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P,θ
red . . . . . . . . . . . . . . . . . . . . . . . . 158

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

vi



ACKNOWLEDGMENTS

First and foremost, I thank my advisor Vladimir Drinfeld for his constant guidance, help,

and patience throughout graduate school. He has been overwhelmingly generous with both

his time and ideas. The support and encouragement that he provided were crucial to my

progress during the most difficult periods of my studies. He taught me a great deal of

mathematics and showed me how to become a better mathematician.

I thank Sasha Beilinson, Roman Bezrukavnikov, Dennis Gaitsgory, Sam Raskin, Yiannis

Sakellaridis, and Simon Schieder for many enlightening conversations during my time at

UChicago. I owe a special thanks to Dennis Gaitsgory for his guidance during my under-

graduate studies. His courses and mentorship laid the foundations for my work in graduate
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ABSTRACT

This thesis concerns the study of a new invariant bilinear form B on the space of automorphic

forms of a split reductive group G over a global field. The form B is natural from the

viewpoint of the geometric Langlands program.

First, we study a certain reductive monoidM associated to a parabolic subgroup P of G.

The monoidM is used implicitly in the study of the geometry of Drinfeld’s compactifications

of the moduli stacks BunP and BunG. We show that M is a retract of the affine closure of

the quasi-affine variety G/U , and we relate M to the Vinberg semigroup of G.

Second, we define the invariant bilinear form B over a function field using the asymptotics

maps defined in Bezrukavnikov–Kazhdan [10] and Sakellaridis–Venkatesh [60] using the ge-

ometry of the wonderful compactification of G. We show that B is related to the miraculous

duality functor studied by Drinfeld and Gaitsgory through the functions–sheaves dictionary.

In the proof, we use the work of Schieder [62], which concerns the singularities of Drinfeld’s

compactification of BunG. We then give an alternate definition of B, which extends to num-

ber fields, using the constant term operator and the inverse of the standard intertwining

operator. The form B defines an invertible operator L from the space of compactly sup-

ported automorphic forms to a new space of “pseudo-compactly” supported automorphic

forms. We give a formula for L−1 in terms of pseudo-Eisenstein series and constant term

operators which suggests that L−1 is an analog of the Aubert–Zelevinsky involution.

Lastly, we study the Radon transform as an operator R : C+ → C− from the space of

smooth K-finite functions on Fn \ {0} with bounded support to the space of smooth K-

finite functions on Fn\{0} supported away from a neighborhood of 0, where F is a (possibly

Archimedean) local field. When n = 2, the Radon transform coincides with the standard

intertwining operator. We prove that R is an isomorphism and provide explicit formulas for

R−1. These formulas in turn give a formula for B over a number field when G = SL(2).
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CHAPTER 1

REDUCTIVE MONOID ASSOCIATED TO A PARABOLIC

SUBGROUP

1.1 Introduction

1.1.1 Motivation

Let G be a connected reductive group over a perfect field k. Let U denote the unipotent

radical of a parabolic subgroup P of G. Grosshans proved in [36] that the homogeneous

space G/U is a quasi-affine variety and the algebra of regular functions k[G/U ] is finitely

generated.

In [3], Arzhantsev and Timashev consider affine embeddings of G/U and give a detailed

description of the canonical embedding G/U →֒ Spec k[G/U ] under the assumption that the

characteristic of k is 0. They establish a bijection between these affine embeddings and

certain normal algebraic monoids with group of units equal to the Levi factor M = P/U .

In particular, the canonical embedding corresponds to the monoid M defined as the closure

of M in Spec k[G/U ]. This construction, which we first learned from [5], defines an affine

algebraic monoid M in any characteristic. It is not a priori clear, however, whether the

monoid M is normal in positive characteristic.

One of the goals of this chapter is to show that M is a normal algebraic monoid with

group of unitsM in any characteristic, and to describe the combinatorial data it corresponds

to under the classification of normal reductive monoids in [56, Theorem 5.4].

Let G/U denote the spectrum of k[G/U ]. Then G/U is an affine variety of finite type,

and it plays a prominent role in the definition of Drinfeld’s compactification B̃unP of the

moduli stack of P -bundles over a smooth complete curve. Drinfeld’s compactification is used

to define the geometric Eisenstein series functors in [13]. As Baranovsky observes in [5, §6],

the monoidM is used implicitly when studying the stratification of B̃unP . More specifically,

1



the closed subscheme Gr+M ⊂ GrM of the affine Grassmannian (cf. [13, §6.2], [12, §1.6]) is

just (M(O) ∩M(K))/M(O) inside M(K)/M(O), where O is a complete discrete valuation

ring with field of fractions K. The relative version of Gr+M becomes H+
M , the positive part

of the Hecke stack (cf. [12, §1.8]).

The stack H+
M is therefore the global model for the formal arc space of the embedding

M →֒M , as considered in [11, §2]. We hope that studying the properties of M will provide

a better understanding of H+
M .

If P− is a parabolic subgroup opposite to P , then G/U is closely related to the more

symmetrically defined variety XP = (G/U ×G/U−)/(P ∩ P−), which is also quasi-affine.

This variety XP is called a boundary degeneration of G in [60] (when P is not a Borel

subgroup, XP is an intermediate degeneration), and it is a central object in the geometric

proof of Bernstein’s Second Adjointness Theorem in the theory of p-adic groups given in

[10]. We note that this proof and the space XP are closely related to the study of geometric

constant term (and Eisenstein series) functors in [24].

The boundary degeneration XP and its affine closure XP := Spec k[XP ] may be recovered

from the Vinberg semigroup corresponding to G. The Vinberg semigroup Genh is used to

define the Drinfeld-Lafforgue compactification BunG (resp. the Drinfeld-Lafforgue-Vinberg

compactification VinBunG) of the moduli stack BunG in [62]. As one might expect, the

positive part H+
M of the Hecke stack appears in the stratification of BunG (resp. VinBunG),

where P ranges over all conjugacy classes of parabolic subgroups, assuming that G is split.

In this chapter we attempt to explain the relations betweenM, G/U, XP , and Genh in hopes

that it will elucidate the geometry underlying the aforementioned stratifications.

In [59], Sakellaridis fixes a strictly convex cone in the Q-vector space spanned by the

coweights of a split maximal torus T in G in order to “expand power series” on the boundary

degeneration XP , under the assumption that the characteristic of k is 0. This cone is precisely

the dual of what we call the Renner cone of M . Thus the combinatorial description of M

provides a first step towards generalizing the results of [59] to arbitrary characteristic.

2



The description ofM is also of interest in the study of those local unramified automorphic

L-functions associated to certain “basic functions” onM in the spirit of [11]. Such functions

are considered in Chapter 2 in relation to the asymptotics map1 and inversion of intertwining

operators. The study of M , and more generally of the intermediate boundary degenerations

XP , is needed in Chapter 2 to generalize the results of [27], which treats the case when

G = SL(2).

1.1.2 Contents

In §1.2, we recall the classification of normal reductive monoids proved by L. Renner. Given

a reductive group and certain combinatorial data (what we call a Renner cone), we construct

the associated normal algebraic monoid.

In §1.3, we define the normal reductive monoid M associated to a parabolic subgroup

P of G. The group of units of M is the Levi factor M of P . We first give a combinatorial

definition of M following Renner’s classification. We then show in §1.3.2 that this monoid

may be realized as a retract of G/U , the spectrum of regular functions on the quasi-affine

variety G/U . Lastly in §1.3.3 we describeM using the Tannakian formalism. This Tannakian

description shows how M is used implicitly in [13], [12].

In §1.4, we first recall the definition of the boundary degeneration XP associated to a pair

of opposite parabolics. We show that G/U is a retract (and hence a closed subscheme) of

XP := Spec k[XP ]. Using the relation between the boundary degeneration and the Vinberg

semigroup of G (i.e., the enveloping semigroup of G), we give another definition of the

reductive monoid M using the existence of a certain idempotent in the Vinberg semigroup.

1. The asymptotics map, defined in [59, 60], coincides with the dual of the Bernstein map defined in [10].

3



1.1.3 Conventions

Let k be a perfect field of arbitrary characteristic. All schemes considered will be k-schemes.

For a scheme S, let k[S] denote the ring of regular functions Γ(S,OS).

Fix an algebraic closure k̄ of k, and let Gal(k̄/k) denote its Galois group. For a k-scheme

S, let Sk̄ denote the base change S×Spec k Spec k̄, and let k̄[S] := Γ(Sk̄,OSk̄).

The group G. Let G be a connected reductive group over k. Let T denote its abstract

Cartan2 and W the corresponding Weyl group. We will denote by Λ̌ (resp. Λ) the weight

(resp. coweight) lattice of Tk̄, which is a Gal(k̄/k)-module.

The semigroup of dominant coweights (resp., weights) will be denoted by Λ+
G (resp., by

Λ̌+
G). The set of vertices of the Dynkin diagram of G will be denoted by ΓG; for each i ∈ ΓG

there corresponds a simple coroot αi and a simple root α̌i. We denote the non-negative

integral span of the set of positive coroots (resp. roots) by Λ
pos
G (resp. Λ̌

pos
G ). For λ, µ ∈ Λ

we will write that λ ≥ µ if λ− µ ∈ Λ
pos
G , and similarly for Λ̌

pos
G . Let w0 denote the longest

element in the Weyl group of G.

Let P be a parabolic subgroup of G. Let U be its unipotent radical and M := P/U

the Levi factor. We use P to identify the abstract Cartan of M with T and let WM ⊂ W

denote the corresponding Weyl group. There is a subdiagram ΓM ⊂ ΓG. We will denote by

Λ
pos
M ⊂ Λ

pos
G , Λ+

M ⊃ Λ+
G, ≥M , wM0 ∈ WM , etc. the corresponding objects for M .

Let Rep(G) denote the abelian category of finite-dimensional G-modules. This category

admits a forgetful functor to the abelian category of k-vector spaces. We define the functor

indGP : Rep(P )→ Rep(G)

as in [41, §I.3.3]. For a P -module V , the induced module indGP (V ) = (k[G]⊗k V )P is finite-

dimensional by properness of G/P . The functor indGP is right adjoint to the restriction

2. When G is quasi-split, the abstract Cartan is defined as B/UB for a Borel subgroup B. The definition
is canonical and does not depend on the choice of Borel subgroup. When G is not quasi-split, the abstract
Cartan is defined by Galois descent from the quasi-split case.
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functor (cf. [41, Proposition I.3.4]). We also denote by indGP the corresponding functor

Rep(M)→ Rep(G), where an M -module is considered as a P -module with trivial U -action.

To a dominant weight λ̌ ∈ Λ̌+
G one attaches the Weyl Gk̄-module ∆(λ̌), the dual Weyl module

∇(λ̌), and the irreducible Gk̄-module L(λ̌) of highest weight λ̌.

1.2 Recollections on normal reductive monoids

In this section we give a brief review of the classification of normal reductive monoids (i.e.,

normal, irreducible, affine algebraic monoids whose group of units is reductive), which is

proved in [56, Theorem 5.4] by L. Renner. In [56], the base field is assumed to be algebraically

closed, but the statements easily generalize to the case of a perfect base field by Galois

descent.

To keep notation consistent with the rest of the chapter, we consider a connected reductive

group M over k. Let T denote its abstract Cartan and WM the corresponding Weyl group.

1.2.1 Renner cones

We denote by Λ̌ the weight lattice of Tk̄ (i.e., the lattice of characters). Let Λ̌Q := Λ̌⊗Q,

which is a Q-vector space with a Gal(k̄/k)-action.

A Renner cone is a convex rational polyhedral cone in Λ̌Q that is stable under the actions

of WM and Gal(k̄/k). As the name suggests, the theorem of L. Renner shows that normal

algebraic monoids with group of invertible elements M bijectively correspond to Renner

cones generating Λ̌Q as a vector space. The correspondence is as follows:

Let M be a reductive monoid with group of units M . Fix a Borel subgroup B ⊂Mk̄ and

a Cartan subgroup (i.e., maximal torus) Tsub,k̄ ⊂ B, both defined over k̄. This gives an iden-

tification of Tsub,k̄ with the abstract Cartan Tk̄. Consider the cone Č ⊂ Λ̌Q corresponding

by [45] to the closure of Tsub,k̄ in M k̄. The pairs (Tsub,k̄, B) of a Cartan subgroup contained

in a Borel subgroup are all conjugate by M(k̄). Since M acts on M by conjugation, Č does
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not depend on the choice of (Tsub,k̄, B). The Weyl group of M acts on Tsub,k̄ through the

normalizer of Tsub,k̄ in M , so Č is preserved by the action of WM on Λ̌Q. The action of

Gal(k̄/k) on Gk̄ induces an action on the set of pairs (Tsub,k̄, B). Since Č is canonically

defined independently of the choice of (Tsub,k̄, B), the Galois action preserves Č. Therefore

Č is a Renner cone, and it is the Renner cone corresponding to M .

Let Č ⊂ Λ̌Q be a Renner cone. We will construct the corresponding normal reductive

monoid M . Let us choose a Cartan subgroup (i.e., maximal torus) Tsub of M , defined over

k. The construction of M will not depend on this choice.

1.2.2 The monoid Tsub

The characters Λ̌ form a basis of k̄[T ]. Let R′ denote the subalgebra of k̄[T ] spanned by the

characters in Č ∩ Λ̌. The choice of a Borel B ⊂Mk̄ containing Tsub,k̄ gives an isomorphism

Tsub,k̄
∼= Tk̄. All such Borel subgroups are conjugate by the normalizer of Tsub,k̄ in Mk̄. The

subalgebra R′ is preserved by the action of the Weyl group on T , so it defines a corresponding

subalgebra R ⊂ k̄[Tsub], which does not depend on the choice of a Borel subgroup.

Since Č is Galois stable, so is the subalgebra R. Set Tsub := Spec(RGal(k̄/k)).

Lemma 1.2.1. (i) Tsub is a normal algebraic variety containing Tsub as a dense open sub-

variety.

(ii) Tsub has a (unique) monoidal structure extending the group structure on Tsub.

Proof. By Galois descent, it suffices to check the statements over k̄, and we have k̄[Tsub] =

R. The submonoid Č ∩ Λ̌ is finitely generated and generates Λ̌ as a group. Moreover

the submonoid is saturated (i.e., it is the intersection of a rational cone with the lattice).

Statement (i) follows from [45, Ch. 1, Thm. 1].

To prove statement (ii), one must show that the map k[Tsub] → k[Tsub]⊗ k[Tsub] sends

the subalgebra R to R⊗R. This is clear because R⊗ k̄ has a basis consisting of characters

of Tsub,k̄.
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1.2.3 The monoid M

We will define a normal algebraic monoid M with group of units M such that the closure

of Tsub in M equals Tsub. The monoid M will be the spectrum of a certain subalgebra A of

the algebra of regular functions on M .

The algebra A. Let A denote the algebra of all f ∈ k[M ] such that for anym1,m2 ∈M(k̄)

the function

t 7→ f(m1tm2)

belongs to the algebra R defined in §1.2.2. Since all Cartan subgroups of Mk̄ are M(k̄)-

conjugate, A does not depend on the choice of the subgroup Tsub ⊂M .

Proposition 1.2.2. (i) A is a sub-bialgebra of the Hopf algebra k[M ].

(ii) The map M → SpecA is an open embedding.

(iii) A is an integrally closed domain.

(iv) The algebra A is finitely generated.

(v) The homomorphism A → k[Tsub] that takes a function to its restriction to Tsub is

surjective.

Proof. All statements can be checked after base change to k̄, so we will assume that k is

algebraically closed.

Let A′ denote the subalgebra of k[M ] generated by the matrix coefficients of a finite

collection of Weyl3 M -modules whose highest weights belong to Č ∩ Λ̌+
G and generate Λ̌+

G as

a semigroup. The following properties of A′ are easy to check:

(a) A′ ⊂ A;

(a′) if k has characteristic 0 then A′ = A;

(a′′) the morphism M → SpecA′ is an open embedding;

(b) the composition A′ →֒ A→ R is surjective;

3. One can also take dual Weyl modules.
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(c) the algebra A′ is finitely generated.

The proof of statement (i) in the proposition is standard. Since A′ ⊂ A ⊂ k[M ], property

(a′′) implies statement (ii). Statement (iii) follows from the normality ofM and the normality

part of Lemma 1.2.1(i). Statement (v) follows from (b).

Let A′′ denote the integral closure of A′ in the function field ofM . Without any assump-

tions on the characteristic of k, we claim that A = A′′. By (ii)-(iii), it suffices to check that A

is contained in the localization O of A′′ at any codimension 1 prime. Let K denote the field

of fractions of O, which is also the field of rational functions on M . Then the normalization

map SpecA′′ → SpecA′ induces a map f ′ : SpecO → SpecA′ with f ′(SpecK) ⊂ M . We

wish to lift f ′ to a morphism f : SpecO → SpecA. Since

M(K) =M(O) · Tsub(K) ·M(O)

we can assume that f ′(SpecK) ⊂ Tsub(K). Then the existence of f follows from (b), which

says that the closure of Tsub in SpecA maps isomorphically onto the closure of Tsub in

SpecA′. Therefore A = A′′, and statement (iv) now follows.

The algebraic monoid M . Now set M := SpecA.

By Proposition 1.2.2, M is a normal affine algebraic monoid equipped with an open

embeddingM →֒M with dense image. By part (v) of the proposition, the closed embedding

Tsub →֒ M extends to a closed embedding Tsub →֒ M . By construction, the Renner cone

corresponding to M is Č.

Since M is an irreducible monoid and M is an open dense subgroup, M is necessarily

the group of units of M . The classification theorem of L. Renner ([56, Theorem 5.4]) says

that every normal algebraic monoid with group of units M is isomorphic to a monoid M of

the above form.
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1.3 The monoid associated to a parabolic subgroup

Let P be a parabolic subgroup of G with Levi quotientM := P/U . We will define a canonical

normal reductive monoid M with group of units M . This monoid appears implicitly in

[13, 12], and it is explicitly considered in [3, §3.3] (in characteristic 0) and in [5, §6].

We identify the abstract Cartans of G andM as follows: for a Borel subgroup BM ⊂Mk̄,

the subgroup B := BMU ⊂ Gk̄ is a Borel subgroup, and Tk̄ = B/UB = BM/UBM
.

1.3.1 The Renner cone of M

We first give a combinatorial definition of M using Renner’s classification, recalled in §1.2,

by specifying the Renner cone Č ⊂ Λ̌Q.

The submonoid Λ
pos
U . Let Λ

pos
U ⊂ Λ denote the non-negative integral span of the positive

coroots of G that are not coroots of M . The submonoid Λ
pos
U is stable under the actions of

WM and Gal(k̄/k) because M is defined over k.

Let Ǧ (resp. M̌) denote the Langlands dual group of G (resp. M) over C. Fix a maximal

torus and a Borel subgroup containing it in the split group Ǧ. Then we may consider M̌ as

a Levi subgroup of Ǧ. Let ǔP denote the nilpotent Lie algebra corresponding to the positive

coroots of G that are not coroots of M . Then the symmetric algebra Sym(ǔP ) is a locally

finite M̌ -module by the adjoint action, and its set of weights equals Λ
pos
U .

Lemma 1.3.1. Let λ, λ′ ∈ Λ+
M with λ ≤M λ′. If λ′ ∈ Λ

pos
U , then λ ∈ Λ

pos
U .

Proof. We have a decomposition of Sym(ǔP ) into irreducible highest weight M̌ -modules

LM̌ (γ). Therefore λ′ is a weight in LM̌ (γ) for some γ ∈ Λ+
M , and all the weights of LM̌ (γ)

lie in Λ
pos
U . Since λ ∈ Λ+

M and λ ≤M λ′ ≤M γ, we deduce that λ is also a weight of LM̌ (γ).

Therefore λ ∈ Λ
pos
U .

Lemma 1.3.2. The subset Λ
pos
U ⊂ Λ is equal to the intersection of w(Λ

pos
G ) for all w ∈ WM .

Consequently, Λ
pos
U ∩ (−Λ+

M ) = Λ
pos
G ∩ (−Λ+

M ).
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Proof. Observe that Λ
pos
U is WM -stable and hence contained in w(Λ

pos
G ) for all w ∈ WM .

To prove containment in the other direction, let λ ∈
⋂
w∈WM

w(Λ
pos
G ). Replacing λ by an

element in the same WM -orbit, we may assume that λ ∈ −Λ+
M . By assumption λ ∈ Λ

pos
G , so

we can write λ = λ1 + λ2 where λ1 is a linear combination of αi for i ∈ ΓM and λ2 ∈ Λ
pos
U

is a linear combination of αj for j ∈ ΓG \ΓM . Note that λ2 ∈ Λ
pos
U ∩ (−Λ+

M ) and λ ≥M λ2.

Then wM0 λ2 ∈ Λ
pos
U ∩ Λ+

M and wM0 λ ≤M wM0 λ2. Lemma 1.3.1 implies that wM0 λ ∈ Λ
pos
U ,

and hence λ ∈ Λ
pos
U . One deduces the second statement of the lemma from the first because

λ ∈ −Λ+
M satisfies λ ≤M wλ for all w ∈ WM .

Remark 1.3.3. Lemma 1.3.2 implies that Λ
pos
U ∩Λ+

M = wM0 (Λ
pos
G )∩Λ+

M . This submonoid of

Λ+
M is denoted by Λ+

M,G in [13, §6.2.2, Proposition 6.2.3].

Lemma 1.3.4. The submonoid WM · Λ̌
+
G ⊂ Λ̌ is dual to Λ

pos
U , i.e.,

WM · Λ̌
+
G = {λ̌ ∈ Λ̌ | 〈λ̌, µ〉 ≥ 0 for all µ ∈ Λ

pos
U }. (1.1)

Proof. Let (Λ
pos
U )∨ equal the r.h.s. of (1.1), which is evidently WM -stable. If we consider an

element in (Λ
pos
U )∨ ∩ Λ̌+

M , then it pairs with positive coroots of M to non-negative integers

since the element is M -dominant, and it pairs with all other positive coroots of G to non-

negative integers by definition of the dual. Thus (Λ
pos
U )∨ ∩ Λ̌+

M = Λ̌+
G, which implies that

(Λ
pos
U )∨ is the union of w(Λ̌+

G) for all w ∈ WM .

Corollary 1.3.5. The submonoid WM · Λ̌
+
G is saturated in Λ̌.

The Renner cone Č. Set Č ⊂ Λ̌Q to be the convex rational polyhedral cone generated

by WM · Λ̌
+
G. Lemma 1.3.4 implies that Č is preserved by the action of Gal(k̄/k), and

Corollary 1.3.5 says that Č ∩ Λ̌ = WM · Λ̌
+
G.

Definition of M . Set M to be the normal reductive monoid with Renner cone Č con-

structed in Proposition 1.2.2. We will use this notation for the rest of the chapter.
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1.3.2 Relation to G/U

In this subsection, we show (see Corollary 1.3.10) that M is isomorphic to the monoid

constructed in [3, §3.3] and [5, §6]. First we recall some facts about the homogeneous space

G/U .

A scheme S is strongly quasi-affine if the canonical map S → Spec k[S] is an open

embedding and k[S] is a finitely generated k-algebra.

F. D. Grosshans proved that the quotient variety G/U is strongly quasi-affine in [36].

Recall that G/U = Spec k[G/U ], where k[G/U ] is the subalgebra of right U -invariant regular

functions on G.

Weights of k[G/U ]. The Levi factor M := P/U acts on G/U from the right. Therefore

we can consider k[G/U ] as an M -module and ask what is the set of weights4 of this module

with respect to the abstract Cartan of M .

Lemma 1.3.6. The set of weights of the M-module k[G/U ] equals WM · Λ̌
+
G ⊂ Λ̌.

