcal{F}_{M}^{0}\right|_{\hat{D}} \cong \mathcal{F}_{M}^{1}\right|_{\hat{D}}\right\}
$$

Then $\mathfrak{y} \rightarrow \operatorname{Div}_{+} \times \operatorname{Bun}_{M}$ is a $M(\mathfrak{o})_{\text {Div }_{+}}$-torsor. Observe that the group scheme $M(\mathfrak{o})_{\operatorname{Div}_{+}}$ also acts on $\mathrm{Gr}_{M, \mathrm{Div}_{+}}$over Div_{+}. We have a canonical isomorphism

$$
\operatorname{Hecke}(M)_{\operatorname{Div}_{+}} \cong y \stackrel{M(\mathfrak{o})_{\operatorname{Div}_{+}}}{\times} \operatorname{Gr}_{M, \operatorname{Div}_{+}},
$$

where on the right hand side we take the fiber product $y \times{ }_{\operatorname{Div}_{+}} \operatorname{Gr}_{M, \operatorname{Div}}$ and quotient by the anti-diagonal action of $M(\mathfrak{o})_{\text {Div }_{+}}$.

Proposition A.1.6. The morphism $\tilde{\mathcal{H}}_{M} \rightarrow \operatorname{Bun}_{M} \times \operatorname{Div}_{+}$is proper, where $\tilde{\mathcal{H}}_{M}$ maps to Bun_{M} by either \overleftarrow{h} or \vec{h}.

Proof. Without loss of generality we will consider the projection $\overleftarrow{h}: \tilde{\mathcal{H}}_{M} \rightarrow \operatorname{Bun}_{M}$. Let $\widetilde{\operatorname{Gr}}_{M, \operatorname{Div}}:=\operatorname{Spec}(k) \times_{\mathcal{F}_{M}^{0}, \operatorname{Bun}_{M}} \tilde{\mathcal{H}}_{M}$, which is a closed subspace of $\operatorname{Gr}_{M, \operatorname{Div}}$. Choose a uniformizer $\varpi_{v} \in \mathfrak{o}_{v}$ at a place v. Let $C \subset \Lambda^{\mathbb{Q}}$ denote the dual of the Renner cone of \tilde{M}. Over a divisor $n_{v} \cdot v$ supported at a single point, the fiber of $\widetilde{\mathrm{Gr}}_{M, \operatorname{Div}+}$ is equal to the union of the orbits

$$
M\left(\mathfrak{o}_{v}\right) \cdot \theta_{v}\left(\varpi_{v}\right) \subset\left(\tilde{M}\left(\mathfrak{o}_{v}\right) \cap M\left(F_{v}\right)\right) / M\left(\mathfrak{o}_{v}\right)
$$

for $\theta_{v} \in C \cap \Lambda_{M}^{+}$satisfying $\left\langle\check{\lambda}, \theta_{v}\right\rangle=n_{v}$, where $\check{\lambda}$ is the character chosen in §A.1.2. Since $\check{\lambda}$ lies in the interior of $\check{C} \cap \check{\Lambda}_{M /[M, M]}^{\mathbb{Q}}$, there are only finitely many θ_{v} such that $\left\langle\check{\lambda}, \theta_{v}\right\rangle=n_{v}$.

We deduce, by factorization, that $\widetilde{\mathrm{Gr}}_{M, \text { Div }_{+}}$is representable by a scheme of finite type over Div ${ }_{+}$. It is known that $\mathrm{Gr}_{M, \text { Div }_{+}}$is ind-proper over $\operatorname{Div}+(c f .[71$, Remark 3.1.4]). Thus $\widetilde{\mathrm{Gr}}_{M, \mathrm{Div}_{+}}$is proper over Div+ . The Proposition follows by considering $\tilde{\mathcal{H}}_{M}$ as a twisted product $\operatorname{Bun}_{M} \tilde{\times} \widetilde{\mathrm{Gr}}_{M, \text { Div }}^{+}$as explained in \S A.1.3.

A.1.4 Slope comparisons

Let $\pi_{1}(M)$ denote the quotient of Λ by the subgroup generated by coroots of M. It is well-known that there is a bijection $\operatorname{deg}_{M}: \pi_{0}\left(\operatorname{Bun}_{M}\right) \simeq \pi_{1}(M)$. Note that $\pi_{1}(M) \otimes \mathbb{Q}=$ $\Lambda_{M /[M, M]}^{\mathbb{Q}}=\Lambda_{Z_{0}(M)}^{\mathbb{Q}}$. We call the composition

$$
\operatorname{Bun}_{M} \rightarrow \pi_{1}(M) \rightarrow \Lambda_{Z_{0}(M)}^{\mathbb{Q}}
$$

the slope map. Its fibers are not necessary connected but have finitely many connected components. The slope map coincides with the composition

$$
\operatorname{Bun}_{M} \rightarrow \operatorname{Bun}_{M /[M, M]} \rightarrow \pi_{0}\left(\operatorname{Bun}_{M /[M, M]}\right)=\Lambda_{M /[M, M]} \subset \Lambda_{Z_{0}(M)}^{\mathbb{Q}}
$$

Following the notation of [25, Theorem 7.4.3], let $\operatorname{Bun}_{M}^{(\lambda)}, \lambda \in \Lambda_{M}^{+, \mathbb{Q}}$ denote the quasicompact locally closed reduced substack of M-bundles with Harder-Narasimhan coweight λ. We refer the reader to $[25, \S 7]$ and $[61]$ for statements and proofs of the main results of reduction theory for a general reductive group.

Lemma A.1.7. Suppose $\mathcal{F}_{M}^{1} \in \operatorname{Bun}_{M}^{\left(\lambda_{1}\right)}(k), \mathcal{F}_{M}^{2} \in \operatorname{Bun}_{M}^{\left(\lambda_{2}\right)}(k)$ for $\lambda_{1}, \lambda_{2} \in \Lambda_{M}^{+, \mathbb{Q}}$, and there exists an isomorphism $\beta_{M}:\left.\left.\mathcal{F}_{M}^{2}\right|_{X-D} \rightarrow \mathcal{F}_{M}^{1}\right|_{X-D}$ for a divisor $D \subset X$. At each closed point $v \in D$, the restriction of β_{M} to F_{v} determines a coweight $\lambda_{v} \in \Lambda_{M}^{+}=K_{M, v} \backslash M\left(F_{v}\right) / K_{M, v}$. Then

$$
\begin{equation*}
w_{0}^{M} \sum_{v} n_{v} \cdot \lambda_{v} \leq_{M}^{\mathbb{Q}} \lambda_{1}-\lambda_{2} \leq_{M}^{\mathbb{Q}} \sum_{v} n_{v} \cdot \lambda_{v} \tag{A.2}
\end{equation*}
$$

where $n_{v}=\operatorname{dim}_{k}\left(k_{v}\right)$ is the dimension of the residue field of v.

Proof. Consider the Harder-Narasimhan flag of \mathcal{F}_{M}^{1} : this is a canonical reduction of \mathcal{F}_{M}^{1} to a Q-bundle \mathcal{F}_{Q}^{1}, where $Q \subset M$ is the parabolic subgroup corresponding to the HarderNarasimhan coweight λ_{1}. Recall that a reduction of \mathcal{F}_{M}^{2} to Q is the same as a section of the proper map $\mathcal{F}_{M}^{2} / Q:=\mathcal{F}_{M}^{2} \times{ }^{M} M / Q \rightarrow X$. The reduction \mathcal{F}_{Q}^{1} and the isomorphism β_{M} determine a section $X-D \rightarrow \mathcal{F}_{M}^{2} / Q$. By properness, this extends to a reduction \mathcal{F}_{Q}^{2} of \mathcal{F}_{M}^{2} with an isomorphism

$$
\beta_{Q}:\left.\left.\mathcal{F}_{Q}^{2}\right|_{X-D} \rightarrow \mathcal{F}_{Q}^{1}\right|_{X-D}
$$

inducing β_{M}. Let L denote the Levi quotient of Q, and let $\mathcal{F}_{L}^{1}, \mathcal{F}_{L}^{2}, \beta_{L}$ denote the corresponding induced objects. Then the restriction of β_{L} to $\operatorname{Spec} F_{v}$ for $v \in D$ determines a coweight $\nu_{v} \in \Lambda_{L}^{+}$via the quotient map $Q \rightarrow L$. Since ν_{v} and λ_{v} are both induced by β_{Q}, we see that $\nu_{v}\left(\varpi_{v}\right) U_{Q}\left(F_{v}\right) \cap K_{M, v} \lambda_{v}\left(\varpi_{v}\right) K_{M, v} \neq \emptyset$ where $\varpi_{v} \in \mathfrak{o}_{v}$ is a uniformizer. This implies that ν_{v} is contained in the convex hull of $W_{M} \cdot \lambda_{v}$ (cf. [17, p. 148]).

Let $\nu_{2} \in \Lambda_{L /[L, L]}^{\mathbb{Q}}$ be the slope of \mathcal{F}_{L}^{2}. Then $\lambda_{1}-\nu_{2}$ is equal to the image of $\sum_{v \in D} n_{v} \cdot \nu_{v}$ under the projection $\Lambda^{\mathbb{Q}} \rightarrow \Lambda_{L /[L, L]}^{\mathbb{Q}}=\Lambda_{Z_{0}(L)}^{\mathbb{Q}}$. In particular, $\lambda_{1}-\nu_{2}$ lies in the convex hull of the W_{M}-orbit of $\sum_{v \in D} n_{v} \cdot \nu_{v}$, so $\lambda_{1}-\nu_{2} \leq_{M}^{\mathbb{Q}} \sum n_{v} \cdot \lambda_{v}$. By the comparison theorem [61, Theorem 4.5.1], $\nu_{2} \leq_{M}^{\mathbb{Q}} \lambda_{2}$. We have shown the second inequality in (A.2). Switching $\mathcal{F}_{M}^{1}, \mathcal{F}_{M}^{2}$ and considering β_{M}^{-1} proves the first inequality by symmetry.

Corollary A.1.8. Suppose $\mathcal{F}_{M}^{1} \in \operatorname{Bun}_{M}^{\left(\lambda_{1}\right)}(k), \mathcal{F}_{M}^{2} \in \operatorname{Bun}_{M}^{\left(\lambda_{2}\right)}(k)$ for $\lambda_{1}, \lambda_{2} \in \Lambda_{M}^{+, \mathbb{Q}}$, and there exists a non-degenerate \tilde{M}-morphism $\beta_{M}: \mathcal{F}_{M}^{2} \rightarrow \mathcal{F}_{M}^{1}$. Let $C \subset \Lambda^{\mathbb{Q}}$ be the dual of the Renner cone of \tilde{M}. Then $\lambda_{1}-\lambda_{2}$ belongs to the rational convex cone generated by C and $\Lambda_{M}^{\mathrm{pos}, \mathbb{Q}}$.

Proof. Since β_{M} is non-degenerate, there exists a divisor $D \subset X$ such that $\left.\beta_{M}\right|_{X-D}$ is an isomorphism. For $v \in D$, the coweight λ_{v} defined in Lemma A.1.7 corresponds to an element in $K_{M, v} \backslash\left(M\left(F_{v}\right) \cap \tilde{M}\left(\mathfrak{o}_{v}\right)\right) / K_{M, v}$. By the classification of double orbits of $M\left(F_{v}\right) \cap \tilde{M}\left(\mathfrak{o}_{v}\right)$, the latter set identifies with $C \cap \Lambda_{M}^{+}$. Therefore the W_{M}-stable cone C contains $w_{0}^{M} \sum n_{v} \cdot \lambda_{v}$. The corollary follows from Lemma A.1.7.

A.1.5 The stack \mathcal{H}_{M}^{+}

Let P be a standard parabolic subgroup of G with Levi factor M. We recall that G / U is quasi-affine. Let $\overline{G / U}$ denote the affine closure. We embed $M \hookrightarrow G / U$ by $m \mapsto m U$ and define \bar{M} to be the closure of M in $\overline{G / U}$. Then \bar{M} is a monoid acting on $\overline{G / U}$ (see Chapter 1).

We now specialize the above discussion of Hecke stacks to the case $\tilde{M}=\bar{M}$. Let

$$
\begin{equation*}
\mathcal{H}_{M}^{+}=\operatorname{Maps}^{\circ}(X, M \backslash \bar{M} / M) \tag{A.3}
\end{equation*}
$$

denote the stack studied above.
Remark A.1.9. By Lemma 1.3.4, the dual of the Renner cone of \bar{M} equals $\Lambda_{U}^{\text {pos, } \mathbb{Q}}$. Therefore if we are in the setting of Corollary A.1.8, the rational cone generated by $\Lambda_{U}^{\text {pos }, \mathbb{Q}}$ and $\Lambda_{M}^{\text {pos, } \mathbb{Q}}$ is $\Lambda_{G}^{\text {pos, } \mathbb{Q}}$, and the corollary implies that $\lambda_{1}-\lambda_{2} \in \Lambda_{G}^{\text {pos, } \mathbb{Q}}$, i.e., $\lambda_{2} \leq_{G}^{\mathbb{Q}} \lambda_{1}$.

The rational cone generated by $\Lambda_{U}^{\mathrm{pos}, \mathbb{Q}}$ and $-\Lambda_{M}^{\mathrm{pos}, \mathbb{Q}}$ is $w_{0}^{M} \Lambda_{G}^{\mathrm{pos}, \mathbb{Q}}$, and Lemma A.1.7 also implies that $\lambda_{1}-\lambda_{2} \in w_{0}^{M} \Lambda_{G}^{\mathrm{pos}, \mathbb{Q}}$.

Remarks on G. We assume for the rest of this Appendix that G has a simply connected derived group $[G, G]$. The reader may refer to $[61, \S 7]$ for how to remove this hypothesis, and the relevant geometry remains the same.

The graded Ran space. Let $\Lambda_{G, P}:=\pi_{1}(M)$ denote the quotient of Λ by the subgroup generated by the coroots of M. We have a natural projection $\Lambda \rightarrow \Lambda_{G, P}$. Let $\Lambda_{G, P}^{\text {pos }}$ denote the submonoid of $\Lambda_{G, P}$ generated by the image of the positive coroots of G.

Any $\theta \in \Lambda_{G, P}^{\mathrm{pos}}$ can be uniquely written as a sum $\sum n_{j} \alpha_{j}$ for $j \in \Gamma_{G}-\Gamma_{M}$. Let X^{θ} denote $\prod X^{\left(n_{j}\right)}$. Define $\operatorname{Ran}\left(X, \Lambda_{G, P}^{\mathrm{pos}}\right)$ to be the disjoint union of X^{θ} for $\theta \in \Lambda_{G, P}^{\mathrm{pos}}$. Here we are using the notation of [29], but we include $0 \in \Lambda_{G, P}^{\text {pos }}$ with $X^{0}=\operatorname{Spec}(k)$. We can regard
 of the Ran space. The grading allows us to use the language of factorization algebras graded by a monoid introduced in $[29, \S 2]$, which is slightly simpler than the more general set-up
of factorization algebras from [8] (the difference is that we can replace the Ran space with genuine schemes).

Let us review the construction of the map $\mathcal{H}_{M}^{+} \rightarrow \operatorname{Ran}\left(X, \Lambda_{G, P}^{\text {pos }}\right)$, following [62, §3.1.7]. Recall from [13] that the quotient $G /[P, P]$ is strongly quasi-affine, and let $\overline{G /[P, P]}$ denote its affine closure. Let $\overline{M /[M, M]}$ denote the closure of $M /[M, M]$ in $\overline{G /[P, P]}$ under the natural embedding

$$
M /[M, M]=P /[P, P] \hookrightarrow G /[P, P] \subset \overline{G /[P, P]} .
$$

The projection $G / U \rightarrow G /[P, P]$ extends to a map of affine closures $\overline{G / U} \rightarrow \overline{G /[P, P]}$, and therefore the projection $M \rightarrow M /[M, M]$ extends to a map $\bar{M} \rightarrow \overline{M /[M, M]}$. This induces a map of stacks

$$
\begin{equation*}
\mathcal{H}_{M}^{+} \rightarrow \operatorname{Maps}^{\circ}(X, \overline{M /[M, M]} /(M /[M, M])) . \tag{A.4}
\end{equation*}
$$

Consider $\check{\Lambda}_{M /[M, M]}$ as a sub-lattice of $\check{\Lambda}_{M}$. Then one can check that $k[\overline{M /[M, M]}]$ has a basis consisting of the characters in the submonoid $\check{\Lambda}_{G}^{+} \cap \check{\Lambda}_{M /[M, M]}$. Since $[G, G]$ is assumed to be simply connected, $\Lambda_{G, P}^{\mathrm{pos}}$ is the monoid dual to $\check{\Lambda}_{G}^{+} \cap \check{\Lambda}_{M /[M, M]}$. We deduce that the right hand side of (A.4) is isomorphic to the scheme $\operatorname{Ran}\left(X, \Lambda_{G, P}^{\mathrm{pos}}\right)$. Thus (A.4) becomes a map of stacks

$$
\mathcal{H}_{M}^{+} \rightarrow \operatorname{Ran}\left(X, \Lambda_{G, P}^{\mathrm{pos}}\right)
$$

For $\theta \in \Lambda_{G, P}^{\mathrm{pos}}$, denote the preimage of the connected component $X^{\theta} \subset \operatorname{Ran}\left(X, \Lambda_{G, P}^{\mathrm{pos}}\right)$ by $\mathcal{H}_{M, X^{\theta}}^{+}$.

Remark A.1.10. We defined the map (A.4) "group-theoretically" following [62, §3.1.7]. One can also define this map using the Tannakian formalism, which is essentially done in [13, 12].

We use the character $2 \check{\rho}_{P}=2 \check{\rho}-2 \check{\rho}_{M} \in \check{\Lambda}_{M /[M, M]}$ to define the map (A.1), which is then equal to the composition

$$
\mathcal{H}_{M}^{+} \rightarrow \operatorname{Ran}\left(X, \Lambda_{G, P}^{\mathrm{pos}}\right) \rightarrow \operatorname{Div}_{+},
$$

where the last map sends X^{θ} to the symmetric power $X^{(2|\theta|)} \subset \operatorname{Div}_{+}$for $|\theta|:=\left\langle\check{\rho}_{P}, \theta\right\rangle$.
As in \S A.1.3, we can express $\mathcal{H}_{X^{\theta}}^{+}$as a twisted product

$$
\begin{equation*}
\mathcal{H}_{M, X^{\theta}}^{+} \cong \operatorname{Bun}_{M} \tilde{\times} \mathrm{Gr}_{M, X^{\theta}}^{+} \tag{A.5}
\end{equation*}
$$

where $\operatorname{Gr}_{M, X^{\theta}}^{+}:=\operatorname{Spec}(k) \times{ }_{\mathcal{F}_{M}^{0}, \operatorname{Bun}_{M},}, \mathcal{H}_{M, X^{\theta}}^{+}$, using the action of the jet group $M(\mathfrak{o})_{X}(|\theta|)$. We will always consider the twisted product with respect to the projection \overleftarrow{h}.

By a partition \mathfrak{A} of θ we mean a decomposition

$$
\theta=\sum_{\lambda \in \Lambda_{G, P}^{\text {pos }}-0} n_{\lambda} \cdot \lambda, n_{\lambda} \in \mathbb{Z}_{+} .
$$

Let \mathcal{P}_{θ} denote the set of all partitions of θ. For a partition $\mathfrak{A} \in \mathcal{P}_{\theta}$, let $X^{\mathfrak{A}}:=\prod_{\lambda} X^{\left(n_{\lambda}\right)}$. This is a scheme of dimension $|\mathfrak{A}|:=\sum n_{\lambda}$. Note that there is a natural map $X^{\mathfrak{A}} \rightarrow X^{\theta}$.

Let $\left(X^{\mathfrak{A}}\right)_{\text {disj }} \subset X^{\mathfrak{A}}$ denote the open subscheme with all diagonals removed. A k-point $x^{\mathfrak{A}} \in\left(X^{\mathfrak{A}}\right)_{\text {disj }}$ is a formal sum $\sum_{v \in|X|} \theta_{v} \cdot v$ for $\theta_{v} \in \Lambda_{G, P}^{\mathrm{pos}}$, such that for each $\lambda \in \Lambda_{G, P}^{\mathrm{pos}}$, we have $n_{\lambda}=\sum_{v \mid \theta_{v}=\lambda} \operatorname{deg}(v)$. The composition $\left(X^{\mathfrak{A}}\right)_{\operatorname{disj}} \hookrightarrow X^{\mathfrak{A}} \rightarrow X^{\theta}$ is a locally closed embedding, and the subschemes $\left(X^{\mathfrak{A}}\right)_{\text {disj }}$ for $\mathfrak{A} \in \mathcal{P}_{\theta}$ form a stratification of X^{θ}. Thus we can stratify $\mathcal{H}_{M, X^{\theta}}^{+}$by the substacks

$$
\mathcal{H}_{M}^{+, \mathfrak{A}}:=\mathcal{H}_{M, X^{\theta}}^{+} \underset{X^{\theta}}{\times}\left(X^{\mathfrak{A}}\right)_{\mathrm{disj}} .
$$

This stack $\mathcal{H}_{M}^{+, \mathfrak{A}}$ is the same as the one defined in $[12, \S 1.8]$.
The diagonal $X \rightarrow X^{\theta}$ corresponds to the trivial partition $\theta=1 \cdot \theta$, and we denote by $\mathcal{H}_{M}^{+, \theta}\left(\right.$ resp. $\left.\mathrm{Gr}_{M}^{+, \theta}\right)$ the stack $\mathcal{H}_{M, X^{\theta}}^{+} \underset{X^{\theta}}{\times} X\left(\right.$ resp. the scheme $\left.\mathrm{Gr}_{M, X^{\theta}}^{+} \underset{X^{\theta}}{\times} X\right)$.

Let $\mathfrak{A} \in \mathcal{P}_{\theta}$. The stack $\mathcal{H}_{M}^{+, \mathfrak{A}}$ is fibered over $\left(X^{\mathfrak{A}}\right)_{\text {disj }} \times \operatorname{Bun}_{M}$ with respect to \overleftarrow{h}. Similar
to \S A.1.3, one can express $\mathcal{H}_{M}^{+, \mathfrak{A}}$ as a twisted product

$$
\begin{equation*}
\mathcal{H}_{M}^{+, \mathfrak{A}} \cong \operatorname{Bun}_{M} \tilde{\times} \mathrm{Gr}_{M}^{+, \mathfrak{A}} \tag{A.6}
\end{equation*}
$$

where $\operatorname{Gr}_{M}^{+, \mathfrak{A}}:=\operatorname{Gr}_{M, X^{\theta}}^{+} \times{ }_{X^{\theta}}\left(X^{\mathfrak{A}}\right)_{\text {disj }}$. To define the twisted product one considers the action of the jet group $M(\mathfrak{o})_{X^{(|\mathcal{A}|)}}$ on $\operatorname{Gr}_{M}^{+, \mathfrak{A}}$ over $X^{(|\mathfrak{A}|)}$. The embedding

$$
\begin{equation*}
\mathcal{H}_{M}^{+, \mathfrak{A}} \hookrightarrow \mathcal{H}_{M, X^{\theta}}^{+} \tag{A.7}
\end{equation*}
$$

lies over the map of symmetric powers $X^{(2|\mathfrak{A}|)} \rightarrow X^{(2|\theta|)}$. The latter map induces a map of jet groups $M(\mathfrak{o})_{X^{(2|\mathscr{A}|)}} \rightarrow M(\mathfrak{o})_{X^{(2|\theta|)}}$. Therefore (A.7) can be thought of as a twisted product of $\mathrm{id}_{\mathrm{Bun}_{M}}$ with the embedding $\mathrm{Gr}_{M}^{+, \mathfrak{A}} \hookrightarrow \mathrm{Gr}_{M, X^{\theta}}^{+}$, which is equivariant with respect to the actions of the corresponding jet groups.