Proof. We may assume that k is algebraically closed. Choose a Borel subgroup B contained

in P (so B/U is a Borel subgroup of M) and let Tsub ⊂ B be a maximal torus, which we

identify with its image in M . The weights of k[G/U ] are the Tsub-eigenvalues with respect

to right translations. Let k[G/U ]γ̌ , γ̌ ∈ Λ̌, denote a weight space.

Note that k[G/U ]γ̌ is a G-module by left translation. Let B− denote the opposite Borel

subgroup so that B ∩ B− = Tsub. By unipotence of U−B , we deduce that γ̌ is a weight of

k[G/U ] if and only if k[G/U ]
U−B
γ̌ 6= 0. Hence we are reduced to studying the weight spaces

of k[G/U ]U
−
B . By considering the T -action by left translation, we have decompositions

k[U−B \G] =
⊕

λ̌∈Λ̌+
G

∇(λ̌), k[U−B \G]
U =

⊕

λ̌∈Λ̌+
G

∇(λ̌)U

4. Let V be an M -module over k. Choose a Borel subgroup BM ⊂Mk̄ and a Cartan subgroup Tsub,k̄ ⊂
BM , which is isomorphic to Tk̄ = BM/UBM

. We say that the set of weights of V is the set of Tsub,k̄-

eigenvalues of V ⊗ k̄. This set does not depend on the choice of (Tsub,k̄, BM ), so it can be considered as a

subset of Λ̌, which is preserved by WM and Gal(k̄/k).
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where U acts by right translation. Since U−BP is dense in G, the restriction from G to P

gives an injection

∇(λ̌)U →֒ ∇M (λ̌),

where ∇M (λ̌) is the dual Weyl M -module.

We now prove the ‘only if’ direction of the lemma. Suppose that γ̌ is a weight of k[G/U ].

Then γ̌ must be a weight of ∇M (λ̌) for some λ̌ ∈ Λ̌+
G. There exists w ∈ WM such that

w(γ̌) ∈ Λ̌+
M . Since the set of weights of ∇M (λ̌) is WM -stable, w(γ̌) is also a weight. Hence

w(γ̌) ≤M λ̌. Since 〈α̌i, αj〉 ≤ 0 for i ∈ ΓM , j ∈ ΓG \ ΓM , we deduce that w(γ̌) ∈ Λ̌+
G. This

proves the ‘only if’ direction of the lemma.

Conversely, suppose γ̌ is a weight such that w(γ̌) ∈ Λ̌+
G for some w ∈ WM . Then

λ̌ := w(γ̌) is the highest weight in ∇(λ̌)U . Since the set of weights of an M -module is

WM -stable, we conclude that γ̌ is a weight of k[G/U ].

Corollary 1.3.7. For any G-module V , the weights of the M-module V U are a subset of

WM · Λ̌
+
G.

Proof. Any finite dimensional G-module V is a submodule of a direct sum of regular repre-

sentations k[G], so the weights of V U are a subset of the weights of k[G/U ].

The closure of M in G/U . The subgroup P ⊂ G induces a closed embedding

M = P/U →֒ G/U, (1.2)

i.e., we embed M in G/U by the right M -action on 1 ∈ G. Then the closure of M in G/U

has the structure of an irreducible algebraic monoid5, and the right action of M on G/U

extends to an action of this monoid on G/U . We claim that the normalization of this monoid

is isomorphic to the monoid M .

Lemma 1.3.8. The embedding (1.2) extends to a finite map M → G/U .

5. This monoid is denoted by M+ in [5, §6].
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Proof. Let Tsub be a Cartan subgroup of M and embed Tsub →֒ G/U using (1.2). Let Tsub

denote the closure of Tsub in G/U . By the classification of normal reductive monoids in [56,

Theorem 5.4], it suffices to show that the cone corresponding by [45] to Tsub is the Renner

cone Č of M .

By definition, Tsub is the spectrum of the image of the restriction map k[G/U ]→ k[Tsub].

This map is equivariant with respect to right translations by Tsub, so k̄[Tsub] decomposes

into weight spaces. Let γ̌ be a weight of k̄[G/U ]. By left translation by G, one can find

f ∈ k̄[G/U ]γ̌ such that f(1) = 1. Therefore the weights of k[Tsub] coincide with the weights

of k[G/U ], and the claim follows from Lemma 1.3.6.

Fix a parabolic subgroup P− ⊂ G opposite to P . For the rest of this section we will

identify M with the Levi subgroup P ∩ P−.

Theorem 1.3.9. The composition

M → G/U → Spec k[G]U
−×U

is an isomorphism, where U−×U acts on k[G] by left and right translations, respectively.

Note that Spec k[G]U
−×U is the affine GIT quotient ofG/U by the left action of U− ⊂ G.

Corollary 1.3.10. The (unique) map M → G/U extending the embedding (1.2) is a retract.

In particular, it is a closed embedding.

Proof. The fact that M is a retract of G/U follows immediately from the isomorphism in

Theorem 1.3.9. To prove that it is a closed subscheme, it suffices to show that the algebra map

k[G/U ]→ k[M ] is surjective. The theorem implies that the subalgebra k[G]U
−×U ⊂ k[G/U ]

surjects onto k[M ].

For the purpose of proving Theorem 1.3.9, let M̃ = Spec k[G]U
−×U . The actions of M

on G by left and right translations induce M -actions on M̃ . We have a canonical M ×M

equivariant map G→ M̃ .
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Lemma 1.3.11. The composition M → G→ M̃ is an open embedding.

Proof. We may check the assertion after base change to k̄, so we assume k is algebraically

closed. Choose Borel subgroups B ⊂ P and B− ⊂ P− such that Tsub := B ∩ B− ⊂ M is a

maximal torus. Let

T̃ = Spec k[G]U
−
B ×UB .

Since k[G]U
−
B has a decomposition into dual Weyl G-modules, one deduces that k[T̃ ] has a

basis formed by fλ̌ for λ̌ ∈ Λ̌+
G, where fλ̌(t) = λ̌(t), t ∈ Tsub. From this explicit description,

one sees that T̃ is a toric variety containing Tsub as a dense open subscheme.

Consider the composition G→ M̃ → T̃ and let
◦
G ⊂ G denote the preimage of Tsub ⊂ T̃ .

Then the preimage of Tsub in M̃ , which we denote
◦

M̃ , is equal to Spec k[
◦
G]U

−×U . Observe

that B−B = U−B ×Tsub×UB is an open affine subset contained in
◦
G. Let us show that

◦
G = B−B. By definition,

◦
G consists of g ∈ G such that fλ̌(g) 6= 0 for all dominant weights

λ̌. By the Bruhat decomposition, it suffices to show that if w belongs to the normalizer of

Tsub but not to Tsub (i.e., w corresponds to a nontrivial element of W ), then there exists

λ̌ with fλ̌(w) = 0. Indeed, for a dominant regular weight λ̌ we have wλ̌ 6= λ̌. Thus

the left and right T -actions on w−1fλ̌ do not have the same weight, which implies that

fλ̌(w) = (w−1fλ̌)(1) = 0.

Let BM = B/U = B ∩ M and B−M = B−/U− = B− ∩ M . From the equality
◦
G =

U−B ×Tsub×UB we deduce that
◦

M̃ = U−BM
×Tsub×UBM

is an open dense subset of both

M and M̃ . Using left (or right) translations by M , we deduce that the whole group M is an

open subset of M̃ .

The field of rational functions on M̃ is contained in6 the field of invariants k(G)U
−×U .

Thus normality of G implies normality of M̃ . Therefore Lemma 1.3.11 implies that M̃ is a

normal reductive monoid with group of units M .

6. In fact one can show that the fraction field of k[G]U
−

×U is equal to k(G)U
−

×U : given f ∈ k(G)U
−

×U ,
consider the vector space of denominators h ∈ k[G] such that hf ∈ k[G]. This is a U ×U−-module, so there

must exist an invariant element h. Then hf ∈ k[G]U
−

×U .
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Proof of Theorem 1.3.9. Let Tsub be a Cartan subgroup of M ⊂ G. Since M̃ is a normal

reductive monoid with group of unitsM , it is determined by the closure of Tsub in M̃ , which

is the spectrum of the algebra

R̃ := Im(k[G]U
−×U → k[Tsub]).

By unipotence of U−, the algebra R̃ is the image of the restriction map k[G/U ]→ k[Tsub].

Therefore Spec R̃ is the closure of Tsub in G/U . By the proof of Lemma 1.3.8, this is also the

closure of Tsub in M . Since M̃ and M are both normal algebraic monoids with unit group

M , the classification of normal reductive monoids ([56, Theorem 5.4]) implies that the map

M → M̃ is an isomorphism.

1.3.3 Tannakian description of M

Let Rep(M) denote the monoidal category of finite-dimensional representations of M . Sim-

ilarly, one has the monoidal category Rep(M). Since M is schematically dense in M , the

monoidal functor

Rep(M)→ Rep(M)

corresponding to M →֒M is fully faithful. So we can consider Rep(M) as a full subcategory

of Rep(M).

The usual Tannakian formalism describes M in terms of Rep(M). Namely, for a test

scheme S, an element of the monoid Hom(S,M) is a collection of assignments

V ∈ Rep(M) mV ∈ EndOS
(V ⊗OS),

compatible with morphisms V 1 → V 2 in Rep(M) and such that mV 1⊗V 2
= mV 1

⊗mV 2
.

The multiplication in Hom(S,M) corresponds to the multiplication in EndOS
(V ⊗OS).

Our goal is to prove Proposition 1.3.13 below, which describes the subcategory Rep(M).
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Description of Rep(M). Fix a parabolic subgroup P− ⊂ G opposite to P , and identify

the Levi subgroup P ∩ P− with M .

For an M -module V , we consider an element f ∈ indG
P−

(V ) as a regular map G → V

(cf. [41, §I.3.3]) satisfying f(gmū) = m−1f(g) for all k̄-points g ∈ G,m ∈M, ū ∈ U−. Using

this description, evaluation at 1 in G defines an M -morphism indG
P−

(V )→ V .

Lemma 1.3.12. Let V ∈ Rep(M). Then evaluation at 1 induces an isomorphism

indGP−(V )U → V . (1.3)

Proof. Since UP− is a dense open subset of G, the map (1.3) is injective. Let v ∈ V .

Then we can define a morphism f : U ×M ×U− ∼= UP− → V by f(umū) = m−1v for

m ∈ M, u ∈ U, ū ∈ U−. For any ξ ∈ V
∗
, the pairing 〈ξ, f(umū)〉 = 〈ξ,m−1v〉 extends to

a regular function in k[G]U ×U
−

by Theorem 1.3.9. Therefore f extends to a U -invariant

function in indG
P−

(V ), proving surjectivity of (1.3).

Proposition 1.3.13. Let V ∈ Rep(M). Then the following are equivalent:

(i) V belongs to Rep(M).

(ii) The weights of V lie in WM · Λ̌
+
G ⊂ Λ̌.

(iii) There exists V ∈ Rep(G) such that V ∼= V U .

Proof. The equivalence of (i) and (ii) follows from the definition ofM . Corollary 1.3.7 proves

(iii) implies (ii). Lemma 1.3.12 shows that (i) implies (iii) by setting V = indG
P−

(V ), which

is a finite-dimensional G-module.

Remark 1.3.14. Suppose that k is algebraically closed. One can deduce from Lemma 1.3.12

that ∇(λ̌)U is isomorphic to the dual Weyl M -module ∇M (λ̌). By [41, Remark II.2.11],

the subspace ∇(λ̌)U also equals the sum of the weight spaces of ∇(λ̌) with weights ≤M λ̌.

Dually, one sees that the sum of the weight spaces of ∆(λ̌) with weights ≤M λ̌ is isomorphic

to ∆(λ̌)U− , which is in turn isomorphic to the Weyl M -module ∆M (λ̌).
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Remark 1.3.15. Let O be a complete discrete valuation ring with field of fractions K and

residue field k. By Proposition 1.3.13(iii) and the usual Tannakian formalism, one observes

that the closed subscheme Gr+M ⊂ GrM = M(K)/M(O) defined in [13, §6.2], [12, §1.6] is

equal to the subspace (M(O) ∩M(K))/M(O).

1.4 Relation to boundary degenerations

Let P and P− be a pair of opposite parabolic subgroups in G. We identify the Levi subgroup

P ∩P− with the Levi factor M = P/U . Let M be the normal reductive monoid with group

of units M defined in §1.3.

In this section we will show that G/U embeds as a closed subscheme in the affine closure

of the boundary degeneration defined in [10, 60, 59]. We will also describe the relation

between the boundary degeneration and the Vinberg semigroup (i.e., enveloping semigroup)

of G. This will give an alternate description of M as a subscheme of the Vinberg semigroup,

using idempotents.

1.4.1 Boundary degenerations

Define the boundary degeneration

XP := (G×G)/(P ×
M
P−) = (G/U ×G/U−)/(P ∩ P−),

where P ∩P− acts diagonally on the right. It is known that XP is quasi-affine (cf. [24, Propo-

sition 2.4.4]), and k[XP ] is finitely generated by [36] and Hilbert’s theorem on invariants.

Therefore XP is strongly quasi-affine.

Remark 1.4.1. The group G×G acts on XP by left translations. Suppose that k is alge-

braically closed and choose a pair B,B− of opposite Borel subgroups contained in P, P−,

respectively. Then the orbit of B−×B acting on (1, 1) ∈ XP is a dense open subset. There-

fore XP is a spherical variety with respect to G×G.

17



Let XP = Spec k[XP ]. Since XP is strongly quasi-affine, XP is affine of finite type and

the canonical embedding XP →֒ XP is open.

Note that XP is the affine GIT quotient of G/U ×G/U− by the diagonal rightM -action,

but it is not the stack quotient (cf. [65, Tag 044Q] for the definition of quotient stacks).

Consider the map of strongly quasi-affine varieties

G/U → XP : g 7→ (g, 1). (1.4)

The base change of (1.4) under the smooth cover G×G → XP gives the natural closed

embedding G×P− →֒ G×G. Therefore (1.4) is also a closed embedding.

The composition G/U →֒ XP →֒ XP induces a map

G/U → XP . (1.5)

In characteristic 0, one easily deduces from [3, Proposition 5] that (1.5) is a closed embedding.

In positive characteristic, this is not a priori clear, but the following theorem shows it is still

true:

Theorem 1.4.2. The map (1.5) is a closed embedding, and the composition

G/U → XP → Spec k[XP ]
U

is an isomorphism, where U ⊂ G acts on XP by left translations in the second coordinate.

Proof. Observe that k[XP ]
U = (k[G/U ]⊗ k[G]U ×U

−
)M where M acts diagonally by right

translations. Using the inversion operator on G in the second coordinate, we get k[XP ]
U ∼=

(k[G/U ]⊗ k[M ])M where k[M ] = k[G]U
−×U by Theorem 1.3.9 and M acts anti-diagonally

on the right. Since M is dense in M , the evaluation at 1 ∈M gives an injection

(k[G/U ]⊗ k[M ])M →֒ k[G/U ].
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On the other hand,M is the closure ofM in G/U by Corollary 1.3.10. The right action ofM

on G/U therefore extends to a right action of M on G/U , which corresponds to a comodule

map k[G/U ]→ (k[G/U ]⊗ k[M ])M . The composition

k[G/U ]→ (k[G/U ]⊗ k[M ])M →֒ k[G/U ]

is the identity, which proves that the composition G/U → Spec k[XP ]
U is an isomorphism.

It follows that the affine map (1.5) is a closed embedding.

Corollary 1.4.3. Consider the embedding M →֒ XP defined as the composition of the

embeddings (1.2) and (1.4). The closure of M in XP is isomorphic to M . The composition

M → XP → Spec k[XP ]
U−×U

is an isomorphism, where U−×U ⊂ G×G acts on XP by left translations.

Proof. Combine Theorems 1.3.9 and 1.4.2.

1.4.2 Relation to Vinberg’s semigroup

Recall that k is an arbitrary perfect field.

We first give a brief review of the standard material on the Vinberg semigroup, which is

contained in [67, 58, 56].

Let Z(G) denote the center of G. Consider the group

Genh := (G×T )/Z(G),

where Z(G) maps to G×T anti-diagonally. Note that Z(Genh) = T .

The Vinberg semigroup of G, denoted Genh, is a normal reductive k-monoid with group
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of units Genh. The Renner cone of Genh is by definition

{(λ̌1, λ̌2) ∈ Λ̌Q× Λ̌Q | λ̌2 − wλ̌1 ∈ Λ̌
pos,Q
G for all w ∈ W}, (1.6)

where Λ̌
pos,Q
G is the rational polyhedral cone generated by the positive roots of G. The

Vinberg semigroup may be constructed from the Renner cone as described in §1.2.

The canonical homomorphism of algebraic groups Genh → Tadj := T/Z(G) extends to a

homomorphism of algebraic monoids

π̄ : Genh → Tadj,

where Tadj := tadj is the Cartan Lie algebra of the adjoint group. Let
◦

Genh denote the

non-degenerate locus of Genh. It is known that
◦

Genh is smooth over Tadj.

For a parabolic P with Levi factorM , let cP ∈ Tadj be the point defined by the condition

that α̌i(cP ) = 1 for simple roots α̌i, i ∈ ΓM , and α̌j(cP ) = 0 for all other simple roots.

Note that cP is an idempotent with respect to the monoid structure on Tadj.

Let (Genh)cP denote the fiber of π̄ over cP . Note that by definition of cP , the center

Z(M) is the stabilizer of T acting on cP in Tadj.

Fix a pair of opposite parabolic subgroups P and P−, and identify M with the Levi

subgroup P ∩ P−. Since conjugation by M fixes Z(M), the center of M can be embedded

as a subgroup of the abstract Cartan T . Consider the anti-diagonal map

s : Z(M)/Z(G)→ (Z(M)×T )/Z(G) →֒ (G×T )/Z(G) = Genh

defined by s(t) = (t−1, t). Observe that Z(M)/Z(G) ⊂ T/Z(G) = Tadj coincides with the

subtorus {t ∈ Tadj | α̌i(t) = 1, i ∈ ΓM}. Let Z(M)/Z(G) denote the closure of Z(M)/Z(G)

in Tadj.
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Lemma 1.4.4. (i) The map s extends to a homomorphism

s̄ : Z(M)/Z(G)→ Genh

of algebraic monoids.

(ii) The composition π̄ ◦ s̄ is the natural inclusion Z(M)/Z(G) →֒ Tadj.

Proof. Since we know the composition π ◦ s, it suffices to prove statement (i). We may

assume that k is algebraically closed.

The weight lattice of Z(M)/Z(G) is the free abelian group Λ̌Z(M)/Z(G) with basis con-

sisting of the simple roots α̌j for j ∈ ΓG \ ΓM . If λ̌ =
∑
i∈ΓG

niα̌i for ni ∈ Z, let pr(λ̌) :=
∑
j /∈ΓM

njα̌j . Let Č denote the Renner cone (1.6) of Genh, and let ČZ := Č ∩ (Λ̌× Λ̌). Fix

a Cartan subgroup Tsub ⊂ M and identify Tsub with T by choosing a Borel. The map s

lands in (Tsub×T )/Z(G), so we have an induced map of weights (restricted to ČZ):

ČZ → Λ̌Z(M)/Z(G) : (λ̌1, λ̌2) 7→ pr(λ̌2 − λ̌1).

The image of this map is the non-negative span of the simple roots α̌j , j /∈ ΓM . Statement

(i) follows.

Remark 1.4.5. If k is algebraically closed, then the map s̄ we have constructed factors through

the section Tadj →
◦

Genh constructed in [24, Lemma D.5.2], which depends on a choice of

Borel subgroup and maximal torus of G. In particular, s̄ always lands in the non-degenerate

locus of the Vinberg semigroup for arbitrary k.

The idempotent eP . Observe that cP lies in the submonoid Z(M)/Z(G) ⊂ Tadj. Define

the idempotent

eP := s̄(cP ) ∈
◦

Genh(k),

which satisfies π̄(eP ) = cP . In [24, Appendix C], it is shown (by passing to an algebraic
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closure k̄) that

P = {g ∈ G | g · eP = eP · g · eP } and P− = {g ∈ G | eP · g = eP · g · eP },

and the stabilizer of the P ×P− action on eP equals P ×M P−. Note that if g ∈ P ∩ P−,

then g · eP = eP · g · eP = eP · g. It follows that M is the centralizer of eP in G.

Remark 1.4.6. It is known that G · eP ·G is equal to the non-degenerate locus
◦

(Genh)cP of

the fiber (cf. [24, Corollary D.5.4]). One deduces from the above that the G×G-action on

eP induces an isomorphism7

XP := (G×G)/(P ×
M
P−) ∼=

◦

(Genh)cP .

Remark 1.4.7. Suppose that k is algebraically closed. By a result of M. Putcha (cf. [56,

Theorem 4.5]) for general reductive monoids, any idempotent in the non-degenerate locus

of Genh is G(k)-conjugate to eP for some parabolic P . Moreover, the choice of P and P−

determines this idempotent in its conjugacy class.

Relating M to the Vinberg semigroup. Consider the map

G→ (Genh)cP : g 7→ eP · g · eP . (1.7)

Since U · eP = eP · U
− = {eP }, this map is U−×U -invariant. By Theorem 1.3.9, we have

an isomorphism M ∼= Spec k[G]U
−×U . Since (Genh)cP is affine, the map (1.7) must factor

through a map

M → eP · (Genh)cP · eP . (1.8)

Observe that eP ·(Genh)cP ·eP is an irreducible algebraic monoid with identity eP . The map

(1.8) is an extension of the homomorphism of algebraic monoids M → eP · (Genh)cP · eP

7. In fact, we learned from S. Schieder that this induces an isomorphism of affine varieties XP
∼= (Genh)cP

.
See Lemma A.3.2.
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sending m 7→ m · eP = eP ·m. Therefore (1.8) must also be a homomorphism of algebraic

monoids.

Theorem 1.4.8. The homomorphism (1.8) is an isomorphism of algebraic monoids.

By the definition of (1.7), we see that the image of (1.8) contains eP ·G · eP . Since the

latter map is a homomorphism of monoids, we deduce that the image contains eP ·G·eP ·G·eP .

By Remark 1.4.6, we have G ·eP ·G =
◦

(Genh)cP is dense in (Genh)cP . Multiplying on the left

and right by eP , we deduce that (1.8) has dense image. On the other hand, the restriction

of (1.8) to M is injective. It follows that M · eP is a dense subgroup of eP · (Genh)cP · eP .

Therefore M · eP must be equal to the group of units of eP · (Genh)cP · eP .

We show that the monoid eP ·(Genh)cP ·eP is normal and then use Renner’s classification

of normal monoids to prove the theorem.

Consider the larger algebraic monoid eP ·Genh ·eP with unit eP (where we do not restrict

to a fiber). The action of Z(Genh) = T on eP ·Genh · eP induces an isomorphism

((eP · (Genh)cP · eP )×T )/Z(M) ∼= eP ·Genh · eP , (1.9)

so the two aforementioned monoids are closely related.

Since eP · Genh · eP is the closed subscheme of the Vinberg semigroup fixed by left and

right multiplications by eP , it is a retract of Genh in the category of schemes. The retraction

is given by the formula x 7→ eP · x · eP .

Lemma 1.4.9. Let Y and S be integral affine schemes such that Y is a retract of S (i.e.,

there exist maps Y → S and S → Y such that their composition is the identity map on Y ).

If S is normal then so is Y .

Proof. Since Y is a retract of S, we have an inclusion of algebras k[Y ] →֒ k[S]. The algebra

k[S] is integrally closed, so if Ỹ denotes the normalization of Y in its field of fractions, then

the previous inclusion factors as k[Y ] →֒ k[Ỹ ] →֒ k[S]. On the other hand the map Y → S
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induces an algebra map k[S] → k[Y ] which restricts to the identity on k[Y ]. Localization

implies that the composition k[Ỹ ]→ k[Y ] is injective and hence an isomorphism.

Corollary 1.4.10. The algebraic monoid eP ·Genh · eP is normal.

Proof. The Vinberg semigroup is normal by definition, and we have observed that eP ·Genh ·

eP is a retract of Genh.

Corollary 1.4.11. The algebraic monoid eP · (Genh)cP · eP is normal.

Proof. We deduce from (1.9) that eP ·Genh ·eP is smooth locally isomorphic to (eP ·(Genh)cP ·

eP )×T . It follows from Corollary 1.4.10 and ascending and descending properties of nor-

mality that eP · (Genh)cP · eP is normal.

Proof of Theorem 1.4.8. By Corollary 1.4.11 we know that eP · (Genh)cP · eP is a normal

reductive monoid with group of unitsM ·eP . Recall from §1.2 that normal reductive monoids

are classified by their Renner cones. Since M is also a normal reductive monoid with group

of units M , to prove the theorem it suffices to check that the Renner cones of M and

eP · (Genh)cP · eP are equal. We may assume that k is algebraically closed.

Fix a Cartan subgroup Tsub ⊂ M ⊂ G. Identify Tsub with the abstract Cartan T by

choosing a Borel subgroup. Consider the embedding Tsub →֒ Genh sending t 7→ t · eP and let

Tsub · eP denote the closure of the image. Set Tenh := (Tsub×T )/Z(G), which is a Cartan

subgroup of Genh, and let Tenh denote its closure in Genh. By definition, eP lies in Tenh, so

Tsub →֒ Genh factors through the homomorphism of monoids

Tsub →֒ Tenh : t 7→ t · eP (1.10)

Let Č ⊂ Λ̌Q× Λ̌Q denote the Renner cone (1.6) of Genh. Recall that the weights in ČZ :=

Č ∩ (Λ̌× Λ̌) form a basis of k[Tenh]. Let (λ̌1, λ̌2) ∈ ČZ. Then λ̌2 − λ̌1 ∈ Λ̌
pos
G , so it may

be considered as a regular function on Tadj. Evaluating this function at cP gives a number
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(λ̌2 − λ̌1)(cP ), which is 1 if λ̌2 − λ̌1 ∈ Λ̌
pos
M and 0 otherwise. By the definition of eP , one

sees that the homomorphism (1.10) corresponds to the map of weights

ČZ → Λ̌ : (λ̌1, λ̌2) 7→ (λ̌2 − λ̌1)(cP ) · λ̌1. (1.11)

The existence of the map (1.8) implies that the image of (1.11) must land in the Renner

cone of M , which is generated by the saturated submonoid WM · Λ̌
+
G. On the other hand,

for λ̌ ∈ Λ̌+
G and w ∈ WM , one sees that (wλ̌, λ̌) 7→ wλ̌. Thus the image of (1.11) equals

WM · Λ̌
+
G.

Therefore the Renner cones of M and eP · (Genh)cP · eP are equal, which proves the

theorem.
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CHAPTER 2

INVARIANT BILINEAR FORM DEFINED VIA

ASYMPTOTICS

2.1 Introduction

2.1.1 The goal of this chapter

In [27], an invariant symmetric bilinear form B is defined on the space of automorphic forms

for SL(2) over any global field. The goal of this chapter is to generalize the definition of B

and the corresponding theory to any split reductive group G over a function field. The study

of B is motivated by works [25, 30] on the geometric Langlands program. There is also a

significant connection between B and the theory of Eisenstein series, as evidenced by [27].

Let G be a split reductive group over Fq. Let X be a geometrically connected smooth

projective curve over a finite field Fq, and let F be the field of rational functions on X. Let

A denote the adele ring of F .

For any place v of F , the completion of F with respect to v will be denoted Fv. Let ov

denote the ring of integers of Fv, with residue field Fqv . We denote the standard maximal

compact subgroup of G(Fv) by Kv. Set K :=
∏
vKv; this is a maximal compact subgroup

of G(A).

We fix a field E of characteristic 0. Unless specified otherwise, all functions will take

values in E.

Let A denote the space of K-finite C∞ functions on G(A)/G(F ). Let Ac ⊂ A denote

the subspace of functions with compact support.

In this chapter we define and study a G(A)-invariant symmetric bilinear form B on Ac.

(The definition of B is given in §2.4.1.) Fix a Haar measure on G(A). The form B is defined

as an alternating sum of invariant bilinear forms BP on Ac, where the sum ranges over the

conjugacy classes of parabolic subgroups of G. When P = G, the form BG is the naive
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pairing

Bnaive(f1, f2) =

∫

G(A)/G(F )
f1(x)f2(x)dx, f1, f2 ∈ Ac.

The definition of BP was suggested by Y. Sakellaridis in a private communication, and it uses

the local asymptotics maps constructed in [10, 60] using the geometry of the De Concini–

Procesi wonderful compactification of G. The asymptotics map is defined in the more general

setting of harmonic analysis on spherical varieties in [60]. In [10], the asymptotics map is

used to give a geometric proof of Bernstein’s theorem on second adjointness. It is also shown

([10, Theorem 7.6]) that the asymptotics map is inverse to the standard (long) intertwining

operator in the classical representation theory of p-adic groups. Using this relationship, one

sees that the computation of the asymptotics of the characteristic function of Kv (cf. [59, §6])

goes back to the classical non-Archimedean Gindikin–Karpelevich formula due to [48, 50].

In order to study the form B, we consider certain subspaces CP,± of the space of smooth

K-finite functions on G(A)/M(F )U(A), where P = MU is a standard parabolic subgroup

with Levi subgroup M and unipotent radical U . The spaces CP,± may be of independent

interest as they are defined with respect to the same rational cones and support conditions as

in the definition of Arthur’s truncation operator (cf. the definition of τ̂P in [2, §6]). In Propo-

sition 2.5.5, we prove that the standard intertwining operator extends to an isomorphism

RP : CP−,+ → CP,−.

Remark 2.1.1. We only consider the function field case in this chapter, but the reader may

check that the definition of B on K-invariant automorphic forms extends to the number

field case using the Archimedean Gindikin–Karpelevich formula. We hope to define B on the

whole space Ac for an arbitrary global field F by better understanding the local Archimedean

intertwining operator in the future.
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2.1.2 Motivation from geometric Langlands

Let us explain the motivation for the existence of B from the geometric Langlands program.

Here we assume that the field E equals Qℓ for a prime ℓ coprime to the characteristic of F .

A remarkable ℓ-adic complex on BunG×BunG. Let BunG denote the stack of G-

bundles on X. Let ∆ : BunG → BunG×BunG be the diagonal morphism. We have the

ℓ-adic complex ∆∗(Qℓ) on BunG×BunG.

This complex is the ℓ-adic analog of the complex of D-modules ∆!ωBunG , which plays

a crucial role in the theory of miraculous duality on BunG, which was developed in [25,

§4.5] and [30]. Assume for the moment that X is over a ground field k of characteristic

0. Then miraculous duality gives an equivalence between the DG category of (complexes

of) D-modules on BunG and its Lurie dual. Very roughly, the equivalence is defined as the

functor

Ps-IdBunG,! : D-mod(BunG)co → D-mod(BunG)

given by the kernel ∆!ωBunG (whereas the identity functor is given by the kernel ∆∗ωBunG).

The fact that this functor is an equivalence is a highly nontrivial theorem [30, Theorem

0.2.4].

The function b. Given G-bundles F1
G,F

2
G ∈ BunG(Fq), let b(F

1
G,F

2
G) denote the trace

of the geometric Frobenius acting on the ∗-stalk of the complex ∆∗(Qℓ) over the point

(F1
G,F

2
G) ∈ (BunG×BunG)(Fq). Using results of [62], we deduce a formula for b in terms

of the asymptotics maps (see Theorem A.3.12).

Relation between B and b. The quotient K\G(A)/G(F ) identifies with |BunG(Fq)|, the

set of isomorphism classes of G-bundles on X. So the function b can be considered as a

function on (G(A)/G(F ))×(G(A)/G(F )). The following theorem is one of our main results.

The proof is given in §2.4.4.

Theorem 2.1.2. Let E = Qℓ for ℓ coprime to the characteristic of F . Normalize the Haar
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measure on G(A) so that K has measure 1. Then for any f1, f2 ∈ AKc , one has

B(f1, f2) =

∫

(G×G)(A)/(G×G)(F )
b(g1, g2)f1(g1)f2(g2)dg1dg2. (2.1)

By non-degeneracy of the naive pairing Bnaive, defining the bilinear form B is equivalent

to defining an operator L : Ac → A such that

B(f1, f2) = Bnaive(Lf1, f2), f1, f2 ∈ Ac.

Theorem 2.1.2 implies that the miraculous duality functor Ps-IdBunG,! is a D-module analog

of the operator q− dimBunGL via the functions–sheaves dictionary.

2.1.3 Analog of the Aubert–Zelevinsky involution

In §2.6.6, we define a subspace Aps-c ⊂ A of “pseudo-compactly” supported functions using

the constant term operators and the spaces CP,+. We prove that the operator L above

sends Ac to Aps-c, and the operator L : Ac → Aps-c is an isomorphism (Theorem 2.6.12).

The invertibility of L may be considered as a function-theoretic analog of the main result

(Theorem 0.2.4) of [30].

Moreover, we give an explicit formula

L−1f =
∑

P

(−1)dimZ(M)(EisP ◦CTP )(f), f ∈ Aps-c,

for the inverse, where EisP ,CTP denote respectively, the (pseudo-)Eisenstein operator and

constant term operator. By considering EisP ,CTP as global analogs of the parabolic in-

duction functor and Jacquet functor, respectively, in the theory of smooth representations

of a p-adic group, one can view the formula for L−1 as an analog of the formula for the

Aubert–Zelevinsky involution on the Grothendieck group of smooth representations of finite

length (see Remark 2.6.13). This involution was first defined and studied for G = GL(n)
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by Zelevsinky [70] and later for general reductive groups by Aubert [4]. On Iwahori fixed

vectors, it also corresponds to the Iwahori–Matsumoto involution (cf. [44]). There is an anal-

ogous involution for representations of a finite Chevalley group, often called the Alvis–Curtis

involution, which was studied earlier in [1, 21].

The Aubert–Zelevinsky involution can be studied at the level of complexes. Such com-

plexes were considered in [22] for representations of a finite Chevalley group. For every

smooth representation M one can form a complex

0→M →
⊕

P

iGP r
G
P (M)→ · · · → iGBr

G
B(M)→ 0

where iGP , r
G
P denote, respectively, the parabolic induction and Jacquet functors, and the

sum in the i-th term runs over standard parabolic subgroups of corank i in G. We call this

complex the Deligne–Lusztig complex associated to M and denote it by DL(M). Aubert

showed that for an irreducible module M , the complex DL(M) has cohomology in only one

degree, which implies that the Aubert–Zelevsinky involution sends irreducible modules to

irreducible modules (up to a sign). A new proof of this result was recently given in [9] using

asymptotics maps and the geometry of the wonderful compactification of G.

2.1.4 Structure of the chapter

General remark. In the main body of the article we work with classical functions on

G(Fv) and G(A)/G(F ). These are, however, heavily motivated by geometric definitions and

results appearing in the geometric Langlands program. We review the relevant geometry in

Appendices A.1–A.3.

The main body of the chapter.

In Section 2.2, we study the asymptotics map and its relation to the intertwining op-

erator over a local non-Archimedean field. In order to elucidate the support conditions of

various functions, we give a combinatorial description of the bounded subsets of the boundary
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degenerations of G.

In Section 2.3, we compute the asymptotics of the characteristic function of Kv by re-

ducing to the non-Archimedean Gindikin–Karpelevich formula using intertwining operators

on Kv-invariants. To do so, we extend the classical Satake isomorphism to an isomorphism

between certain completed Hecke algebras.

In Section 2.4, we define the bilinear form B. After giving a geometric interpretation of

the restriction of B to AKc , we prove Theorem 2.1.2.

The definition of B we give differs slightly from the definition given in [27] for G = SL(2).

In our definition, we use local asymptotics (which is essentially equivalent to local inverse

intertwining operators) and then apply a local-to-global procedure.

In Section 2.5, we provide an alternate definition of B, which directly generalizes the

one in [27]. For a parabolic subgroup P with Levi factor M , we define subspaces CP,± of

the space of K-finite C∞ functions on G(A)/M(F )U(A). The definitions are such that the

constant term operator CTP (whose definition we recall) sends Ac to CP,−. The intertwining

operator RP (which is of local nature) is defined as a map CP−,+ → CP,−, and we show that

RP is an isomorphism. Let 〈 , 〉 denote the natural pairing between functions in CP− (when

convergent). We prove the following in §2.5.6:

Theorem 2.1.3. For any f1, f2 ∈ Ac, one has

B(f1, f2) =
∑

P

(−1)dimZ(M)〈R−1P CTP (f1),CTP−(f2)〉, (2.2)

where the sum ranges over conjugacy classes of parabolic subgroups of G.

In Section 2.6, we use Theorem 2.1.3 to define the operator L : Ac → A and the subspace

Aps-c ⊂ A of “pseudo-compactly” supported functions. We show that L sends Ac to Aps-c,

and in Theorem 2.6.12 we prove that the operator L : Ac → Aps-c is invertible. We give a
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formula (2.53) for L−1, which is in fact simpler than the formula for L. This formula may

be viewed as an analog of the definition of the Aubert–Zelevinsky involution.

Appendices A.1–A.3. In Appendix A.1, we consider the global model for the formal arc

space of a group embedding into an algebraic monoid. This model was also used in [11,

§2]. We realize the global model as a substack of a symmetrized version of the Hecke stack.

We give a bound on the difference of the Harder–Narasimhan coweights of the two bundles

corresponding to a point of the Hecke stack (Lemma A.1.7). In this article, we are primarily

interested in the stack H+
M attached to the monoid M , defined as the closure of M in the

affine closure of G/U , where P is a parabolic subgroup with Levi factorM . The stack H+
M is

a graded Ran version (in the sense of [29]) of the closed substack of the Hecke stack studied

in [13] and [12, §1.8]. The Hecke stack is a twisted product of BunM and the Beilinson–

Drinfeld (factorizable) affine Grassmannian, and it is more convenient to use the latter to

talk about factorization properties. We briefly review the relevant notation and properties of

the factorizable affine Grassmannian – we use a symmetrized version that does not explicitly

mention the Ran space.

In Appendix A.2, we review the definition of the factorization algebras on the affine

Grassmannian introduced in [14, 29] that act on geometric Eisenstein series. The main goal

of this Appendix is to highlight the connection (via Grothendieck’s functions–sheaves dictio-

nary) between certain measures (related to unramified intertwining operators) appearing in

the classical non-Archimedean Gindikin–Karpelevich formula and Gaitsgory’s factorization

algebras (see Proposition A.2.4, Lemma A.2.5). From this perspective, we point out how the

main theorem of [12] may be interpreted as a categorical or geometric version of (Langlands’

interpretation of) the Gindikin–Karpelevich formula.

In Appendix A.3, we study the compactification of the diagonal morphism of BunG using

the results of [62]. The compactification BunG we define is slightly different from the one

found in the literature. We review the definition and relevant properties of the Drinfeld–

Lafforgue–Vinberg degeneration of BunG. In particular we highlight the connection between
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the geometric Bernstein asymptotics studied in loc. cit. and Gaitsgory’s factorization algebras

to deduce that for an arbitrary parabolic subgroup, the geometric Bernstein asymptotics

corresponds to the classical asymptotics of the characteristic function of K via the functions–

sheaves dictionary.

2.1.5 Conventions

Throughout the chapter, G will be a connected split reductive group over Fq. Fix a split

torus T ⊂ G and a Borel B containing T . Let W be the Weyl group of T . Let Λ̌ (resp. Λ)

denote the weight (resp. coweight) lattice of T .

The monoid of dominant weights (resp., coweights) will be denoted by Λ̌+
G (resp., by

Λ+
G). The set of vertices of the Dynkin diagram of G will be denoted by ΓG; for each i ∈ ΓG

there corresponds a simple coroot αi and a simple root α̌i. The set of coroots (resp. positive

coroots) will be denoted by ΦG (resp. Φ+
G) and the positive span of Φ+

G inside Λ by Λ
pos
G .

Let ∆̌G (resp. Φ̌+
G, Φ̌

−
G, Φ̌G) denote the simple (resp. positive, negative, all) roots of G. By

2ρ̌ ∈ Λ̌ (resp. 2ρ ∈ Λ) we will denote the sum of the positive roots (coroots) of G and by

w0 the longest element in the Weyl group of G. For λ, µ ∈ Λ we will write that λ ≥ µ if

λ− µ ∈ Λ
pos
G , and similarly for Λ̌

pos
G .

We will only consider parabolic subgroups that contain T . Let P be a standard1 parabolic

subgroup, i.e., P contains B. Then the Levi quotient can be canonically realized as a

subgroup M ⊂ P . We have P = MU where U is the unipotent radical of P . There

is a unique parabolic P− such that P ∩ P− = M . To M there corresponds a subdiagram

ΓM ⊂ ΓG, coroots ΦM ⊂ ΦG, and positive coroots Φ+
M ⊂ Φ+

G. We will denote by Λ+
M ⊃ Λ+

G,

Λ
pos
M ⊂ Λ

pos
G , 2ρ̌M ∈ Λ̌, ≥M , etc. the corresponding objects for M .

Let Rep(G) denote the abelian category of finite-dimensional G-modules.

Given two G-spaces Y, Z such that the diagonal action of G on Y ×Z is free, we let

1. Recall that in any conjugacy class of parabolic subgroups of G, there is exactly one standard parabolic
subgroup.
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Y ×G Z denote the quotient of Y ×Z by the diagonal G-action.

For a scheme or stack Y, we let D(Y) denote the DG category of bounded constructible

Qℓ-sheaves on Y. We will use ‘sheaf’ to mean a complex of sheaves. All functors between

sheaves are derived functors. When Y is a stack over SpecFq, we assume that ℓ is coprime

to q. Choose a square root of q in Qℓ once and for all. The intersection cohomology sheaves

are normalized so that they are pure of weight 0. In other words, for a smooth Fq-stack Y

of dimension n, ICY
∼= (Qℓ(

1
2)[1])

⊗n.

2.2 Local intertwining operators and asymptotics

In this section, we work over a non-Archimedean local field Fv, and G is a connected split

reductive group over Fv. The subscript v is only present to keep notation consistent through-

out this article – the presence of a global field is not assumed, and the characteristic of Fv

is arbitrary (and possibly zero).

Let ||v denote the absolute value on Fv, let ov denote the ring of integers of Fv, and

let qv be the cardinality of the residue field. We will use G, P, XP , etc. to also denote the

topological groups/spaces of Fv-points of the corresponding algebraic groups or varieties,

e.g., G = G(Fv), P = P (Fv), XP = XP (Fv). Let K = Kv denote the standard maximal

compact subgroup of G, and KM denotes the standard maximal compact subgroup of M .

In §2.2.1–2.2.3, we define the space XP and describe how to consider bounded subsets of

G/U and XP in terms of subsets of the lattice Λ. In §2.2.4–2.2.7, we review some definitions

and results from [10] to introduce the local asymptotics map AsympP , which is “essentially

the same” as the inverse of the standard intertwining operator. We observe that AsympP is

determined by a generalized function ξP on XP . In §2.2.5–2.2.8, we give a formula for the

inverse of the intertwining operator in terms of ξP .

34



2.2.1 Bounded sets

Let X be a quasi-affine variety over Fv (i.e., there exists a locally closed embedding of X

into a finite dimensional affine space). We say that a subset S ⊂ X(Fv) is bounded if the

following equivalent conditions are satisfied:

(i) for any regular function f ∈ Fv[X] := Γ(X,OX), the function |f |v is bounded on S,

(ii) for any locally closed embedding (in the sense of algebraic geometry) of X into an

affine space, the image of S is bounded (with respect to the norm induced by the absolute

value on Fv),

(iii) for any open embedding (in the sense of algebraic geometry) of X into an affine

variety, the image of S is relatively compact (for the “usual” topology induced by the topology

on Fv).

Recall that an Fv-scheme X is strongly quasi-affine if the canonical morphism

X→ SpecFv[X]

is an open embedding and Fv[X] is a finitely generated Fv-algebra. For a strongly quasi-affine

variety X, in condition (iii) it suffices to consider only the open embedding X →֒ SpecFv[X].

2.2.2 The strongly quasi-affine varieties G/U and XP

Fix a standard parabolic subgroup P ⊂ G with Levi subgroup M and unipotent radical U .

The quotient varieties G/U and G/U− are strongly quasi-affine by [36]. Let G/U :=

SpecFv[G/U ] and G/U− := SpecFv[G/U
−] denote the affine closures.

We review the definition of the variety XP introduced in [10, §2.2.1] below.

Define the boundary degeneration

XP := (G×G)/(P ×
M
P−) = (G/U ×G/U−)/M,
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where M acts diagonally on the right. Recall (cf. [24, Proposition 2.4.4]) that XP is a quasi-

affine variety; let XP := SpecFv[XP ] denote the affine closure. By [36], Fv[G/U ×G/U
−]

is finitely generated. Therefore Hilbert’s theorem on invariants implies that Fv[XP ] =

Fv[G/U ×G/U
−]M is finitely generated (i.e., XP is strongly quasi-affine). Thus a subset

S ⊂ XP is bounded if and only if f(S) ⊂ Fv is bounded for every f ∈ Fv[XP ].

2.2.3 Combinatorial setup

We give a combinatorial description of bounded subsets of XP in Proposition 2.2.2 below.

By the Cartan decomposition, KM\M/KM = (T/KT )/WM . We have an isomorphism

ordT : T/KT → Λ

sending λ(x) 7→ λ⊗(− logqv |x|v) where λ ∈ Λ, x ∈ F×v . This induces an isomorphism

ordM : KM\M/KM → Λ+
M . (2.3)

By the Iwasawa decomposition, G = K · P = K · P−. Therefore (2.3) induces the

projections

ordM : G/U → K\(G/U)/KM = KM\M/KM = Λ+
M (2.4)

and ordM : G/U− → Λ+
M . We have a left G×G-action on XP . Using (2.3) again, we also

define the projection

ordM : XP → (K ×K)\XP = KM\M/KM = Λ+
M , (2.5)

where the first equality sends (m1,m2) 7→ m−11 m2 when m1,m2 ∈M .
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Lemma 2.2.1. Let g1 ∈ G/U and g2 ∈ G/U
−. Consider the image of (g1, g2) in XP . Then

wM0 ordM (g1, g2) ≤M ordM (g2)− ordM (g1) ≤M ordM (g1, g2).

Proof. Let λ1 = ordM (g1), λ2 = ordM (g2), and θ = ordM (g1, g2). It follows from the

definitions that θ(̟v) ∈ KMλ1(̟v)
−1KMλ2(̟v)KM , where ̟v ∈ ov is a uniformizer.

This is equivalent to λ2(̟v) ∈ KMλ1(̟v)KMθ(̟v)KM . The usual properties of the

(spherical) Hecke algebra imply that λ2 ≤M λ1 + θ. Similarly, we also have λ1(̟v) ∈

KMλ2(̟v)KMθ(̟v)
−1KM , which implies that λ1 ≤M λ2 − w

M
0 θ.

Let ΛQ := Q⊗Z Λ. Let Λ
pos,Q
G ⊂ ΛQ denote the rational cone corresponding to Λ

pos
G .

We define the rational ordering ≤Q
G by µ ≤Q

G λ if and only if λ− µ ∈ Λ
pos,Q
G .

Let Λ̌
+,Q
G ⊂ Λ̌Q := Q⊗Z Λ̌ denote the rational cone corresponding to Λ̌+

G.