Let $x^{\mathfrak{A}} \in\left(X^{\mathfrak{A}}\right)_{\text {disj }}(k)$ be a $\Lambda_{G, P^{\text {pos }}}^{\text {-colored divisor }} \sum \theta_{v} \cdot v$, and let \mathcal{F}_{M}^{1} be a k-point of Bun_{M}. Then the fiber of $\mathcal{H}_{M}^{+, \mathfrak{A}}$ over this k-point $\left(x^{\mathfrak{A}}, \mathcal{F}_{M}^{1}\right)$ is isomorphic to

$$
\prod_{\mathrm{c}_{M, v}}^{+\theta_{0}}
$$

where $\mathrm{Gr}_{M, v}^{+, \theta_{v}}$ is the closed subscheme of the affine Grassmannian $\operatorname{Gr}_{M, v}$ defined in [12, §1.6].
In terms of loop and jet groups,

$$
\operatorname{Gr}_{M, v}^{+}(k)=\left(\bar{M}\left(\mathfrak{o}_{v}\right) \cap M\left(F_{v}\right)\right) / M\left(\mathfrak{o}_{v}\right) \subset \operatorname{Gr}_{M, v}(k)=M\left(F_{v}\right) / M\left(\mathfrak{o}_{v}\right)
$$

A.1.6 Convolution products

Consider the diagram

$$
\begin{equation*}
\mathcal{H}_{M}^{+} \stackrel{\text { comp }}{\longleftarrow} \mathcal{H}_{M}^{+} \underset{h, \mathrm{Bun}_{M}, \overleftarrow{h}}{\times} \underset{M}{ } \mathcal{H}_{M}^{+} \stackrel{\left(\mathrm{pr}_{1}, \mathrm{pr}_{2}\right)}{\longrightarrow} \mathcal{H}_{M}^{+} \times \mathcal{H}_{M}^{+} \tag{A.8}
\end{equation*}
$$

and recall (Remark A.1.3) that the left arrow comp is proper. Using (A.5), one sees that comp is isomorphic to the twisted product of $\mathrm{id}_{\mathrm{Bun}_{M}}$ with the proper map

$$
\begin{equation*}
\text { conv : } \mathrm{Gr}_{M, X^{\theta_{1}}}^{+} \tilde{\times} \mathrm{Gr}_{M, X^{\theta_{2}}}^{+} \rightarrow \mathrm{Gr}_{M, X^{\theta}}^{+} \tag{A.9}
\end{equation*}
$$

where $\theta=\theta_{1}+\theta_{2}$ and the left hand side is the convolution Grassmannian (cf. [71, (3.1.21)]).
We give $D\left(\mathcal{H}_{M}^{+}\right)$the structure of a monoidal category by the convolution product

$$
\tilde{\mathcal{F}}_{1}, \tilde{\mathcal{F}}_{2} \mapsto \tilde{\mathcal{F}}_{1} \star \tilde{\mathcal{F}}_{2}:=\operatorname{comp}_{!}\left(\left(\operatorname{pr}_{1}, \operatorname{pr}_{2}\right)^{*}\left(\tilde{\mathcal{F}}_{1} \boxtimes \tilde{\mathcal{F}}_{2}\right)\right)=\operatorname{comp}_{!}\left(\operatorname{pr}_{1}^{*}\left(\tilde{\mathcal{F}}_{1}\right) \otimes \operatorname{pr}_{2}^{*}\left(\tilde{\mathcal{F}}_{2}\right)\right),
$$

where $\operatorname{pr}_{1}, \operatorname{pr}_{2}: \mathcal{H}_{M}^{+} \times{ }_{\operatorname{Bun}_{M}} \mathcal{H}_{M}^{+} \rightarrow \mathcal{H}_{M}^{+}$are the projection maps.
Let $\mathrm{Sph}_{M, X^{\theta}}^{+}=D\left(\mathrm{Gr}_{M, X^{\theta}}^{+}\right)^{M(\mathfrak{o})_{X}(|\theta|)}$. Define a product

$$
\star: \mathrm{Sph}_{M, X^{\theta_{1}}}^{+} \otimes \mathrm{Sph}_{M, X^{\theta_{2}}}^{+} \rightarrow \mathrm{Sph}_{M, X^{\theta}}^{+},
$$

by $\mathcal{F}_{1} \star \mathcal{F}_{2}:=\operatorname{conv!}\left(\mathcal{F}_{1} \tilde{\boxtimes} \mathcal{F}_{2}\right)$, which is a symmetrized version of the "external convolution product" (cf. [71, §5.4]) for $\theta=\theta_{1}+\theta_{2}$.

For $\mathcal{F}_{1} \in \operatorname{Sph}_{M, X^{\theta_{1}}}^{+}, \mathcal{F}_{2} \in \operatorname{Sph}_{M, X^{\theta_{2}}}^{+}$, we can form the sheaves $\left(\overline{\mathbb{Q}}_{\ell}\right)_{\operatorname{Bun}_{M}} \tilde{\boxtimes} \mathcal{F}_{i}$ on $\mathcal{H}_{M, X^{\theta_{i}}}^{+}$ using (A.5). By construction, there is a canonical isomorphism

$$
\left(\overline{\mathbb{Q}}_{\ell} \tilde{\boxtimes} \mathcal{F}_{1}\right) \star\left(\overline{\mathbb{Q}}_{\ell} \tilde{\boxtimes} \mathcal{F}_{2}\right) \cong \overline{\mathbb{Q}}_{\ell} \tilde{\boxtimes}\left(\mathcal{F}_{1} \star \mathcal{F}_{2}\right),
$$

We remark that \star commutes with Verdier duality on $\mathrm{Sph}_{M, X^{\theta}}^{+}$.
The category

$$
\mathrm{Sph}_{M}^{+}:=\left\{\theta \mapsto \mathcal{F}^{\theta} \in \mathrm{Sph}_{M, X^{\theta}}^{+}\right\}
$$

has a natural monoidal structure with respect to \star : for two families $\left\{\mathcal{F}_{1}^{\theta}\right\}$ and $\left\{\mathcal{F}_{2}^{\theta}\right\}$ the value
of their product in $\mathrm{Sph}_{M, X^{\theta}}^{+}$is

$$
\bigoplus_{\theta=\theta_{1}+\theta_{2}} \mathcal{F}_{1}^{\theta_{1}} \star \mathcal{F}_{2}^{\theta_{2}}
$$

Factorization property. For $\theta=\theta_{1}+\theta_{2}$, let $\left(X^{\theta_{1}} \times X^{\theta_{2}}\right)_{\text {disj }}$ denote the the open locus of $X^{\theta_{1}} \times X^{\theta_{2}}$ consisting of pairs of colored divisors with disjoint supports. We have a natural étale map $\left(X^{\theta_{1}} \times X^{\theta_{2}}\right)_{\text {disj }} \rightarrow X^{\theta}$.

The schemes $\mathrm{Gr}_{M, X^{\theta}}^{+}, \theta \in \Lambda_{G, P}^{\mathrm{pos}}$ factorize in the sense that there exist Cartesian diagrams

$$
\begin{gathered}
\left(\mathrm{Gr}_{M, X^{\theta_{1}}}^{+} \times \mathrm{Gr}_{M, X^{\theta_{2}}}^{+}\right) \underset{X_{1}^{\theta} \times X^{\theta_{2}}}{\times}\left(X^{\theta_{1}} \times X^{\theta_{2}}\right)_{\mathrm{disj}} \longrightarrow \mathrm{Gr}_{M, X^{\theta}}^{+} \\
\stackrel{\downarrow}{ }{ }^{\downarrow}{ }^{\left.\theta^{\theta_{1}} \times X^{\theta_{2}}\right)_{\text {disj }}} \longrightarrow X^{\theta}
\end{gathered}
$$

for $\theta=\theta_{1}+\theta_{2}$.
The internal convolution (i.e., fusion) product (cf. [71, (5.4.4)])

$$
\circledast: D\left(\operatorname{Gr}_{M}^{+, \theta_{1}}\right)^{M(\mathfrak{o})_{X}} \otimes D\left(\operatorname{Gr}_{M}^{+, \theta_{2}}\right)^{M(\mathfrak{o})_{X}} \rightarrow D\left(\operatorname{Gr}_{M}^{+, \theta}\right)^{M(\mathfrak{o})_{X}}
$$

for $\theta=\theta_{1}+\theta_{2}$ is related to the \star product as follows: Let $\Delta^{\theta}: \mathrm{Gr}_{M}^{+, \theta} \hookrightarrow \mathrm{Gr}_{M, X^{\theta}}^{+}$denote the closed embedding. Then there is a canonical isomorphism

$$
\begin{equation*}
\mathcal{F}_{1} \circledast \mathcal{F}_{2} \cong \Delta^{\theta *}\left(\Delta_{*}^{\theta_{1}}\left(\mathcal{F}_{1}\right) \star \Delta_{*}^{\theta_{2}}\left(\mathcal{F}_{2}\right)\right) . \tag{A.10}
\end{equation*}
$$

A. 2 Factorization algebras in Sph_{M}^{+}

In this section we review some of the objects introduced in [14, 29] and their properties. For our purposes, we only need to work with these objects at a very coarse level (e.g., in the Grothendieck group) so we omit much of the higher categorical nuances.

Let G be a connected split reductive group over a perfect field k. Let P be a standard parabolic subgroup of G. While the results of loc. cit. are stated only in the case $P=B$, we
state them for arbitrary parabolics. The reader may check that the proofs readily generalize.
We will continue using the notation of Appendix A. 1 for the monoid \bar{M}, the Hecke stack, the affine Grassmannian, and the graded Ran space.

A.2.1 Remarks on G

For simplicity, we assume throughout this Appendix that G has a simply connected derived group $[G, G]$, so that we may use the same construction of $\widetilde{\operatorname{Bun}}_{P}$ as in $[13,12]$. The reader may refer to $[61, \S 7]$ for how to remove this hypothesis, and the basic geometry of the Zastava space and Drinfeld's compactification remains the same.

A.2.2 Geometric Satake

For simplicity, we will only use the non-factorizable geometric Satake functor. Let \check{M} denote the Langlands dual group of M over the field $\overline{\mathbb{Q}}_{\ell}$. Observe that each $\theta \in \Lambda_{G, P}^{\mathrm{pos}}$ defines a central character of \check{M}. Let $\operatorname{Rep}(\check{M})_{\theta}$ denote the subcategory of \check{M}-modules with central character θ. Then we have a t-exact (with respect to the perverse t-structures) functor

$$
\operatorname{Sat}_{X}^{\text {naive }}: D\left(\operatorname{Rep}(\check{M})_{\theta}\right) \otimes D(X) \rightarrow D\left(\operatorname{Gr}_{M, X}^{+, \theta}\right)^{M(\mathfrak{o})_{X}}
$$

which is a special case of the factorizable geometric Satake functor $\operatorname{Sat}_{\operatorname{Ran}(X)}^{\text {naive }}$ constructed in $[55, \S 6]$. If we allow θ to range over all of $\Lambda_{G, P}^{\mathrm{pos}}$, then $\operatorname{Sat}_{X}^{\text {naive }}$ is monoidal with respect to the usual tensor structure on the left hand side and the internal convolution product \circledast on the Beilinson-Drinfeld Grassmannian (cf. §A.1.6) on the right hand side.

Remark A.2.1. Suppose $k=\mathbb{F}_{q}$. Fix a closed point $v \in|X|$ and let $m_{v} \in \operatorname{Gr}_{M, v}^{+, \theta}\left(\mathbb{F}_{q}\right)$. As explained in $[71, \S 5.6]$, the geometric Satake functor corresponds to the classical Satake isomorphism $\mathcal{S}_{v}: H_{M, v} \rightarrow \mathbf{K}(\operatorname{Rep}(\check{M})) \otimes \overline{\mathbb{Q}}_{\ell}$ by Grothendieck's functions-sheaves dictionary:
the trace of the geometric Frobenius at the $*$-fiber at m_{v} of $\operatorname{Sat}_{X}^{\text {naive }}\left(V \otimes\left(\overline{\mathbb{Q}}_{\ell}\right)_{X}\right)$ equals

$$
\mathcal{S}_{v}^{-1}([V])\left(m_{v}\right),
$$

where [V] is the image of V in the Grothendieck group $\mathbf{K}(\operatorname{Rep}(\check{M}))$. Here $H_{M, v}$ is the spherical Hecke algebra of $M\left(F_{v}\right)$, and \mathcal{S}_{v} is Langlands' reformulation of the classical Satake isomorphism (cf. §2.3.4).

A.2.3 Factorization algebras

We use the language of factorization algebras graded by the monoid $\Lambda_{G, P}^{\text {pos }}$ introduced in [29, $\S 2]$. This is simply a particular case of the general notion of factorization algebra defined in [8].

A $\Lambda_{G, P^{-}}^{\text {pos }}$-graded factorization algebra $\mathcal{F} \in \operatorname{Sph}_{M}^{+}$is a family of sheaves $\mathcal{F}^{\theta} \in \operatorname{Sph}_{M, X^{\theta}}^{+}$ such that for $\theta=\theta_{1}+\theta_{2}$, we have an isomorphism

$$
\left.\left.\mathcal{F}^{\theta}\right|_{\left(X^{\theta_{1}} \times X^{\theta_{2}}\right)_{\mathrm{disj}}} \cong\left(\mathcal{F}^{\theta_{1}} \boxtimes \mathcal{F}^{\theta_{2}}\right)\right|_{\left(X^{\theta_{1}} \times X^{\theta_{2}}\right)_{\mathrm{disj}}},
$$

of sheaves on $\mathrm{Gr}_{M, X^{\theta}}^{+} \times{ }_{X^{\theta}}\left(X^{\theta_{1}} \times X^{\theta_{2}}\right)_{\text {disj }}$ satisfying the natural compatibilities. On the left hand side, we are restricting along the étale map $\left(X^{\theta_{1}} \times X^{\theta_{2}}\right)_{\operatorname{disj}} \rightarrow X^{\theta}$. On the right hand side, we restrict along the open embedding $\left(X^{\theta_{1}} \times X^{\theta_{2}}\right)_{\operatorname{disj}} \hookrightarrow X^{\theta_{1}} \times X^{\theta_{2}}$ and use the factorization property of $\mathrm{Gr}_{M, X^{\theta}}^{+}$explained in §A.1.6.

Let $\mathcal{F} \in \mathrm{Sph}_{M}^{+}$be a commutative algebra object in the monoidal category. For $\theta=\theta_{1}+\theta_{2}$, the multiplication map $\mathcal{F}^{\theta_{1}} \star \mathcal{F}^{\theta_{2}} \rightarrow \mathcal{F}^{\theta}$ induces, by adjunction, a map

$$
\left.\left.\left(\mathcal{F}^{\theta_{1}} \boxtimes \mathcal{F}^{\theta_{2}}\right)\right|_{\left(X^{\theta_{1}} \times X^{\theta_{2}}\right)_{\text {disj }}} \rightarrow \mathcal{F}^{\theta}\right|_{\left(X^{\theta_{1}} \times X^{\theta_{2}}\right)_{\text {disj }}} .
$$

We say that \mathcal{F} is a commutative factorization algebra if these maps are isomorphisms for all $\theta=\theta_{1}+\theta_{2}$.

Let $\mathcal{F} \in \mathrm{Sph}_{M}^{+}$be a cocommutative coalgebra object in the monoidal category. For $\theta=\theta_{1}+\theta_{2}$, the comultiplication map $\mathcal{F}^{\theta} \rightarrow \mathcal{F}^{\theta_{1}} \star \mathcal{F}^{\theta_{2}}$ induces, by adjunction, a map

$$
\left.\left.\mathcal{F}^{\theta}\right|_{\left(X^{\theta_{1}} \times X^{\theta_{2}}\right)_{\text {disj }}} \rightarrow\left(\mathcal{F}^{\theta_{1}} \boxtimes \mathcal{F}^{\theta_{2}}\right)\right|_{\left(X^{\theta_{1}} \times X^{\theta_{2}}\right)_{\text {disj }}}
$$

We say that \mathcal{F} is a cocommutative factorization algebra if these maps are isomorphisms for all $\theta=\theta_{1}+\theta_{2}$.

A.2.4 Cocommutative factorization algebras

Let us recall the definition of the cocommutative factorization algebra $\Upsilon\left(\check{\mathfrak{u}}_{P}\right) \in \operatorname{Sph}_{M}^{+}$introduced in [14].

For $\theta \in \Lambda_{G, P}^{\mathrm{pos}}$, let $\Delta^{\theta}: \mathrm{Gr}_{M}^{+, \theta} \hookrightarrow \mathrm{Gr}_{M, X^{\theta}}^{+}$denote the closed diagonal. The $\Lambda_{G, P^{-}}^{\mathrm{pos}}$-graded \check{M}-module

$$
\check{\mathfrak{u}}_{P}=\bigoplus_{\alpha \in \Phi_{G}^{+}-\Phi_{M}^{+}} \check{\mathfrak{u}}_{\alpha}
$$

gives a complex

$$
\check{\mathfrak{u}}_{P, \mathrm{Sph}_{M}^{+}}:=\bigoplus_{\alpha \in \Phi^{+}-\Phi_{M}^{+}} \Delta_{*}^{\alpha}\left(\operatorname{Sat}_{X}^{\text {naive }}\left(\check{\mathfrak{u}}_{\alpha} \otimes\left(\overline{\mathbb{Q}}_{\ell}\right)_{X}\right)\right) \in \mathrm{Sph}_{M}^{+} .
$$

The Lie algebra structure on $\check{\mathfrak{u}}_{P}$ gives a Lie algebra structure to $\check{\mathfrak{u}}_{P, \mathrm{Sph}_{M}^{+}}$with respect to the \star monoidal structure on Sph_{M}^{+}. Then

$$
\Upsilon\left(\check{\mathfrak{u}}_{P}\right):=C_{\bullet}\left(\check{\mathfrak{u}}_{P, \mathrm{Sph}_{M}^{+}}\right)
$$

is the homological Chevalley complex associated to this Lie algebra, and $\Upsilon\left(\check{\mathfrak{u}}_{P}\right)$ is a cocommutative factorization algebra.

Let $U\left(\check{\mathfrak{u}}_{P}\right)_{\text {Sph }_{M}^{+}}$denote the universal enveloping algebra of the Lie algebra $\check{\mathfrak{u}}_{P, S \mathrm{Sh}_{M}^{+}}$. This is a cocommutative factorization algebra in Sph_{M}^{+}with a compatible associative algebra
structure with respect to \star.
Remark A.2.2. If we consider $\check{\mathfrak{u}}_{P, \operatorname{Sph}_{M}^{+}}[1]$ as a Lie superalgebra in degree -1 , then

$$
\Upsilon\left(\check{\mathfrak{u}}_{P}\right)=U\left(\check{\mathfrak{u}}_{P, \operatorname{Sph}_{M}^{+}}^{+[1]) .}\right.
$$

Restriction to strata. For $\theta \in \Lambda_{G, P}^{\text {pos }}$ and $\mathfrak{A} \in \mathcal{P}_{\theta}$ a partition, let $x^{\mathfrak{A}} \in\left(X^{\mathfrak{A}}\right)_{\operatorname{disj}}(k)$ be a
 $\Pi \mathrm{Gr}_{M, v}^{+, \theta_{v}}$ by the factorization property.

Since $\Upsilon\left(\check{\mathfrak{u}}_{P}\right)$ is a factorization algebra and Sat ${ }_{X}^{\text {naive }}$ is a monoidal functor, (A.10) implies that the $*$-restriction of $\Upsilon\left(\check{\mathfrak{u}}_{P}\right)$ to this fiber of $\mathrm{Gr}_{M}^{+, \mathfrak{A}}$ canonically identifies with

$$
\underset{v}{\boxtimes} \operatorname{Sat}_{v}^{\text {naive }}\left(C \cdot\left(\check{\mathfrak{u}}_{P}\right)^{\theta_{v}}\right)
$$

where $C \bullet\left(\check{\mathfrak{u}}_{P}\right)^{\theta_{v}}$ denotes the θ_{v}-graded piece of the Chevalley complex of the Lie algebra $\check{\mathfrak{u}}_{P}$ in $D(\operatorname{Rep}(\check{M}))$, and $\operatorname{Sat}_{v}^{\text {naive }}$ is the non-relative geometric Satake functor for $\operatorname{Gr}_{M, v}^{+, \theta_{v}}$.

The *-restriction of $U\left(\check{\mathfrak{u}}_{P}\right)_{\operatorname{Sph}_{M}^{+}}$to the fiber $\prod \operatorname{Gr}_{M, v}^{+, \theta_{v}}$ canonically identifies with

$$
\underset{v}{\boxtimes} \operatorname{Sat}_{v}^{\text {naive }}\left(U\left(\check{\mathfrak{u}}_{P}\right)^{\theta v}\right)
$$

where $U\left(\breve{\mathfrak{u}}_{P}\right)^{\theta_{v}}$ is the θ_{v}-graded piece of the universal enveloping algebra of $\check{\mathfrak{u}}_{P}$.
Koszul resolution. Let $\mathbf{1}$ denote the constant sheaf $\overline{\mathbb{Q}}_{\ell}$ on $\operatorname{Spec}(k)=\operatorname{Gr}_{M, X^{0}}^{+}$. Then $\mathbf{1}$ is the unit in the monoidal category Sph_{M}^{+}.

Consider the acyclic complex $\check{\mathfrak{u}}_{P, \mathrm{Sph}_{M}^{+}} \rightarrow \check{\mathfrak{u}}_{P, \mathrm{Sph}_{M}^{+}}$as a Lie superalgebra in degrees $-1,0$. The universal enveloping algebra of this Lie superalgebra is quasi-isomorphic to 1 . This resolution endows $\mathbf{1}$ with the structure of a comodule with respect to $\Upsilon\left(\check{\mathfrak{u}}_{P}\right)$ and of a module with respect to $U\left(\check{\mathfrak{u}}_{P}\right)_{\mathrm{Sph}_{M}^{+}}$.