We say that a subset S ⊂ ΛQ is bounded below (with respect to ≤Q
G) if the following

equivalent conditions are satisfied:

(i) For any λ̌ ∈ Λ̌+
G, the subset λ̌(S) ⊂ Q is bounded below.

(ii) There exists a subset S0 ⊂ ΛQ with compact closure in R⊗Z Λ such that S ⊂

S0 + Λ
pos,Q
G .

Define S ⊂ ΛQ
G to be bounded above if −S is bounded below.

Proposition 2.2.2. A subset S ⊂ XP is bounded if and only if ordM (S) ⊂ Λ+
M is bounded

above.

Proof. Consider the embedding T →֒ XP : t 7→ (t, 1) and let T denote the closure of T in

XP . Let ST ⊂ T denote the preimage of (K ×K) · S ⊂ XP under the previous embedding.

Then S is bounded if and only if ST is bounded in T . Note that ST is WM -stable, and

−ordT (ST ) = WM · ordM (S). It is shown in Corollary 1.4.3 that Fv[T ] ⊂ Fv[T ] has a

basis formed by the characters in WM · Λ
+
G. For a weight λ̌ ∈ Λ̌+

G and t ∈ T , we have

− logqv |λ̌(t)|v = 〈λ̌, ordT (t)〉. Therefore ST is bounded in T if and only if −ordT (ST ) is

37



bounded above. Since ordM (S) ⊂ Λ+
M , we conclude that WM · ordM (S) is bounded above

if and only if ordM (S) is bounded above.

The rational cone Λ
pos,Q
U . We introduce the rational cone Λ

pos,Q
U , which is used throughout

this chapter, and review some of its properties, which are proved in Chapter 1.

Let Λ
pos
U ⊂ Λ denote the non-negative integral span of the positive coroots of G that

are not coroots of M . The submonoid Λ
pos
U is stable under the actions of WM . Let Λ

pos,Q
U

denote the corresponding rational cone.

Remark 2.2.3. Let XP denote an ov-model of XP , and set XP := Spec Γ(XP,OXP
). Then

XP×Spec ov SpecFv = XP , and XP(ov) is a K ×K-stable subset of XP (Fv). The proof of

Proposition 2.2.2 shows that

XP(ov) ∩ XP (Fv) ⊂ ord−1M ((−Λpos,Q
U ) ∩ Λ+

M ),

where Λ
pos,Q
U is the dual cone of WM · Λ̌

+,Q
G by Lemma 1.3.4.

We recall the definition of the Langlands retraction L : ΛQ → Λ
+,Q
G , which goes back

to [49]. It is defined as follows: for λ ∈ ΛQ, let L(λ) be the least element2 in the set

{θ ∈ Λ
+,Q
G | λ ≤Q

G θ} in the sense of the ≤Q
G ordering. We refer the reader to [23] for further

properties of the Langlands retraction.

Let Λ
+,Q
M ⊂ ΛQ denote the rational cone corresponding to Λ+

M .

Lemma 2.2.4. Let λ ∈ Λ
+,Q
M . Then L(λ)− λ ∈ Λ

pos,Q
U ∩ (−Λ+,Q

M ).

Proof. Recall from [23, Proposition 2.1] that L is piecewise linear, with linearity domains

CJ indexed by subsets J ⊂ ΓG: Let V ⊥J = {λ ∈ ΛQ | 〈α̌j , λ〉 = 0, j ∈ J}. Then CJ is the

closed convex cone generated by −αj , j ∈ J and V ⊥J ∩ Λ
+,Q
G .

Suppose that λ ∈ Λ
+,Q
M lies in CJ . Then λ − L(λ) belongs to the closed convex cone

generated by −αj for j ∈ J , and L(λ) ∈ V ⊥J by [23, Lemma 2.3]. Therefore 〈α̌j , λ−L(λ)〉 =

2. The existence of the least element is not obvious; it was proved by R. P. Langlands in [49, §4].
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〈α̌j , λ〉 ≥ 0 for j ∈ ΓM ∩ J . Since 〈α̌i, αj〉 < 0 for i ∈ ΓG − J, j ∈ J , we also have

〈α̌i, λ − L(λ)〉 ≥ 0 for i ∈ ΓG − J . Hence λ − L(λ) ∈ (−Λpos,Q
G ) ∩ Λ

+,Q
M . By Lemma 1.3.2,

we have the equality (−Λpos,Q
G ) ∩ Λ

+,Q
M = (−Λpos,Q

U ) ∩ Λ
+,Q
M .

Let ΛR := R⊗Z Λ and let Λ
+,R
G ,Λ

pos,R
G denote the real cones corresponding to Λ+

G,Λ
pos
G .

Corollary 2.2.5. A subset S ⊂ Λ
+,Q
M is bounded above if and only if there exists a compact

subset S0 ⊂ Λ
+,R
G such that S is contained in the set {θ − µ | θ ∈ S0, µ ∈ Λ

pos,Q
U }.

Proof. Suppose S ⊂ Λ
+,Q
M is bounded above. Then there exists a compact subset S1 ⊂ ΛR

such that S is contained in {θ − µ | θ ∈ S1, µ ∈ Λ
pos,Q
G }. Let S0 denote the closure of L(S)

in ΛR. Then S0 is contained in Λ
+,R
G ∩ {θ − µ | θ ∈ S1, µ ∈ Λ

pos,R
G }, which is a compact

set. Lemma 2.2.4 implies that S is contained in {θ − µ | θ ∈ S0, µ ∈ Λ
pos,Q
U }. The other

direction is evident.

The closed embeddingG×P− →֒ G×G induces a closed embeddingG/U →֒ XP sending

g1 7→ (g1, 1). By Corollary 1.4.3, this embedding extends to a closed embedding of affine

closures G/U →֒ XP . Similarly, the closed embedding G/U− →֒ XP : g2 7→ (1, g2) extends

to a closed embedding G/U− →֒ XP . Using these embeddings, we deduce the combinatorial

description for bounded subsets of G/U and G/U− from Proposition 2.2.2:

Proposition 2.2.6. (i) A subset S ⊂ G/U is bounded if and only if there exists a finite

subset S0 ⊂ Λ such that ordM (S) ⊂ S0 + Λ
pos,Q
U .

(ii) A subset S ⊂ G/U− is bounded if and only if there exists a finite subset S0 ⊂ Λ such

that ordM (S) ⊂ {θ − µ | θ ∈ S0, µ ∈ Λ
pos,Q
U }.

Proof. Let g1 ∈ G/U . Then ordM (g1) = −w
M
0 · ordM (g1, 1). Using the closed embedding

G/U →֒ XP , we deduce (i) from Proposition 2.2.2 and Corollary 2.2.5. For g2 ∈ G/U
−, we

have ordM (g2) = ordM (1, g2), so we can similarly deduce (ii) using the closed embedding

G/U− →֒ XP .
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2.2.4 The space Cb(XP )

We review the definitions of the space Cb(XP ) from [10] in the context of our combinatorial

setup.

Let S∗(XP ) denote the space of distributions on XP . Using our fixed choice of Haar

measures, we identify distributions and generalized functions on XP . Given a generalized

function ξ ∈ S∗(XP ), one can define a map Tξ : C
∞
c (G/U)→ C∞(G/U−) by the formula

Tξ(ϕ)(g2) =

∫

G/U
ϕ(g1)ξ(g1, g2)dg1, ϕ ∈ C∞c (G/U), g2 ∈ G/U

−. (2.6)

Let C(XP ) denote the space of K ×K-finite C∞ functions on XP .

Let Cb(XP ) ⊂ C(XP ) denote the subspace of functions with bounded support. Proposi-

tion 2.2.2 implies that Cb(XP ) is the set of functions ξ ∈ C(XP ) such that ordM (supp ξ) is

bounded above.

We say that a generalized function ξ ∈ S∗(XP ) has essentially bounded support if the

convolution of ξ with any element of C∞c (G)⊗C∞c (G) has bounded support. Let S∗b (XP )
G

denote the space of generalized function with essentially bounded support that are invariant

under the diagonal G-action on XP .

2.2.5 The spaces CP,±

Let ΛQ
G,P = ΛQ

M/[M,M ]
. This vector space is the quotient of ΛQ by the subspace spanned by

the coroots of M . For λ ∈ ΛQ, let [λ]P denote the projection of λ to ΛQ
G,P . We define the

map

degP : G/U → ΛQ
G,P

by degP (x) = [ordM (x)]P .

Let Λ
pos,Q
G,P denote the image of Λ

pos,Q
G (equivalently Λ

pos,Q
U ) under the projection ΛQ →

ΛQ
G,P .
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Let CP denote the space of K-finite C∞ functions on G/U . Let CP,c ⊂ CP stand for the

subspace of compactly supported functions.

Let CP,+ ⊂ CP denote the set of all functions ϕ ∈ CP such that degP (suppϕ) is contained

in S0 +Λ
pos,Q
G,P for some finite subset S0 ⊂ ΛQ

G,P . Similarly, let CP,− ⊂ CP denote the set of

all ϕ ∈ CP such that − degP (suppϕ) is contained in S0 + Λ
pos,Q
G,P for some finite set S0.

One similarly defines the spaces CP−,± ⊂ CP− . We emphasize that CP−,+ is defined with

respect to the cone −Λpos,Q
G,P . So CP−,± is the set of all ϕ ∈ CP− such that ∓ degP−(suppϕ)

is contained in S0 + Λ
pos,Q
G,P for some finite set S0.

Lemma 2.2.7. Let ξ ∈ S∗b (XP )
G be a generalized function with essentially bounded support.

Then formula (2.6) defines a map Tξ : CP,− → CP−,+.

Proof. Let ϕ ∈ CP,−. Since ϕ isK-finite, there exists a compact open subgroupK ′ ⊂ K such

that ϕ is K ′-invariant. Let δK ′ ∈ C
∞
c (G) equal 1

mes(K ′)
times the characteristic function of

K ′. Then

ξ′ := (δK ′ ⊗ 1) ∗ ξ = (1⊗ δK ′) ∗ ξ ∈ C
∞
b (XP )

is a smooth function with bounded support, and it suffices to show that Tξ′(ϕ) = Tξ(ϕ) is

well-defined and belongs to CP−,+.

Fix g2 ∈ G/U−. For any g1 ∈ G/U , Lemma 2.2.1 gives the inequality ordM (g1) ≤M

ordM (g2)−w
M
0 ordM (g1, g2). Then Corollary 2.2.5 implies that there is a finite subset S0 ⊂ Λ

such that if ξ′(g1, g2) 6= 0, then ordM (g1) ⊂ S0 + wM0 Λ
pos,Q
G . From this combinatorial

description, we deduce that the function sending g1 ∈ G/U to ϕ(g1)ξ
′(g1, g2) is compactly

supported. Therefore Tξ′(ϕ) is well-defined.

Moreover, if Tξ′(ϕ)(g2) 6= 0, then there must exist g1 ∈ G/U such that g1 ∈ suppϕ and

(g1, g2) ∈ supp ξ′ ⊂ XP . Observe that degP−(g2) = degP (g1) + [ordM (g1, g2)]P in ΛQ
G,P .

Since ξ′ has bounded support, [ordM (supp ξ′)]P is contained in −Λpos,Q
G,P + S1 for a finite

set S1. By definition of CP,−, we deduce that degP−(g2) must lie in −Λpos,Q
G,P + S2 for some

finite set S2. Thus Tξ′(ϕ) ∈ CP−,+.

41



2.2.6 Intertwining operator

Define the intertwining operator RP : C∞c (G/U−)→ C∞(G/U) by the formula

RP (ϕ)(g) =

∫

U
ϕ(gu)du, g ∈ G. (2.7)

Let X−P denote the space (G/U−×G/U)/M . Any generalized function η ∈ S∗(X−P )

defines a map Tη : C∞c (G/U−) → C∞(G/U) as in formula (2.6). Let ηP ∈ S
∗(X−P ) denote

the generalized function such that RP = TηP , i.e.,

∫

U
ϕ(g2u)du =

∫

G/U−
ϕ(g1)ηP (g1, g2)dg1, ϕ ∈ C∞c (G/U−), g2 ∈ G. (2.8)

Define the projection

ordM : X−P → (K ×K)\X−P = Λ+
M

by sending (m1,m2) 7→ ordM (m−11 m2) for m1,m2 ∈M .

Lemma 2.2.8. The subset ordM (supp ηP ) is contained in (−Λpos,Q
U ) ∩ Λ+

M . In particular,

ordM (supp ηP ) is bounded above.

Proof. Suppose that (k1a, k2) ∈ supp ηP for k1, k2 ∈ K and a ∈ T with ordT (a) ∈ Λ+
M .

Then by definition of ηP , there exists u ∈ U such that u ∈ kaU− for k = k−12 k1.

Fix a dominant weight λ̌ ∈ Λ̌+
G. Let ∆(λ̌) denote the Weyl G-module with highest

weight λ̌. This Fv-vector space is the extension of scalars of a free ov-module, and the latter

determines a K-invariant norm ||v on ∆(λ̌). We give ∆(λ̌)∗ the dual norm.

Let φ ∈ ∆(λ̌)∗ be a norm 1 weight vector of weight −wM0 λ̌. Since −wM0 λ̌ ≥M −λ̌ and

all weights of ∆(λ̌)∗ are ≥G −λ̌, we observe that φ is U−-invariant. By orthogonality of

weight spaces, there exists a weight vector ξ ∈ ∆(λ̌) of weight wM0 λ̌ and norm 1 such that
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〈φ, ξ〉 = 1. Note that ξ is automatically U -invariant. We have the inequality

0 = logqv |〈u · φ, ξ〉|v = 〈w
M
0 λ̌, ordT (a)〉+ logqv |〈k · φ, ξ〉|v ≤ 〈w

M
0 λ̌, ordT (a)〉.

Since wλ̌ ≥M wM0 λ̌ for any w ∈ WM and ordT (a) ∈ Λ+
M , we conclude that ordT (a) ∈

wΛ
pos,Q
G for all w ∈ WM . Lemma 1.3.2 implies that ordT (a) ∈ Λ

pos,Q
U . Observe that

ordM (k1a, k2) = −w
M
0 ordT (a), so we are done.

The following result is [10, Corollary 7.4, Proposition 7.5(a)]. We give a proof using our

combinatorial description of bounded subsets of XP .

Proposition 2.2.9. Formula (2.7) defines an operator RP : CP−,+ → CP,−.

Proof. The proof is exactly the same as the proof of Lemma 2.2.7. We repeat the argument

for completeness: Let ϕ ∈ CP−,+. Fix g2 ∈ G/U . For any g1 ∈ G/U−, Lemma 2.2.1

gives the inequality ordM (g1) ≤M ordM (g2) − wM0 ordM (g1, g2). Since ordM (supp ηP ) ⊂

−Λpos,Q
U , the inequality implies that if ξ′(g1, g2) 6= 0, then ordM (g1) = ordM (g2)+µ for some

µ ∈ wM0 Λ
pos,Q
G . From this combinatorial description, we deduce that the function sending

g1 ∈ G/U
− to ϕ(g1)ηP (g1, g2) is compactly supported. Therefore (2.8) is well-defined.

Moreover, if RP (ϕ)(g2) 6= 0, then there must exist g1 ∈ G/U− such that g1 ∈ suppϕ

and (g1, g2) ∈ supp ηP ⊂ X−P . Observe that degP (g2) = degP−(g1) + [ordM (g1, g2)]P in

ΛQ
G,P . Lemma 2.2.8 shows that [ordM (supp ηP )]P is contained in −Λpos,Q

G,P . By definition

of CP−,+, we deduce that degP (g2) must lie in −Λpos,Q
G,P + S0 for some finite set S0. Thus

RP (ϕ) ∈ CP,−.

2.2.7 Local asymptotics map

The work [10] gives a geometric proof of the second adjointness between parabolic induction

and restriction (Jacquet) functors by defining the Bernstein map B : C∞c (XP )→ C∞c (G). If

Fv has characteristic 0, this map is the “asymptotics” map constructed in [60] in the more
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general setting of spherical varieties. The dual of B gives a map

AsympP : S∗(G)→ S∗(XP ),

where S∗(G), S∗(XP ) are the spaces of distributions on G,XP , respectively.

Fix the Haar measures on G,M,U so that K,KM , K ∩ U have measure 1. Using these

measures, we identify distributions and generalized functions on G,XP .

The Bernstein map B is G×G-equivariant, and hence so is AsympP . Therefore AsympP

preserves K ×K-finiteness, and [10, Proposition 7.1] shows that it restricts to a map

AsympP : C∞c (G)→ Cb(XP ).

Let δg ∈ S
∗(G) denote the delta (generalized) function at g ∈ G. Set

ξP := AsympP (δ1) ∈ S
∗(XP ), (2.9)

which we consider as a generalized function on XP . Let f1, f2 ∈ C
∞
c (G) and set f∨2 (g) =

f2(g
−1). Then G×G-equivariance of AsympP,v implies that

(f1, f2) ∗ ξP = AsympP (f1 ∗ f
∨
2 ), (2.10)

where ∗ denotes convolution with respect to the G×G-action on XP (resp. the usual con-

volution on G). In particular, ξP has essentially bounded support in the sense that the

convolution of ξP with any element of C∞c (G) has bounded support.

Note that ξP depends on the choice of Haar measure on G.

We have the following relationship between the asymptotics map and the intertwining

operator:
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Theorem 2.2.10 ([10, Theorem 7.6]). Let ϕ ∈ C∞c (G/U). We have an equality

ϕ = (RP ◦ TξP )(ϕ).

In particular, the integral defining (RP ◦ TξP )(ϕ) converges.

The theorem is stated for the case P = B in [10], but one can check that the proof

generalizes to the case of an arbitrary parabolic subgroup.

2.2.8 Invertibility of RP

We use Theorem 2.2.10 to show that RP is an isomorphism in Proposition 2.2.13 below.

Let C̃P,− denote the smooth part of the linear dual representation C∗P,−. Let

R∗P : C̃P,− → C̃P−,+

denote the linear dual of the operator RP . Using the measure on G/U determined by the

fixed Haar measures on G and U , we identify C̃P,− with a subspace of CP containing CP,c.

Similarly, we consider C̃P−,+ ⊂ CP− .

Let RP− : CP,+ → CP−,− denote the intertwining operator with respect to the opposite

parabolic P− (i.e., we integrate over U− in formula (2.7)).

Lemma 2.2.11. We have an equality R∗P = RP− : CP,c → CP−.

Proof. Let ϕ̃, ϕ ∈ CP,c. Then

〈R∗P (ϕ̃), ϕ〉 =

∫

G/U
ϕ̃(g)

∫

U
ϕ(gu)dudg =

∫

G
ϕ̃(g)ϕ(g)dg

=

∫

G/U−

∫

U−
ϕ̃(gū)ϕ(g)dūdg = 〈RP−(ϕ̃), ϕ〉,

where all the integrals are finite. This proves the lemma.
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Let ξP ∈ S
∗(XP ) be the generalized function defined in (2.9). Note that ξP ∈ S

∗
b (XP )

G,

so Lemma 2.2.7 defines a map TξP : CP,− → CP−,+. Theorem 2.2.10 has the following

reformulation:

Lemma 2.2.12. We have the equality RP ◦ TξP = id on CP,−.

Proof. Let ϕ ∈ CP,−. Since ϕ is K-finite, there exists a compact open subgroup K ′ ⊂ K

such that ϕ is K ′-invariant. The proof of Lemma 2.2.7 shows that

ordM (suppTξP (ϕ)) ⊂ S := {λ+ θ − µ | λ ∈ ordM (suppϕ), θ ∈ S0, µ ∈ Λ
pos,Q
G },

where S0 ⊂ Λ is a finite subset depending only on K ′ and not ϕ. The proof of Proposi-

tion 2.2.9 shows that ordM (suppRP (TξP (ϕ))) is also contained in S. Therefore we deduce

that it suffices to prove that ϕ = RP (TξP (ϕ)) for compactly supported ϕ ∈ CP,c, which is

Theorem 2.2.10.

Proposition 2.2.13. The map RP : CP−,+ → CP,− is an isomorphism. The inverse is

given by the formula

R−1P (ϕ)(g2) =

∫

G/U
ϕ(g1)ξP (g1, g2)dg1, ϕ ∈ CP,−, g2 ∈ G/U

− (2.11)

Remark 2.2.14. Our proof of Proposition 2.2.13 is different from the one in [10, Proposition

7.5(b)]. This proof was suggested by V. Drinfeld.

We give a separate, self-contained proof of invertibility of RKP : CK
P−,+

→ CKP,− with

explicit formulas in Corollary 2.3.7.

Proof. Lemma 2.2.12 implies that RP has a right inverse given by (2.11). It remains to show

that RP has a left inverse. Apply Lemma 2.2.12 to the opposite parabolic P− to get a map

TξP−
: CP−,− → CP,+ such that RP− ◦ TξP−

= id on CP−,−. Taking the dual operators

gives an equality

T ∗ξP−
◦R∗P− = id (2.12)
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on CP−,c ⊂ C̃P−,−. Let ϕ ∈ CP−,c. Lemma 2.2.11 (applied to P−) implies that R∗
P−

(ϕ) =

RP (ϕ). Define ξ̃ ∈ S
∗
b (XP )

G by

ξ̃(g1, g2) = ξP−(g2, g1).

It follows formally from the definition of TξP−
that T ∗ξP−

(RP (ϕ)) = T
ξ̃
(RP (ϕ)), where

the map T
ξ̃
: CP,− → CP−,+ is defined by Lemma 2.2.7. Therefore (2.12) implies that

T
ξ̃
◦ RP = id on CP−,c. Then the same argument as in the proof of Lemma 2.2.12 shows

that T
ξ̃
◦RP = id on CP−,+, so we conclude that RP has a left inverse.

2.3 Formulas on K-invariants

Let Fv be an arbitrary non-Archimedean local field. We use the same notation and conven-

tions as in §2.2 (e.g., G = G(Fv), K = Kv, etc.).

Restricting to K-invariants, we see that the intertwining operator is essentially convolu-

tion with a measure µM on M . We compute the Satake transform of µM using the non-

Archimedean Gindikin–Karpelevich formula. We give a formula for AsympP (δK), where δK

is the characteristic function of K, in terms of the convolution inverse of µM .

Fix the Haar measures on G, M, T, U, U− so that K, KM , KT , K ∩U, K ∩U
− all have

measure 1.

2.3.1 Intertwining operator on K-invariants

Let K ⊂ G act on G/U, G/U− on the left. Recall that K\G/U = K\G/U− = KM\M .

The measure µM . Let µ̄ denote the direct image of the Haar measure on U under the

map

U →֒ G→ K\G/U− = KM\M, (2.13)

where G = K ·M · U− by the Iwasawa decomposition. In other words, µ̄(Ω) is the measure
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of U ∩ (K ·Ω ·U−) ⊂ U , where Ω ⊂ KM\M . Since (2.13) is equivariant with respect to the

action of KM by conjugation, µ̄ is right KM -invariant. Define µM to be the KM -bi-invariant

measure on M whose pushforward to KM\M equals µ̄.

A formula in terms of convolution. Let RKP denote the restriction of the intertwining

operator (2.7) to CK
P−,+

→ CKP,−. Then we have the formula

RKP (ϕ)(m) = δP (m)−1
∫

U
ϕ(um)du = δP (m)−1

∫

M
ϕ(m1m)µM (m1) (2.14)

where ϕ ∈ CK
P−,+

, m ∈M .

Comparing with (2.8), we see that

((δK ⊗ 1) ∗ ηP )(m, 1) = µM (m), m ∈M, (2.15)

where we consider µM as a KM -bi-invariant function using the fixed Haar measure on M .

2.3.2 Satake isomorphism

We extend the classical Satake isomorphism to an isomorphism between certain larger alge-

bras (defined below) that are convenient for our purposes.

The completed Hecke algebra. Let H+
M denote the space of KM -bi-invariant measures

on M (with values in E) whose support is contained in ord−1M (Λ
pos,Q
U ∩ Λ+

M ), where Λ
pos,Q
U

is the rational cone defined in §2.2.3.

Remark 2.3.1. Lemma 2.2.8 and (2.15) imply that µM belongs to H+
M .

Lemma 2.3.2. (i) Suppose that Σ is a submonoid of Λ+
M such that if λ ∈ Λ+

M and there

exists ν ∈ Σ such that λ ≤M ν, then λ ∈ Σ. Then the vector space of compactly supported

KM -bi-invariant measures on M whose support is contained in ord−1M (Σ) is closed under the

convolution product, so the vector space becomes an algebra.

(ii) If, in addition, Σ generates a strongly convex cone and the intersection of Σ with
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any shift of Λ
pos
M is finite, then convolution extends, by continuity, to the space of all KM -

bi-invariant measures on M whose support is contained in ord−1M (Σ). Then this space is also

an algebra.

Proof. The lemma follows from the usual properties of the Hecke algebra.

Lemma 1.3.1 implies that Σ = Λ
pos,Q
U ∩ Λ+

M satisfies the condition in Lemma 2.3.2(i),

and one observes from the definition that Λ+
U also satisfies condition (ii). Therefore H+

M is

an algebra with respect to convolution.

Let H+
T denote the space of KT -bi-invariant measures on T whose support is contained

in ord−1T (Λ
pos,Q
U ∩Λ). Lemma 2.3.2(ii) implies that H+

T is an algebra with respect to convo-

lution. Observe that the Weyl group of M acts on H+
T .

Using our fixed Haar measures, we identify locally constant functions on M (resp. T )

with locally constant measures on M (resp. T ). We also fix the Haar measure on U−B ∩M

such that U−B ∩KM has measure 1.

Lemma 2.3.3. The usual Satake transform extends to an isomorphism CT : H+
M →

(H+
T )WM given by the formula

CT(h)(t) = δB∩M (t)−1/2
∫

U−B∩M
h(tn̄)dn̄, (2.16)

where h ∈ H+
M is considered as a function on M .

Here CT stands for ‘constant term’. Since the image of the Satake transform is WM -

invariant, (2.16) does not depend on the choice of Borel subgroup of M .

Proof. Let 1
ord−1M (λ)

denote the characteristic function of ord−1M (λ) ⊂ M for λ ∈ Λ+
M . It

is known (cf. [17, §4.2]) that CT(1
ord−1M (λ)

) does not vanish on ord−1T (λ′), λ′ ∈ Λ+
M , only

if λ′ ≤M λ. Thus we deduce that CT is well-defined and an isomorphism from the usual

Satake isomorphism and the fact that Λ
pos,Q
U ∩ Λ+

M satisfies Lemma 2.3.2.
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Remark 2.3.4. Note that the algebra H+
T is isomorphic to the completion of the semigroup

algebra of Λ
pos,Q
U ∩Λ at the augmentation ideal. In particular, it is a local ring, and ĥ ∈ H+

T

is a unit if and only if ĥ(1) 6= 0. We deduce that H+
M and (H+

T )WM are also complete local

rings.

2.3.3 Gindikin–Karpelevich formula

In this subsection we rewrite the non-Archimedean Gindikin–Karpelevich formula3 as a

formula for CT(µM ) ∈ (H+
T )WM .

Recall that we defined δP (m) = |detAdLie(U)(m)| for m ∈ M . Let 2ρ̌P := 2ρ̌ − 2ρ̌M

be the sum of the positive roots in G that are not roots of M . For m ∈ M , we have

δP (m) = q
−〈2ρ̌P ,ordM (m)〉
v .

For λ ∈ Λ, let 1
ord−1T (λ)

denote the characteristic function of ord−1T (λ) ⊂ T . Set

eλ = q
〈ρ̌P ,λ〉
v · 1

ord−1T (λ)
∈ H+

T .

Proposition 2.3.5. We have

CT(µM ) =
∏

α∈Φ+
G−ΦM

1− q−1v eα

1− eα
, (2.17)

where the r.h.s. is considered as an element of (H+
T )WM by Remark 2.3.4.

Proof. For the purpose of this proof, we may assume E = Q (since µM takes values in Q).

Let λ̌ ∈ Λ̌⊗C satisfy Re〈λ̌, α〉 > 0 for every positive coroot α of G. Let χλ̌ be the unramified

character T → C× sending t 7→ q
−〈λ̌,ordT (t)〉
v . Define the function φK,λ̌ on G by

φK,λ̌(k · t · n̄) = χλ̌(t)δ
1/2
B (t), k ∈ K, t ∈ T, n̄ ∈ U(B−)

3. The Gindikin–Karpelevich formula for non-Archimedean local fields is due to Langlands [48] and Mac-
Donald [50] independently, with a generalization by Casselman [18].
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where G = K · B− by the Iwasawa decomposition. The Gindikin–Karpelevich formula for

non-Archimedean local fields [48, p. 18] implies that

∫

M
φK,λ̌(m)µM,v(m) =

∫

U
φK,λ̌(u)du =

∏

α∈Φ+−ΦM

1− q
−1−〈λ̌,α〉
v

1− q
−〈λ̌,α〉
v

where the l.h.s. converges absolutely. Integrating overM = KM ·(B
−∩M) using the Iwasawa

decomposition (cf. [17, Equations (5), (10)]), the l.h.s. equals
∫
T χλ̌(t)δ

1/2
P (t) CT(µM,v)(t)dt.

Note that for ν ∈ Λ, we have
∫
T χλ̌(t)δ

1/2
P (t)eν(t)dt = q

−〈λ̌,ν〉
v . Therefore equation (2.17)

holds after integrating against χλ̌ for any λ̌ ∈ Λ̌⊗C satisfying Re〈λ̌, α〉 > 0 for all α ∈ Φ+
G.

This implies the equality (2.17) of elements in (H+
T )WM .

Corollary 2.3.6. The measure µM is invertible in H+
M .

Proof. The Gindikin–Karpelevich formula (2.17) implies that CT(µM )(1) = 1, so CT(µM )

is invertible by Remark 2.3.4. The extended Satake isomorphism (2.16) then implies that

µM is invertible.

Let νM ∈ H
+
M denote the convolution inverse of µM . We consider it as aKM -bi-invariant

measure on M .

Corollary 2.3.7. The operator RKP : CK
P−,+

→ CKP,− is an isomorphism. The inverse is

given by the formula

(RKP )−1(ϕ)(m) =

∫

M
δP (m1m)ϕ(m1m)νM (m1), (2.18)

where ϕ ∈ CKP,−, m ∈M .

Proof. Define ξ ∈ Cb(XP )
K ×K by ξ(m, 1) = νM (m) for m ∈M . The fact that νM belongs

to H+
M implies that ξ indeed has bounded support. Then the r.h.s. of (2.18) equals Tξ(ϕ),

where Tξ : CP,− → CP−,+ is defined in Lemma 2.2.7. In particular, the r.h.s. of (2.18) is

well-defined. Note that by the Iwasawa decomposition, CK
P−,+

and CKP,− identify with the
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same space of KM -invariant functions on M . Equation (2.14) expresses RKP in terms of the

convolution action of µM on CK
P−,+

= CKP,−. This action is compatible with the convolution

product of H+
M . Thus we deduce from invertibility of µM that RKP is an isomorphism with

inverse given by (2.18).

2.3.4 Langlands’ reformulation

We will reformulate the Gindikin–Karpelevich formula in terms of Langlands’ reinterpreta-

tion of the classical Satake isomorphism.

Let Ǧ (resp. M̌, Ť ) denote the Langlands dual group of G (resp. M, T ) over E. Let ǔP

be the Lie algebra corresponding to the roots Φ+
G − ΦM in Ǧ, so ǔP is a M̌ -module by the

adjoint action AdǔP .

The map 1
ord−1T (λ)

7→ λ defines an isomorphism C∞c (T )KT ∼= E[Ť ], which is compatible

with theWM -action. Recall that E[Ť ]WM = E[M̌ ]M̌ , where M̌ acts on itself by conjugation.

Let K(Rep(M̌)) denote the Grothendieck group of the abelian category of finite dimensional

M̌ -modules. Give K(Rep(M̌)) the tensor product multiplication. Then we have an algebra

isomorphism by taking characters:

K(Rep(M̌))⊗
Z
E

Ch
−→ E[M̌ ]M̌ : [V ] 7→ tr(σ, V ), σ ∈ M̌.

Let Rep+(M̌) denote the subcategory of M̌ -modules with weights contained in Λ
pos,Q
U .

Since 2ρ̌P ∈ Λ̌ is perpendicular to all coroots ofM , we may consider it as a central cocharac-

ter of M̌ . We have a non-negative grading of the Grothendieck group K(Rep+(M̌)) by the

eigenvalues of 2ρ̌P . Let K+(Rep(M̌)) be the completion of K(Rep+(M̌)) with respect to

the augmentation ideal of this grading. Then one sees that Ch−1 ◦CT extends to an algebra

isomorphism

S : H+
M → K+(Rep(M̌))⊗̂E,

where ⊗̂ is the completed tensor product.
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Let V ∈ Rep(M̌). Consider the expression
∑
n t
n[Symn V ], which is a formal series in

K(Rep(M̌))[[t]]. Here t is a formal parameter (that is unrelated to the torus). It is well-known

that the inverse of this series equals

Λ(t, V ) :=
∑

n

(−t)n[∧nV ].

If we consider coefficients in E[t] rather than E, we have tr(σ,Λ(t, V )) = det(Id−σ · t, V )

for σ ∈ M̌(E).

Suppose that the weights of V are contained in Λ
pos,Q
U − {0}. Let τ ∈ E×. Then the

series

S(τ, V ) :=
∑

n

τn[Symn V ]

is a well-defined element of the completed Grothendieck group K+(Rep(M̌))⊗̂E, and it is

the inverse of Λ(τ, V ) ∈ K+(Rep(M̌))⊗̂E.

The central cocharacter 2ρ̌P defines a non-negative M̌ -module grading of ǔP by the

eigenspace decomposition. Let gri(ǔP ) denote the eigenspace of AdǔP (2ρ̌P ) with weight

2ai, where ai is a positive integer. Then in the above language, equation (2.17) and its

multiplicative inverse have the reformulations

S(µM,v) =
∏

i

Λ(q−1+aiv , gri(ǔP ))

Λ(qaiv , gri(ǔP ))
, S(νM,v) =

∏

i

Λ(qaiv , gr
i(ǔP ))

Λ(q−1+aiv , gri(ǔP ))
. (2.19)

The formula for S(µM,v) essentially appears in [48, p. 33].

Using the equality Λ(q−1+aiv , gri(ǔP ))
−1 = S(q−1+aiv , gri(ǔP )), we have the expansion

Λ(qaiv , gr
i(ǔP ))

Λ(q−1+aiv , gri(ǔP ))
=

(
∑

n

(−1)n[∧n gri(ǔP )] · q
ain
v

)(
∑

n

[Symn gri(ǔP )] · q
−n+ain
v

)

(2.20)

in K+(Rep(M̌))⊗̂E.
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2.3.5 Asymptotics on K-invariants

Let δK ∈ C∞c (G) denote the characteristic function of K. Note that AsympP (δK) =

(δK ⊗ 1) ∗ ξP = (1⊗ δK) ∗ ξP is K ×K-invariant. Using (2.18) and (2.11), we deduce the

formula

AsympP (δK)(m, 1) = νM (m). (2.21)

When P = B is a Borel subgroup and Fv has characteristic 0, (2.21) is proved in [59,

Theorem 6.8] in the more general setting of spherical varieties.

Remark 2.3.8. Note that νM (1) = CT(νM )(1) = 1 by the explicit formula (2.17). Thus

(2.21) implies that AsympP (δK) takes constant value 1 on the K ×K orbit of (1, 1) ∈ XP .

In the notation of Remark 2.2.3 we also see that AsympP (δK) has support contained in

XP(ov) since νM ∈ H
+
M .

2.4 The bilinear form B

We work over the function field F with adele ring A. Let X be the corresponding geometri-

cally connected smooth projective curve over Fq. In this section, we define the bilinear form

B and prove Theorem 2.1.2.

In our notation, we will add a subscript v when referring to the objects or spaces defined

in §2.2 over Fv (e.g., CP becomes CP,v, AsympP becomes AsympP,v).

2.4.1 Definition of B

Fix a Haar measure on G(A). For f1, f2 ∈ Ac, set

B(f1, f2) :=
∑

P

(−1)dimZ(M) ·BP (f1, f2) (2.22)

where the sum ranges over standard parabolic subgroups P ⊂ G with Levi subgroupM , and

BP is a G(A)-invariant bilinear form defined in §2.4.2 below. The form B is G(A)-invariant
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since each BP is. It will also be evident that B is symmetric. Let us note that BP and B

slightly depend on the choice of a Haar measure on G(A).

2.4.2 Definition of BP

Fix a standard parabolic subgroup P . Define the boundary degeneration

XP = (G×G)/(P ×
M
P−)

as in §2.2.2, where XP is now a strongly quasi-affine variety over Fq. Let XP denote the

affine closure.

The topological space XP (A) is isomorphic to the restricted product of XP (Fv) with

respect to the compact subspaces XP (ov). The topological space XP (A) is isomorphic to the

restricted product of XP (Fv) with respect to XP (ov). Recall that the topology on XP (A) is

not the subspace topology induced from XP (A).

We say that a function on XP (A) has bounded support if the support is relatively compact

in XP (A). Let Cb(XP (A)) denote the space of K ×K-finite C∞ functions on XP (A) with

bounded support.

Note that the action of P−×P on 1 ∈ G and (1, 1) ∈ XP have the same stabilizer equal

to the diagonal embedding ofM . Fix the measure on XP (A) to be the unique G(A)×G(A)-

invariant measure such that on the P−(A)×P (A)-orbit of (1, 1), it coincides with the re-

striction of the chosen Haar measure on G(A) to P−(A) · P (A).

Define AsympP : C∞c (G(A))→ Cb(XP (A)) by

AsympP (⊗
v
fv) = ⊗

v
AsympP,v(fv) (2.23)

where fv ∈ C∞c (G(Fv)) and fv = δKv
is the characteristic function of Kv for almost all

v. Observe that AsympP is well-defined since AsympP,v(δKv
) equals 1 on XP (ov) by Re-

mark 2.3.8. The product ⊗v AsympP,v(fv) has bounded support in XP (A) because the
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support of AsympP,v(δKv
) is contained in XP (ov) by Remark 2.3.8.

Define the generalized function ξP ∈ S
∗(XP (A)) by

ξP = ⊗
v
ξP,v (2.24)

where ξP,v ∈ S
∗(XP (Fv)) is defined by (2.9). Equation (2.24) is well-defined because any

element of C∞c (XP (A)) is Kv-invariant for almost all v, and δKv
∗ ξP,v = AsympP,v(δKv

)

equals 1 on XP (ov) by Remark 2.3.8. From (2.10) we also deduce that ξP has essentially

bounded support, i.e., for any f̃ ∈ C∞c (G(A)), the convolution (f̃ ⊗ 1)∗ξP = (1⊗ f̃∨)∗ξP =

AsympP (f̃) has bounded support, where f̃∨(g) := f̃(g−1).

Define a bilinear form B̃P : C∞c (G(A))⊗C∞c (G(A))→ E by the formula

B̃P (f̃1, f̃2) :=
∑

x∈XP (F )

AsympP (f̃
∨
1 ∗ f̃2)(x), f̃1, f̃2 ∈ C

∞
c (G(A)), (2.25)

where f̃∨1 (g) := f̃1(g
−1), and ∗ denotes convolution over G(A). The sum is finite because

AsympP (f̃
∨
1 ∗ f̃2) has bounded support, and the intersection of the discrete subset XP (F ) ⊂

XP (A) with a bounded subset of XP (A) is finite.

Using (2.10), one can also write (2.25) as

B̃P (f̃1, f̃2) =
∑

x∈XP (F )

∫

(G×G)(A)
f̃1(g1)f̃2(g2)ξP ((g1, g2)x)dg1dg2. (2.26)

For g ∈ G(A), let δg denote the delta (generalized) function at g. Observe that

B̃P (δg ∗ f̃1, δg ∗ f̃2) = B̃P (f̃1, f̃2), g ∈ G(A). (2.27)

By (G×G)(A)-equivariance of AsympP , we have

B̃P (f̃1 ∗ δg1 , f̃2 ∗ δg2) = B̃P (f̃1, f̃2), g1, g2 ∈ G(F ). (2.28)
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We define the bilinear form BP : Ac⊗Ac → E as follows. For f1, f2 ∈ Ac, there exist

f̃1, f̃2 ∈ C
∞
c (G(A)) whose direct images are f1, f2. Set

BP (f1, f2) = B̃P (f̃1, f̃2), (2.29)

which does not depend on the choices of f̃1, f̃2 by (2.28). The form BP is G(A)-invariant by

(2.27). Formula (2.29) was suggested by Y. Sakellaridis in a private communication.

2.4.3 Restriction of BP to AK
c

Fix the Haar measure on G(A) so that K has measure 1. Let f̃1, f̃2 ∈ C
∞
c (G(A))K be left

K-invariant functions. Let δK = ⊗ δKv
denote the characteristic function of K on G(A).

Note that averaging δK ∗ δ1 = δ1 ∗ δK = δK . Let f1, f2 ∈ AKc denote the direct images of

f̃1, f̃2. We deduce from (2.26) that

BP (f1, f2) =

∫

(G×G)(A)/(G×G)(F )
f1(g1)f2(g2)bP (g1, g2)dg1dg2, (2.30)

where bP (g1, g2) =
∑

XP (F )
AsympP (δK)((g1, g2)x).

Observe that bP is obtained from AsympP (δK) ∈ Cb(XP (A))
K ×K by pull-push along

the diagram

(G×G)(A)/(G×G)(F )← (G×G)(A)
(G×G)(F )
× XP (F )→ XP (A). (2.31)

2.4.4 Geometric interpretation

As explained in [32, §1.2.3, Remark 1.2.17], we can identify4 the double cosetsK\G(A)/G(F )

with |BunG(Fq)|, the isomorphism classes of G-bundles on X. Let us give a geometric

4. The identification relies on the assumptions that any G-bundle FG on X is trivial when restricted to
SpecF and Spec ov for each place v. We know the restriction of FG to Spec ov is trivial by smoothness of
G and Lang’s theorem (any G-bundle over a finite field is trivial). The generic triviality of FG|SpecF follows
from the Hasse principle for split reductive groups over a function field, which is proved by [37].
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interpretation of bP as a function on (BunG×BunG)(Fq).

Let F1
G,F

2
G ∈ BunG(Fq) be G-bundles. Fixing trivializations of FiG×X Spec(ov) for all

places v, we get lifts of FiG ∈ K\G(A)/G(F ) to gi ∈ G(A)/G(F ) for i = 1, 2. The pre-image

of (g1, g2) in (G×G)(A)×(G×G)(F )XP (F ) under the left arrow of (2.31) is in bijection

with the set of rational sections of the morphism

(XP )F1
G,F

2
G
:= (F1

G×
X
F2
G)

G×G
× XP → X.

Given a rational section β ∈ (XP )F1
G,F

2
G
(F ), we can restrict to (XP )F1

G,F
2
G
(Fv) for any place

v, which is isomorphic to XP (Fv) by the trivializations of FiG×X Spec(ov), i = 1, 2. This

describes the right arrow in (2.31).

Let (XP )F1
G,F

2
G

:= XP
G×G
× (F1

G×
X
F2
G). We have an isomorphism (XP )F1

G,F
2
G
(ov) ∼=

XP (ov) compatible with the aforementioned identification (XP )F1
G,F

2
G
(Fv) ∼= XP (Fv).

Remark 2.3.8 implies that the support of AsympP (δK) is contained in XP (A)∩XP (oA).

Therefore AsympP (δK) does not vanish at the image of β in XP (A) only if β extends to a

regular section X → (XP )F1
G,F

2
G
. Such an extension is unique since XP is separated. Thus

bP (F
1
G,F

2
G) =

∑

β

∏

v

AsympP,v(δKv
)(βv) (2.32)

where the sum is over sections β : X → (XP )F1
G,F

2
G

that generically land in the non-

degenerate locus (XP )F1
G,F

2
G
, and βv ∈ XP (Fv) is the image of β under the right arrow in

(2.31). The Kv ×Kv-orbit of βv does not depend on the choice of trivializations.

Note that AsympP,v(δKv
)(βv) = 1 if βv ∈ XP (ov). Thus the product is only over those

places v that β sends to the degenerate locus (XP )F1
G,F

2
G
− (XP )F1

G,F
2
G
.

Remark 2.4.1. The product
∏
v AsympP,v(δKv

)(βv) is a K-invariant function on XP (A) ∩

XP (oA). Its value does not depend on the choice of trivializations of FiG×X Spec(ov), so we

may also consider it as a function AsympP (δK)(β) of β.
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Remark 2.4.2. Theorem A.3.16 interprets AsympP (δK)(β) as the trace of the geometric

Frobenius acting on the ∗-stalks of an ℓ-adic sheaf.

Proof of Theorem 2.1.2. Let F1
G,F

2
G ∈ BunG(Fq). Using the geometric interpretation (2.32)

and Theorem A.3.12, we get the equality

b(F1
G,F

2
G) =

∑

P

(−1)dimZ(M)bP (F
1
G,F

2
G),

where the sum ranges over standard parabolic subgroups. The theorem now follows from

the definition of B and the formula (2.30).

2.5 Global intertwining operators

Let P denote a standard parabolic subgroup. We define the subspaces CP,± of functions on

G(A)/M(F )U(A) and recall the definition of the constant term operator. We show that the

product of the local intertwining operators induces an operator RP : CP−,+ → CP,−, and

we prove that RP is invertible (Proposition 2.5.5). We prove Theorem 2.1.3 at the end of

the section.

We continue to add a subscript v to the notation of §2.2 when appropriate.

2.5.1 The spaces CP , CP,±

Let CP denote the space of K-finite C∞ functions on G(A)/M(F )U(A). Let CP,c ⊂ CP

stand for the subspace of compactly supported functions.

As in §2.4.4, the quotient KM\M(A)/M(F ) identifies with |BunM (Fq)|, the set of iso-

morphism classes of M -bundles on X. Recall that this identification uses the fact that any

M -bundle on X is generically trivial. Since we have an exact sequence

0 = H1(SpecF, U)→ H1(SpecF, P )→ H1(SpecF,M),
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we deduce that any P -bundle on X is also generically trivial. This allows us to make the

identification K\G(A)/P (F ) = |BunP (Fq)| by the decomposition G(A) = K · P (A). This

space projects to K\G(A)/M(F )U(A) = |BunM (Fq)|.

Let ΛG,P = π1(M) denote the quotient of Λ by the subgroup generated by the coroots

of M . It is well-known that there is a bijection degM : π0(BunM ) ≃ π1(M). Note that

ΛQ
G,P := ΛG,P ⊗Q = ΛQ

M/[M,M ]
= ΛQ

Z0(M)
. We call the composition

BunM → π1(M)→ ΛQ
G,P

the slope map. We define the map

degQP : G(A)/U(A)→ ΛQ
G,P

by setting degQP (g) equal to the slope of the M -bundle corresponding to g ∈ G(A). Equiv-

alently, if g = (gv), gv ∈ G(Fv), then degQP (g) =
∑
v degP,v(gv), where degP,v is as defined

in §2.2.5.

Let Λ
pos,Q
G,P denote the image of Λ

pos,Q
G under the projection ΛQ → ΛQ

G,P . We define the

global spaces CP,± analogously to the definitions of the local spaces CP,±,v in §2.2.5:

Let CP,+ ⊂ CP be the set of all functions ϕ ∈ CP such that degQP (suppϕ) is contained

in S0 +Λ
pos,Q
G,P for some finite subset S0 ⊂ ΛQ

G,P . Similarly, let CP,− ⊂ CP denote the set of

all ϕ ∈ CP such that − degQP (suppϕ) is contained in S0 + Λ
pos,Q
G,P for some finite set S0.