A.2.5 Commutative factorization algebras

We define the commutative factorization algebra $\Omega\left(\check{\mathfrak{u}}_{P}^{-}\right) \in \operatorname{Sph}_{M}^{+}$as the Verdier dual of $\Upsilon\left(\check{\mathfrak{u}}_{P}^{-}\right)$. (Here we use the opposite Lie algebra $\check{\mathfrak{u}}_{P}^{-}$so that $\Omega\left(\check{\mathfrak{u}}_{P}^{-}\right)$is still $\Lambda_{G, P^{-g r a d e d .) ~}}^{\text {pos }}$

One can also define $\Omega\left(\check{\mathfrak{u}}_{P}^{-}\right)$from scratch by considering

$$
\left(\check{\mathfrak{u}}_{P, \mathrm{Sph}_{M}^{+}}^{-}\right)^{\vee}:=\mathbb{D}\left(\check{\mathfrak{u}}_{P, \mathrm{Sph}_{M}^{-}}^{-}\right) \cong \bigoplus_{\alpha \in \Phi_{G}^{+}-\Phi_{M}^{+}} \Delta_{*}^{\alpha}\left(\operatorname{Sat}_{X}^{\text {naive }}\left(\check{\mathfrak{u}}_{-\alpha}^{\vee} \otimes\left(\overline{\mathbb{Q}}_{\ell}\right)_{X}(1)[2]\right)\right)
$$

Then $\left(\check{\mathfrak{u}}_{P, S \mathrm{Sh}_{M}^{-}}^{-}\right)^{\vee}$ is a Lie coalgebra in Sph_{M}^{+}with respect to the \star monoidal structure. There is a canonical isomorphism

$$
\Omega\left(\check{\mathfrak{u}}_{P}\right) \cong C^{\bullet}\left(\left(\check{\mathfrak{u}}_{P, \mathrm{Sph}_{M}^{-}}^{-}\right)^{\vee}\right),
$$

where the right hand side is the cohomological Chevalley complex associated to this Lie coalgebra.

Let $U^{\vee}\left(\check{\mathfrak{u}}_{P}^{-}\right)_{\operatorname{Sph}_{M}^{+}}$denote the universal co-enveloping coalgebra of $\left(\check{\mathfrak{u}}_{P, \mathrm{Sph}_{M}^{-}}^{+}\right)^{\vee}$. This is a commutative factorization algebra in Sph_{M}^{+}with a compatible coalgebra structure with respect to \star.

Restriction to strata. For $\theta \in \Lambda_{G, P}^{\text {pos }}$ and $\mathfrak{A} \in \mathcal{P}_{\theta}$ a partition, let $x^{\mathfrak{A}} \in\left(X^{\mathfrak{A}}\right)_{\text {disj }}(k)$ be a
 $\prod \mathrm{Gr}_{M, v}^{+, \theta_{v}}$.

Since $\Omega\left(\check{\mathfrak{u}}_{P}^{-}\right)$is a factorization algebra and $\operatorname{Sat}_{X}^{\text {naive }}$ is a monoidal functor, the $*$-restriction of $\Omega\left(\check{\mathfrak{u}}_{P}^{-}\right)$to this fiber of $\mathrm{Gr}_{M}^{+, \mathfrak{A}}$ canonically identifies with

$$
{\underset{v}{ }}_{\operatorname{Sat}_{v}}^{\text {naive } \left.\left(C^{\bullet}\left(\left(\check{\mathfrak{u}}_{P}^{-}\right)^{\vee}(1)[2]\right)^{\theta_{v}}\right), ~\right)}
$$

where $C^{\bullet}\left(\left(\check{\mathfrak{u}}_{P}^{-}\right)^{\vee}(1)[2]\right)^{\theta_{v}}$ denotes the θ_{v}-graded piece of the cohomological Chevalley complex, and $\operatorname{Sat}_{v}^{\text {naive }}$ is the non-relative geometric Satake functor for $\mathrm{Gr}_{M, v}^{+, \theta_{v}}$.

The *-restriction of $U^{\vee}\left(\check{\mathfrak{u}}_{P}^{-}\right)_{\operatorname{Sph}_{M}^{+}}$to the fiber $\prod_{\operatorname{Gr}_{M, v}^{+,} \theta_{v}}$ canonically identifies with

$$
{\underset{v}{\boxtimes}}^{\operatorname{Sat}}{ }_{v}^{\text {naive }}\left(U\left(\left(\check{\mathfrak{u}}_{P}^{-}\right)^{\vee}(1)[2]\right)^{\theta_{v}}\right)
$$

where $U\left(\left(\check{\mathfrak{u}}_{P}^{-}\right)^{\vee}(1)[2]\right)^{\theta_{v}}$ is the θ_{v}-graded piece of the universal co-enveloping coalgebra.
Koszul resolution. Applying Verdier duality to the Koszul resolution in §A.2.4 gives $\mathbf{1} \in \mathrm{Sph}_{M}^{+}$the structure of a module with respect to $\Omega\left(\check{\mathfrak{u}}_{P}^{-}\right)$and of a comodule with respect to $U^{\vee}\left(\check{\mathfrak{u}}_{P}\right)_{\operatorname{Sph}_{M}^{+}}$.

A.2.6 Eisenstein series

Let

$$
\jmath: \operatorname{Bun}_{P} \hookrightarrow \widetilde{\operatorname{Bun}}_{P}
$$

denote the open embedding into Drinfeld's compactification of Bun ${ }_{P}$.
Action on Drinfeld's compactifications. For every $\theta \in \Lambda_{G, P}^{\mathrm{pos}}$ there corresponds a proper map

$$
\bar{\iota}^{-\theta}: \widetilde{\operatorname{Bun}}_{P} \underset{\operatorname{Bun}_{M}}{\times} \mathcal{H}_{M, X^{\theta}}^{+} \rightarrow \widetilde{\operatorname{Bun}}_{P}
$$

Using (A.5), we can express $\widetilde{\operatorname{Bun}}{ }_{P} \times$ Bun $_{M} \mathcal{H}_{M, X^{\theta}}^{+}$as a twisted product $\widetilde{\operatorname{Bun}}_{P} \tilde{\times} \mathrm{Gr}_{M, X^{\theta}}^{+}$. Given $\mathcal{E} \in D\left(\widetilde{\operatorname{Bun}}_{P}\right)$ and $\mathcal{F} \in \operatorname{Sph}_{M, X^{\theta}}^{+}$, we can form a sheaf

$$
\mathcal{E} \tilde{\otimes} \mathcal{F} \in D\left(\widetilde{\operatorname{Bun}}_{P} \underset{\operatorname{Bun}_{M}}{\times} \mathcal{H}_{M, X^{\theta}}^{+}\right) .
$$

We define an action of $\mathrm{Sph}_{M, X^{\theta}}^{+}$on $D\left(\widetilde{\operatorname{Bun}}_{P}\right)$ by

$$
\mathcal{E}, \mathcal{F} \mapsto \mathcal{E} \star \mathcal{F}:=\bar{\iota}_{*}^{\theta}(\mathcal{E} \tilde{\otimes} \mathcal{F}),
$$

which is compatible with the monoidal product \star on Sph_{M}^{+}.

It was established in [14, Theorem 4.2] (cf. [29, Theorem 5.2.2]) that there exists a map

$$
\jmath_{*}\left(\mathrm{IC}_{\mathrm{Bun}_{P}}\right) \rightarrow \jmath_{*}\left(\mathrm{IC}_{\mathrm{Bun}_{P}}\right) \star \Upsilon\left(\check{\mathfrak{u}}_{P}\right)
$$

that gives $\jmath_{*}\left(\mathrm{IC}_{\mathrm{Bun}_{P}}\right)$ the structure of an $\Upsilon\left(\check{\mathfrak{u}}_{P}\right)$-comodule.
By [14, Theorem 6.6] (cf. [29, Theorem 5.2.4]), we have a quasi-isomorphism

$$
\begin{equation*}
\jmath_{*}\left(\mathrm{IC}_{\left.\mathrm{Bun}_{P}\right)}\right) \square_{\Upsilon\left(\mathfrak{u}_{P}\right)}^{\square} \mathbf{1} \rightarrow \mathrm{IC}_{\widetilde{\operatorname{Bun}_{P}}} \tag{A.11}
\end{equation*}
$$

wheredenotes the homotopy cotensor product over $\Upsilon\left(\check{\mathfrak{u}}_{P}\right)$ (i.e., the coBar construction), which can be computed using the Koszul resolution of $\mathbf{1}$ from §A.2.5.

Recall that $\mathbf{1}$ is also a $U\left(\check{\mathfrak{u}}_{P}\right)$-module. Thus applying the homotopy tensor product over $U\left(\check{\mathfrak{u}}_{P}\right)$ to (A.11), we get a quasi-isomorphism

$$
\begin{equation*}
\jmath_{*}\left(\mathrm{IC}_{\mathrm{Bun}_{P}}\right) \cong \jmath_{*}\left(\operatorname{IC}_{\operatorname{Bun}_{P}}\right) \Upsilon_{\Upsilon\left(\mathfrak{u}_{P}\right)}^{\square} 1 \underset{U\left(\mathfrak{u}_{P}\right)}{\otimes} 1 \cong \mathrm{IC}_{\widehat{\operatorname{Bun}}_{P}} \otimes_{U\left(\mathfrak{u}_{P}\right)}^{\otimes} 1, \tag{A.12}
\end{equation*}
$$

where the first quasi-isomorphism follows from the Koszul duality $\Upsilon\left(\check{\mathfrak{u}}_{P}\right) \cong 1 \otimes_{U\left(\check{\mathfrak{u}}_{P}\right)} \mathbf{1}$.

A.2.7 The factorization algebra $\tilde{\Upsilon}\left(\check{\mathfrak{u}}_{P}\right)$

Let ι^{θ} denote the composition

$$
\bar{\iota}^{\theta} \circ\left(\jmath \times \operatorname{id}_{\mathcal{H}_{M, X^{\theta}}^{+}}\right): \operatorname{Bun}_{P} \underset{\operatorname{Bun}_{M}}{\times} \mathcal{H}_{M, X^{\theta}}^{+} \rightarrow \widetilde{\operatorname{Bun}_{P}} .
$$

The maps ι^{θ} are locally closed embeddings and their images define a stratification of $\widetilde{\operatorname{Bun}}_{P}$ (cf. [13, §6.2], [12]).

Following [29, Proposition 6.1.3], there exists a canonically defined factorization algebra
$\tilde{\Upsilon}\left(\check{\mathfrak{u}}_{P}\right)$ equipped with the structure of a coassociative coalgebra in Sph_{M}^{+}such that

$$
\iota^{\theta *}\left(J_{*}\left(\mathrm{IC}_{\mathrm{Bun}_{P}}\right)\right) \cong \operatorname{IC}_{\operatorname{Bun}_{P}} \tilde{\otimes} \tilde{\Upsilon}\left(\check{\mathfrak{u}}_{P}\right)^{\theta}
$$

We now describe the image of $\tilde{\Upsilon}\left(\check{\mathfrak{u}}_{P}\right)$ in the Grothendieck group of Sph_{M}^{+}. Taking the image of (A.12) in the Grothendieck group gives the equality $\left[{ }_{*}\left(\mathrm{IC}_{\mathrm{Bun}_{P}}\right)\right]=\left[\mathrm{IC}_{\widetilde{\mathrm{Bun}_{P}}} \star\right.$ $\left.\Upsilon\left(\check{\mathfrak{u}}_{P}\right)\right]$. For $\mu \in \Lambda_{G, P}$, let Bun $_{M}^{\mu}$ denote the corresponding connected component consisting of M-bundles of degree μ. Let $\operatorname{Bun}_{P}^{\mu}:=\operatorname{Bun}_{P} \times$ Bun $_{M} \operatorname{Bun}_{M}^{\mu}$. We have a Cartesian square

$$
\begin{aligned}
& \operatorname{Bun}_{P}^{\mu} \underset{\operatorname{Bun}_{M}}{\times} \mathcal{H}_{M, X^{\theta_{1}}}^{+} \underset{\operatorname{Bun}_{M}}{\times} \mathcal{H}_{M, X^{\theta_{2}}}^{+} \longrightarrow \widetilde{\operatorname{Bun}}{ }_{P}^{\mu-\theta_{1}} \underset{\operatorname{Bun}_{M}}{\times} \mathcal{H}_{M, X^{\theta_{2}}}^{+} \\
& \operatorname{id}_{\operatorname{Bun}_{P} \times \mathrm{comp}} \underbrace{}_{\theta} \int_{\iota}^{\theta_{2}} \\
& \operatorname{Bun}_{P}^{\mu} \underset{\operatorname{Bun}_{M}}{\times} \mathcal{H}_{M, X^{\theta}}^{+} \longrightarrow \iota^{\theta} \longrightarrow \widetilde{\operatorname{Bun}}_{P}^{\mu-\theta}
\end{aligned}
$$

where $\theta=\theta_{1}+\theta_{2}$. Therefore pulling back by $\iota^{\theta *}$ gives

$$
\begin{equation*}
\left[\iota^{\theta *} \jmath_{*}\left(\mathrm{IC}_{\mathrm{Bun}_{P}}\right)\right]=\sum_{\theta_{1}+\theta_{2}=\theta}\left[\iota^{\theta_{1} *}\left(\mathrm{IC}_{\widetilde{\operatorname{Bun}}_{P}}\right) \star \Upsilon\left(\check{\mathfrak{u}}_{P}\right)^{\theta_{2}}\right] \tag{A.13}
\end{equation*}
$$

in the Grothendieck group of $\operatorname{Bun}_{P} \times \times_{\operatorname{Bun}_{M}} \mathcal{H}_{M, X^{\theta}}^{+}$. The following result is proved in [12, Theorem 1.12] after passing to the Grothendieck group, and it is proved in the derived category in [14, Proposition 4.4]:

Proposition A.2.3. There exists a canonical isomorphism in $D\left(\operatorname{Bun}_{P} \times_{\operatorname{Bun}_{M}} \mathcal{H}_{M}^{+, \theta}\right)$:

$$
\iota^{\theta *}\left(\mathrm{IC}_{\widetilde{\operatorname{Bun}_{P}}}\right) \cong \mathrm{IC}_{\operatorname{Bun}_{P}} \tilde{\boxtimes} U^{\vee}\left(\check{\mathfrak{u}}_{P}^{-}\right)_{\mathrm{Sph}_{M}^{+}}^{\theta}
$$

Combining (A.13) and Proposition A.2.3, we deduce that

$$
\begin{equation*}
\left[\tilde{\Upsilon}\left(\check{\mathfrak{u}}_{P}\right)^{\theta}\right]=\sum_{\theta_{1}+\theta_{2}=\theta}\left[U^{\vee}\left(\check{\mathfrak{u}}_{P}^{-}\right)_{\mathrm{Sph}_{M}^{+}}^{\theta_{1}} \star \Upsilon\left(\check{\mathfrak{u}}_{P}\right)^{\theta_{2}}\right] \tag{A.14}
\end{equation*}
$$

in the Grothendieck group of Sph_{M}^{+}.

Proposition A.2.4. Suppose $k=\mathbb{F}_{q}$. The trace of the geometric Frobenius on $*$-stalks of $\tilde{\Upsilon}\left(\check{\mathfrak{u}}_{P}\right)^{\theta}$ is equal to the function

$$
\left(\mathcal{F}_{M}, \beta_{M}\right) \in \operatorname{Gr}_{M, X^{\theta}}^{+}\left(\mathbb{F}_{q}\right) \mapsto q^{-\left\langle\check{\rho}_{P}, \theta\right\rangle} \prod_{v} \nu_{M, v}\left(m_{v}\right)
$$

where $m_{v} \in \operatorname{Gr}_{M, v}^{+}\left(\mathbb{F}_{q}\right) \subset M\left(F_{v}\right) / M\left(\mathfrak{o}_{v}\right)$ is determined by β_{M}, and $\nu_{M, v}$ is the $K_{M, v^{-}}$biinvariant measure on $M\left(F_{v}\right)$ defined in §2.3.3.

Proof. Let $x^{\mathfrak{A}} \in\left(X^{\mathfrak{A}}\right)_{\text {disj }}\left(\mathbb{F}_{q}\right), \mathfrak{A} \in \mathcal{P}_{\theta}$, denote the image of $\left(\mathcal{F}_{M}, \beta_{M}\right)$ under $\mathrm{Gr}_{M, X^{\theta}}^{+} \rightarrow X^{\theta}$. Then the fiber of $x^{\mathfrak{A}}$ is isomorphic to $\prod_{v} \operatorname{Gr}_{M, v}^{+, \theta_{v}}$, and the point $\left(\mathcal{F}_{M}, \beta_{M}\right)$ corresponds to the collection $\left\{m_{v} \in \operatorname{Gr}_{M, v}^{+, \theta_{v}}\left(\mathbb{F}_{q}\right)\right\}$. Since $\tilde{\Upsilon}\left(\check{\mathfrak{u}}_{P}\right)$ is a factorization algebra, it suffices to consider the case when β_{M} is an isomorphism on $X-v$ for a fixed closed point v, i.e., $x^{\mathfrak{A}}=\theta_{v} \cdot v$ is supported at a single point v.

The trace of geometric Frobenius on $*$-stalks of a complex only depends on the image of the complex in the Grothendieck group. Therefore (A.14), the discussion in §A.2.4 and §A.2.5, and the compatibility of geometric Satake with the classical Satake transform (Remark A.2.1) together imply that the trace of geometric Frobenius at the $*$-stalk of $\left(\mathcal{F}_{M}, \beta_{M}\right)$ equals

$$
\mathcal{S}_{v}^{-1}\left(\left(\sum_{n=0}(-1)^{n}\left[\wedge^{n} \check{\mathfrak{u}}_{P}\right]\right) \otimes\left(\sum_{n=0}^{\infty}\left[\operatorname{Sym}^{n} \check{\mathfrak{u}}_{P}\right] \cdot q_{v}^{-n}\right)\right)\left(m_{v}\right) .
$$

Comparing with (2.20), we deduce the proposition.

A.2.8 Geometric proof

We prove Proposition A.2.4 above using (2.19), which is essentially the classical GindikinKarpelevich formula. However, the Satake transform does not appear in the statement of Proposition A.2.4. In this subsection we give a more direct proof of Proposition A.2.4 using derived algebraic geometry.

Zastava spaces. Let $\mathcal{Z}^{P, \theta}$ denote the Zastava space defined in [12] corresponding to the parabolic P, and let $\stackrel{\circ}{Z}^{P, \theta}$ denote the open Zastava space (called $\mathcal{Z}_{\text {max }}^{P, \theta}$ in loc. cit.). We have a map $\pi_{z}: z^{P, \theta} \rightarrow \mathrm{Gr}_{M, X^{\theta}}^{+}$. Let $\stackrel{\circ}{\pi}_{z}: \stackrel{\circ}{z}^{P, \theta} \rightarrow \mathrm{Gr}_{M, X^{\theta}}^{+}$denote the restriction.

Let $\tilde{\Omega}\left(\check{\mathfrak{u}}_{P}^{-}\right)$denote the Verdier dual of $\tilde{\Upsilon}\left(\check{\mathfrak{u}}_{P}^{-}\right)$. Then $\tilde{\Omega}\left(\check{\mathfrak{u}}_{P}^{-}\right)$is a factorization algebra on Sph_{M}^{+}with the defining equation

$$
\iota^{\theta!}\left(\jmath!\left(\mathrm{IC}_{\operatorname{Bun}_{P}}\right)\right) \cong \operatorname{IC}_{\operatorname{Bun}_{P}} \tilde{\otimes} \tilde{\Omega}\left(\check{\mathfrak{u}}_{P}^{-}\right)^{\theta}
$$

for $\theta \in \Lambda_{G, P}^{\mathrm{pos}}$. Using the local model of $[12, \S 3]$ and the contraction principle ([12, Proposition 5.2]), one sees that there is a canonical isomorphism

$$
\begin{equation*}
\tilde{\Omega}\left(\check{\mathfrak{u}}_{P}^{-}\right)^{\theta} \cong(\overbrace{z}^{\circ})!\left(\mathrm{IC}_{\mathcal{Z}^{P, \theta}}\right) . \tag{A.15}
\end{equation*}
$$

From this equation, factorization of $\tilde{\Omega}\left(\check{\mathfrak{u}}_{P}^{-}\right)$follows from the factorization property of $\check{\mathcal{Z}}^{P, \theta}$.
Lemma A.2.5. Suppose $k=\mathbb{F}_{q}$. The trace of geometric Frobenius on $*$-stalks of $\tilde{\Omega}\left(\check{\mathfrak{u}}_{P}^{-}\right)^{\theta}$ is equal to the function

$$
\left(\mathcal{F}_{M}, \beta_{M}\right) \in \operatorname{Gr}_{M, X^{\theta}}^{+}\left(\mathbb{F}_{q}\right) \mapsto q^{-\left\langle\check{\rho}_{P}, \theta\right\rangle} \prod_{v} \mu_{M, v}\left(m_{v}\right)
$$

where $m_{v} \in \operatorname{Gr}_{M, v}^{+}\left(\mathbb{F}_{q}\right) \subset M\left(F_{v}\right) / M\left(\mathfrak{o}_{v}\right)$ is determined by β_{M}, and $\mu_{M, v}$ is the $K_{M, v}$ biinvariant measure on $M\left(F_{v}\right)$ defined in §2.3.1.

Proof. Let $x^{\mathfrak{A}} \in\left(X^{\mathfrak{A}}\right)_{\text {disj }}\left(\mathbb{F}_{q}\right), \mathfrak{A} \in \mathcal{P}_{\theta}$, denote the image of $\left(\mathcal{F}_{M}, \beta_{M}\right)$ under $\operatorname{Gr}_{M, X^{\theta}}^{+} \rightarrow X^{\theta}$. Then the fiber of $x^{\mathfrak{A}}$ is isomorphic to $\prod_{v} \operatorname{Gr}_{M, v}^{+, \theta_{v}}$, and the point $\left(\mathcal{F}_{M}, \beta_{M}\right)$ corresponds to the collection $\left\{m_{v} \in \operatorname{Gr}_{M, v}^{+, \theta_{v}}\left(\mathbb{F}_{q}\right)\right\}$. Since $\tilde{\Omega}\left(\check{\mathfrak{u}}_{P}\right)$ is a factorization algebra, it suffices to consider the case when β_{M} is an isomorphism on $X-v$ for a fixed closed point v, i.e., $x^{\mathfrak{A}}=\theta_{v} \cdot v$.