One similarly defines the spaces CP−,± ⊂ CP− . We emphasize that CP−,+ is defined with

respect to the cone−Λpos,Q
G,P . So CP−,± is the space of all ϕ ∈ CP− such that∓ degQ

P−
(suppϕ)

is contained in S0 + Λ
pos,Q
G,P for some finite set S0.

Remark 2.5.1. In the case P = G, we have Λ
pos
G,G = 0. So we observe that CG,+ = CG,− ⊂ A

is the set of functions f ∈ A such that degQG(supp f) is finite.
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2.5.2 The Harder–Narasimhan–Shatz stratification

Before discussing the constant term operator, we need to recall some reduction theory, which

we state in terms of the Harder–Narasimhan–Shatz stratification of BunM . This stratifica-

tion of BunM was defined in [38, 63, 64] in the case M = GL(n). For any reductive M it

was defined in [52, 53, 54] and [7, 6]. We also refer the reader to [61].

Let Λ
+,Q
M denote the rational cone corresponding to the monoid Λ+

M . For λ ∈ Λ
+,Q
M ,

we follow the notation of [25, Theorem 7.4.3] and let Bun
(λ)
M ⊂ BunM denote5 the quasi-

compact locally closed reduced substack of M -bundles with Harder–Narasimhan coweight

λ. We have a map HN : |BunM (Fq)| → Λ
+,Q
M , which sends an M -bundle to its unique

Harder–Narasimhan coweight. We will also use HN to denote the composition

HN : G(A)/M(F )U(A)→ |BunM (Fq)| → Λ
+,Q
M .

The map HN will be our global analog of the map ordM,v defined in (2.4).

For λ ∈ ΛQ, let [λ]P denote the projection of λ to ΛQ
G,P . Then for x ∈ G(A)/M(F )U(A),

we have [HN(x)]P = degQP (x).

Remark 2.5.2. There exists an integer N such that the image of HN lies in 1
NΛ+

M .

2.5.3 The constant term operator

We will always fix the Haar measure on U(A) so that U(A)/U(F ) has measure 1.

In §2.1.1, we defined the spaces A and Ac ⊂ A. The constant term operator CTP : A→

CP is defined by the formula

CTP (f)(g) =

∫

U(A)/U(F )
f(gu)du, f ∈ A, g ∈ G(A). (2.33)

5. In loc. cit. the stratification is defined over an algebraically closed field. To define the stratification
over Fq, we first base change to Fq and then note that the Harder–Narasimhan strata are defined over Fq by
Galois invariance.
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In other words, CTP is the pull-push along the diagram

G(A)/G(F )← G(A)/P (F )→ G(A)/M(F )U(A). (2.34)

Recall from §2.2.3 what it means for a subset of ΛQ to be bounded above (resp. below)

with respect to the partial (rational) ordering ≤Q
G.

Lemma 2.5.3. Let f ∈ Ac. Then HN(suppCTP (f)) ⊂ Λ
+,Q
M is bounded above. Conse-

quently, CTP : A→ CP sends Ac to CP,−.

Proof. If we pass to K-orbits in the diagram (2.34), then we get the Fq-points of the diagram

of stacks

BunG ← BunP → BunM . (2.35)

For θ ∈ Λ
+,Q
G , let Bun

(≤θ)
G ⊂ BunG denote the open substack of G-bundles having Harder-

Narasimhan coweight ≤Q
G θ. Let f ∈ Ac. Then the K-orbits of its support are contained

in
⋃

θ∈S

Bun
(≤θ)
G (Fq)

for a finite subset S ⊂ Λ
+,Q
G . It follows from the definition of Harder-Narasimhan coweight

that the image of

Bun
(λ)
P := BunP ×

BunM
Bun

(λ)
M , λ ∈ Λ

+,Q
M

intersects Bun
(≤θ)
G only if λ ≤Q

G θ (cf. [25, Theorem 7.4.3(3)]). Now by pull-push along the

diagram (2.35), we conclude that HN(suppCTP (f)) is contained in the set of λ ∈ Λ
+,Q
M such

that λ ≤Q
G θ for some θ ∈ S. Therefore HN(suppCTP (f)) is bounded above.

Since [HN(x)]P = degQP (x), we deduce that deg
Q
P (suppCTP (f)) ⊂ {[θ]P − µ | θ ∈ S, µ ∈

Λ
pos,Q
G,P }. By definition, this means that CTP (f) ∈ CP,−.
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2.5.4 The operator RP : CP−,+ → CP,−

Let Z denote the space of pairs (g1, g2), where g1 ∈ G(A)/P
−(F ), g2 ∈ G(A)/P (F ) have

equal image in G(A)/(P− · P )(F ). We have projections from Z to G(A)/P−(F ) and

G(A)/P (F ).

Define RP : CP−,+ → CP to be the pull-push along the diagram

G(A)/M(F )U−(A)← G(A)/P−(F )← Z → G(A)/P (F )→ G(A)/M(F )U(A).

Equivalently, RP is given by the explicit formula

RP (ϕ)(g) =

∫

U(A)
ϕ(gu)du, ϕ ∈ CP−,+, g ∈ G(A). (2.36)

It is evident from the definition that RP is G(A)-equivariant.

Proposition 2.5.4. The operator RP : CP−,+ → CP is well-defined, and the image of RP

is contained in CP,−. More specifically, for ϕ ∈ CP−,+ we have

HN(suppRP (ϕ)) ⊂ {λ− µ | λ ∈ HN(suppϕ), µ ∈ Λ
pos,Q
G }.

Proof. Let (g1, g2) ∈ Z. The quotient (K ×K)\Z identifies with the set of isomorphism

classes of the Fq-points of the stack Maps◦(X,P−\G/P ) of maps generically landing in

P−\(P− · P )/P . By [12, Proposition 3.2], the stack Maps◦(X,P−\G/P ) is isomorphic to

the relative version of the open Zastava space
◦
ZBunM . In particular, there is a map

◦
ZBunM →

H+
M , where H+

M := Maps◦(X,M\M/M) is the Hecke substack introduced in §A.1.5. This

map is induced from the contraction G→ M . The image of g1 in K\G(A)/M(F )U−(A) =

|BunM (Fq)| defines an M -bundle F1
M . Similarly, the image of g2 in K\G(A)/M(F )U(A) =

|BunM (Fq)| defines F2
M . Then (g1, g2) ∈ Z maps to a point (F1

M ,F2
M , βM ) ∈ H+

M (Fq),

where βM is an M -morphism F2
M → F1

M in the language of §A.1.1.
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Let λ1, λ2 ∈ Λ
+,Q
M be the Harder-Narasimhan coweights of F1

M ,F2
M respectively. Then

Remark A.1.9 implies that λ1−λ2 ∈ w
M
0 Λ

pos,Q
G . The definition of CP−,+ implies that the set

of λ1 ∈ Λ
+,Q
M for which ϕ(g1) 6= 0 satisfy −[λ1]P ∈ S0+Λ

pos,Q
G,P for a finite set S0. We deduce

that the intersection of HN(suppϕ) with λ2 + wM0 Λ
pos,Q
G is finite. Thus RP (ϕ)(g2) is an

integral over the K-orbits of G(A)/M(F )U−(A) corresponding to the union of Bun
(λ1)
M (Fq)

ranging over a finite set of λ1, i.e., RP (ϕ) is well-defined.

Remark A.1.9 also gives the inequality λ2 ≤
Q
G λ1, which proves the second statement of

the proposition. It immediately follows that RP (ϕ) ∈ CP,−.

2.5.5 Invertibility of RP

Below we will prove Proposition 2.5.5, which says that the operator RP : CP−,+ → CP,− is

invertible. We deduce the proposition from the local results of §2.2.

Fix the Haar measure on G(A). Recall that we defined a generalized function ξP on

XP (A) by (2.24), which slightly depends on the choice of measure on G(A). The Haar

measures on G(A) and U(A) induce a G(A)-invariant measure on G(A)/U(A).

Proposition 2.5.5. The map RP : CP−,+ → CP,− is an isomorphism. The inverse is given

by the formula

R−1P (ϕ)(g2) =

∫

G(A)/U(A)
ϕ(g1)ξP (g1, g2)dg1, ϕ ∈ CP,−, g2 ∈ G(A). (2.37)

Proof. Let us first show that the right hand side of (2.37) is well-defined for any ϕ ∈ CP,−

and g2 ∈ G(A). Since ϕ is K-finite, there exists a compact open subgroup K ′ =
∏
K ′v ⊂ K

such that ϕ is K ′-invariant. Let δK ′ ∈ C∞c (G(A)) equal 1
mes(K ′)

times the characteristic

function of K ′. Recall that (δK ′ ⊗ 1) ∗ ξP = AsympP (δK ′) ∈ Cb(XP (A)), where AsympP is

defined in §2.4.2. Thus the r.h.s. of (2.37) equals

∫

G(A)/U(A)
ϕ(g1) AsympP (δK ′)(g1, g2)dg1.
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Let ordM,v : XP (Fv) → Λ+
M be the map (2.5). Proposition 2.2.2 implies that for every v

there exists a finite subset Sv ⊂ Λ such that

ordM,v(supp(AsympP,v(δK ′v))) ⊂ {θ − µ | θ ∈ Sv, µ ∈ Λ
pos,Q
U },

and we can take Sv = {0} for almost all v by Remark 2.3.8. For g1 ∈ G(A)/U(A), consider

the image of (g1, g2) in XP (A). Let F1
M ∈ Bun

(λ1)
M (Fq) (resp. F2

M ∈ Bun
(λ2)
M (Fq)) be

the image of g1 in K\G(A)/M(F )U(A) (resp. g2 in K\G(A)/M(F )U−(A)). Lemma A.1.7

implies that

−
∑

v

logq(qv) · ordM,v(g1, g2) ≤
Q
M λ1 − λ2 ≤

Q
M −w

M
0

∑

v

logq(qv) · ordM,v(g1, g2). (2.38)

Let S = {
∑
v logq(qv) · λv | λv ∈ Sv}. Suppose AsympP (δK ′)(g1, g2) 6= 0. Then we have

λ1 ∈ {λ2 − w
M
0 θ + µ | θ ∈ S, µ ∈ wM0 Λ

pos,Q
G } (2.39)

λ2 ∈ {λ1 + θ − µ | θ ∈ S, µ ∈ Λ
pos,Q
G } (2.40)

and we emphasize that S is a finite set depending only on the stabilizer in K of ϕ. From

(2.39) and the definition of ϕ ∈ CP,−, we conclude that the r.h.s. of (2.37) is a finite integral,

which we temporarily denote T (ϕ)(g2). From (2.40) we deduce that T (ϕ) defines an element

in CP−,+.

It remains to show that T : CP,− → CP−,+ is inverse to RP . Let ϕ ∈ CP,−. Then

(2.40) implies that HN(suppT (ϕ)) ⊂ {λ + θ − µ | λ ∈ HN(suppϕ), θ ∈ S, µ ∈ Λ
pos,Q
G }.

Proposition 2.5.4 implies in turn that

HN(suppRP (Tϕ)) ⊂ {λ+ θ − µ | λ ∈ HN(suppϕ), θ ∈ S, µ ∈ Λ
pos,Q
G }.

Therefore we deduce that to show RP ◦T = id, it suffices to check the equality for ϕ ∈ CP,c.
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Any such ϕ is the pushforward of an element in C∞c (G(A)/U(A)), which is isomorphic to

the restricted tensor product of CP,c,v over all places v. Since RP ◦T is defined as a product

of local integrals, (RP ◦ T )(ϕ) = ϕ follows from Proposition 2.2.13.

Similarly, it suffices to check that T ◦ RP = id on ϕ ∈ CP−,c. This again follows from

the corresponding local statement Proposition 2.2.13.

2.5.6 A formula for BP in terms of RP

We give a formula for the bilinear formBP defined in §2.4.2 in terms of the global intertwining

operator RP . This formula is the analog of [27, Definition 3.1.1] for a general reductive group

G.

Fix some Haar measure on G(A), and fix the Haar measure on U−(A) such that the

measure of U−(A)/U−(F ) equals 1. Then we get an invariant measure onG(A)/M(F )U−(A)

and therefore a pairing between CP−,c and CP− defined by

〈ϕ1, ϕ2〉 :=

∫

G(A)/M(F )U−(A)
ϕ1(x)ϕ2(x)dx. (2.41)

Lemma 2.5.3 implies that this pairing is well-defined when ϕ1 ∈ CP−,+ and ϕ2 ∈ CTP−(Ac).

Proposition 2.5.6. For any f1, f2 ∈ Ac, one has

BP (f1, f2) = 〈R
−1
P CTP (f1),CTP−(f2)〉. (2.42)

Proof. Choose f̃1, f̃2 ∈ C
∞
c (G(A)) that pushforward to f1, f2. Then

CTP (f1)(g) =
∑

γ∈G(F )/U(F )

∫

U(A)
f̃1(guγ

−1)du, g ∈ G(A).
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The formula (2.37) directly gives

(R−1P ◦ CTP )(f1)(g2) =
∑

γ∈G(F )/U(F )

∫

G(A)
f̃1(g1γ

−1)ξP (g1, g2)dg1.

Let f̃∨1 (g) := f̃1(g
−1). By left G(A)-equivariance of AsympP , the right hand side of (2.42)

equals

∫

G(A)/P−(F )

∑

γ∈G(F )/U(F )

AsympP (f̃
∨
1 )(γ, g)f2(g)dg

=

∫

G(A)/G(F )

∑

x∈XP (F )

AsympP (f̃
∨
1 )((1, g)x)f2(g)dg.

By right G(A)-equivariance of AsympP and (2.25), we conclude that the right hand side

equals BP (f1, f2).

Proof of Theorem 2.1.3. The theorem follows immediately from (2.22) and Proposition 2.5.6.

2.6 The operator L and its inverse

We first recall basic facts from the theory of Eisenstein series. Then we define the operator

L : Ac → A in terms of the Eisenstein operator, the inverse of the standard intertwining

operator, and the constant term operator. Motivated by a characterization of Ac due to

Harder, we define the subspace Aps-c ⊂ A of “pseudo-compactly” supported functions in

§2.6.6. We check that L sends Ac to this new subspace Aps-c. Lastly, we prove that L :

Ac → Aps-c is invertible in Theorem 2.6.12 and give the formula for its inverse.

We will continue to use the notation from §2.5. In this section, we will assume that the

field of coefficients E equals C.
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2.6.1 Constant term revisited

Recall that in Lemma 2.5.3, we showed that the constant term operator CTP : A → CP

sends Ac to CP,− for all parabolic subgroups P . The proof of [37, Theorem 1.2.1] shows that

the converse is also true:

Lemma 2.6.1. For f ∈ A, we have f is compactly supported if and only if CTP (f) lies in

CP,− for all standard parabolics P .

Proof. The “only if” direction is proven by Lemma 2.5.3.

Note that if f ∈ CG,− ⊂ A, then degQG(supp f) is finite. Therefore to prove the “if”

direction, we may assume that f ∈ A and there is a fixed θ ∈ ΛQ such that

degQP (suppCTP (f)) ⊂ −Λ
pos,Q
G,P + [θ]P

for all standard parabolics P . By reduction theory, there exists a number c such that any

x ∈ G(A)/G(F ) has a representative g ∈ G(A) with 〈α̌, degQB(g)〉 > c for all simple roots α̌ of

G. Suppose f(g) 6= 0 for g ∈ G(A) with λ = degQB(g) ∈ ΛQ as above. By [51, Lemma I.2.7]

(cf. [37, Lemma 1.2.2]), there exists c′ such that if 〈α̌, λ〉 > c′ for all simple roots α̌ which are

not simple roots of M for some standard parabolic P with Levi M , then CTP (f)(g) = f(g).

Let M be the Levi such that the simple roots of M are precisely the simple roots α̌ of G

such that 〈α̌, λ〉 ≤ c′. Then CTP (f)(g) = f(g) 6= 0 implies that degQP (g) = [λ]P lies in

−Λpos,Q
G,P + [θ]P . On the other hand the choice of M implies that λ belongs in a translate of

−Λ+,Q
M ⊂ −Λpos,Q

M +ΛQ

Z(M)
. We deduce that the set of all possible λ is bounded above. We

also have 〈α̌, λ〉 > c for all simple roots α̌, so there are in fact only finitely many possibilities

for λ. We conclude that f is compactly supported.

For P =MU a standard parabolic, we also use the notation CTGM := CTP below.

Let P1 ⊂ P be standard parabolic subgroups with Levi subgroups M1 ⊂ M . Then the

constant term operator CTMM1
can be considered as an operator CTMM1

: CP → CP1 . We say
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that ϕ ∈ CP is M -cuspidal if CTMM1
(ϕ) = 0 for all standard Levi subgroups M1 ⊂M .

2.6.2 Eisenstein operator

Let P = MU be a parabolic subgroup of G. We define the Eisenstein operator6 EisP :

CP,c → Ac to be the pull-push along the diagram

G(A)/M(F )U(P )(A)← G(A)/P (F )→ G(A)/G(F ), (2.43)

where the left arrow is proper. Explicitly,

EisP (ϕ)(g) :=
∑

γ∈G(F )/P (F )

ϕ(gγ), ϕ ∈ CP,c, g ∈ G(A).

We also use the notation EisGM := EisP for P standard.

It is well known that

〈CTP (f1), ϕ2〉 = Bnaive(f1,EisP (ϕ2)) (2.44)

for f1 ∈ A, ϕ2 ∈ CP,c. By this adjunction, we see that it is actually possible to define

EisP (ϕ2) for any ϕ2 such that 〈ϕ1, ϕ2〉 is finite for all ϕ1 ∈ CTP (Ac). Lemma 2.5.3 implies

that all ϕ2 ∈ CP,+ satisfy this condition. Thus EisP extends to an operator

EisP : CP,+ → A.

2.6.3 Intertwining operators revisited

In this section we recall some facts about the standard intertwining operators corresponding

to elements of the Weyl group.

6. The authors of [51] call it “pseudo-Eisenstein”.
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Let P =MU and P ′ =M ′U ′ be standard parabolic subgroups such that M ′ = wMw−1

for some w ∈ W . Then the intertwining operator7 Rw is an operator CP,c → CP ′ defined by

the explicit formula

(Rwϕ)(g) =

∫

U ′(A)/(U ′(A)∩wU(A)w−1)
ϕ(guw)du. (2.45)

Proposition 2.6.4 below implies that if ϕ ∈ CP,c, then Rwϕ ∈ CP ′,−. The same proposition

also implies that Rwϕ ∈ CP ′ converges absolutely for any ϕ ∈ CP,+.

We will use the extra notation RGM,w = Rw when necessary for clarity (note that the

standard parabolic P ′ is determined by its Levi wMw−1).

When P = MU and P ′ = M ′U ′ are two (not necessarily standard) parabolic subgroups

containing T and M ′ = wMw−1 for w ∈ W , we will use the notation

RP ′:P,w : CP,c → CP ′,−

for the intertwining operator, which is defined by the same formula (2.45). We also use

RP ′:P to denote RP ′:P,1. So the operator RP considered in §2.5.4 is now denoted by RP :P− .

Let V ⊂ CP denote the subspace of functions ϕ ∈ CP such that RP ′:P,w(ϕ) converges

absolutely. Let V ′ ⊂ V denote the subspace of ϕ ∈ V such that RP ′:P,w(ϕ) is compactly

supported.

Proposition 2.6.2. The map RP ′:P,w : V ′ → CP ′,c is an isomorphism. The inverse map

R−1
P ′:P,w

: CP ′,c → CP is an integral operator.

Proof. It suffices to consider the case w = 1. Let ϕ ∈ V ′. Then ϕ′ := RP ′:Pϕ ∈ CP ′,c

and RP−:P ′(ϕ
′) ∈ CP−,− must equal RP−:Pϕ. The operator RP−:P : CP,+ → CP−,− is

invertible by Proposition 2.5.5, so we have (R−1
P−:P

◦ RP−:P ′)(RP ′:Pϕ) = ϕ, which proves

injectivity.

7. In [51, II.1.6], Rw is denoted M(w, π) for a cuspidal representation π. But we prefer to avoid multiple
uses of the letter M .
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Now take ϕ′ ∈ CP ′,c. Since CP ′,c ⊂ CP ′,−, we have R−1
P ′:P ′−

(ϕ′) ∈ CP ′−,+. Then ϕ :=

(RP :P ′−◦R
−1
P ′:P ′−

)(ϕ′) ∈ CP is well-defined. Moreover, RP ′:P (ϕ) = (RP ′:P ′−◦R
−1
P ′:P ′−

)(ϕ′) =

ϕ′. Hence ϕ ∈ V ′, and we have shown surjectivity of RP ′:P .

Remark 2.6.3. The operators RP ′:P,w and R−1
P ′:P,w

are defined on larger spaces of functions,

but we will not consider the corresponding support conditions in this article.

2.6.4 The composition CTP ′ ◦EisP

Let P =MU and P ′ =M ′U ′ be standard parabolic subgroups of G. Let Φ̌+
M denote the set

of positive roots of M .

Let ϕ ∈ CP,c be M -cuspidal. Then [51, Proposition II.1.7] gives the formula

(CTP ′ ◦EisP )(ϕ) =
∑

w∈W (M,M ′)

(EisM
′

wMw−1
◦RGM,w)(ϕ). (2.46)

where W (M,M ′) := {w ∈ W | w−1α̌ > 0, ∀α̌ ∈ Φ̌+
M ′

and wMw−1 is a standard Levi of

M ′}.

Proposition 2.6.4. Let ϕ ∈ CP,+ be arbitrary. Then one has

(CTP ′ ◦EisP )(ϕ) =
∑

w∈W •
M,M ′

(EisM
′

wM1w−1
◦RGM1,w

◦ CTMM1
)(ϕ) (2.47)

where W •M,M ′ := {w ∈ W | ∀α̌ ∈ Φ̌+
M , wα̌ > 0, ∀α̌ ∈ Φ̌+

M ′
, w−1α̌ > 0} and M1 :=

M ∩ w−1M ′w, and every term on the right hand side converges absolutely.

Proof. See the proof of [51, Proposition II.1.7].

2.6.5 The operator L : Ac → A

One has the operators

Ac
CTP−→ CP,−

R−1
P :P−−→ CP−,+

EisP−−→ A.
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Thus we deduce that

B(f1, f2) = Bnaive(Lf1, f2) (2.48)

where the operator L : Ac → A is defined by

L :=
∑

P

(−1)dimZ(M) EisP− ◦R
−1
P :P−

◦ CTP

and the sum ranges over the standard parabolic subgroups. Unlike the form B, the operator

L does not depend on the choice of Haar measure on G(A).

Observe that for f ∈ Ac cuspidal, we have Lf = (−1)dimZ(G)f .

Remark 2.6.5. Theorem 2.1.2 implies that the miraculous duality functor Ps-IdBunG,! defined

in [25, §4.4.8] is the D-module analog of the operator q− dimBunG · LK : AKc → AK on K-

invariants via the functions–sheaves dictionary (cf. [27, §A.8.4]).

The following proposition shows the interplay between the operator L and the Eisenstein

operators.

Proposition 2.6.6. Let P be a standard parabolic subgroup. Let ϕ ∈ CP,c be M-cuspidal.

Then

(L ◦ EisP )(ϕ) = (−1)dimZ(M)(EisP− ◦R
−1
P :P−

)(ϕ).

Proof. Let P ′ be another standard parabolic subgroup. By formula (2.46),

(EisP ′− ◦R
−1
P ′:P ′−

◦ CTP ′ ◦EisP )(ϕ) =
∑

w∈W (M,M ′)

(EisP ′− ◦R
−1
P ′:P ′−

◦ EisM
′

wMw−1
◦RGM,w)(ϕ)

(2.49)

and each term on the r.h.s. converges absolutely. Let P ′1 ⊂ M ′ be the standard parabolic

subgroup with Levi wMw−1, so EisM
′

wMw−1
= EisP ′1

. One can check that

R−1
P ′:P ′−

◦ EisP ′1
= EisP ′1

◦R−1
P ′1U

′:P ′1U
′−
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when either side converges absolutely (recall that R−1
P ′:P ′−

is defined as a product of lo-

cal integrals by (2.37)). Let P ′2 = wM
′

0 P ′−1 wM
′

0 ⊂ M ′. Let Q = P ′2U
′ be the standard

parabolic subgroup of G with Levi w′Mw′−1, w′ = wM
′

0 w. Then EisP ′1
◦R−1

P ′1U
′:P ′1U

′− =

EisP ′−2
◦R−1

P ′−2 U ′:Q−
◦ wM

′

0 , where wM
′

0 denotes right translation by a representative of wM
′

0

in M ′(F ).

From the definition (2.45), we have

(wM
′

0 ◦RGM,w)(ϕ)(g) =

∫

(U−
P ′2
U ′)(A)∩w′U−(A)w′−1

ϕ(guw′)du, g ∈ G(A).

If α̌ is a positive root of G not in M , then w′α̌ = wM
′

0 wα̌ must be negative if it is a

root of M ′, by definition of W (M,M ′). Thus U−
P ′2
U ′ ∩ w′U−w′−1 = U ′ ∩ w′U−w′−1 and

UP ′2
U ′∩w′Uw′−1 = U ′∩w′Uw′−1. We deduce that RP ′−2 U ′:Q− = wM

′

0 ◦RGM,w ◦RP :Q−,w′−1

and therefore

(R−1
P ′1U

′:P ′1U
′− ◦ w

M ′
0 ◦RGM,w)(ϕ) = R−1

P :Q−,w′−1
(ϕ)

for ϕ ∈ CP,c. Next, observe that EisP ′− ◦EisP ′−2
= EisQ− . Thus the r.h.s. of (2.49) equals

∑

w∈W (M,M ′)

(EisQ− ◦R
−1
P :Q−,w′−1

)(ϕ).

Note thatQ depends only on w′Mw′−1 and not onM ′. Summing over all standard parabolics

P ′, we get the formula

(L ◦ EisP )(ϕ) =
∑

w′∈W




∑

M ′
∣∣∣M
′∩B−⊂w′Bw′−1

w′Mw′−1⊂M ′

(−1)dimZ(M ′)


 (EisQ− ◦R

−1
P :Q−,w′−1

)(ϕ).

(2.50)

Fixing w′ ∈ W , let us classify all M ′ such that M ′ ∩ B− ⊂ w′Bw′−1 and w′Mw′−1 ⊂ M ′.

The two conditions above are equivalent to requiring ∆̌M ′ ⊂ w′Φ̌−G and ∆̌G∩w
′Φ̌M ⊂ ∆̌M ′ .
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Thus the inner sum in (2.50) equals

(1 + (−1))|∆̌G∩w
′(Φ̌−G−Φ̌M )|,

which vanishes unless w′(Φ̌−G − Φ̌M ) contains no simple roots. If w′ /∈ WM , then B 6⊂

w′Pw′−1, so w′(Φ̌+
G∪ Φ̌M ) does not contain all the simple roots, i.e., w′(Φ̌−G− Φ̌M ) contains

a simple root. Therefore in order for the sum to not vanish, w′ must be inWM andM∩B− ⊂

w′Bw′−1. Hence w′ = wM0 , and we have M ′ = M, Q = P . Since RP :P−,wM
0

= RP :P− by

M(F )-invariance, we get (L ◦ EisP )(ϕ) = (−1)dimZ(M)(EisP− ◦R
−1
P :P−

)(ϕ).

For a standard parabolic P , define the “second Eisenstein” operator Eis′P : CP,− → A by

Eis′P := EisP− ◦R
−1
P :P−

.

Let AM denote the space of smoothK-finite functions onM(A)/M(F ). Let LM : AMc →

AM denote the operator L with respect to the reductive group M . Applying ind
G(A)
P (A)

, we

also let LM denote the induced operator CP,c → CP . Recall that L
M is (−1)dimZ(M) times

the identity on M -cuspidal functions in CP,c.

Corollary 2.6.7. One has the equality

L ◦ EisP = Eis′P ◦L
M : CP,c → A. (2.51)

The operator L is self-adjoint with respect to Bnaive, so (2.51) gives

CTP ◦L = LM ◦ CT′P : Ac → CP , (2.52)

where CT′P : Ac → CP,+ is defined by CT′P = R−1
P−:P

◦ CTP− .

Remark 2.6.8. As explained in [27, §A.11.7], equation (2.51) is an analog of the “strange”

functional equation for geometric Eisenstein series stated in [30, Theorem 4.1.2].
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Remark 2.6.9. Observe that for any f ∈ Ac, we have deg
Q
G(supp f) = degQG(suppLf) ⊂ ΛQ

G,G

from the definitions (i.e., L does not change the connected component of the image of the

support in BunG). As a consequence, for any ϕ ∈ CP on which LMϕ converges, we have

degQP (suppϕ) = degQP (suppL
Mϕ).

2.6.6 The space Aps-c of “pseudo-compactly” supported functions

We are inspired by Lemma 2.6.1 to make the following definition.

Definition 2.6.10. Let Aps-c be the space of all functions f ∈ A such that CTP (f) ∈ CP,+

for all standard parabolic subgroups P ⊂ G.

Proposition 2.6.11. For any f ∈ Ac, one has Lf ∈ Aps-c.

Proof. Let P =MU be a standard parabolic subgroup of G. By (2.52), we have CTP (Lf) =

LM (CT′P (f)) and CT′P (f) ∈ CP,+. Remark 2.6.9 implies that LM (CT′P (f)) ∈ CP,+ as well.

Hence CTP (Lf) ∈ CP,+ and Lf ∈ Aps-c.

Theorem 2.6.12. The operator L : Ac → Aps-c is invertible. For f ∈ Aps-c one has

L−1f =
∑

P

(−1)dimZ(M)(EisP ◦CTP )(f). (2.53)

where the sum ranges over standard parabolic subgroups.

Proof. For f ∈ Aps-c, set L
′f equal to the r.h.s. of (2.53). First we need to check that

L′f ∈ Ac. Let P
′ be another standard parabolic. Then by (2.47),

(CTP ′ ◦EisP ◦CTP )(f) =
∑

w∈W •
M,M ′

(EisM
′

wM1w−1
◦RGM1,w

◦ CTGM1
)(f)

where W •M,M ′ = {w ∈ W | wα̌ > 0, ∀α̌ ∈ Φ̌+
M , w−1α̌ > 0, ∀α̌ ∈ Φ̌+

M ′
} is a set of
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representatives for WM ′\W/WM , and M1 =M ∩ w−1M ′w. Summing over P , we have

CTP ′(L
′f) =

∑

w∈W

∑

M1|wM1w−1⊂M ′


∑

M

∣∣∣∣
M1=M∩w

−1M ′w
w∈W •

M,M ′

(−1)dimZ(M)




(EisM
′

wM1w−1
◦RGM1,w

◦ CTGM1
)(f).

Note that ∆̌M1
is any subset of w−1Φ̌+

M ′
∩ ∆̌G, while ∆̌M − ∆̌M1

is any subset of w−1(Φ̌+
G−

Φ̌+
M ′

)∩ ∆̌G. Thus the inner sum over M vanishes unless w−1(Φ̌+
G− Φ̌+

M ′
) contains no simple

roots. This only occurs if w = wM
′

0 w0 andM1 =M . By consideringM ′1 = wM
′

0 w0M1w0w
M ′
0

instead of M1, we see that

CTP ′(L
′f) =

∑

M ′1⊂M
′

(−1)dimZ(M ′1)(EisM
′

M ′1
◦RP ′1:(M

′∩P ′1)U
′− ◦ CT(M ′∩P ′1)U

′−)(f) (2.54)

where the sum is over all Levi subgroups ofM ′, and P ′1 is the standard parabolic subgroup of

G with LeviM ′1. Let Q = (M ′∩P ′1)U
′−. Then w0w

M ′
0 QwM

′

0 w0 is a standard parabolic sub-

group. Since f ∈ Aps-c, we have CTQ(f) ∈ CQ,+. Observe that EisM
′

M ′1
◦RP ′1:Q

= RP ′:P ′− ◦

EisM
′

M ′1
when either side converges absolutely. Also note that degQ

P ′
(suppEisM

′

M ′1
(CTQ f)) =

degQ
P ′
(supp(CTQ f)). From this we deduce that (EisM

′

M ′1
◦CTQ)(f) ∈ CP ′−,+. Therefore

(RP ′:P ′− ◦ Eis
M ′

M ′1
◦CTQ)(f) ∈ CP ′,−.

Consequently, CTP ′(L
′f) ∈ CP ′,− and L′ defines an operator Aps-c → Ac.

Now we check that L′ is inverse to L. For f ∈ Aps-c, it follows from (2.54) and the
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ensuing discussion that

LL′f =
∑

P ′

∑

P ′1⊂P
′

(−1)dimZ(M ′)−dimZ(M ′1)(EisP ′− ◦R
−1
P ′:P ′−

◦RP ′:P ′− ◦ Eis
M ′

M ′1
◦CT(M ′∩P ′1)U

′−)(f).

Observe that EisP ′− ◦Eis
M ′

M ′1
= Eis(M ′∩P ′1)U

′− . Set M ′2 := wM
′

0 M ′1w
M ′
0 and let P ′2 be

the corresponding standard parabolic subgroup. Then Eis(M ′∩P ′1)U
′− ◦CT(M ′∩P ′1)U

′− =

EisP ′−2
◦CTP ′−2

. Hence

LL′f =
∑

P ′2



∑

P ′2⊂P
′

(−1)dimZ(M ′)−dimZ(M ′2)


 (EisP ′−2

◦CTP ′−2
)(f).

The inner sum vanishes unless P ′2 = G. Therefore LL′f = f .

For f ∈ Ac, we apply (2.52) to get

L′Lf =
∑

P

∑

M1⊂M

(−1)dimZ(M)−dimZ(M1)(Eis(M∩P−1 )U ◦CT
′M
M∩P−1

◦CT′P )(f),

where P = MU ranges over the standard parabolic subgroups, M1 ranges over Levi sub-

groups of M , and P1 ⊂ G is the standard parabolic subgroup with Levi M1. Observe that

CT′M
M∩P−1

◦CT′P = CT′
(M∩P−1 )U

. Conjugating by wM0 , one sees that

Eis(M∩P−1 )U ◦CT
′
(M∩P−1 )U

= EisP2 ◦CT
′
P2
,

where P2 is the standard parabolic subgroup with Levi M2 := wM0 M1w
M
0 . Then

L′Lf =
∑

P2


 ∑

P2⊂P

(−1)dimZ(M)−dimZ(M2)


 (EisP2 ◦CT

′
P2
)(f),

and the inner sum vanishes unless P2 = G. Therefore L′Lf = f , and we have proved that
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L′ is the inverse of L.

Remark 2.6.13. We observe that formula (2.53) for L−1 may be thought of as an analog

of the Aubert–Zelevinsky involution for smooth representatives of a p-adic group: Let Fv

denote a non-Archimedean local field. For every smooth G(Fv)-module M one can form a

complex

0→M →
⊕

P

iGP r
G
P (M)→ · · · → iGBr

G
B(M)→ 0

where iGP , r
G
P denote, respectively, the parabolic induction and Jacquet functors, and the

sum in the i-th term runs over standard parabolic subgroups of corank i in G. We call this

complex the Deligne–Lusztig complex associated to M and denote it by DL(M). Analogous

complexes were considered in [22] for representations of a finite Chevalley group. In the

Grothendieck group, we have

[DL(M)] =
∑

P

(−1)dimZ(G)−dimZ(M)[iGP r
G
P (M)]

where the sum ranges over standard parabolic subgroups. In fact, this defines an involution

of the Grothendieck group, which is often called the Aubert–Zelevinsky involution. If one

considers EisP ,CTP as global analogs of iGP , r
G
P , respectively, then formula (2.53) suggests

that L−1 is a global analog of the Aubert–Zelevinsky involution (although L−1 is no longer

an involution).

Remark 2.6.14. The main result of [30] (namely, Theorem 0.1.6) says that the stack BunG

is miraculous, i.e., the functor Ps-IdBunG,! : D-mod(BunG)co → D-mod(BunG) is an equiv-

alence. This equivalence is a D-module analog of the part of Theorem 2.6.12 that says that

the operator LK : AKc → AK induces an isomorphism AKc → AKps-c.

The formula (2.53) for L−1 may be useful in describing the functor inverse to Ps-IdBunG,!

(we expect that one can mimic the construction of the Deligne–Lusztig complex using the

functors EisenhP ,CTenh
P defined in [31, §6]). We refer the reader to [27, Conjecture C.2.1] for
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an explicit conjecture in the case G = SL(2).
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CHAPTER 3

RADON INVERSION FORMULAS OVER LOCAL FIELDS

3.1 Introduction

3.1.1 Some notation

Let F be a local field (i.e., F is either non-Archimedean or R or C). Let G denote the

topological group GLn(F ) for an integer n ≥ 2.

Let K be the standard maximal compact subgroup of G (i.e., if F is non-Archimedean

then K = GLn(O), where O ⊂ F is the ring of integers, if F = R then K = O(n), and if

F = C then K = U(n)).

We fix a field E of characteristic 0; if F is Archimedean we assume that E equals C.

Unless otherwise specified, all functions will take values in E.

Let C denote the space of K-finite C∞ functions on Fn \ {0}. In §3.2.2 we define the

subspace C+ ⊂ C consisting of functions with bounded support and the subspace C− ⊂ C

consisting of functions supported away from a neighborhood of 0.

3.1.2 Subject of this chapter

In this chapter we consider the Radon transform as an operator

R : C+ → C−.

When F is non-Archimedean, R is known to be an isomorphism [10]. An explicit formula

for the inverse was, however, not present in the literature. There is a ‘classical’ inversion

formula due to Černov [20] on the space of Schwartz functions, but its relation to R−1 is not

obvious. We formulate and prove a simple formula for R−1 in the non-Archimedean case

and relate it to Černov’s formula.
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In the Archimedean case, the invertibility of R was a priori unclear due to the nonstan-

dard nature of the function spaces C±. We prove that R is indeed an isomorphism when F

is Archimedean and provide formulas for R−1 (here K-finiteness of C plays a crucial role).

3.1.3 Motivation

Our interest in the operator R originates from the classical theory of automorphic forms.

Let G denote the algebraic group SL2 and U (resp. U−) the subgroup of strictly upper

(resp. lower) triangular matrices and T the maximal torus of diagonal matrices. Let B denote

the subgroup of upper triangular matrices. ThenG(F )/U(F ) = F 2\{0} andG(F )/U−(F ) =

F 2 \ {0}. The operator R coincides with the (local) intertwining operator RB : CB−,+ →

CB,− defined in §2.2.6. The spaces C± also coincide with CB,± as defined in §2.2.5

While we work only with the local field F , one also has the global analog of R defined

in Section 2.5. The global intertwining operator plays an important role in the theory of

Eisenstein series and their constant terms [16, §3.7]. The constant terms of automorphic

forms reside in the space C−(G(A)/T (F )U(A)), which makes it a natural space to study

in this setting. The results of this chapter are used to prove invertibility of the global

intertwining operator in [27]. This in turn gives explicit formulas for the bilinear form B

defined in Chapter 2 in the case G = SL(2) over any global field. These results may also be

reinterpreted as explicit formulas for the distributions ξP defined in §2.2.7. In particular,

they give definitions of ξP over an Archimedean local field, while ξP was a priori defined

only over non-Archimedean local fields.

In the situation where F is a non-Archimedean local field, the operator R−1 is essentially

the same as the ‘Bernstein map’ introduced in [10, Definition 5.3]; the precise relation be-

tween the two is explained in [10, Theorem 7.5]. The Bernstein map is also studied in [60]

(there it is called the asymptotic map) in the more general context of spherical varieties.

In the real case, the Radon transform has been studied extensively by analysts ([33], [39],

[40]) over slightly different function spaces.
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3.1.4 Structure of the chapter

In §3.2 we define the subspaces C± ⊂ C and recall the definition of the Radon transform

over a general local field F .

In §3.3, we consider the case when F is non-Archimedean. We prove that R is invertible

and give a formula for R−1 in Theorem 3.3.6. This is done by relating the Radon transform

to the Fourier transform (§3.3.3-3.3.5). We deduce the previously known Radon inversion

formula of Černov [20] from Theorem 3.3.6 in §3.3.6.

We consider the real case in §3.4. The formula for R−1 is given on each K-isotypic

component of C− in Theorem 3.4.2 in terms of convolution with a distribution on R>0.

The Mellin transform of this distribution is computed in Theorem 3.4.4. The proof of the

theorems is in §3.4.6. The invertibility of R heavily relies on the K-finiteness assumption in

the definition of C. In §3.4.7, we prove (Corollary 3.4.8) that the analog of R is not surjective

when K-finiteness is dropped from the definitions.

In §3.5, the complex case is developed in the same way as the real case. The inver-

sion formula is given in Theorem 3.5.2 and the reformulation using the Mellin transform is

Theorem 3.5.4.

3.2 Recollections on the Radon transform

3.2.1 The norm on F n

Let |·| denote the normalized absolute value on F when F is non-Archimedean and the

usual absolute value1 when F is Archimedean. For a ∈ F×, set v(a) := − log|a|. If F is

non-Archimedean log stands for logq, where q is the order of the residue field of F . If F is

Archimedean, log is understood as the natural logarithm.

We define a norm ‖·‖ on Fn as follows. If F is non-Archimedean, then ‖·‖ is the norm

1. If F = R, then the normalized absolute value coincides with the usual absolute value. If F = C, then
the normalized absolute value is the square of the usual absolute value.
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induced by the standard lattice On (i.e., ‖x‖ is the maximum of the absolute values of

the coordinates of x ∈ Fn). If F is Archimedean, then ‖·‖ is induced by the standard

Euclidean/Hermitian inner product (i.e., the square root of the sum of the absolute values

squared).

For x ∈ Fn \ {0}, set v(x) := − log‖x‖.

3.2.2 The spaces C,Cc,C±

Let C denote the space of K-finite C∞ functions on Fn \ {0} (recall that if F is non-

Archimedean, C∞ means locally constant). Let Cc ⊂ C be the subspace of compactly

supported functions on Fn \ {0}.

Given a real number N , let C≤N ⊂ C denote the set of all functions ϕ ∈ C such that

ϕ(ξ) 6= 0 only if v(ξ) ≤ N . Similarly, we have C≥N ,C>N , and so on. Let C− denote the

union of the subspaces C≤N for all N . Let C+ denote the union of the subspaces C≥N for

all N . Clearly C− ∩ C+ = Cc and C− + C+ = C.

3.2.3 Radon transform

Equip F with the following Haar measure: if F is non-Archimedean we require that mes(O) =

1; if F is Archimedean we use the usual Lebesgue measure. Let the measure on Fn be the

product of the measures on n copies of F . Fix the Haar measure on F× to be d×t := dt
|t|
.

Let f ∈ C+. The Radon transform Rf(ξ, s), for ξ ∈ Fn \ {0} and t ∈ F×, is defined by

the formula

Rf(ξ, t) =

∫

Fn
f(x)δ(ξ · x− t)dx,

where ξ · x = ξ1x1 + · · · + ξnxn and δ is the delta distribution on F . The expression for

Rf(ξ, t) can also be written directly as

Rf(ξ, t) =

∫

ξ·x=t
f(x)dµξ
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where dµξ is the measure on the hyperplane ξ · x = t such that dµξdt = dx. We get an

operator R : C+ → C− by setting

Rf(ξ) =

∫

ξ·x=1
f(x)dµξ. (3.1)

Proposition 3.2.1. For any number N one has R(C≥N ) ⊂ C≤−N .

Proof. Let f ∈ C≥N and ξ ∈ Fn \ {0} with v(ξ) > −N . Then ξ · x = 1 implies v(x) < N ,

so f(x) = 0. Therefore Rf ∈ C≤−N .

The natural action of G on Fn \ {0} induces a G-action on C by (g · f)(x) := f(g−1x)

for g ∈ G, f ∈ C, x ∈ Fn \ {0}. Then

R(g · f) = |det g|d(gT )−1Rf (3.2)

for f ∈ C+ and g ∈ G, where gT is the transpose matrix, and d = 1 if F 6= C and d = 2 if

F = C (i.e., |det g|d is the normalized absolute value of det g).

3.3 F non-Archimedean

In this section we consider the case when F is a non-Archimedean local field. Let O the ring

of integers, p the maximal ideal, ̟ a uniformizer, and Fq the residue field of F .

The main result of this section is Theorem 3.3.6. In order to state the theorem, we must

first define a new operator Aβ : C− → C+, which is done in §3.3.2.

3.3.1 K-finite functions

The action of G on Fn \ {0} is continuous and transitive. Since F is non-Archimedean, K

is an open subgroup of G, and we have the following description of K-finite functions.

Lemma 3.3.1. A C∞ function ϕ on Fn \ {0} is K-finite if and only if there exists an open

subgroup H ⊂ K such that ϕ(hξ) = ϕ(ξ) for all h ∈ H and ξ ∈ Fn \ {0}.
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Proof. Let W denote the span of the K translates of f . By assumption W is finite dimen-

sional, and this implies that there exists a compact open subset X of Fn \ {0} such that the

restriction map W → C∞(X) is injective. Any locally constant function on X is fixed by

an open subgroup of K, which proves the lemma.

One may sometimes wish to consider the group SLn(F ) rather than GLn(F ) acting on

Fn \ {0}. The next lemma shows that this does not change the corresponding subspaces of

invariant functions in C.

Lemma 3.3.2. For an integer r > 0, set Kr := ker(GLn(O) → GLn(O/p
r)). Then the

following properties of a function ϕ on Fn \ {0} are equivalent for n ≥ 2:

(i) ϕ is stabilized by Kr ∩ SLn(F ),

(ii) ϕ(ξ′) = ϕ(ξ) for ξ, ξ′ ∈ Fn \ {0} satisfying v(ξ′ − ξ) ≥ v(ξ) + r,

(iii) ϕ is stabilized by Kr.

Proof. Suppose that ϕ is stabilized by Kr∩G. Take ξ, ξ
′ ∈ Fn\{0} with v(ξ′−ξ) ≥ v(ξ)+r.

We can find a basis v1, . . . , vn of On with v1 = ̟−v(ξ)ξ and v2 = ̟−v(ξ
′−ξ)(ξ′ − ξ). Let g

send v1 to v1+̟v(ξ
′−ξ)−v(ξ)v2 and vk to vk for k > 1. Then g ∈ Kr ∩G and gξ = ξ′. Thus

ϕ(ξ′) = ϕ(ξ). This proves (i) implies (ii). The other implications are easy.

3.3.2 The operator Aβ : C− → C+

Let S′b(F ) denote the space of distributions β on F such that for any open subgroup U ⊂

O×, the multiplicative U -average2 βU has compact support and 〈βU , 1〉 = 0. Note that if

〈βU , 1〉 = 0 for some U , then it is true for all U .

We would like to define Aβ : C− → C+ for β ∈ S′b(F ) by

(Aβϕ)(x) =

∫

Fn
β(ξ · x)ϕ(ξ)dξ

2. The multiplicative U -average βU is defined by βU (t) =
1

mes(U)

∫
U
β(ut)d×u.
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but we must explain the meaning of the r.h.s.