Therefore we can restrict our attention to the central fiber

$$
\stackrel{\circ}{\mathfrak{Z}}_{v}^{\theta}:=\stackrel{\circ}{Z}{ }^{P, \theta} \underset{X^{\theta}}{\times} \operatorname{Spec}(k)
$$

where $\operatorname{Spec}(k) \rightarrow X^{\theta}$ is the point $\theta_{v} \cdot v$. Let $\operatorname{Gr}_{P, v}^{\theta_{v}}$ denote the preimage under $\operatorname{Gr}_{P, v} \rightarrow$ $\mathrm{Gr}_{M /[M, M], v}$ of the point corresponding to θ_{v}. By [12, Proposition 2.6], there is a natural identification $\stackrel{\circ}{\mathfrak{Z}}_{v}^{\theta} \cong \operatorname{Gr}_{P, v}^{\theta_{v}} \cap \operatorname{Gr}_{U^{-}, v}$ such that $\stackrel{\circ}{\pi}_{Z}$ corresponds to the map

$$
\operatorname{Gr}_{P, v}^{\theta_{v}} \cap \operatorname{Gr}_{U^{-}, v} \hookrightarrow \operatorname{Gr}_{P, v} \rightarrow \operatorname{Gr}_{M, v}
$$

In other words, the central fiber of the open Zastava space is an intersection of semi-infinite orbits in the affine Grassmannian. Recall from $\S 2.3 .1$ that $\mu_{M, v}$ is defined as the measure of certain semi-infinite orbits. By Grothendieck's trace formula, we deduce that the trace of geometric Frobenius on $*$-stalks of $\left(\stackrel{\circ}{\pi_{z}}\right)!\left(\overline{\mathbb{Q}}_{\ell}\right)_{{\underset{Z}{P}}^{P}, \theta}$ equals the function $m_{v} \mapsto \mu_{M, v}\left(m_{v}\right)$. Since $\stackrel{\circ}{z}^{P, \theta}$ is a smooth scheme of dimension $\left\langle 2 \check{\rho}_{P}, \theta\right\rangle$, we have proved the lemma.

By [29, Proposition 6.2.2], we have a Koszul duality

$$
1_{\tilde{\Omega}\left(\check{\mathfrak{u}}_{P}^{-}\right)}^{\otimes} 1 \cong \tilde{\Upsilon}\left(\check{\mathfrak{u}}_{P}\right)
$$

At the level of Grothendieck groups, this tells us that we have an equality $\left[\tilde{\Omega}\left(\check{\mathfrak{u}}_{P}^{-}\right)\right] \star\left[\tilde{\Upsilon}\left(\check{\mathfrak{u}}_{P}\right)\right]=$ [1]. Therefore the Grothendieck function of $\tilde{\Omega}\left(\check{\mathfrak{u}}_{P}^{-}\right)$is the inverse, with respect to convolution, of the Grothendieck function of $\tilde{\Upsilon}\left(\check{\mathfrak{u}}_{P}\right)$. Since $\nu_{M, v}$ is defined to be the convolution inverse of $\mu_{M, v}$, Lemma A.2.5 implies Proposition A.2.4.

A. 3 The Drinfeld-Lafforgue-Vinberg compactification

Let k be a perfect base field. In this section we review the definition and properties of the stack $\operatorname{VinBun}_{G}$ introduced in [62]. In §A.3.6, we mention an alternate definition of
$\operatorname{VinBun}_{G}$ in the general case when $[G, G]$ is not simply connected. For $k=\mathbb{F}_{q}$, we use results from loc. cit. to compute the trace of the geometric Frobenius acting on the $*$-stalks of the $*$-pushforward of the constant sheaf $\overline{\mathbb{Q}}_{\ell}$ under the diagonal morphism Δ of Bun_{G} (see Theorem A.3.12). This is done by using a certain compactification of Δ, which we construct in §A.3.8.

A.3.1 The Deconcini-Procesi-Vinberg semigroup

Set $T_{\text {adj }}:=T / Z(G)$, where $Z(G)$ is the center of G. The simple roots identify $T_{\text {adj }}$ with $\mathbb{G}_{m}^{\left|\Gamma_{G}\right|}$.

Let $\overline{G_{\text {enh }}}$ denote the Vinberg semigroup of G, which admits a homomorphism

$$
\bar{\pi}: \overline{G_{\mathrm{enh}}} \rightarrow \overline{T_{\mathrm{adj}}}
$$

where $\overline{T_{\mathrm{adj}}}:=\left(\mathbb{A}^{1}\right)^{\left|\Gamma_{G}\right|}$. Any representation of $G_{\text {enh }}$ decomposes into ones of the form $V \otimes k_{\check{\lambda}}$ where $V \in \operatorname{Rep}(G)$ and $\check{\lambda} \in \check{\Lambda}$ is a weight of T, such that for all weights $\check{\mu}$ of V, the difference $\check{\lambda}-\check{\mu}$ belongs to the root lattice. By definition, $V \otimes k_{\check{\lambda}} \in \operatorname{Rep}\left(\overline{G_{\text {enh }}}\right)$ if and only if $\check{\lambda}-\check{\mu} \in \check{\Lambda}_{G}^{\text {pos }}$ for all weights $\check{\mu}$ of V.

We recall some facts whose proofs can be found in $[67, \S 8]$ in the characteristic zero case and in [58] in general. Let $V(\check{\lambda})$ denote the irreducible G-module of highest weight $\check{\lambda} \in \check{\Lambda}_{G}^{+}$.

Following [24, Lemma D.4.2, Definition D.4.3], we let $\frac{\circ}{G_{\text {enh }}}$ denote the non-degenerate locus of $\overline{G_{\text {enh }}}$. By definition, this is the open subscheme of $\overline{G_{\text {enh }}}$ whose \bar{k}-points are the elements $g \in \overline{G_{\text {enh }}}(\bar{k})$ with nonzero action on $V(\check{\lambda}) \otimes \bar{k}_{\check{\lambda}}$ for all dominant weights $\check{\lambda} \in \check{\Lambda}_{G}^{+}$.

It is known that $\bar{\circ} \overline{G_{\text {enh }}}$ is smooth over $\overline{T_{\text {adj }}}$. The choice of Cartan subgroup $T \subset G$ defines a section $\mathfrak{s}: T_{\text {adj }} \rightarrow G_{\text {enh }}$ by $\mathfrak{s}(t)=\left(t^{-1}, t\right)$, which extends to a homomorphism of monoids

$$
\overline{\mathfrak{s}}: \overline{T_{\mathrm{adj}}} \rightarrow \overline{G_{\mathrm{enh}}}
$$

with image contained in $\overline{G_{\text {enh }}}$ (cf. [24, Lemma D.5.2]). The $G \times G$-action on $\overline{G_{\text {enh }}}$ gives an
equality ([24, Corollary D.5.4])

$$
\bar{\circ} \overline{G_{\mathrm{enh}}}=G \cdot \overline{\mathfrak{s}}\left(\overline{T_{\mathrm{adj}}}\right) \cdot G
$$

For a standard parabolic P with Levi subgroup M, let $\mathbf{c}_{P} \in \overline{T_{\text {adj }}}$ be the point defined by the condition that $\check{\alpha}_{i}\left(\mathbf{c}_{P}\right)=1$ for simple roots $\check{\alpha}_{i}$ contained inside M, and $\check{\alpha}_{i}\left(\mathbf{c}_{P}\right)=0$ for all other simple roots.

There is a canonical T-stable stratification of $\overline{T_{\text {adj }}}$ indexed by standard parabolics, with the point \mathbf{c}_{P} contained in the stratum $\left(\overline{T_{\mathrm{adj}}}\right)_{P}$ corresponding to the parabolic P. In other words,

$$
\left(\overline{T_{\mathrm{adj}}}\right)_{P}=\left\{t \in \overline{T_{\mathrm{adj}}} \mid \check{\alpha}_{i}(t) \neq 0, i \in \Gamma_{M} \text { and } \check{\alpha}_{j}(t)=0, j \in \Gamma_{G}-\Gamma_{M}\right\}
$$

The T-action on \mathbf{c}_{P} induces an isomorphism $T / Z(M) \cong\left(\overline{T_{\text {adj }}}\right)_{P}$. Define

$$
\left(\overline{T_{\mathrm{adj}}}\right)_{\geq P}=\left\{t \in \overline{T_{\mathrm{adj}}} \mid \check{\alpha}_{i}(t) \neq 0, i \in \Gamma_{M}\right\}
$$

to be the open locus of $\overline{T_{\text {adj }}}$ obtained by removing all strata corresponding to parabolic subgroups not containing P.

Example A.3.1. Let $G=\mathrm{SL}(2)$. Then $G_{\mathrm{enh}}=\mathrm{GL}(2)$ and $\overline{G_{\mathrm{enh}}}=\operatorname{Mat}(2)$, the monoid of 2×2 matrices. In this case $T_{\text {adj }}=\mathbb{G}_{m}, \overline{T_{\text {adj }}}=\mathbb{A}^{1}$, and $\bar{\pi}: \operatorname{Mat}(2) \rightarrow \mathbb{A}^{1}$ is the determinant map. The non-degenerate locus $\overline{G_{\text {enh }}}=\operatorname{Mat}(2)-\{0\}$ is the open subset of nonzero matrices. Let B equal the Borel of upper triangular matrices and identify T with the subgroup of diagonal matrices in G. The section $\overline{\mathfrak{s}}$ corresponding to (B, T) is the map $\mathbb{A}^{1} \rightarrow \operatorname{Mat}(2)$ sending $x \mapsto\left(\begin{array}{cc}1 & 0 \\ 0 & x\end{array}\right)$. The idempotent \mathbf{c}_{G} equals $1 \in \mathbb{A}^{1}$, and \mathbf{c}_{B} equals 0 .

Note that the projection $T_{\text {adj }}=T / Z(G) \rightarrow T / Z(M)=\mathbb{G}_{m}^{\left|\Gamma_{M}\right|}$ has a natural splitting $T / Z(M) \hookrightarrow T / Z(G)$ corresponding to the inclusion $\mathbb{G}_{m}^{\left|\Gamma_{M}\right|} \times\{1\} \hookrightarrow \mathbb{G}_{m}^{\left|\Gamma_{G}\right|}$. Set $\overline{T / Z(M)}:=$ $\left(\mathbb{A}^{1}\right)^{\left|\Gamma_{M}\right|}$. We have a decomposition $T_{\text {adj }}=(T / Z(M)) \times(Z(M) / Z(G))$, which extends to a
decomposition

$$
\overline{T_{\mathrm{adj}}}=\overline{T / Z(M)} \times \overline{Z(M) / Z(G)},
$$

where $\overline{Z(M) / Z(G)} \cong\left(\mathbb{A}^{1}\right)^{\left|\Gamma_{G}\right|-\left|\Gamma_{M}\right|}$ is the closure of $Z(M) / Z(G) \subset T_{\text {adj }}$ in $\overline{T_{\text {adj }}}$. Under the above decomposition, the point $(1,0)$ corresponds to \mathbf{c}_{P}, the stratum $\left(\overline{T_{\text {adj }}}\right)_{P}$ corresponds to $T / Z(M) \times\{0\}=\mathbb{G}_{m}^{\left|\Gamma_{M}\right|} \times\{0\}$, and

$$
\left(\overline{T_{\mathrm{adj}}}\right)_{\geq P}=T / Z(M) \times \overline{Z(M) / Z(G)}=\mathbb{G}_{m}^{\left|\Gamma_{M}\right|} \times\left(\mathbb{A}^{1}\right)^{\left|\Gamma_{G}\right|-\left|\Gamma_{M}\right|}
$$

A.3.2 The stack VinBun $_{G}$

Following [62], the stack

$$
\operatorname{VinBun}_{G} \subset \operatorname{Maps}\left(X, G \backslash \overline{G_{\text {enh }}} / G\right)
$$

is the open substack ${ }^{1}$ of maps generically landing in the non-degenerate locus $\frac{0}{G_{\text {enh }}}$. For a test scheme S, an S-point of $\operatorname{VinBun}_{G}$ is a datum of $\left(\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}, \beta\right)$, where $\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}$ are G-bundles on $X \times S$ and

$$
\beta: X \times S \rightarrow \overline{G_{\text {enh }}} \stackrel{G \times G}{\times}\left(\mathcal{F}_{G}^{1} \underset{X \times S}{\times} \mathcal{F}_{G}^{2}\right)
$$

is a section over $X \times S$ that generically lands in $\overline{G_{\text {enh }}}$ over every geometric point of S. We call such a section β a $\overline{G_{\text {enh }}}$-morphism $\mathcal{F}_{G}^{2} \rightarrow \mathcal{F}_{G}^{1}$.

The map $\bar{\pi}$ induces a map

$$
\bar{\pi}_{\mathrm{Bun}}: \operatorname{VinBun}_{G} \rightarrow \operatorname{Maps}\left(X, \overline{T_{\mathrm{adj}}}\right)=\overline{T_{\mathrm{adj}}}
$$

where the last equality holds because X is proper and geometrically connected.

1. The definition of $\operatorname{VinBun}_{G}$ is deceptively similar to that of $\tilde{\mathcal{H}}_{M}$ in $\S A .1 .2$. We note the differences: in the definition of $\operatorname{VinBun}_{G}$, we consider the quotient stack by $G \times G$ and not $G_{\text {enh }} \times G_{\text {enh }}$. More importantly, the non-degenerate locus $\overline{G_{\text {enh }}}$ is larger than the subgroup $G_{\text {enh }}$.

Let $\operatorname{VinBun}_{G, P}\left(\right.$ resp. $\left.\operatorname{VinBun}_{G, \geq P}\right)$ denote the preimage of $\left(\overline{T_{\text {adj }}}\right)_{P}\left(\right.$ resp. $\left.\left(\overline{T_{\text {adj }}}\right)_{\geq P}\right)$ under $\bar{\pi}_{\text {Bun }}$. Note that $\operatorname{VinBun}_{G, \geq P}$ contains the open stratum $\operatorname{VinBun}_{G, G}$.

A.3.3 The $T_{\text {adj-action on }} \operatorname{VinBun}_{G}$

In what follows, we will define a canonical action of $T_{\text {adj }}$ on $\operatorname{VinBun}_{G}$ which is equivariant with respect to $\bar{\pi}_{\text {Bun }}$ and the identity action on $T_{\text {adj }}$.

Suppose we have an exact sequence of algebraic groups

$$
1 \rightarrow H^{\prime} \rightarrow H \rightarrow H^{\prime \prime} \rightarrow 1
$$

and an action of H on a k-scheme Y. Then the stack $H^{\prime} \backslash Y$ is an $H^{\prime \prime}$-torsor over the stack $H \backslash Y$: indeed, the morphism $H^{\prime} \backslash Y \rightarrow H \backslash Y$ is obtained by base change from the $H^{\prime \prime}$-torsor $H^{\prime} \backslash \mathrm{pt} \rightarrow H \backslash \mathrm{pt}$, where $\mathrm{pt}=\operatorname{Spec}(k)$.

In particular, $H^{\prime \prime}$ acts on $H^{\prime} \backslash Y$ over $H \backslash Y$. One can think of this action as follows. An S point of $H \backslash Y$ is an H-torsor $\mathcal{F}_{H} \rightarrow S$ equipped with an H-equivariant morphism $\mathcal{F}_{H} \rightarrow Y$. Lifting these data to a morphism $S \rightarrow H^{\prime} \backslash Y$ is the same as specifying an H^{\prime}-structure on \mathcal{F}_{H}, which is the same as specifying an H-equivariant morphism $\mathcal{F}_{H} \rightarrow H^{\prime \prime}$. The set of all such morphisms $\mathcal{F}_{H} \rightarrow H^{\prime \prime}$ is equipped with an action of $H^{\prime \prime}(S)$ (by right translations).

Applying the discussion above to $Y=\overline{G_{\mathrm{enh}}}$ and the exact sequence

$$
1 \rightarrow G \times G \rightarrow G_{\mathrm{enh}} \times G_{\mathrm{enh}} \rightarrow T_{\mathrm{adj}} \times T_{\mathrm{adj}} \rightarrow 1
$$

(so $H=G_{\text {enh }} \times G_{\text {enh }}, H^{\prime}=G \times G$, and $H^{\prime \prime}=T_{\text {adj }} \times T_{\text {adj }}$), one gets a canonical action of $T_{\text {adj }} \times T_{\text {adj }}$ on $G \backslash \overline{G_{\text {enh }}} / G$. We will be considering only the action of $T_{\text {adj }}=T_{\text {adj }} \times\{1\} \subset$ $T_{\text {adj }} \times T_{\text {adj }}$ (which comes from the action of $G_{\text {enh }}$ on $\overline{G_{\text {enh }}}$ by left translations).

The $T_{\text {adj-action on }} G \backslash \overline{G_{\text {enh }}} / G$ preserves $G \backslash \frac{\circ}{G_{\text {enh }}} / G$, so it induces an action of $T_{\text {adj }}$ on $\operatorname{VinBun}_{G} \subset \operatorname{Maps}\left(X, G \backslash \overline{G_{\text {enh }}} / G\right)$.

This action can be described explicitly as follows. A G-bundle \mathcal{F}_{G} on $X \times S$ is equivalent to a $G_{\text {enh }}$-bundle $\mathcal{F}_{G_{\text {enh }}}$ on $X \times S$ together with a trivialization of the induced $T_{\text {adj }}$-bundle $\pi\left(\mathcal{F}_{G_{\text {enh }}}\right)$. The group $T_{\text {adj }}(S)$ acts on the space of such trivializations, so $T_{\text {adj }}$ acts on $\operatorname{VinBun}_{G}$ by leaving the $G_{\text {enh-bundle }} \mathcal{F}_{G_{\text {enh }}}^{1}$ induced by \mathcal{F}_{G}^{1} fixed and changing the trivialization of $\pi\left(\mathcal{F}_{G_{\text {enh }}}^{1}\right)$.

A.3.4 Fiber bundles

Fix a standard parabolic subgroup P, and consider the open locus VinBun ${ }_{G, \geq P}$ lying over

$$
\left(\overline{T_{\mathrm{adj}}}\right)_{\geq P}=T / Z(M) \times \overline{Z(M) / Z(G)}
$$

Let $\operatorname{VinBun}_{G, \geq P, \text { strict }}=\bar{\pi}_{\text {Bun }}^{-1}(\{1\} \times \overline{Z(M) / Z(G)})$. Since we have the splitting $T / Z(M) \hookrightarrow$ $T_{\text {adj }}$ (see \S A.3.1), the $T_{\text {adj-action on }} \operatorname{VinBun}_{G}$ defined in \S A.3.3 restricts to a $T / Z(M)$-action on $\operatorname{VinBun}_{G, \geq P}$. This action induces an isomorphism

$$
\begin{equation*}
\operatorname{VinBun}_{G, \geq P} \cong \operatorname{VinBun}_{G, \geq P, \text { strict }} \times(T / Z(M)) \tag{A.16}
\end{equation*}
$$

i.e., $\operatorname{VinBun}_{G, \geq P}$ is a trivial fiber bundle over the projection to $T / Z(M)$.

Note that \mathbf{c}_{P} is the zero element in $\overline{Z(M) / Z(G)}$. Let $\left(\overline{G_{\mathrm{enh}}}\right) \mathbf{c}_{P}$ denote the fiber of $\bar{\pi}$ over \mathbf{c}_{P}. Then $\operatorname{VinBun}_{G, \mathbf{c}_{P}}:=\bar{\pi}_{\text {Bun }}^{-1}\left(\mathbf{c}_{P}\right)$ is equal to the stack

$$
\operatorname{Maps}^{\circ}\left(X, G \backslash\left(\overline{G_{\mathrm{enh}}}\right) \mathbf{c}_{P} / G\right)
$$

where the superscript ${ }^{\circ}$ denotes the open substack of maps generically landing in the nondegenerate locus. Intersecting (A.16) with the P-locus gives

$$
\begin{equation*}
\operatorname{VinBun}_{G, P} \cong \operatorname{VinBun}_{G, \mathbf{c}_{P}} \times(T / Z(M)) \tag{A.17}
\end{equation*}
$$

In the case $P=G$, the G-locus $\operatorname{VinBun}_{G, G}$ is isomorphic to $\operatorname{Bun}_{G} \times T_{\text {adj }}$.
It is known (cf. [24, Appendix C]) that the $G \times G$-action on $\overline{\mathfrak{s}}\left(\mathbf{c}_{P}\right) \in \overline{G_{\text {enh }}}$ induces an isomorphism

$$
\mathbb{X}_{P}:=(G \times G) /\left(P \underset{M}{\times P^{-}}\right) \cong\left(\overline{G_{\mathrm{enh}}}\right) \mathbf{c}_{P}
$$

We learned of the following lemma from [62, Lemma 2.1.11].

Lemma A.3.2. The variety $\left(\overline{G_{\mathrm{enh}}}\right) \mathbf{c}_{P}$ is isomorphic to $\overline{\mathbb{X}}_{P}$.

Proof. By [58, Theorem 7], the irreducible affine variety $\left(\overline{G_{\text {enh }}}\right) \mathbf{c}_{P}$ is normal. Since $\left(\overline{G_{\text {enh }}}\right) \mathbf{c}_{P}$ contains the non-degenerate locus $\left(\overline{G_{\text {enh }}}\right) \mathbf{c}_{P} \cong \mathbb{X}_{P}$ as a dense open subscheme, the extension property of regular functions on normal varieties implies that it suffices to show that the degenerate locus in $\left(\overline{G_{\mathrm{enh}}}\right) \mathbf{c}_{P}$ has codimension at least 2 . This can be checked by considering the combinatorial description of $G \times G$-orbits in $\overline{G_{\text {enh }}}$ from [58, Theorem 6]. In characteristic 0 , this is the same combinatorial description as in [67].

Lemma A.3.2 implies that $\operatorname{VinBun}_{G, \mathbf{c}_{P}}$ is isomorphic to $\operatorname{Maps}^{\circ}\left(X, G \backslash \overline{\mathbb{X}}_{P} / G\right)$, where the superscript ${ }^{\circ}$ denotes the open locus of maps generically landing in $G \backslash \mathbb{X}_{P} / G$.

A.3.5 Defect stratification

Define the closed embedding $M \hookrightarrow \mathbb{X}_{P}$ as the composition of the closed embeddings $M \hookrightarrow$ $G / U: m \mapsto m U$ and $G / U \hookrightarrow \mathbb{X}_{P}: g \mapsto(g, 1)$. From Corollary 1.4.3 we know that $M \hookrightarrow \mathbb{X}_{P}$ extends to a closed embedding $\bar{M} \hookrightarrow \overline{\mathbb{X}}_{P}$. This induces a map

$$
\operatorname{Maps}^{\circ}\left(X, P \backslash \bar{M} / P^{-}\right) \rightarrow \operatorname{Maps}^{\circ}\left(X, G \backslash \overline{\mathbb{X}}_{P} / G\right)=\operatorname{VinBun}_{G, \mathbf{c}_{P}}
$$

where $\operatorname{Maps}^{\circ}\left(X, P \backslash \bar{M} / P^{-}\right)$is the stack of maps $X \times S \rightarrow P \backslash \bar{M} / P^{-}$that generically land in $P \backslash M / P^{-}$over every geometric point of S.

Let $\mathcal{H}_{M}^{+}=\operatorname{Maps}^{\circ}(X, M \backslash \bar{M} / M)$ denote the stack introduced in §A.1.5. Recall that there
are two maps $\overleftarrow{h}, \vec{h}: \mathcal{H}_{M}^{+} \rightarrow \operatorname{Bun}_{M}$. Observe that there is a canonical isomorphism

$$
\operatorname{Maps}^{\circ}\left(X, P \backslash \bar{M} / P^{-}\right) \cong \operatorname{Bun}_{P} \underset{\operatorname{Bun}_{M}, \overleftarrow{h}}{\times} \stackrel{\mathcal{H}_{M}^{+}}{\vec{h}, \operatorname{Bun}_{M}} \times \quad \operatorname{Bun}_{P^{-}}
$$

Thus we have a map of stacks

$$
\begin{equation*}
\operatorname{Bun}_{P} \underset{\operatorname{Bun}_{M}}{\times} \mathcal{H}_{M}^{+} \underset{\operatorname{Bun}_{M}}{\times} \operatorname{Bun}_{P^{-}} \rightarrow \operatorname{VinBun}_{G, \mathbf{c}_{P}} \tag{A.18}
\end{equation*}
$$

Let $\Lambda_{G, P}=\pi_{1}(M)$ denote the quotient of Λ by the subgroup generated by the coroots of M. Recall that there is a bijection $\pi_{0}\left(\operatorname{Bun}_{M}\right) \cong \Lambda_{G, P}$. Let $\operatorname{Bun}_{M}^{\mu}, \mu \in \Lambda_{G, P}$ denote the corresponding connected component consisting of M-bundles of degree μ.

Let $\operatorname{Bun}_{P}^{\mu}$ (resp. Bun ${ }_{P^{-}}^{\lambda}$) denote the preimage of $\operatorname{Bun}_{M}^{\mu}$ (resp. Bun ${ }_{M}^{\lambda}$) under the projection $\operatorname{Bun}_{P} \rightarrow \operatorname{Bun}_{M}\left(\right.$ resp. $\left.\operatorname{Bun}_{P^{-}} \rightarrow \operatorname{Bun}_{M}\right)$.

For $\mu, \lambda \in \Lambda_{G, P}$, let $\mathcal{H}_{M}^{+, \mu, \lambda}$ denote the preimage of $\operatorname{Bun}_{M}^{\mu} \times \operatorname{Bun}{ }_{M}^{\lambda}$ under $(\overleftarrow{h}, \vec{h})$. One can check using Remark A.1.9 that $\mathcal{H}_{M}^{+, \mu, \lambda}$ is nonempty if and only if $\mu-\lambda$ lies in the image of $\Lambda_{U}^{\text {pos }, \mathbb{Q}} \cap \Lambda$ under the projection $\Lambda \rightarrow \Lambda_{G, P}$.

Proposition A.3.3 ([62, Proposition 3.2.2]). (i) For $\mu, \lambda \in \Lambda_{G, P}$, the restriction of (A.18) to the corresponding substack

$$
\begin{equation*}
\operatorname{Bun}_{P}^{\mu} \underset{\operatorname{Bun}_{M}^{\mu}}{\times} \mathcal{H}_{M}^{+, \mu, \lambda} \underset{\operatorname{Bun}_{M}^{\lambda}}{\times} \operatorname{Bun}_{P^{-}}^{\lambda} \rightarrow \operatorname{VinBun}_{G, \mathbf{c}_{P}} \tag{A.19}
\end{equation*}
$$

is a locally closed embedding. Let $\operatorname{VinBun}_{G, \mathbf{c}_{P}}^{\mu, \lambda}$ denote the corresponding locally closed substack.
(ii) The locally closed substacks $\operatorname{VinBun}_{G, \mathbf{c}_{P}}^{\mu, \lambda}$ form a stratification of $\operatorname{VinBun}_{G, \mathbf{c}_{P}}$. In particular, the map (A.18) is a bijection at the level of k-points.

We call the stratification above the defect stratification of $\operatorname{VinBun}_{G, \mathbf{c}_{P}}$. By (A.17), we
have an identical stratification of $\operatorname{VinBun}_{G, P}$ with strata

$$
\operatorname{VinBun}_{G, P}^{\mu, \lambda} \cong \operatorname{VinBun}_{G, \mathbf{c}_{P}}^{\mu, \lambda} \times(T / Z(M))
$$

A.3. 6 Remarks on the case when $[G, G]$ is not simply connected

Note that we have not assumed that $[G, G]$ is simply connected in this Appendix (unlike in Appendices A.1-A.2). Without this assumption, it is possible for the image of $\Lambda_{U}^{\operatorname{pos}, \mathbb{Q}} \cap \Lambda$ in $\Lambda_{G, P}$ to be larger than $\Lambda_{G, P}^{\mathrm{pos}}$. Then Lemma A.3.11 below shows that the G-stratum $\operatorname{VinBun}_{G, G}$ is not necessarily dense in $\operatorname{VinBun}_{G}$ when $[G, G]$ is not simply connected.

We define a slightly different stack VinBun ${ }_{G}^{\text {true }}$. We suggest that VinBun ${ }_{G}^{\text {true }}$ is the more "philosophically correct" definition for $\operatorname{VinBun}_{G}$ when $[G, G]$ is not simply connected.

Remark A.3.4. We will continue using the original stack $\operatorname{VinBun}_{G}$ in the rest of this chapter (for arbitrary G) as it suffices for our purposes, but it is also possible to work directly with VinBun ${ }_{G}^{\text {true }}$ everywhere.

The idea is to replace the Vinberg semigroup $\overline{G_{\text {enh }}}$, which is an algebraic monoid, by its stacky version, which is an algebraic monoidal stack ${ }^{2}$.

Let G^{ssc} denote the universal cover of $[G, G]$ (as algebraic groups). Then $Z\left(G^{\mathrm{ssc}}\right)$ is a finite group scheme containing $\operatorname{ker}\left(G^{\mathrm{ssc}} \rightarrow G\right)$. Since $G=Z(G) \cdot[G, G]$, we have an isomorphism

$$
\begin{equation*}
G \cong\left(G^{\mathrm{Ssc}} \times Z(G)\right) / Z\left(G^{\mathrm{ssc}}\right) \tag{A.20}
\end{equation*}
$$

where $Z\left(G^{\mathrm{ssc}}\right)$ is embedded in $G^{\mathrm{SSc}} \times Z(G)$ anti-diagonally. Furthermore, the following is well-known (cf. [67, 57]):

Lemma A.3.5. The isomorphism (A.20) extends to an isomorphism of the Vinberg semigroup $\overline{G_{\mathrm{enh}}}$ with the the GIT quotient of $\overline{\bar{G}_{\mathrm{enh}}^{\mathrm{SSC}}} \times Z(G)$ by the anti-diagonal action of $Z\left(G^{\mathrm{ssc}}\right)$.

[^13]Lemma A.3.5 motivates us to define the stacky version of the Vinberg semigroup as the quotient stack

$$
\begin{equation*}
\left(\overline{G_{\mathrm{enh}}}\right)^{\text {true }}:=\left(\overline{G_{\mathrm{enh}}^{\mathrm{ssc}}} \times Z(G)\right) / Z\left(G^{\mathrm{ssc}}\right) \tag{A.21}
\end{equation*}
$$

This is an algebraic monoidal stack. By Lemma A.3.5, we have a canonical map

$$
\begin{equation*}
\left(\overline{G_{\mathrm{enh}}}\right)^{\text {true }} \rightarrow \overline{G_{\mathrm{enh}}} \tag{A.22}
\end{equation*}
$$

from the stack quotient to the GIT quotient, and we see that $\overline{G_{\text {enh }}}$ is the coarse moduli space of $\left(\overline{G_{\text {enh }}}\right)^{\text {true }}$.

By (A.20), we see that the homomorphism (A.22) restricts to an isomorphism of groups $G_{\mathrm{enh}}^{\mathrm{ssc}} \times{ }^{Z\left(G^{\mathrm{ssc}}\right)} Z(G) \cong G_{\text {enh }}$, so we have an open embedding

$$
G_{\text {enh }} \hookrightarrow\left(\overline{G_{\text {enh }}}\right)^{\text {true }} .
$$

Moreover, $Z\left(G_{\mathrm{enh}}^{\mathrm{ssc}}\right)$ acts freely ${ }^{3}$ on the non-degenerate locus $\frac{\circ}{G_{\mathrm{enh}}^{\mathrm{scc}}}$. Thus the open substack

$$
\left(\bar{\circ}\left(\overline{G_{\mathrm{enh}}}\right)^{\text {true }}:=\left(\frac{\circ}{G_{\mathrm{enh}}^{\mathrm{ssc}}} \times Z(G)\right) / Z\left(G^{\mathrm{ssc}}\right)\right.
$$

is representable by a scheme, and Lemma A.3.5 implies that (A.22) restricts to an isomor$\operatorname{phism}\left(\frac{\circ}{G_{\text {enh }}}\right)^{\text {true }} \cong \frac{\circ}{G_{\text {enh }}}$ on non-degenerate loci.

Lemma A.3.6. The map (A.22) is an isomorphism if and only if $[G, G]$ is simply connected. Proof. Recall that $\overline{G_{\text {enh }}^{\mathrm{ssc}}}$ is an algebraic monoid with zero. Thus the action of $\operatorname{ker}\left(G^{\mathrm{ssc}} \rightarrow\right.$ $[G, G])$ on $\overline{G_{\mathrm{enh}}^{\mathrm{SSC}}}$ is free if and only if the kernel is trivial, i.e., $[G, G]$ is simply connected. Therefore if $[G, G]$ is not simply connected, the stack quotient $\left(\overline{G_{\text {enh }}}\right)$ true cannot be representable by a scheme.

In the other direction, suppose that $[G, G]$ is simply connected. Then $Z\left(G^{\mathrm{ssc}}\right) \subset Z(G)$

acts freely on $\overline{G_{\mathrm{enh}}^{\mathrm{SSC}}} \times Z(G)$, so (A.22) is an isomorphism by Lemma A.3.5.
Definition of $\operatorname{VinBun}{ }_{G}^{\text {true }}$. As explained in \S A.3.3, we have an action of $G \times G$ on the stack $\left(\overline{G_{\text {enh }}}\right)^{\text {true }}$, where we are using the identification (A.20). Define

$$
\begin{equation*}
\operatorname{VinBun}_{G}^{\text {true }}=\operatorname{Maps}^{\circ}\left(X, G \backslash\left(\overline{G_{\mathrm{enh}}}\right)^{\text {true }} / G\right) \tag{A.23}
\end{equation*}
$$

where the superscript ${ }^{\circ}$ denotes the locus of maps that generically land in $G \backslash \overline{G_{\text {enh }}} / G$ over every geometric point of a test scheme S.

The map (A.22) induces a canonical map of stacks

$$
\begin{equation*}
\operatorname{VinBun}_{G}^{\text {true }} \rightarrow \operatorname{VinBun}_{G} \tag{A.24}
\end{equation*}
$$

over $\operatorname{Bun}_{G} \times \operatorname{Bun}_{G}$.
The open embedding $G_{\text {enh }} \hookrightarrow\left(\overline{G_{\text {enh }}}\right)^{\text {true }}$ induces an open embedding

$$
\operatorname{VinBun}_{G, G} \hookrightarrow \operatorname{VinBun}_{G}^{\text {true }}
$$

over VinBun ${ }_{G}$.
The projection $\overline{G_{\text {enh }}^{\text {ssc }}} \times Z(G) \rightarrow Z(G)$ induces a homomorphism of monoidal stacks $\left(\overline{G_{\mathrm{enh}}}\right)^{\text {true }} \rightarrow Z(G) / Z\left(G^{\mathrm{ssc}}\right)$. Note that $G^{\text {ab,st }}:=Z(G) / Z\left(G^{\mathrm{ssc}}\right)$ is the stacky abelianization of G defined in [43]. By (A.20), we also get a homomorphism of group stacks $G \rightarrow G^{\text {ab,st }}$. The $G \times G$-action on $\left(\overline{G_{\text {enh }}}\right)^{\text {true }}$ is compatible with these maps to $G^{\mathrm{ab}, \text { st }}$.

Consider the map $\operatorname{Spec}(k) \rightarrow G^{\mathrm{ab}, \mathrm{st}}$ corresponding to $1 \in Z(G)$. We have Cartesian squares

where $G \times G$ maps to $G^{\text {ab,st }}$ by $\left(g_{1}, g_{2}\right) \mapsto g_{1} g_{2}^{-1}$. Note that $G \times{ }_{G^{\text {ab,st }}} G$ is isomorphic to a
semidirect product of G and G^{ssc}. Since $G^{\text {ab,st }}$ is a group stack, it follows formally that

$$
\left(\overline{G_{\mathrm{enh}}}\right)^{\operatorname{true}} /(G \times G) \cong \overline{G_{\mathrm{enh}}^{\mathrm{ssc}}} /\left(G \underset{G^{\mathrm{ab}, \mathrm{st}}}{\times} G\right) .
$$

We can also repeat the above discussion at the coarse level: by Lemma A.3.5, we have $\overline{G_{\text {enh }}}=\left(\overline{G_{\mathrm{enh}}^{\mathrm{ssc}}} \times Z(G)\right) / / Z\left(G^{\mathrm{ssc}}\right)$, where $/ /$ denotes the GIT quotient. Thus the projection to the second factor induces a homomorphism of monoids $\overline{G_{\text {enh }}} \rightarrow Z(G) / / Z\left(G^{\mathrm{ssc}}\right)=$ $Z(G) / Z([G, G])=G /[G, G]=: G^{\mathrm{ab}}$ such that the $G \times G$-action on $\overline{G_{\text {enh }}}$ lies over G^{ab}. Let $\left(\overline{G_{\text {enh }}}\right)_{1}$ denote the fiber $\overline{G_{\text {enh }}} \times{ }_{G^{\text {ab }}} \operatorname{Spec}(k)$ over $1 \in G^{\text {ab }}(k)$. Then it again follows formally that

$$
\overline{G_{\mathrm{enh}}} /(G \times G) \cong\left(\overline{G_{\mathrm{enh}}}\right)_{1} / G \underset{G^{\mathrm{ab}}}{\times} G
$$

We have a group homomorphism $G \times{ }_{G^{\text {ab,st }}} G \rightarrow G \times{ }_{G^{\text {ab }}} G$ whose kernel is isomorphic to $\operatorname{ker}\left(G^{\mathrm{ssc}} \rightarrow[G, G]\right)$. We also have a finite homomorphism of monoids $\overline{G_{\mathrm{enh}}^{\mathrm{SSC}}} \rightarrow\left(\overline{G_{\mathrm{enh}}}\right)_{1}$. Thus we deduce that there is a commutative diagram

where the square is Cartesian, the superscript ${ }^{\circ}$ denotes the substack of maps generically landing in $\left(\overline{G_{\text {enh }}}\right)_{1} /\left(G \times{ }_{G^{\text {ab,st }}} G\right)$, and the composition of the left vertical maps equals the map (A.24). Here we have factored the map (A.24) into a "change of space" map and a "change of group" map. The following lemma is well-known.

Lemma A.3.7. Let H be a connected reductive group, and let $A \subset Z(H)$ be a finite central subgroup. Then $\operatorname{Bun}_{H} \rightarrow \operatorname{Bun}_{H / A}$ is a torsor by the group stack Bun_{A} over an open and
closed substack of $\operatorname{Bun}_{H / A}$. More specifically, this substack is the union of the connected components in $\pi_{0}\left(\operatorname{Bun}_{H / A}\right)=\pi_{1}(H / A)$ corresponding to $\pi_{1}(H) \subset \pi_{1}(H / A)$.

Proof. Let B be a Borel subgroup of H. Then $\operatorname{Bun}_{B} \rightarrow \operatorname{Bun}_{H}$ and $\operatorname{Bun}_{B / A} \rightarrow \operatorname{Bun}_{H / A}$ are surjective by [26]. Thus to prove the statement about the image of Bun_{H} in $\mathrm{Bun}_{H / A}$, it suffices to consider $\pi_{0}\left(\operatorname{Bun}_{B}\right) \rightarrow \pi_{0}\left(\operatorname{Bun}_{B / A}\right)$. This reduces to an analogous statement in the case where H is a torus, which is straightforward.

It is a standard fact that the action of Bun_{A} on Bun_{H} defines an isomorphism between $\operatorname{Bun}_{A} \times \operatorname{Bun}_{H}$ and the fiber product $\operatorname{Bun}_{H} \times$ Bun $_{H / A} \operatorname{Bun}_{H}$. Therefore to prove that the map from Bun_{H} to its image in $\operatorname{Bun}_{H / A}$ is a torsor, we must show that this map is flat. The map is flat because it is a morphism between smooth stacks of the same dimension with 0 -dimensional fibers.

We now consider the "change of space" map

$$
\begin{equation*}
\operatorname{VinBun}_{G}^{\text {true }}=\operatorname{Maps}^{\circ}\left(X, \overline{G_{\mathrm{enh}}^{\mathrm{sSc}}} /\left(G \underset{G^{\mathrm{ab}, \mathrm{st}}}{\times} G\right)\right) \rightarrow \operatorname{Maps}^{\circ}\left(X,\left(\overline{G_{\mathrm{enh}}}\right)_{1} /\left(G_{G^{\mathrm{ab}, \mathrm{st}}}^{\times} G\right)\right) . \tag{A.25}
\end{equation*}
$$

Lemma A.3.8. Let $y_{1} \rightarrow y_{2}$ be a finite schematic morphism of stacks. Then the induced morphism $\operatorname{Maps}\left(X, y_{1}\right) \rightarrow \operatorname{Maps}\left(X, y_{2}\right)$ is also finite schematic.

Proof. Fix a test scheme S and a map $X_{S}:=X \times S \rightarrow y_{2}$. Let Y denote the fiber product $X_{S} \times y_{2} y_{1}$, which is representable by a finite scheme over X_{S}. Then the corresponding fiber product of S and $\operatorname{Maps}\left(X, y_{1}\right)$ over $\operatorname{Maps}\left(X, y_{2}\right)$ is representable by the S-scheme $\operatorname{Sect}\left(X_{S}, Y\right)$ of sections of $Y \rightarrow X_{S}$. It is well-known that since $Y \rightarrow X_{S}$ is affine, $\operatorname{Sect}\left(X_{S}, Y\right) \rightarrow S$ is also affine. Therefore to show that $\operatorname{Sect}\left(X_{S}, Y\right) \rightarrow S$ is finite, it suffices to show that it is proper. We use the valuative criterion of properness:

Let R be a discrete valuation ring with field of fractions K, and suppose that we have a map $\operatorname{Spec}(R) \rightarrow S$ and a section $X_{K}:=X \times \operatorname{Spec}(K) \rightarrow Y$ over X_{S}. This section and the natural map $\operatorname{Spec}(K) \rightarrow \operatorname{Spec}(R)$ define a section $X_{K} \rightarrow Y_{R}:=Y \times_{S} \operatorname{Spec}(R)$. Let Z_{K}
denote the image of $X_{K} \rightarrow Y_{R}$, and let Z_{R} denote the scheme-theoretic closure of Z_{K} in Y_{R}. Extending the section $X_{K} \rightarrow Y$ to a section $X_{R}:=X \times \operatorname{Spec}(R) \rightarrow Y$ is equivalent to showing that the projection $Z_{R} \rightarrow X_{R}$ is an isomorphism. Note that Z_{R} is an integral scheme (because Z_{K} is) and the map $Z_{R} \rightarrow X_{R}$ is birational (because the map $Z_{K} \rightarrow X_{K}$ is an isomorphism). On the other hand, the map $Z_{R} \rightarrow X_{R}$ is finite since $Y_{R} \rightarrow X_{R}$ is finite. Lastly, smoothness of X implies that X_{R} is a regular scheme. Hence X_{R} is normal, and $Z_{R} \rightarrow X_{R}$ is an isomorphism. This checks the condition of the valuative criterion and hence proves the lemma.

Let A denote the finite abelian group scheme $\operatorname{ker}\left(G^{\mathrm{SSC}} \rightarrow[G, G]\right)$.

Corollary A.3.9. The map (A.25) is schematic and finite. More specifically, it is the composition of an A-torsor followed by a closed embedding.

Proof. The map $\overline{G_{\text {enh }}^{\text {scc }}} \rightarrow\left(\overline{G_{\text {enh }}}\right)_{1}$ is finite, and the preimage of $\left(\overline{G_{\text {enh }}}\right)_{1}$ equals $\frac{\circ}{G_{\text {enh }}^{\text {scc }}}$. Then Lemma A.3.8 implies that the map (A.25) is schematic and finite. Let

$$
y \subset \operatorname{Maps}^{\circ}\left(X,\left(\overline{G_{\mathrm{enh}}}\right)_{1} /\left(G \underset{G^{\text {ab,st }}}{\times} G\right)\right)
$$

denote the (scheme-theoretic) image, which is a closed substack. Take $(\mathcal{P}, \beta) \in y(S)$ for a test scheme S, where \mathcal{P} is a $G \times_{G^{\text {ab,st }}} G$-torsor over $X_{S}:=X \times S$ and β is a section $X_{S} \rightarrow$ $\left(\left(\overline{G_{\text {enh }}}\right)_{1}\right)_{\mathcal{P}}$ over X_{S} such that $\left.\beta\right|_{\operatorname{Spec}(F) \times S}$ lands in $\left(\left(\overline{G_{\text {enh }}}\right)_{1}\right)_{\mathcal{P}}$. Since $\frac{\circ}{G_{\text {enh }}^{\text {ssc }}} \rightarrow\left(\overline{G_{\text {enh }}}\right)_{1}$ is an A-torsor, the set of sections $\left.\tilde{\beta}\right|_{\operatorname{Spec}(F) \times S}: \operatorname{Spec}(F) \times S \rightarrow\left(\left(\overline{G_{\text {enh }}}\right)_{1}\right)_{\mathcal{P}}$ lifting β has a simply transitive action by $A(\operatorname{Spec}(F) \times S)$. Since A is finite over k and X is geometrically connected, we deduce that $A(\operatorname{Spec}(F) \times S)=A(S)$. Thus the canonical $A(S)$-action on the set of sections $\tilde{\beta}: X_{S} \rightarrow\left(\overline{G_{\text {enh }}^{\text {SSC }}}\right) \mathcal{P}$ lifting β is simply transitive. By definition of y, a lift $\tilde{\beta}$ exists after restricting along some fppf covering $S^{\prime} \rightarrow S$. We conclude that VinBun ${ }_{G}^{\text {true }} \rightarrow y$ is an A-torsor.

Proposition A.3.10. The map $\operatorname{VinBun}_{G}^{\text {true }} \rightarrow \operatorname{VinBun}_{G}$ is finite schematic.

Proof. We first show that the map $\operatorname{VinBun}_{G}^{\text {true }} \rightarrow \operatorname{VinBun}_{G}$ is proper. By Lemma A.3.7, the map $\operatorname{Bun}_{G \times}{ }_{G^{\mathrm{ab}, \mathrm{st}}} G \rightarrow \operatorname{Bun}_{G \times{ }_{G^{\mathrm{ab}}} G}$ is proper. Thus by base change, the map

$$
\operatorname{Maps}^{\circ}\left(X,\left(\overline{G_{\mathrm{enh}}}\right)_{1} /\left(G \underset{G^{\mathrm{ab}, \mathrm{st}}}{\times} G\right)\right) \rightarrow \operatorname{Maps}^{\circ}\left(X,\left(\overline{G_{\mathrm{enh}}}\right)_{1} /\left(G \underset{G^{\mathrm{ab}}}{\times} G\right)\right)=\operatorname{VinBun}_{G}
$$

is proper. Composing this map with (A.25), which is finite by Corollary A.3.9, we conclude that VinBun ${ }_{G}^{\text {true }} \rightarrow \operatorname{VinBun}_{G}$ is proper.

Next we prove that the map $\operatorname{VinBun}{ }_{G}^{\text {true }} \rightarrow \operatorname{VinBun}_{G}$ is schematic. Let S be an affine scheme. A map $S \rightarrow \operatorname{VinBun}_{G}$ is the datum of a $G \times{ }_{G}$ ab G-torsor \mathcal{P} on $X \times S$ and a $G \times{ }_{G^{\text {ab }}} G$-equivariant map $\mathcal{P} \rightarrow\left(\overline{G_{\text {enh }}}\right)_{1}$. Moreover, there is an open subset $\stackrel{\circ}{X}_{X} \subset X$ such that $\left.\mathcal{P}\right|_{X \times S}$ is sent to $\left(\overline{G_{\text {enh }}}\right)_{1}$. Recall that we have a surjective homomorphism $G \times{ }_{G^{\mathrm{ab}, \mathrm{st}}} G \rightarrow$ $G \times{ }_{G^{\mathrm{ab}}} G$ with kernel $A:=\operatorname{ker}\left(G^{\mathrm{ssc}} \rightarrow[G, G]\right)$. Then an S^{\prime}-point of the fiber product $\mathrm{y}:=$ $S \times$ VinBun $_{G} \operatorname{VinBun}_{G}^{\text {true }}$ parametrizes a $G \times{ }_{G^{\text {ab,st }}} G$-torsor $\tilde{\mathcal{P}}$ on $X \times S^{\prime}$ and a $G \times{ }_{G^{\text {ab,st }}} G$ equivariant map $\tilde{\beta}: \tilde{\mathcal{P}} \rightarrow \overline{G_{\text {enh }}^{\text {ssc }}}$ such that the $G \times{ }_{G^{\text {ab }}} G$-torsor induced by $\tilde{\mathcal{P}}$ is isomorphic to $\left.\mathcal{P}\right|_{X \times S^{\prime}}$, and the diagram

commutes. This implies that $\left.\tilde{\mathcal{P}}\right|_{X \times S^{\prime}}$ lands in $\frac{\circ}{G_{\text {enh }}^{\text {ssc }}}$. Since $\frac{\circ}{G_{\text {enh }}^{\delta \text { ssc }}} \rightarrow\left(\frac{\circ}{G_{\text {enh }}}\right)_{1}$ is an A-torsor, we get an isomorphism

$$
\left.\left.\tilde{\mathcal{P}}\right|_{X \times S^{\prime}} \cong \mathcal{P}\right|_{X \times S^{\prime}} \underset{\left(\frac{\circ}{\left(G_{\text {enh }}\right)_{1}}\right.}{\times} \frac{\circ}{G_{\mathrm{enh}}^{\mathrm{SSC}}},
$$

where the r.h.s. only depends on the map $S \rightarrow \operatorname{VinBun}_{G}$. Thus $(\tilde{\mathcal{P}}, \tilde{\beta})$ are determined by their restrictions to the formal completion of $(X-\stackrel{\circ}{X}) \times S^{\prime}$ in $X \times S^{\prime}$. Using twisted versions of the affine Grassmannian, we deduce that the fiber product y is a closed subscheme of a projective ind-scheme over S. Since y is of finite type, we conclude that y is a scheme.

We have shown that $\operatorname{VinBun}_{G}^{\text {true }} \rightarrow \operatorname{VinBun}_{G}$ is a proper schematic map. One observes
from Lemma A.3.7 and Corollary A.3.9 that $\operatorname{VinBun}_{G}^{\text {true }} \rightarrow \operatorname{VinBun}_{G}$ is also quasi-finite. Therefore this map is finite schematic.

Lemma A.3.11. The closure of the open substack $\operatorname{VinBun}_{G, G}$ in $\operatorname{VinBun}_{G}$ intersects the stratum $\operatorname{VinBun}_{G, P}^{\mu, \lambda}$ only if $\mu-\lambda \in \Lambda_{G, P}^{\mathrm{pos}}$.

Proof. The image of the proper map $\operatorname{VinBun}_{G}^{\text {true }} \rightarrow \operatorname{VinBun}_{G}$ is a closed substack containing the G-stratum. Let P be a standard parabolic subgroup of G with Levi factor M. Let \tilde{G} denote $G^{\mathrm{ssc}} \times Z(G)$, and let \tilde{M}, \tilde{P} denote the preimages of M, P under the isogeny $\tilde{G} \rightarrow G$. We have the corresponding boundary degeneration $\mathbb{X}_{\tilde{P}} \subset \overline{\tilde{G}}_{\text {enh }}$ and its affine closure $\overline{\mathbb{X}}_{\tilde{P}}$. Define the closed embedding $\tilde{M} \hookrightarrow \mathbb{X}_{\tilde{P}}$ as in \S A.3.5, and let \tilde{M} denote the closure of \tilde{M} in $\overline{\mathbb{X}}_{\tilde{P}}$. For a place v of X, Remark A.1.9 implies that

$$
\tilde{M}\left(\mathfrak{o}_{v}\right) \backslash\left(\tilde{M}\left(\mathfrak{o}_{v}\right) \cap \tilde{M}\left(F_{v}\right)\right) / \tilde{M}\left(\mathfrak{o}_{v}\right)=\Lambda_{U}^{\operatorname{pos}, \mathbb{Q}} \cap \Lambda_{\tilde{G}}
$$

and $\Lambda_{U}^{\operatorname{pos}, \mathbb{Q}} \cap \Lambda_{\tilde{G}}=\Lambda_{U}^{\text {pos }}$ since $[\tilde{G}, \tilde{G}]$ is simply connected. Thus we deduce from the construction of the defect stratification in \S A. 3.5 that the image of $\operatorname{VinBun}_{G}^{\text {true }} \rightarrow \operatorname{VinBun}_{G}$ intersects $\operatorname{VinBun}_{G, P}^{\mu, \lambda}$ if and only if $\mu-\lambda \in \Lambda_{G, P}^{\mathrm{pos}}$. This implies the lemma.

A.3.7 The function b

Suppose $k=\mathbb{F}_{q}$. Let

$$
\Delta: \operatorname{Bun}_{G} \rightarrow \operatorname{Bun}_{G} \times \operatorname{Bun}_{G}
$$

denote the diagonal morphism. Given G-bundles $\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2} \in \operatorname{Bun}_{G}\left(\mathbb{F}_{q}\right)$, let $b\left(\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}\right)$ denote the trace of the geometric Frobenius acting on the $*$-stalk of the complex $\Delta_{*}\left(\overline{\mathbb{Q}}_{\ell}\right)$ over the $\operatorname{point}\left(\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}\right) \in\left(\operatorname{Bun}_{G} \times \operatorname{Bun}_{G}\right)\left(\overline{\mathbb{F}}_{q}\right)$.

Recall from $\S 2.4 .2$ that $\operatorname{Asymp}_{P}\left(\delta_{K}\right)$ is a $K \times K$-invariant function in $C_{b}^{\infty}\left(\mathbb{X}_{P}(\mathbb{A})\right)$, where δ_{K} is the characteristic function of K on $G(\mathbb{A})$. Let

$$
\beta: X \rightarrow\left(\overline{\mathbb{X}}_{P}\right)_{\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}}
$$

denote a section that generically lands in the non-degenerate locus $\left(\mathbb{X}_{P}\right)_{\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}}$.
Then for any $v \in|X|$, choosing trivializations of $\mathcal{F}_{G}^{i} \times{ }_{X} \operatorname{Spec}\left(\mathfrak{o}_{v}\right)$ defines an isomorphism $\left(\overline{\mathbb{X}}_{P}\right)_{\mathcal{F}_{G}^{2}, \mathcal{F}_{G}^{2}}\left(\mathfrak{o}_{v}\right) \cong \overline{\mathbb{X}}_{P}\left(\mathfrak{o}_{v}\right)$. This defines an element $\beta_{v} \in \mathbb{X}_{P}\left(F_{v}\right) \cap \overline{\mathbb{X}}_{P}\left(\mathfrak{o}_{v}\right)$, and the $K_{v} \times K_{v^{-}}$ orbit of β_{v} does not depend on the choice of trivializations. Non-degeneracy of β implies that $\left(\beta_{v}\right) \in \mathbb{X}_{P}(\mathbb{A})$. We define $\operatorname{Asymp}_{P}\left(\delta_{K}\right)(\beta)$ to be the value of $\operatorname{Asymp}_{P}\left(\delta_{K}\right)$ at this adelic point.

Theorem A.3.12. Let $E=\overline{\mathbb{Q}}_{\ell}$. We have an equality

$$
b\left(\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}\right)=\sum_{P}(-1)^{\operatorname{dim} Z(M)} \sum_{\beta} \operatorname{Asymp}_{P}\left(\delta_{K}\right)(\beta),
$$

where P ranges over the standard parabolic subgroups of G, and β ranges over the nondegenerate sections $\beta: X \rightarrow\left(\overline{\mathbb{X}}_{P}\right)_{\mathcal{F}_{G}^{1}}, \mathcal{F}_{G}^{2}$.

The strategy for proving Theorem A.3.12 was suggested by Drinfeld, and it consists of compactifying the diagonal morphism of Bun_{G}. The geometry of the compactification then reduces to a theorem of [62], and the corresponding Grothendieck functions are computed using the facts reviewed in Appendix A.2. The proof of Theorem A.3.12 is given at the end of §A.3.9.

A.3.8 Compactifications of the diagonal morphism of Bun_{G}

The diagonal morphism Δ is in general not proper, and one would like to compactify it (e.g., to compute $*$-restrictions of Δ_{*}). We first review the definition of the stack $\overline{\mathrm{Bun}}_{G}^{\prime}$ (denoted by $\overline{\operatorname{Bun}}_{G}$ in [62]), which is a compactification of the morphism $\operatorname{Bun}_{G} \times \mathbb{B} Z(G) \rightarrow \operatorname{Bun}_{G} \times \operatorname{Bun}_{G}$, which Δ factors through. For the purposes of this thesis, we define a slightly different stack $\overline{\operatorname{Bun}}_{G}$, which is a compactification of Δ when G is semisimple. When G is not semisimple, $\overline{\operatorname{Bun}}_{G}$ is not quite a compactification of Δ, but it is equally good for our purposes.
$\overline{\operatorname{Bun}}_{G}^{\prime}$. The action of $Z\left(G_{\text {enh }}\right)=T$ on $\overline{G_{\text {enh }}}$ induces a T-action on VinBun ${ }_{G}$. Define $\overline{\operatorname{Bun}}_{G}^{\prime}=\operatorname{VinBun}_{G} / T$. There is an open embedding $\operatorname{VinBun}_{G, G} / T=\operatorname{Bun}_{G} \times \mathbb{B} Z(G) \hookrightarrow$
$\overline{\operatorname{Bun}}_{G}^{\prime}$. Observe that Δ factors as

$$
\operatorname{Bun}_{G} \rightarrow \operatorname{Bun}_{G} \times \mathbb{B} Z(G) \hookrightarrow \overline{\operatorname{Bun}}_{G}^{\prime} \rightarrow \operatorname{Bun}_{G} \times \operatorname{Bun}_{G},
$$

where $\mathbb{B} Z(G)$ is the classifying stack of $Z(G)$-bundles. The following lemma is well-known:

Lemma A.3.13. The map $\overline{\operatorname{Bun}}_{G}^{\prime} \rightarrow \operatorname{Bun}_{G} \times \operatorname{Bun}_{G}$ is schematic and projective ${ }^{4}$.
Proof. Let $\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2} \in \operatorname{Bun}_{G}(S)$ for a test scheme S. Let $\operatorname{Sect}\left(X_{S},\left(\overline{G_{\text {enh }}}\right)_{\mathcal{F}_{G}^{1}}, \mathcal{F}_{G}^{2}\right)$ denote the S-scheme of sections for the fiber bundle $\left(\overline{G_{\mathrm{enh}}}\right)_{\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}} \rightarrow X_{S}:=X \times S$. Then

$$
\begin{equation*}
\overline{\operatorname{Bun}}_{G}^{\prime} \underset{\operatorname{Bun}_{G} \times \operatorname{Bun}_{G}}{\times} S \cong \operatorname{Sect}^{\circ}\left(X_{S},\left(\overline{G_{\operatorname{enh}}}\right)_{\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}}\right) / T, \tag{A.26}
\end{equation*}
$$

where the superscript ${ }^{\circ}$ denotes the open locus of sections generically landing in $\left(\overline{G_{\text {enh }}}\right)_{\mathcal{F}_{G}^{1}}, \mathcal{F}_{G}^{2}$. We wish to show (A.26) is a projective scheme over S.

Let $\Delta(\check{\lambda})$ denote the Weyl G-module of highest weight $\check{\lambda} \in \check{\Lambda}_{G}^{+}$. It is known from the general theory of reductive monoids (cf. proof of Proposition 1.2.2) that there exists a finite ${ }^{5}$ map

$$
\begin{equation*}
\overline{G_{\text {enh }}} \rightarrow \prod \operatorname{End}\left(\Delta(\check{\lambda}) \otimes k_{\check{\lambda}}\right) \times \overline{T_{\mathrm{adj}}} \tag{A.27}
\end{equation*}
$$

where the product ranges over any finite set of generators for the monoid $\check{\Lambda}_{G}^{+}$. The image of (A.27) satisfies the Plücker relations (cf. [13, 12]). Therefore by considering the $G_{\text {enh }}{ }^{-}$ modules $\operatorname{det}\left(\Delta(\check{\lambda}) \otimes k_{\check{\lambda}}\right)=\operatorname{det}(\Delta(\check{\lambda})) \otimes k_{\operatorname{dim}(\Delta(\check{\lambda})) \check{\lambda}}$, we see that the composition of (A.27) with the projection to $\prod \operatorname{End}\left(\Delta(\check{\lambda}) \otimes k_{\check{\lambda}}\right)$ is a finite map. By Lemma A.3.8, we can reduce to showing that

$$
\begin{equation*}
\operatorname{Sect}^{\circ}\left(X_{S}, \prod \operatorname{End}\left(\Delta(\check{\lambda}) \otimes k_{\grave{\lambda}}\right)_{\mathcal{F}_{G}^{1}}, \mathscr{F}_{G}^{2}\right) / T \tag{A.28}
\end{equation*}
$$

[^14]is representable by a projective scheme over S. Here the superscript ${ }^{\circ}$ denotes the locus of maps generically landing in $\prod\left(\operatorname{End}\left(\Delta(\check{\lambda}) \otimes k_{\check{\lambda}}\right)-\{0\}\right)_{\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}}$.

For a test scheme $S^{\prime} \rightarrow S$, an S^{\prime}-point of the stack (A.28) is the data of $\left(\left(\mathcal{F}_{T}\right)_{S^{\prime}}, \beta_{\check{\lambda}}\right)$ where $\left(\mathcal{F}_{T}\right)_{S^{\prime}}$ is a T-bundle over S^{\prime} and $\beta_{\check{\lambda}}$ is an $\mathcal{O}_{X \times S^{\prime}}$-module map

$$
\Delta(\check{\lambda})_{\mathcal{F}_{G}^{2}} \otimes_{\mathcal{O}_{S}} \mathcal{L}_{\check{\lambda}} \rightarrow \Delta(\check{\lambda})_{\mathcal{F}_{G}^{1}} \otimes_{\mathcal{O}_{S}} \mathcal{O}_{S^{\prime}}
$$

that is generically nonzero over all geometric points of S^{\prime}, where $\mathcal{L}_{\check{\lambda}}=\left(k_{\check{\lambda}}\right)_{\left(\mathcal{F}_{T}\right)_{S^{\prime}}}$ is the corresponding line bundle on S^{\prime}. Observe that $\beta_{\check{\lambda}}$ is equivalent to an S^{\prime}-fiberwise nonzero map

$$
\begin{equation*}
\pi^{\prime *}\left(\mathcal{L}_{\check{\lambda}}\right) \rightarrow\left(\Delta(\check{\lambda})_{\mathcal{F}_{G}^{2}}^{*} \otimes \Delta(\check{\lambda})_{\mathcal{F}_{G}^{1}}\right) \otimes_{\mathcal{O}_{S}} \mathcal{O}_{S^{\prime}} \tag{A.29}
\end{equation*}
$$

where π^{\prime} is the projection $X \times S^{\prime} \rightarrow S^{\prime}$. Set $\mathcal{E}=\Delta(\check{\lambda})_{\mathcal{F}_{G}^{2}}^{*} \otimes \Delta(\check{\lambda})_{\mathcal{F}_{G}^{1}}$, which is a locally free $\mathcal{O}_{X} \times S^{\text {-module. Let }} \pi$ denote the projection $X \times S \rightarrow S$, and observe that $\pi_{*}(\mathcal{E})$ is a perfect complex that commutes with base change (here and elsewhere, π_{*} denotes the derived direct image functor). Then by adjunction, (A.29) is equivalent to a map in the derived category of coherent sheaves on S^{\prime}

$$
\mathcal{L}_{\check{\lambda}} \rightarrow \pi_{*}(\mathcal{E}) \underset{\mathcal{O}_{S}}{\otimes} \mathcal{O}_{S^{\prime}}
$$

that is nonzero on every fiber of S^{\prime} (here the tensor product is derived). Applying derived $\mathcal{H o m}\left(?, \mathcal{O}_{S^{\prime}}\right)$, this map is equivalent to a fiberwise nonzero map

$$
\begin{equation*}
\mathcal{H o m}\left(\pi_{*}(\mathcal{E}), \mathcal{O}_{S}\right) \underset{\mathcal{O}_{S}}{\otimes} \mathcal{O}_{S^{\prime}} \rightarrow \mathcal{L}_{\tilde{\lambda}}^{-1} \tag{A.30}
\end{equation*}
$$

Since $\pi_{*}(\mathcal{E}) \otimes_{\mathcal{O}_{S}} k_{S}$ lives in cohomological degrees 0,1 for any point $\operatorname{Spec}\left(k_{S}\right) \rightarrow S$, we deduce that $\pi_{*}(\mathcal{E})$ is locally quasi-isomorphic to a complex of locally free \mathcal{O}_{S}-modules living in degrees 0,1 . Therefore $\mathcal{H o m}\left(\pi_{*}(\mathcal{E}), \mathcal{O}_{S}\right)$ lives in cohomological degrees $-1,0$. We conclude
that (A.30) is equivalent to a surjection of $\mathcal{O}_{S^{\prime \prime}}$-modules

$$
H^{0} \mathcal{H} \operatorname{om}\left(\pi_{*}(\mathcal{E}), \mathcal{O}_{S}\right) \underset{\mathcal{O}_{S}}{\otimes} \mathcal{O}_{S^{\prime}} \rightarrow \mathcal{L}_{\check{\lambda}}^{-1}
$$

and $H^{0} \mathcal{H} \operatorname{om}\left(\pi_{*}(\mathcal{E}), \mathcal{O}_{S}\right)$ commutes with base change.
We have shown that for fixed $\check{\lambda}$, the data $\left(\mathcal{L}_{\check{\lambda}}^{-1}, \beta_{\check{\lambda}}\right)$ defines an S^{\prime}-point of the projective S-scheme $\operatorname{Proj}_{S} \operatorname{Sym}_{\mathcal{O}_{S}}\left(H^{0} \mathcal{H} \operatorname{Com}\left(\pi_{*} \mathcal{E}, \mathcal{O}_{S}\right)\right)$. By the Plücker relations, we conclude that the stack (A.28) is representable by a closed subscheme of a projective S-scheme.

Let $Z_{0}(G)$ denote the neutral connected component of the center of G. Then we have a finite map $T / Z_{0}(G) \rightarrow T / Z(G)=T_{\text {adj. }}$. The character lattice of $T_{\text {adj }}$ corresponds to the root lattice in $\check{\Lambda}$. If the Langlands dual group \check{G} does not have a simply connected derived group, then the root lattice is not saturated in $\check{\Lambda}$, so $T / Z_{0}(G) \neq T / Z(G)$ in general.

Recall that $k\left[\overline{T_{\text {adj }}}\right]$ is the semigroup algebra of $\check{\Lambda}_{G}^{\text {pos }}$. Define $\overline{T / Z_{0}(G)}$ so that $k\left[\overline{T / Z_{0}(G)}\right]$ is the semigroup algebra of $\check{\Lambda}_{G}^{\text {pos } \mathbb{Q}} \cap \check{\Lambda}$. There is a natural finite map

$$
\overline{T / Z_{0}(G)} \rightarrow \overline{T_{\mathrm{adj}}}
$$

extending the map $T / Z_{0}(G) \rightarrow T_{\text {adj }}$.
$\overline{\operatorname{Bun}}_{G}$. Consider the base change

$$
\left(\operatorname{VinBun}_{G}\right)_{\overline{T / Z_{0}(G)}}:=\operatorname{VinBun}_{G} \frac{\times}{T_{\mathrm{adj}}} \overline{T / Z_{0}(G)}
$$

over $\overline{T / Z_{0}(G)}$. Then T acts diagonally on $\left(\operatorname{VinBun}_{G}\right) \overline{T / Z_{0}(G)}$, and we define

$$
\overline{\operatorname{Bun}}_{G}=\left(\operatorname{VinBun}_{G}\right)_{\overline{T / Z_{0}(G)}} / T .
$$

Since $\bar{\pi}_{\text {Bun }}^{-1}\left(T_{\text {adj }}\right)=\operatorname{VinBun}_{G, G}=\operatorname{Bun}_{G} \times T_{\text {adj }}$, we see that there is an open embedding $\operatorname{Bun}_{G} \times \mathbb{B} Z_{0}(G) \hookrightarrow \overline{\operatorname{Bun}}_{G}$. There is a natural finite map $\overline{\operatorname{Bun}}_{G} \rightarrow \overline{\operatorname{Bun}}_{G}^{\prime}$, and we have the
commutative diagram

factoring the diagonal Δ. Then the composite map $\bar{\Delta}: \overline{\operatorname{Bun}}_{G} \rightarrow \operatorname{Bun}_{G} \times \operatorname{Bun}_{G}$ is also proper, so $\overline{\operatorname{Bun}}_{G}$ is a "compactification" of Δ. This is the compactification that we will use to prove Theorem A.3.12.

Example A.3.14. Let $G=\operatorname{SL}(2)$. Then $Z_{0}(G)=\{1\}$, and the map $\overline{T / Z_{0}(G)} \rightarrow \overline{T_{\text {adj }}}$ corresponds to the map $\mathbb{A}^{1} \rightarrow \mathbb{A}^{1}: \epsilon \mapsto \epsilon^{2}$. An S-point of $\overline{\operatorname{Bun}}_{G}$ is a collection $\left(\mathcal{L}_{1}, \mathcal{L}_{2}, l, \beta, \epsilon\right)$, where
(a) $\mathcal{L}_{1}, \mathcal{L}_{2}$ are rank 2 vector bundles on $X \times S$ with trivializations of their determinants, (b) l is a line bundle on S,
(c) $\beta \in \operatorname{Hom}\left(\mathcal{L}_{2}, \mathcal{L}_{1}\right) \otimes l$ is not equal to 0 on $X \times s$ for every geometric point $s \rightarrow S$,
(d) $\epsilon \in l$, and
(e) the equation $\operatorname{det} \beta=\epsilon^{2}$ holds.

In comparison, an S-point of $\overline{\operatorname{Bun}}_{G}^{\prime}$ is a collection $\left(\mathcal{L}_{1}, \mathcal{L}_{2}, l, \beta\right)$ satisfying (a)-(c) above.

We have a Cartesian square

where the horizontal maps are T-torsors, and the lower vertical maps are open embeddings. Since $Z_{0}(G)$ is connected, $T \rightarrow T / Z_{0}(G)$ is a trivial $Z_{0}(G)$-bundle. Therefore the pushfor-
ward of the constant sheaf $\left(\overline{\mathbb{Q}}_{\ell}\right)_{T}$ to $T / Z_{0}(G)$ equals $\left(\overline{\mathbb{Q}}_{\ell}\right)_{T / Z_{0}(G)} \otimes H^{*}\left(Z_{0}(G), \overline{\mathbb{Q}}_{\ell}\right)$. Thus by smooth base change, to compute the function b it suffices to compute the trace of the geometric Frobenius acting on the $*$-stalks of $\jmath_{*} \overline{\mathbb{Q}}_{\ell}$.

A.3.9 The *-extension of the constant sheaf

Let

$$
\jmath: \operatorname{Bun}_{G} \times\left(T / Z_{0}(G)\right) \hookrightarrow\left(\operatorname{VinBun}_{G}\right)_{\overline{T / Z_{0}(G)}}
$$

denote the open embedding. We want to compute the $*$-restriction of $\jmath_{*} \overline{\mathbb{Q}}_{\ell}$ to the strata $\operatorname{VinBun}_{G, P}^{\mu, \lambda} \times \overline{T_{\text {adj }}} \overline{T / Z_{0}(G)}$ for $\mu, \lambda \in \Lambda_{G, P}$.

Recall that the P-locus $\left(\overline{T_{\text {adj }}}\right)_{P}$ is isomorphic to $T / Z(M)$.
Lemma A.3.15. The reduced part of $\left(\overline{T_{\mathrm{adj}}}\right)_{P} \times \overline{T_{\mathrm{adj}}} \overline{T / Z_{0}(G)}$ is isomorphic to $T / Z_{0}(M)$.
Proof. The locally closed embedding $\left(\overline{T_{\text {adj }}}\right)_{P}=\mathbb{G}_{m}^{\left|\Gamma_{M}\right|} \times\{0\} \hookrightarrow \overline{T_{\text {adj }}}=\left(\mathbb{A}^{1}\right)^{\left|\Gamma_{G}\right|}$ identifies with the spectrum of the algebra map

$$
\begin{equation*}
k\left[\check{\alpha}_{j}, j \in \Gamma_{G}\right] \rightarrow k\left[\check{\alpha}_{i}^{ \pm 1}, i \in \Gamma_{M}\right] \tag{A.32}
\end{equation*}
$$

sending $\check{\alpha}_{i} \mapsto \check{\alpha}_{i}$ for $i \in \Gamma_{M}$ and $\check{\alpha}_{j} \mapsto 0$ for $j \in \Gamma_{G}-\Gamma_{M}$ (here we consider $\check{\alpha}_{i}$ as a character and use the multiplicative notation). Note that $k\left[\check{\alpha}_{j}, j \in \Gamma_{G}\right]$ is the semigroup algebra of $\check{\Lambda}_{G}^{\text {pos }}$.

The projection $\overline{T / Z_{0}(G)} \rightarrow \overline{T / Z(G)}$ is the spectrum of the inclusion of semigroup algebras

$$
k\left[\check{\Lambda}_{G}^{\mathrm{pos}}\right] \hookrightarrow k\left[\check{\Lambda}_{G}^{\mathrm{pos}, \mathbb{Q}} \cap \check{\Lambda}\right] .
$$

Therefore $\left(\overline{T_{\text {adj }}}\right)_{P} \times \overline{T_{\text {adj }}} \overline{T / Z_{0}(G)}$ is the spectrum of the algebra

$$
\begin{equation*}
k\left[\check{\alpha}_{i}^{ \pm 1}, i \in \Gamma_{M}\right] \underset{k\left[\Lambda_{G}^{\mathrm{pos}}\right]}{\otimes} k\left[\check{\Lambda}_{G}^{\operatorname{pos}, \mathbb{Q}} \cap \check{\Lambda}\right] . \tag{A.33}
\end{equation*}
$$

Since the map (A.32) sends $\check{\alpha}_{j} \mapsto 0$ for $j \in \Gamma_{G}-\Gamma_{M}$, the reduced algebra of (A.33) equals

$$
\begin{equation*}
k\left[\check{\alpha}_{i}^{ \pm 1}, i \in \Gamma_{M}\right] \underset{k\left[\Lambda_{M}^{\text {pos }}\right]}{\otimes} k\left[\check{\Lambda}_{M}^{\text {pos, } \mathbb{Q}} \cap \check{\Lambda}\right] . \tag{A.34}
\end{equation*}
$$

Since the non-negative integral span of $\check{\Lambda}_{M}^{\text {pos, } \mathbb{Q}} \cap \check{\Lambda}$ and $-\check{\alpha}_{i}, i \in \Gamma_{M}$ is equal to the lattice $\check{\Lambda}_{T / Z_{0}(M)} \subset \check{\Lambda}$, the algebra (A.34) equals $k\left[T / Z_{0}(M)\right]$.

Recall from (A.17) that we have an isomorphism $\operatorname{VinBun}_{G, P} \cong \operatorname{VinBun}_{G, \mathbf{c}_{P}} \times(T / Z(M))$. Lemma A.3.15 implies that we have embeddings

$$
\begin{equation*}
\iota_{P}: \operatorname{VinBun}_{G, \mathbf{c}_{P}} \times\left(T / Z_{0}(M)\right) \hookrightarrow\left(\operatorname{VinBun}_{G}\right)_{\overline{T / Z_{0}(G)}} \tag{A.35}
\end{equation*}
$$

that form a stratification as P ranges over all standard parabolic subgroups.
For $\mu, \lambda \in \Lambda_{G, P}$, let

$$
\iota_{P}^{\mu, \lambda}: \operatorname{VinBun}_{G, \mathbf{c}_{P}}^{\mu, \lambda} \times\left(T / Z_{0}(M)\right) \hookrightarrow\left(\operatorname{VinBun}_{G}\right)_{T / Z_{0}(G)}
$$

denote the locally closed embedding defined by (A.35) and the defect stratification from §A.3.5.

The following is proved in [62, Theorem B] in the case $P=B$. We give a proof using Proposition A.2.4 at the end of this Appendix.

Theorem A.3.16. Suppose $k=\mathbb{F}_{q}$. The trace of geometric Frobenius on $*$-stalks of $\iota_{P}^{*}\left(\jmath_{*}\left(\overline{\mathbb{Q}}_{\ell}\right)\right)$ sends

$$
\begin{equation*}
\left(\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}, \beta, t\right) \in\left(\operatorname{VinBun}_{G, \mathbf{c}_{P}} \times T / Z_{0}(M)\right)\left(\mathbb{F}_{q}\right) \mapsto(1-q)^{\left|\Gamma_{G}\right|-\left|\Gamma_{M}\right|} \operatorname{Asymp}_{P}\left(\delta_{K}\right)(\beta) \tag{A.36}
\end{equation*}
$$

Here we use Lemma A.3.2 to identify β with a section $X \rightarrow\left(\overline{\mathbb{X}}_{P}\right)_{\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}}$, and $\operatorname{Asymp}_{P}\left(\delta_{K}\right)(\beta)$ is defined in \S A.3.7.

Assuming Theorem A.3.16, we prove Theorem A.3.12.

Proof of Theorem A.3.12. Let $\overline{\mathrm{Bun}}_{G}$ denote the compactification of Δ defined in §A.3.8. Factor Δ into $\bar{\jmath}: \operatorname{Bun}_{G} \rightarrow \overline{\operatorname{Bun}}_{G}$ and the proper map $\bar{\Delta}: \overline{\operatorname{Bun}}_{G} \rightarrow \operatorname{Bun}_{G} \times \operatorname{Bun}_{G}$. For a sheaf \mathcal{F}, we will use $f_{\mathcal{F}}$ to denote its Grothendieck function, i.e., the trace of the geometric Frobenius acting on the $*$-stalks over the \mathbb{F}_{q}-points. By the Grothendieck-Lefschetz trace formula, $b\left(\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}\right)$ equals the sum of the values of $f_{\bar{J}_{*}} \overline{\mathbb{Q}}_{\ell}$ at the points of $\overline{\mathrm{Bun}}_{G}\left(\mathbb{F}_{q}\right)$ lying over $\left(\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}\right) \in\left(\operatorname{Bun}_{G} \times \operatorname{Bun}_{G}\right)\left(\mathbb{F}_{q}\right)$.

We have the T-torsor $\left(\operatorname{VinBun}_{G}\right)_{\overline{T / Z_{0}(G)}} \rightarrow \overline{\operatorname{Bun}}_{G}$. Let

$$
\jmath: \operatorname{Bun}_{G} \times T / Z_{0}(G) \hookrightarrow\left(\operatorname{VinBun}_{G}\right)_{\overline{T / Z_{0}(G)}}
$$

denote the open embedding. Recall that $T \rightarrow T / Z_{0}(G)$ is a trivial $Z_{0}(G)$-bundle, so the pushforward of $\left(\overline{\mathbb{Q}}_{\ell}\right)_{T}$ to $T / Z_{0}(G)$ equals $\left(\overline{\mathbb{Q}}_{\ell}\right)_{T / Z_{0}(G)} \otimes H^{*}\left(Z_{0}(G), \overline{\mathbb{Q}}_{\ell}\right)$. The trace of the geometric Frobenius acting on $H^{*}\left(Z_{0}(G), \overline{\mathbb{Q}}_{\ell}\right)$ equals $(1-q)^{\operatorname{dim}\left(Z_{0}(G)\right)}$. Since any T-torsor over \mathbb{F}_{q} is trivial, we deduce from the Cartesian square (A.31) and smooth base change that

$$
b\left(\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}\right)=(-1)^{\operatorname{dim} T}(1-q)^{-\left|\Gamma_{G}\right|} \sum_{\tilde{\beta}} f_{J * \overline{\mathbb{Q}}_{\ell}}(\tilde{\beta}),
$$

where the sum is over $\tilde{\beta} \in\left(\operatorname{VinBun}_{G}\right)_{\overline{T / Z}(G)}\left(\mathbb{F}_{q}\right)$ mapping to $\left(\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}\right)$. From (A.35), we have a stratification of $\left(\operatorname{VinBun}_{G}\right)_{\overline{T / Z_{0}(G)}}$ by $\operatorname{VinBun}_{G, \mathbf{c}_{P}} \times\left(T / Z_{0}(M)\right)$, where P ranges over all standard parabolic subgroups. Theorem A.3.16 implies that

$$
f_{\iota_{P}^{*} \jmath *} \overline{\mathbb{Q}}_{\ell}\left(\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}, \beta, t\right)=(1-q)^{\left|\Gamma_{G}\right|-\left|\Gamma_{M}\right|} \operatorname{Asymp}_{P}\left(\delta_{K}\right)(\beta)
$$

for $\beta: X \rightarrow\left(\overline{\mathbb{X}}_{P}\right)_{\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}}$ a non-degenerate section and $t \in\left(T / Z_{0}(M)\right)\left(\mathbb{F}_{q}\right)$. Putting it all together, we prove the theorem.

The remainder of this Appendix works towards setting up the proof of Theorem A.3.16,
which is given at the end.

A.3.10 Reduction to the Hecke stack

The isomorphism

$$
\operatorname{Bun}_{P}^{\mu} \underset{\operatorname{Bun}_{M}^{\mu}}{\times} \mathcal{H}_{M}^{+, \mu, \lambda} \underset{\operatorname{Bun}_{M}^{\lambda}}{\times} \operatorname{Bun}_{P^{-}}^{\lambda} \cong \operatorname{VinBun}_{G, \mathbf{c}_{P}}^{\mu, \lambda}
$$

induced by (A.19) allows us to define the projection map

$$
\operatorname{pr}_{M}^{\mu, \lambda}: \operatorname{VinBun}_{G, \mathbf{c}_{P}}^{\mu, \lambda} \rightarrow \mathcal{H}_{M}^{+, \mu, \lambda}
$$

which is smooth with equidimensional fibers.
For $\left(\mathcal{F}_{G}^{1}, \mathcal{F}_{G}^{2}, \beta\right) \in \operatorname{VinBun}_{G, \mathbf{c}_{P}}^{\mu, \lambda}\left(\mathbb{F}_{q}\right)$, let

$$
\left(\mathcal{F}_{M}^{1}, \mathcal{F}_{M}^{2}, \beta_{M}\right):=\operatorname{pr}_{M}^{\mu, \lambda}(\beta) \in \mathcal{H}_{M}^{+, \mu, \lambda}\left(\mathbb{F}_{q}\right)
$$

Choosing trivializations $\mathcal{F}_{M}^{1}, \mathcal{F}_{M}^{2}$ over $\operatorname{Spec}\left(\mathfrak{o}_{v}\right)$, the \bar{M}-morphism β_{M} defines an element (m_{v}) in the restricted product $\prod_{v}\left(\bar{M}\left(\mathfrak{o}_{v}\right) \cap M\left(F_{v}\right)\right)$ with respect to the open subgroups $M\left(\mathfrak{o}_{v}\right) \subset M\left(F_{v}\right)$. The $M\left(\mathfrak{o}_{v}\right) \times M\left(\mathfrak{o}_{v}\right)$-orbit of m_{v} does not depend on the choice of trivializations. One deduces from (2.21) that

$$
\begin{equation*}
\operatorname{Asymp}_{P, v}\left(\delta_{K_{v}}\right)\left(\beta_{v}\right)=\nu_{M, v}\left(m_{v}\right) \tag{A.37}
\end{equation*}
$$

where $\nu_{M, v}$ is the $K_{M, v}$-bi-invariant measure on $M\left(F_{v}\right)$ defined in $\S 2.3 .3$. Thus the function (A.36) reduces to a function on $\mathcal{H}_{M}^{+, \mu, \lambda}\left(\mathbb{F}_{q}\right)$.

On the other hand, we have a similar reduction of $\iota_{P}^{\mu, \lambda *}\left({ }_{\jmath *}\left(\overline{\mathbb{Q}}_{\ell}\right)\right)$ by a modified version of [62, Theorem 4.3.1]:

Recall from Lemma A. 3.11 that $\iota_{P}^{\mu, \lambda *}\left(\jmath_{*}\left(\overline{\mathbb{Q}}_{\ell}\right)\right)=0$ unless $\mu-\lambda \in \Lambda_{G, P}^{\text {pos }}$. Assuming
that $\mu-\lambda \in \Lambda_{G, P}^{\mathrm{pos}}$, the relevant definitions and results from §A.2.7 still hold, without the assumption that $[G, G]$ is simply connected.

Theorem A.3.17. Let $\mu, \lambda \in \Lambda_{G, P}$ with $\mu-\lambda \in \Lambda_{G, P}^{\mathrm{pos}}$. The $*$-restriction $\iota_{P}^{\mu, \lambda *}\left(J_{*}\left(\overline{\mathbb{Q}}_{\ell}\right)\right)$ to the stratum $\operatorname{VinBun}_{G, \mathbf{c}_{P}}^{\mu, \lambda} \times\left(T / Z_{0}(M)\right)$ is equal to

$$
\operatorname{pr}_{M}^{\mu, \lambda *}\left(\overline{\mathbb{Q}}_{\ell} \tilde{\otimes} \tilde{\Upsilon}\left(\check{\mathfrak{u}}_{P}\right)^{\mu-\lambda}\right) \boxtimes\left(\overline{\mathbb{Q}}_{\ell}\left(\frac{1}{2}\right)[1]\right)^{-\left\langle 2 \check{\rho}_{P}, \mu-\lambda\right\rangle} \otimes H^{*}\left(Z_{0}(M) / Z_{0}(G), \overline{\mathbb{Q}}_{\ell}\right)
$$

Here $\tilde{\Upsilon}\left(\check{\mathfrak{u}}_{P}\right)^{\mu-\lambda}$ is the factorization algebra on $\operatorname{Gr}_{M, X^{\mu-\lambda}}^{+}$defined in \S A.2.7, and we can form the sheaf $\left(\overline{\mathbb{Q}}_{\ell}\right)_{\operatorname{Bun}_{M}} \tilde{\boxtimes} \tilde{\Upsilon}\left(\check{\mathfrak{u}}_{P}\right)^{\mu-\lambda} \in D\left(\mathcal{H}_{M, X^{\mu-\lambda}}^{+}\right)$using (A.5).

The proof of Theorem A.3.17 follows the same reasoning as the proof of [62, Theorem 4.3.1], using the local models defined in loc. cit, which we now review.

A.3.11 Local models

Recall that $\bar{\pi}: \overline{G_{\text {enh }}} \rightarrow \overline{T_{\text {adj }}}$ denotes the projection and $\overline{\mathfrak{s}}: \overline{T_{\text {adj }}} \rightarrow \overline{G_{\text {enh }}}$ is a section. Let $\left(\overline{G_{\text {enh }}}\right) \geq P:=\bar{\pi}^{-1}\left(\left(\overline{T_{\text {adj }}}\right) \geq P\right)$ denote the open submonoid.

Define $y P$ to be the scheme representing the substack

$$
\operatorname{Maps}^{\circ}\left(X, U^{-} \backslash\left(\overline{G_{\mathrm{enh}}}\right) \geq P / P\right) \subset \operatorname{Bun}_{U^{-}} \underset{\operatorname{Bun}_{G}}{\times} \operatorname{VinBun}_{G, \geq P} \underset{\operatorname{Bun}_{G}}{\times} \operatorname{Bun}_{P}
$$

of maps generically landing in $U^{-} \cdot \overline{\mathfrak{s}}\left(\left(\overline{T_{\mathrm{adj}}}\right)_{\geq P}\right) \cdot P$. Then $\bar{\pi}$ induces a map

$$
y^{P} \rightarrow\left(\overline{T_{\mathrm{adj}}}\right)_{\geq P}
$$

For $\theta \in \Lambda_{G, P}$, let $\mathrm{y} P, \theta$ denote the preimage of $\operatorname{Bun}_{M}^{-\theta}$ under the projection $\operatorname{Bun}_{P} \rightarrow$ Bun_{M}.

One can define both left and right actions of $T_{\text {adj }}$ on y^{P} in a similar way as in §A.3.3.

Then the action of $T / Z(M) \hookrightarrow T_{\text {adj }}$ defines an isomorphism

$$
y^{P} \cong y_{\text {strict }}^{P} \times(T / Z(M))
$$

where $y_{\text {strict }}^{P}:=y^{P} \times \overline{T_{\text {adj }}} \overline{Z(M) / Z(G)}$ is the local model for $\operatorname{VinBun}_{G, \geq P, \text { strict }}$ considered in [62, §6.1].

Let $e_{P}=\overline{\mathfrak{s}}\left(\mathbf{c}_{P}\right)$ and $\left(\overline{G_{\text {enh }}}\right)_{\geq P, \text { strict }}=\bar{\pi}^{-1}(\{1\} \times \overline{Z(M) / Z(G)})$. By Theorem 1.4.8, we have

$$
e_{P} \cdot\left(\overline{G_{\mathrm{enh}}}\right)_{\geq P, \text { strict }} \cdot e_{P}=e_{P} \cdot\left(\overline{G_{\mathrm{enh}}}\right) \mathbf{c}_{P} \cdot e_{P}=\bar{M}
$$

The map $\left(\overline{G_{\text {enh }}}\right) \geq P$,strict $\rightarrow \bar{M}$ factors through $U^{-} \backslash\left(\overline{G_{\text {enh }}}\right) \geq P$, strict $/ U$. Therefore we have a map

$$
\pi_{y}: y P, \theta \rightarrow \mathrm{Gr}_{M, X^{\theta}}^{+} \times(T / Z(M))
$$

The embedding $\bar{M}=e_{P} \cdot\left(\overline{G_{\text {enh }}}\right) \mathbf{c}_{P} \cdot e_{P} \hookrightarrow\left(\overline{G_{\text {enh }}}\right) \mathbf{c}_{P}$ induces a section

$$
\sigma_{y}: \mathrm{Gr}_{M, X^{\theta}}^{+} \times(T / Z(M)) \rightarrow y^{P, \theta}
$$

of π_{y}. Both π_{y} and σ_{y} are compatible with the projection

$$
y^{P} \rightarrow\left(\overline{T_{\mathrm{adj}}}\right) \geq P=\mathbb{G}_{m}^{\left|\Gamma_{M}\right|} \times\left(\mathbb{A}^{1}\right)^{\left|\Gamma_{G}\right|-\left|\Gamma_{M}\right|} \rightarrow \mathbb{G}_{m}^{\left|\Gamma_{M}\right|}=T / Z(M) .
$$

The scheme $y P, \theta$ is a local model for $\operatorname{VinBun}_{G, \geq P}$. We will need to consider

$$
\tilde{y}^{P, \theta}:=y^{P, \theta} \frac{\times}{\frac{T_{\mathrm{adj}}}{T / Z_{0}(G)},}
$$

which is a local model for $\operatorname{VinBun}_{G, \geq P} \times \overline{T_{\text {adj }}} \overline{T / Z_{0}(G)}$. Let $\left(\overline{T / Z_{0}(G)}\right)_{\geq P}$ and $\left(\overline{T / Z_{0}(G)}\right)_{P}$ denote the base changes of the corresponding loci in $\overline{T_{\text {adj }}}$, so that $\tilde{y} P, \theta$ lies over $\left(\overline{T / Z_{0}(G)}\right)_{\geq P}$.

By base change, we get maps

$$
\mathrm{Gr}_{M, X^{\theta}}^{+} \times\left(\overline{T / Z_{0}(G)}\right)_{P} \xrightarrow{\tilde{\sigma}_{y}} \tilde{y} P, \theta \xrightarrow{\tilde{\pi}_{y}} \mathrm{Gr}_{M, X^{\theta}}^{+} \times\left(\overline{T / Z_{0}(G)}\right)_{P}
$$

At the level of reduced schemes, Lemma A.3.15 implies that we have maps

$$
\begin{gathered}
\left(\mathrm{Gr}_{M, X^{\theta}}^{+}\right)_{\mathrm{red}} \times\left(T / Z_{0}(M)\right) \xrightarrow{\tilde{\sigma}_{y}} \tilde{y}_{\text {red }}^{P, \theta} \xrightarrow{\tilde{\pi}_{y}}\left(\mathrm{Gr}_{M, X^{\theta}}^{+}\right)_{\mathrm{red}} \times\left(T / Z_{0}(M)\right) \\
\text { A.3.12 Contracting action on } \tilde{y}_{\text {red }}^{P, \theta}
\end{gathered}
$$

Fix a cocharacter $\nu_{M}: \mathbb{G}_{M} \rightarrow Z_{0}(M) \subset T$ which contracts U^{-}to the element $1 \in U^{-}$. Then ν_{M} defines a \mathbb{G}_{m}-action on $y P, \theta$ that contracts $y P, \theta$ onto the section σ_{y} by [62, Lemma 6.5.6].

By definition, the induced \mathbb{G}_{m}-action on $\left(\overline{T_{\text {adj }}}\right) \geq P$ is via the composition $\mathbb{G}_{m} \xrightarrow{-2 \nu_{M}} T$ and the usual T-action on $\overline{T_{\text {adj }}}$. Therefore if we consider the \mathbb{G}_{m}-action on $\overline{T / Z_{0}(G)}$ via the composition $\mathbb{G}_{m} \xrightarrow{-2 \nu_{M}} T$ and the usual T-action on $\overline{T / Z_{0}(G)}$, we get a \mathbb{G}_{m}-action on $\tilde{y} P, \theta$, and hence on $\tilde{y}_{\text {red }}^{P, \theta}$. Moreover from Lemma A.3.15 we deduce that this \mathbb{G}_{m}-action contracts $\tilde{y}_{\text {red }}^{P, \theta}$ onto the section $\left(\mathrm{Gr}_{M, X^{\theta}}^{+}\right)_{\text {red }} \times\left(T / Z_{0}(M)\right)$.

We are now ready to prove Theorem A.3.17.

Proof of Theorem A.3.17. Since the open locus $\operatorname{VinBun}_{G, \geq P}$ contains the P - and G-loci, to compute $\iota_{P}^{\mu, \lambda *}{ }^{*} \overline{\mathbb{Q}}_{\ell}$, we may restrict to $\operatorname{VinBun}_{G, \geq P} \times \frac{\bar{T}_{\text {adj }}}{} \overline{T / Z_{0}(G)}$.

Let $y_{G}^{P, \theta} \subset y^{P, \theta}$ denote the G-locus: the preimage of $T_{\text {adj }}$ under the projection to $\overline{T_{\text {adj }}}$. Set $\tilde{y}_{G}^{P, \theta}=y_{G}^{P, \theta} \times T_{\text {adj }}\left(T / Z_{0}(G)\right)$. The $T_{\text {adj }}$-action on $y P, \theta$ induces an isomorphism

$$
y_{G}^{P, \theta} \cong \stackrel{\circ}{z}^{P, \theta} \times T_{\mathrm{adj}}
$$

where $\check{Z}^{P, \theta}$ is the open Zastava space (see $\S A .2 .8$). Hence there is an isomorphism

$$
\tilde{y}_{G}^{P, \theta} \cong \stackrel{\circ}{z}^{P, \theta} \times\left(T / Z_{0}(G)\right)
$$

Let $\jmath_{G}: \tilde{y}_{G}^{P, \theta} \hookrightarrow \tilde{y}^{P, \theta}$ denote the open embedding. Then the assertion of the theorem reduces, as explained in $[12, \S 3, \S 8]$, to proving that

$$
\begin{equation*}
\tilde{\sigma}_{y}^{*}\left(\jmath_{G *}\left(\overline{\mathbb{Q}}_{\ell}\right)\right) \cong \tilde{\Upsilon}\left(\check{\mathfrak{u}}_{P}\right)^{\theta} \boxtimes\left(\overline{\mathbb{Q}}_{\ell}\left(\frac{1}{2}\right)[1]\right)^{-\left\langle 2 \check{\rho}_{P}, \theta\right\rangle} \otimes H^{*}\left(Z_{0}(M) / Z_{0}(G), \overline{\mathbb{Q}}_{\ell}\right) . \tag{A.38}
\end{equation*}
$$

Since we are working with étale sheaves, we can work at the level of reduced schemes. Then we can apply the contraction principle (cf. [12, §5], [62, Lemma 7.2.1]) to the \mathbb{G}_{m}-action on $\underset{\text { red }}{\tilde{y} P, \theta}$ defined in \S A.3.12. This gives an isomorphism $\tilde{\sigma}_{y}^{*}\left(\jmath_{G *}\left(\overline{\mathbb{Q}}_{\ell}\right)\right) \cong \tilde{\pi}_{y_{*}}\left(\jmath_{G *}\left(\overline{\mathbb{Q}}_{\ell}\right)\right)$. At the level of reduced schemes,

$$
\tilde{\pi}_{y} \circ \jmath_{G}: y_{G, \mathrm{red}}^{P, \theta} \cong \stackrel{\circ}{Z}^{P, \theta} \times\left(T / Z_{0}(G)\right) \rightarrow\left(\mathrm{Gr}_{M, X^{\theta}}^{+}\right)_{\mathrm{red}} \times\left(T / Z_{0}(M)\right)
$$

is the product of $\stackrel{\circ}{\pi}_{z}$ and the natural projection $T / Z_{0}(G) \rightarrow T / Z_{0}(M)$. Recall from (A.15) that there is a canonical isomorphism $\tilde{\Upsilon}\left(\check{\mathfrak{u}}_{P}\right)^{\theta} \cong\left(\stackrel{\circ}{\pi}_{Z}\right)_{*}\left(\mathrm{IC}_{\mathcal{Z}^{P, \theta}}\right)$. Noting that $\stackrel{\circ}{z}^{P, \theta}$ is smooth of dimension $\left\langle 2 \check{\rho}_{P}, \theta\right\rangle$, we get the identification

$$
\left(\stackrel{\circ}{\pi}_{Z}\right)_{*}\left(\overline{\mathbb{Q}}_{\ell}\right) \cong \tilde{\Upsilon}\left(\check{\mathfrak{u}}_{P}\right)^{\theta} \otimes\left(\overline{\mathbb{Q}}_{\ell}\left(\frac{1}{2}\right)[1]\right)^{-\left\langle 2 \check{\rho}_{P}, \theta\right\rangle} .
$$

Since $Z_{0}(M) / Z_{0}(G)$ is a torus, we observe that $T / Z_{0}(G) \rightarrow T / Z_{0}(M)$ is a trivial torsor. Equation (A.38), and hence the theorem, now follows.

Proof of Theorem A.3.16. The trace of the geometric Frobenius on $H^{*}\left(\mathbb{G}_{m}, \overline{\mathbb{Q}}_{\ell}\right)$ equals $1-q$, and $Z_{0}(M) / Z_{0}(G)$ is a product of $\left|\Gamma_{G}\right|-\left|\Gamma_{M}\right|$ copies of \mathbb{G}_{m}. Therefore the trace of geometric Frobenius on $H^{*}\left(Z_{0}(M) / Z_{0}(G), \overline{\mathbb{Q}}_{\ell}\right)$ equals $(1-q)^{\left|\Gamma_{G}\right|-\left|\Gamma_{M}\right| \text {. Theorem A.3.16 now follows }}$ from Theorem A.3.17, Proposition A.2.4, and (A.37).

REFERENCES

[1] D. Alvis. The duality operation in the character ring of a finite Chevalley group. Bull. Amer. Math. Soc. (N.S.), 1(6):907-911, 1979.
[2] J. Arthur. An introduction to the trace formula. In Harmonic analysis, the trace formula, and Shimura varieties, volume 4 of Clay Math. Proc., pages 1-263. Amer. Math. Soc., Providence, RI, 2005.
[3] I. V. Arzhantsev and D. A. Timashev. On the canonical embeddings of certain homogeneous spaces. In Lie groups and invariant theory, volume 213 of Amer. Math. Soc. Transl. Ser. 2, pages 63-83. Amer. Math. Soc., Providence, RI, 2005.
[4] A. Aubert. Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d'un groupe réductif p-adique. Trans. Amer. Math. Soc., 347(6):2179-2189, 1995.
[5] V. Baranovsky. Notes on algebraic semigroups from talk given at the Geometric Langlands Seminar at University of Chicago, 2000.
http://math.uchicago.edu/~jpwang/Baranovsky_on_semigroups.pdf.
[6] K. A. Behrend. The Lefschetz trace formula for the moduli stack of principal bundles. ProQuest LLC, Ann Arbor, MI, 1991. Thesis (Ph.D.)-University of California, Berkeley.
[7] K. A. Behrend. Semi-stability of reductive group schemes over curves. Math. Ann., 301(2):281-305, 1995.
[8] A. Beilinson and V. Drinfeld. Chiral algebras, volume 51 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2004.
[9] J. Bernstein, R. Bezrukavnikov, and D. Kazhdan. Deligne-Lusztig duality and wonderful compactification. January 2017. arXiv:1701.07329.
[10] R. Bezrukavnikov and D. Kazhdan. Geometry of second adjointness for p-adic groups. Represent. Theory, 19:299-332, 2015. With an appendix by Yakov Varshavsky, Bezrukavnikov and Kazhdan.
[11] A. Bouthier, B. C. Ngô, and Y. Sakellaridis. On the formal arc space of a reductive monoid. Amer. J. Math., 138(1):81-108, 2016.
[12] A. Braverman, M. Finkelberg, D. Gaitsgory, and I. Mirković. Intersection cohomology of Drinfeld's compactifications. Selecta Math. (N.S.), 8(3):381-418, 2002.
[13] A. Braverman and D. Gaitsgory. Geometric Eisenstein series. Invent. Math., 150(2):287384, 2002.
[14] A. Braverman and D. Gaitsgory. Deformations of local systems and Eisenstein series. Geom. Funct. Anal., 17(6):1788-1850, 2008.
[15] M. Brion and S. Kumar. Frobenius splitting methods in geometry and representation theory, volume 231 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 2005.
[16] Daniel Bump. Automorphic forms and representations, volume 55 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997.
[17] P. Cartier. Representations of p-adic groups: a survey. In Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 19777), Part 1, Proc. Sympos. Pure Math., XXXIII, pages 111-155. Amer. Math. Soc., Providence, R.I., 1979.
[18] W. Casselman. The unramified principal series of \mathfrak{p}-adic groups. I. The spherical function. Compositio Math., 40(3):387-406, 1980.
[19] J. W. S. Cassels. An introduction to the geometry of numbers. Classics in Mathematics. Springer-Verlag, Berlin, 1997. Corrected reprint of the 1971 edition.
[20] V. G. Cernov. Homogeneous generalized functions and the Radon transform in a space of rectangular matrices over a continuous locally compact disconnected field. Dokl. Akad. Nauk SSSR, 191:540-543, 1970.
[21] C. W. Curtis. Truncation and duality in the character ring of a finite group of Lie type. J. Algebra, 62(2):320-332, 1980.
[22] P. Deligne and G. Lusztig. Duality for representations of a reductive group over a finite field. J. Algebra, 74(1):284-291, 1982.
[23] V. Drinfeld. On the Langlands retraction. January 2013. arXiv:1301.1940.
[24] V. Drinfeld and D. Gaitsgory. Geometric constant term functor(s). November 2013. arXiv:1311.2071.
[25] V. Drinfeld and D. Gaitsgory. Compact generation of the category of D-modules on the stack of G-bundles on a curve. Camb. J. Math., 3(1-2):19-125, 2015.
[26] V. Drinfeld and C. Simpson. B-structures on G-bundles and local triviality. Math. Res. Lett., 2(6):823-829, 1995.
[27] V. Drinfeld and J. Wang. On a strange invariant bilinear form on the space of automorphic forms. Selecta Math. (N.S.), 22(4):1825-1880, October 2016.
[28] Michel Duflo. Représentations irréductibles des groupes semi-simples complexes. In Analyse harmonique sur les groupes de Lie (Sém., Nancy-Strasbourg, 1973-75), pages 26-88. Lecture Notes in Math., Vol. 497. Springer, Berlin, 1975.
[29] D. Gaitsgory. What acts on geometric Eisenstein series. http://math.harvard.edu/~ gaitsgde/GL/WhatActs.pdf.
[30] D. Gaitsgory. A "strange" functional equation for Eisenstein series and miraculous duality on the moduli stack of bundles. ArXiv e-prints, April 2014.
[31] D. Gaitsgory. Outline of the proof of the geometric Langlands conjecture for $G L_{2}$. Astérisque, (370):1-112, 2015.
[32] D. Gaitsgory and J. Lurie. Weil's conjecture for function fields. http://math.harvard.edu/~lurie/papers/tamagawa.pdf.
[33] I. M. Gel'fand, M. I. Graev, and I. I. Pyatetskii-Shapiro. Representation theory and automorphic functions, volume 6 of Generalized Functions. Academic Press, Inc., Boston, MA, 1990. Translated from the Russian by K. A. Hirsch, Reprint of the 1969 edition.
[34] I. M. Gel'fand, M. I. Graev, and I. I. Pyatetskii-Shapiro. Representation theory and automorphic functions, volume 6 of Generalized Functions. Academic Press, Inc., Boston, MA, 1990. Translated from the Russian by K. A. Hirsch, Reprint of the 1969 edition.
[35] I. M. Gel'fand and G. E. Shilov. Generalized functions. Vol. 1. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1964 [1977]. Properties and operations, Translated from the Russian by Eugene Saletan.
[36] F. D. Grosshans. The invariants of unipotent radicals of parabolic subgroups. Invent. Math., 73(1):1-9, 1983.
[37] G. Harder. Chevalley groups over function fields and automorphic forms. Ann. of Math. (2), 100:249-306, 1974.
[38] G. Harder and M. S. Narasimhan. On the cohomology groups of moduli spaces of vector bundles on curves. Math. Ann., 212:215-248, 1974/75.
[39] Sigurdur Helgason. Groups and geometric analysis, volume 83 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2000. Integral geometry, invariant differential operators, and spherical functions, Corrected reprint of the 1984 original.
[40] Sigurdur Helgason. Integral geometry and Radon transforms. Springer, New York, 2011.
[41] J. C. Jantzen. Representations of algebraic groups, volume 107 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, second edition, 2003.
[42] Kenneth D. Johnson and Nolan R. Wallach. Composition series and intertwining operators for the spherical principal series. I, volume 229. 1977.
[43] Masoud Kamgarpour. Stacky abelianization of algebraic groups. Transform. Groups, 14(4):825-846, 2009.
[44] S. Kato. Duality for representations of a Hecke algebra. Proc. Amer. Math. Soc., 119(3):941-946, 1993.
[45] G. Kempf, F. F. Knudsen, D. Mumford, and B. Saint-Donat. Toroidal embeddings. I. Lecture Notes in Mathematics, Vol. 339. Springer-Verlag, Berlin-New York, 1973.
[46] Anatoly N. Kochubei. A non-Archimedean wave equation. Pacific J. Math., 235(2):245261, 2008.
[47] Bertram Kostant. On the existence and irreducibility of certain series of representations. Bull. Amer. Math. Soc., 75:627-642, 1969.
[48] R. P. Langlands. Euler products. Yale University Press, New Haven, Conn.-London, 1971. A James K. Whittemore Lecture in Mathematics given at Yale University, 1967, Yale Mathematical Monographs, 1.
[49] R. P. Langlands. On the classification of irreducible representations of real algebraic groups. In Representation theory and harmonic analysis on semisimple Lie groups, volume 31 of Math. Surveys Monogr., pages 101-170. Amer. Math. Soc., Providence, RI, 1989.
[50] I. G. Macdonald. Spherical functions on a p-adic Chevalley group. Bull. Amer. Math. Soc., 74:520-525, 1968.
[51] C. Mœglin and J.-L. Waldspurger. Spectral decomposition and Eisenstein series, volume 113 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1995. Une paraphrase de l'Écriture [A paraphrase of Scripture].
[52] A. Ramanathan. Moduli for principal bundles. In Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), volume 732 of Lecture Notes in Math., pages 527-533. Springer, Berlin, 1979.
[53] A. Ramanathan. Moduli for principal bundles over algebraic curves. I. Proc. Indian Acad. Sci. Math. Sci., 106(3):301-328, 1996.
[54] A. Ramanathan. Moduli for principal bundles over algebraic curves. II. Proc. Indian Acad. Sci. Math. Sci., 106(4):421-449, 1996.
[55] S. Raskin. Chiral principal series categories I: Finite dimensional calculations. http://math.mit.edu/~sraskin/cpsi.pdf.
[56] L. E. Renner. Linear algebraic monoids, volume 134 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2005. Invariant Theory and Algebraic Transformation Groups, V.
[57] A. Rittatore. Algebraic monoids and group embeddings. Transform. Groups, 3(4):375396, 1998.
[58] A. Rittatore. Very flat reductive monoids. Publ. Mat. Urug., 9:93-121 (2002), 2001.
[59] Y. Sakellaridis. Inverse Satake transforms. October 2014. arXiv:1410.2312.
[60] Y. Sakellaridis and A. Venkatesh. Periods and harmonic analysis on spherical varieties. February 2012. arXiv:1203.0039.
[61] S. Schieder. The Harder-Narasimhan stratification of the moduli stack of G-bundles via Drinfeld's compactifications. Selecta Math. (N.S.), 21(3):763-831, 2015.
[62] S. Schieder. Geometric Bernstein Asymptotics and the Drinfeld-Lafforgue-Vinberg degeneration for arbitrary reductive groups. July 2016. arXiv:1607.00586.
[63] S. S. Shatz. Degeneration and specialization in algebraic families of vector bundles. Bull. Amer. Math. Soc., 82(4):560-562, 1976.
[64] S. S. Shatz. The decomposition and specialization of algebraic families of vector bundles. Compositio Math., 35(2):163-187, 1977.
[65] The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu, 2016.
[66] Elias M. Stein and Guido Weiss. Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32.
[67] E. B. Vinberg. On reductive algebraic semigroups. In Lie groups and Lie algebras: E. B. Dynkin's Seminar, volume 169 of Amer. Math. Soc. Transl. Ser. 2, pages 145-182. Amer. Math. Soc., Providence, RI, 1995.
[68] Nolan R. Wallach. Representations of reductive Lie groups. In Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, pages 71-86. Amer. Math. Soc., Providence, R.I., 1979.
[69] Shigeru Watanabe. Generating functions and integral representations for the spherical functions on some classical Gel'fand pairs. J. Math. Kyoto Univ., 33(4):1125-1142, 1993.
[70] A. V. Zelevinsky. Induced representations of reductive \mathfrak{p}-adic groups. II. On irreducible representations of GL(n). Ann. Sci. École Norm. Sup. (4), 13(2):165-210, 1980.
[71] X. Zhu. An introduction to affine Grassmannians and the geometric Satake equivalence. March 2016. arXiv:1603.05593.

[^0]: 1. The asymptotics map, defined in [59, 60], coincides with the dual of the Bernstein map defined in [10].
[^1]: 3. One can also take dual Weyl modules.
[^2]: 4. Let V be an M-module over k. Choose a Borel subgroup $B_{M} \subset M_{\bar{k}}$ and a Cartan subgroup $T_{\text {sub }, \bar{k}} \subset$ B_{M}, which is isomorphic to $T_{\bar{k}}=B_{M} / U_{B_{M}}$. We say that the set of weights of V is the set of $T_{\text {sub }, \bar{k}^{-}}$ eigenvalues of $V \otimes \bar{k}$. This set does not depend on the choice of $\left(T_{\text {sub }, \bar{k}}, B_{M}\right)$, so it can be considered as a subset of $\check{\Lambda}$, which is preserved by W_{M} and $\operatorname{Gal}(\bar{k} / k)$.
[^3]: 5. This monoid is denoted by M_{+}in $[5, \S 6]$.
[^4]: 6. In fact one can show that the fraction field of $k[G]^{U^{-}} \times U$ is equal to $k(G)^{U^{-} \times U}$: given $f \in k(G)^{U^{-} \times U}$, consider the vector space of denominators $h \in k[G]$ such that $h f \in k[G]$. This is a $U \times U^{-}$-module, so there must exist an invariant element h. Then $h f \in k[G]^{U^{-} \times U}$.
[^5]: 1. Recall that in any conjugacy class of parabolic subgroups of G, there is exactly one standard parabolic subgroup.
[^6]: 2. The existence of the least element is not obvious; it was proved by R. P. Langlands in [49, §4].
[^7]: 3. The Gindikin-Karpelevich formula for non-Archimedean local fields is due to Langlands [48] and MacDonald [50] independently, with a generalization by Casselman [18].
[^8]: 4. The identification relies on the assumptions that any G-bundle \mathcal{F}_{G} on X is trivial when restricted to $\operatorname{Spec} F$ and $\operatorname{Spec} \mathfrak{o}_{v}$ for each place v. We know the restriction of \mathcal{F}_{G} to Spec \mathfrak{o}_{v} is trivial by smoothness of G and Lang's theorem (any G-bundle over a finite field is trivial). The generic triviality of $\left.\mathcal{F}_{G}\right|_{\text {Spec }} F$ follows from the Hasse principle for split reductive groups over a function field, which is proved by [37].
[^9]: 5. In loc. cit. the stratification is defined over an algebraically closed field. To define the stratification over \mathbb{F}_{q}, we first base change to $\overline{\mathbb{F}}_{q}$ and then note that the Harder-Narasimhan strata are defined over \mathbb{F}_{q} by Galois invariance.
[^10]: 7. In [51, II.1.6], R_{w} is denoted $M(w, \pi)$ for a cuspidal representation π. But we prefer to avoid multiple uses of the letter M.
[^11]: 1. If $F=\mathbb{R}$, then the normalized absolute value coincides with the usual absolute value. If $F=\mathbb{C}$, then the normalized absolute value is the square of the usual absolute value.
[^12]: 3. C^{*} is called [19] the dual (polar) set of C. Note that if C is compact, then C^{*} is open. If 0 is an interior point of C, then C^{*} is bounded.
[^13]: 2. An algebraic monoidal stack y is an algebraic stack y with a coherently associative composition law $y \times y \rightarrow y$ and a morphism $\operatorname{Spec}(k) \rightarrow y$ such that for any scheme S, the composition $S \rightarrow \operatorname{Spec}(k) \rightarrow y$ is a unit object of $y(S)$.
[^14]: 4. The proof shows that there exists a coherent sheaf \mathcal{F} on the stack $\operatorname{Bun}_{G} \times \operatorname{Bun}_{G}$ and a closed embedding $\overline{\operatorname{Bun}}_{G}^{\prime} \hookrightarrow \mathbb{P}(\mathcal{F})$.
 5. In the particular case of the Vinberg semigroup, one can deduce that this map is a closed embedding using [15, Exercises 6.1E, 6.2E].