Fix ϕ ∈ C− and x ∈ Fn \ {0}. For any open compact subgroup Λ ⊂ Fn let

I(Λ) :=

∫

Λ
β(ξ · x)ϕ(ξ)dξ.

Lemma 3.3.3. There exists Λ such that I(Λ′) = I(Λ) for any Λ′ containing Λ.

Proof. Choose ξ0 ∈ F
n such that ξ0 ·x = 1 and v(ξ0) = −v(x). Then F

n = Fξ0⊕H where H

is the hyperplane {ξ | ξ ·x = 0}. Lemma 3.3.1 implies that ϕ ∈ C− is fixed by the homothety

actions of an open subgroup U ⊂ O×. Therefore we can replace β by the multiplicative

average βU . Let p
i ⊂ F be a fractional ideal containing the support of βU . Lemma 3.3.2(ii)

implies that ϕ(sξ0 + ξ) = ϕ(ξ) if s ∈ pi and v(ξ) ≤ v(ξ0) + i − r, where ϕ is stabilized by

the congruence subgroup Kr. Put a := r − i. Let Λ := piξ0 ⊕ {ξ ∈ H | v(ξ) ≥ −v(x)− a}.

Now suppose Λ′ is a subgroup containing Λ. Define Λ′′ = {ξ ∈ Λ′ | ξ ·x ∈ pi} ⊃ Λ. Then

I(Λ′) = I(Λ′′) since pi contains the support of β. Now Λ′′ = piξ0 ⊕ (Λ′′ ∩H). Thus

I(Λ′′)− I(Λ) =

∫

ξ∈(Λ′′\Λ)∩H

∫

pi
βU (s)ϕ(sξ0 + ξ)|ξ0|dsdµx.

Note that ξ ∈ (Λ′′ \ Λ) ∩ H satisfies v(ξ) < −v(x) − a and hence ϕ(sξ0 + ξ) = ϕ(ξ). We

conclude that I(Λ′′) = I(Λ) since 〈βU , 1〉 = 0.

Put (Aβϕ)(x) := I(Λ) where Λ is as in Lemma 3.3.3.

Corollary 3.3.4. Let N be any number. If ϕ ∈ C≤−N , then Aβϕ ∈ C≥N−a, where a is an

integer depending only on β and the stabilizer of ϕ in G.

Proof. We use the notation from the proof of Lemma 3.3.3. Note that the choice of a

is independent of x ∈ Fn \ {0}. It follows from our definition above and the proof of

Lemma 3.3.3 that

(Aβϕ)(x) =

∫
ξ∈H

v(ξ)≥−v(x)−a

∫

pi
βU (t)ϕ(sξ0 + ξ)|ξ0|dsdµx,
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which is zero if v(x) < N − a.

Thus we have defined an operator Aβ : C− → C+.

Remark 3.3.5. For ϕ ∈ C− we have Aβ(gϕ) = |det g|(g
T )−1(Aβϕ) where g

T is the transpose.

In other words, the operator C− → {measures on (Fn)∗ \ {0}} defined by ϕ 7→ (Aβϕ)dx is

equivariant with respect to the action of G.

The goal of this section is to prove the following.

Theorem 3.3.6. The operator R : C+ → C− is an isomorphism. The inverse of R is Aβ,

where β is the compactly supported distribution on F equal to

1− qn−1

1− q−n
(|s− 1|−n − |s|−n).

The distributions |s− 1|−n and |s|−n are defined as in [34, Ch. 2, §2.3], i.e.,

〈|s|−n, f〉 =

∫

F
|s|−n(f(s)− f(0))ds

for a test function f ∈ C∞c (F ).

We prove Theorem 3.3.6 in §3.3.5.

Remark 3.3.7. Let β be as defined in Theorem 3.3.6. Then the integral of β along any

compact open subset of F has value in Z[1q ]. This is not true for the distribution
1−qn−1

1−q−n
|s|−n.

3.3.3 Fourier transform

We assume without loss of generality that E contains all roots of unity. Choose a nontrivial

additive character ψ of F which is trivial on O but nontrivial on ̟−1O. The Haar measure

we chose for F is self-dual with respect to ψ. Note that ψ ∈ S′b(F ). Define the Fourier

transform F : C− → C+ by

F := Aψ.
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On the other hand, we also have an operator F′ : C+ → C− defined by

F′f(ξ) =

∫

Fn
f(x)(ψ(−ξ · x)− 1)dx. (3.3)

Moreover for any number N , one observes that F′(C≥N ) ⊂ C<−N .

Proposition 3.3.8. The operators F and F′ are mutually inverse.

Proof. Proposition 3.2.1 and Corollary 3.3.4 imply that

FF′(C≥N ) ⊂ C≥N+a and F′F(C≤−N ) ⊂ C≤−N−a

on functions stabilized by Kr for a fixed r > 0. As a consequence, it is enough to check the

equalities FF′ = id and F′F = id on the subspace Cc = C+ ∩ C−.

Let f ∈ Cc. Then the usual Fourier transform f̂ is a compactly supported function on

Fn. Note that F′f(ξ) = f̂(ξ)− f̂(0). By the definition of F, we have

FF′f(x) =

∫

Λ
(f̂(ξ)− f̂(0))ψ(ξ · x)dξ

for any sufficiently large open compact subgroup Λ ⊂ Fn. Since f̂ is compactly supported,

the usual Fourier inversion formula implies that
∫
Λ f̂(ξ)ψ(ξ · x)dξ = f(x) if Λ contains the

support of f̂ . Since x is nonzero,
∫
Λ ψ(ξ · x)dξ = 0 for Λ large enough. Therefore FF′f = f .

In the other direction, let ϕ ∈ Cc. Then Fϕ(x) = ϕ̂(−x) is compactly supported on Fn.

Again the Fourier inversion formula implies that

F′Fϕ(ξ) =

∫

Fn
ϕ̂(x)ψ(−ξ · x)dx−

∫

Fn
ϕ̂(x)dx = ϕ(ξ)− ϕ(0) = ϕ(ξ).
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3.3.4 Actions on C±

For any real number a, let A≤a be the space of generalized functions α on F× whose support

is contained in {t ∈ F× | v(t) ≤ a}. Let A− denote the union of all A≤a for all a. Then A−

becomes an algebra under convolution using the measure d×t.

We have an action of A− on C− defined by

(α ∗ ϕ)(ξ) =

∫

F×
α(t)ϕ(t−1ξ)d×t

for α ∈ A−, ϕ ∈ C−, and ξ ∈ F
n \ {0}. One similarly defines A≥a, A+, and an action of

A+ on C+. There is an isomorphism σ : A≤a → A≥−a defined by

σ(α)(t) = α(t−1)|t|−n.

We would like to define a multiplicative convolution action of A+ on S′b(F ) by

(α̃ ∗ β)(s) =

∫

F×
α̃(t)β(t−1s)d×t

for α̃ ∈ A+ and β ∈ S′b(F ), but we must explain the meaning of this formula as a distribution

on F . Let S(F ) denote the space of locally constant, compactly supported functions on F .

Lemma 3.3.9. Let f ∈ S(F ) and t ∈ F×. Then
∫
F β(t

−1s)f(s)ds = 0 if v(t) is sufficiently

large.

Proof. Since f ∈ S(F ), there exists an open subgroup U ⊂ O× that stabilizes f under

homotheties. Thus we can replace β by the multiplicative average βU , which is compactly

supported. Then
∫
F β(t

−1s)f(s)ds = |t|
∫
suppβU

βU (s)f(ts)ds. If v(t) is large enough such

that f is constant on t(supp βU ), the integral vanishes since 〈βU , 1〉 = 0.
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Define the distribution α̃ ∗ β ∈ S′b(F ) by putting the value at f ∈ S(F ) to be

〈α̃ ∗ β, f〉 =

∫

F×
α̃(t)

(∫

F
β(t−1s)f(s)ds

)
d×t,

which is well-defined by Lemma 3.3.9 and the fact that α̃ ∈ A+.

Remark 3.3.10. Observe that A≤a ∗ C≤N ⊂ C≤N+a and A≥a ∗ C≥N ⊂ C≥N+a for any

numbers a and N . Moreover if α̃ ∈ A≥a and β ∈ S′b(F ) has support contained in pi, then

the support of α̃ ∗ β is contained in pa+i.

Remark 3.3.11. The convolution action of A+ on S′b(F ) is indeed an action, i.e., α̃1∗(α̃2∗β) =

(α̃1 ∗ α̃2) ∗ β for α̃1, α̃2 ∈ A+ and β ∈ S′b(F ). One sees this by restricting β to F×

and identifying A+ with the space of distributions on F× with bounded support using the

measure d×t.

Lemma 3.3.12. Let α ∈ A−, β ∈ S′b(F ), and ϕ ∈ C−. Then

Aβ(α ∗ ϕ) = σ(α) ∗ Aβϕ = Aσ(α)∗β(ϕ)

Proof. By Corollary 3.3.4 and Remark 3.3.10, we reduce to the case where α ∈ A− ∩ A+

and ϕ ∈ Cc. Consequently, α ∗ ϕ ∈ Cc. Fix x ∈ F
n \ {0}. We have

Aβ(α ∗ ϕ)(x) =

∫

Fn
β(ξ · x)

∫

F×
α(t)ϕ(t−1ξ)d×tdξ =

∫

F×
α(t)|t|n

∫

Fn
β(ξ · tx)ϕ(ξ)dξd×t.

by a change of variables. Substituting t with t−1 in the last integral shows that Aβ(α ∗ϕ) =

σ(α) ∗ Aβϕ. One observes that σ(α) ∗ Aβϕ = Aσ(α)∗β(ϕ) essentially by definition.

Remark 3.3.13. One easily checks that if α ∈ A− and f ∈ C+, then R(σ(α) ∗ f) = α ∗Rf .
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3.3.5 Relation between Radon and Fourier transforms

Note that F′ and R are both operators C+ → C−. Comparing formulas (3.1) and (3.3), we

deduce the formula

F′f = α ∗Rf (3.4)

where f ∈ C+ and α(t) := ψ(−t)− 1 for t ∈ F×.

Let β be the distribution defined in Theorem 3.3.6.

Lemma 3.3.14. We have an equality of distributions

β = σ(α) ∗ ψ.

Proof. Let f ∈ S(F ). Then 〈σ(α) ∗ ψ, f〉 =
∫
F× |t|

n(ψ(t) − 1)
(∫
F f(s)ψ(−ts)ds

)
d×t. This

is the value at f of the Fourier transform of |t|n−1(ψ(t)− 1) considered as a distribution on

F . It is well-known [34, Ch. 2, §2.5-6] that the Fourier transform of |t|n−1 is 1−qn−1

1−q−n
|s|−n.

Therefore we conclude that σ(α) ∗ ψ = β.

Observe that F = Aψ and Aβ are both operators C− → C+. Let ϕ ∈ C−. From

Lemmas 3.3.12 and 3.3.14, we deduce the equality

Aβϕ = σ(α) ∗ Fϕ. (3.5)

Proof of Theorem 3.3.6. We deduce from (3.4) and Proposition 3.3.8 that R has a left inverse

sending ϕ ∈ C− to F(α ∗ ϕ). Lemma 3.3.12 and (3.5) together say that F(α ∗ ϕ) = Aβϕ.

Applying R to (3.5) and using Remark 3.3.13, we see that RAβ = F′F = id. Therefore Aβ

is both left and right inverse to R.
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3.3.6 Comparison with Černov’s Radon inversion formula

Let f be a Schwartz (i.e., compactly supported C∞) function on Fn. Recall that the Radon

transform Rf(ξ, s) is a C∞ function on (Fn \ {0})×F (in particular it is defined at s = 0),

and Rf(ξ, s) = 0 if ‖sξ‖−1 is sufficiently large. The following “non-archimedean Cavalieri’s

condition” is also well-known:

Lemma 3.3.15. The integral
∫
F Rf(ξ, s)ds does not depend on ξ.

Proof. The integral of f over Fn along a pencil of parallel hyperplanes does not depend on

the direction of the pencil.

It was previously known ([20, Theorem 5], [46, formula (8)]) that the following inversion

formula holds:

f(x) =
1− qn−1

(1− q−1)(1− q−n)

∫

‖η‖=1
〈|s|−n,Rf(η, s+ η · x)〉dη (3.6)

where x ∈ Fn \ {0} and η ranges over norm 1 vectors in Fn.

We will deduce formula (3.6) from Theorem 3.3.6. Since f is compactly supported on

Fn, we have f ∈ C+ and Theorem 3.3.6 implies that

f(x) = AβRf(x) =

∫

v(ξ)≥N
β(ξ · x)Rf(ξ)dξ

for x ∈ Fn \ {0} and N a sufficiently large number. We can write ξ = t−1η where t ∈ F×

and η ∈ Fn with ‖η‖ = 1. This gives the equality

f(x) =

∫

v(t)≤−N

∫

‖η‖=1
β(t−1η · x)Rf(t−1η)|t|−ndηd×t.

Homogeneity of Rf implies that |t|−1Rf(t−1η) = Rf(η, t). Therefore we have the formula

f(x) =
1− qn−1

(1− q−1)(1− q−n)

∫

v(t)≤−N

∫

‖η‖=1
(|η · x− t|−n − |η · x|−n)Rf(η, t)dηdt. (3.7)
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Choose η0 ∈ F
n with v(η0) = −v(x) and η0 · x = 1. Then η · x− t = (η− tη0) · x. Note that

if v(t) > v(x), then translation by tη0 preserves the unit sphere of norm 1 vectors. Moreover

smoothness of Rf implies that Rf(η+ tη0, t) = Rf(η, t) if v(t) is sufficiently large. Therefore

the inner integral of (3.7) is zero if v(t) is sufficiently large. Thus we may integrate over all

t ∈ F and switch the order of integration.

Lemma 3.3.16. The integral
∫
‖η‖=1|η · x|

−ndη equals zero.

Proof. Using the G-action, we may assume that x = (1, 0, . . . , 0). Then η · x = η1, the first

coordinate of η. One sees that
∫
‖η‖=1|η1|

−ndη = (1 − q−1) +
∫
p|η1|

−ndη1(1 − q1−n). A

simple calculation shows that the latter expression vanishes.

Lemmas 3.3.15 and 3.3.16 imply that
∫
‖η‖=1|η ·x|

−n
∫
F Rf(η, t)dtdη = 0, so the |η ·x|−n

term in (3.7) vanishes. After a change of variables s = t − η · x, the formula (3.7) becomes

equal to Černov’s formula (3.6).

3.4 F real

In this section we prove the invertibility of R when F = R. Recall that in this case K =

O(n). The inversion formula is given in Theorem 3.4.2, and a reformulation using the Mellin

transform is given in Theorem 3.4.4. The K-finiteness of C plays a crucial role in the proofs,

so we begin by recalling the classification of the K-isotypic components of C.

The non-K-finite situation is considered in §3.4.7.

3.4.1 Spherical harmonics

Let Sn−1 denote the unit sphere centered at the origin in Rn, which has a natural action by

O(n). Let C(Sn−1) be the space of smooth K-finite functions on Sn−1. For a nonnegative

integer k, let Hk denote the space of harmonic polynomials on Rn of degree k.
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Theorem 3.4.1 ([39, Theorem I.3.1], [42, Theorem 3.1], [47]). Let Hk|Sn−1 denote the

space of harmonic polynomials restricted to Sn−1. Then

(i) the restriction map Hk → Hk|Sn−1 is an isomorphism,

(ii) C(Sn−1) =
⊕

k≥0H
k|Sn−1 as O(n)-representations,

(iii) the O(n)-representations Hk are irreducible and not isomorphic to each other.

3.4.2 Decomposing C into K-isotypes

We have a decomposition Rn \ {0} = R>0×S
n−1, with O(n) acting on the Sn−1 compo-

nent. Let C(R>0) denote the space of smooth functions on R>0 and define the subspaces

C±(R>0),Cc(R>0) as in §3.2.2.

Theorem 3.4.1 implies that there is a decomposition

C =
⊕

k≥0

C(R>0)⊗H
k.

For u ∈ C(R>0) and Y ∈ H
k, we define u⊗Y ∈ C by (u⊗Y )(x) := u(|x|) · Y ( x

|x|
).

3.4.3 Radon inversion formula

We have an isomorphism Inv : C− → C+ defined by

(Invϕ)(x) = ‖x‖−nϕ

(
x

‖x‖2

)
.

Set R̃ := Inv−1 ◦R. Consider R>0 as a subgroup of diagonal matrices in G. Then it follows

from (3.2) that R̃ is a K ×R>0 equivariant operator from C+ to C+.

Let A denote the space of distributions on R>0 supported on (0, 1]. Then A is an algebra

under the convolution product ∗ induced by the multiplication operation on R>0. The action

of R>0 on C+ induces an action of A.
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Theorem 3.4.2. The operator R : C+ → C− is an isomorphism. For ϕ ∈ C−(R>0)⊗H
k,

the inverse R−1 : C− → C+ is given by the formula

R−1ϕ = βk ∗ Inv(ϕ)

where βk is the distribution on R>0 defined by

βk(t) =
1

2n+k−2π
n−1
2 Γ(n+2k−1

2 )
tk−1

(
−
d

dt

)n+k−1(
t−k+1(1− t2)

n+2k−3
2

+

)
dt. (3.8)

The derivative d
dt is applied in the sense of generalized functions. For λ ∈ C with Re(λ) > −1,

the generalized function (1 − t)λ+ is defined by 〈(1 − t)λ+, f0(t)dt〉 =
∫ 1
0 (1 − t)λf0(t)dt for

f0 ∈ Cc(R>0). This generalized function can be analytically continued to all λ ∈ C not equal

to a negative integer [35, §I.3.2]. We define (1− t2)λ+ = (1 + t)λ · (1− t)λ+.

Corollary 3.4.3. For any number N one has R−1(C≤−N ) ⊂ C≥N .

Proof. Observe that βk is supported on (0, 1] for all k.

3.4.4 A formula for R̃ in terms of convolution

For t ∈ (−1, 1), define At : C(S
n−1) → C(Sn−1) such that (Atf)(x) is the average value of

f on the (n− 2)-sphere {ω ∈ Sn−1 | ω · x = t}. Then At is O(n)-equivariant, so by Schur’s

lemma it acts on Hk|Sn−1 by a scalar ak(t). Since H
k is stable under complex conjugation,

ak(t) is real valued. One observes that ak is a smooth function on (−1, 1), |ak(t)| ≤ 1 for all

t ∈ (−1, 1), and limt→1 ak(t) = 1.

Suppose that f ∈ C(R>0)⊗H
k and there exists C > 0 and σ > n − 1 such that

|f(x)| ≤ C‖x‖−σ for all x with ‖x‖ ≥ 1. Since the intersection of Sn−1 with the hyperplane

{ω | ω · x = t} has radius (1− t2)1/2 for a unit vector x, we deduce that

R̃f = αk ∗ f (3.9)
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where αk is the measure mes(Sn−2)·t−n ·ak(t)(1−t
2)

n−3
2 dt on the interval (0, 1) extended by

zero to the whole R>0. The convolution αk ∗f is well-defined because of the bound on |f(x)|,

and mes(Sn−2) denotes the surface area of the (n− 2)-sphere. In fact, [33, Proposition 2.11]

says that ak(t) is the scalar multiple of the Gegenbauer polynomial C
(n−22 )
k (t) normalized by

ak(1) = 1.

The Mellin transform Mαk is defined for s ∈ C by integrating ts against αk if Re(s) >

n− 1.

Theorem 3.4.4. The distribution αk is invertible in A. The inverse βk is defined by (3.8).

The Mellin transforms are given by

Mβk(s) =
1

Mαk(s)
= 21−n−kπ

1−n
2

Γ(s+ k)

Γ(s− n+ 1)
·
Γ(s−n−k2 + 1)

Γ(s+k+1
2 )

. (3.10)

Theorem 3.4.4 implies Theorem 3.4.2.

3.4.5 Relation to Fourier transform

Let S(Rn) denote the space of Schwartz functions on Rn and S′(Rn) the dual space of

tempered distributions on Rn. The Fourier transform is defined for an integrable function f

on Rn by

Ff(ξ) =

∫

Rn
f(x)e−2πiξ·xdx.

This definition can be extended [66, §I.3] to the space of tempered distributions. After this

extension, F becomes an isomorphism F : S′(Rn)→ S′(Rn) .

Let F : S′(R) → S′(R) denote the 1-dimensional Fourier transform. For f ∈ S(Rn), one

gets the Fourier transform from the Radon transform by

Ff(rω) = F (Rf(ω, t))(r) (3.11)

where F is the Fourier transform with respect to the t variable, r ∈ R, and ω ∈ Sn−1 is a
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unit vector.

Lemma 3.4.5. Let f be a locally integrable function on Rn for which there exist C > 0 and

σ > n− 1 such that |f(x)| ≤ C‖x‖−σ for all x with ‖x‖ ≥ 1. Then:

(i) Rf is a locally integrable function on Sn−1×R.

(ii) Rf(ω, t) is bounded for |t| ≥ 1.

(iii) The right hand side of (3.11) is well-defined as a generalized function on R×Sn−1.

(iv) Equation (3.11) holds as an equality between generalized functions on R>0×S
n−1.

Proof. Since Rf is defined by integrating f on a hyperplane of dimension n− 1, the bound

on |f(x)| implies that Rf is well-defined on Sn−1×R. One also uses this bound and local

integrability of f to deduce that Rf is locally integrable. If ω ∈ Sn−1 and t ∈ R with |t| ≥ 1,

then integrating in the radial direction on the hyperplane ω · x = t, we see that |Rf(ω, t)|

is bounded by a constant times
∫∞
0 (r2 + t2)−σ/2rn−2dr, which is equal to a constant times

|t|n−1−σ. This proves (ii). Property (iii) follows immediately from properties (i)-(ii).

Let ϕ be a compactly supported smooth function on Rn \ {0} = R>0×S
n−1. Consider

f as a tempered distribution on Rn. By the definition of Ff ,

∫

R>0×Sn−1
Ff(rω)ϕ(rω)rn−1drdω =

∫

Rn
f(x)

∫

R>0×Sn−1
ϕ(rω)e−2πir(ω·x)rn−1drdωdx.

(3.12)

Since t 7→
∫
R>0

ϕ(rω)e−2πirtrn−1dr is a Schwartz function on R, we deduce from the de-

composition dx = dµωdt and property (ii) applied to |f | that the integral

∫

Sn−1

∫

Rn

∣∣∣∣∣f(x)
∫

R>0

ϕ(rω)e−2πir(ω·x)rn−1dr

∣∣∣∣∣ dxdω

converges. Then the Fubini-Tonelli theorem implies that (3.12) is equal to

∫

Sn−1

∫

R

∫

R>0

Rf(ω, t)e−2πirtϕ(rω)rn−1drdtdω,

which proves (iv).
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3.4.6 Proof of Theorem 3.4.4

Let Y ∈ Hk and define f(x) = ‖x‖−s · Y ( x
‖x‖

) for s ∈ C. If n − 1 < Re(s) < n, then f is

locally integrable on Rn and satisfies the hypothesis of Lemma 3.4.5. Moreover by (3.9) and

homogeneity of f we see that

Rf(ω, t) = sgn(t)k|t|n−1−sRf(ω) = sgn(t)k|t|n−1−sMαk(s)Y (ω)

as a locally integrable function on Sn−1×R. Then Lemma 3.4.5 implies that

Ff(rω) = F (sgn(t)k|t|n−1−s)(r)Mαk(s)Y (ω).

It is well-known [35, §II.2.3] that

F (sgn(t)k|t|n−1−s)(r) = ik(2π)s−n+1 sin(π
(s−n−k+1)

2 )

π
Γ(n− s) sgn(r)k|r|s−n.

On the other hand, one can compute the Fourier transform of f directly:

Theorem 3.4.6 ([66, Theorem IV.4.1]). If 0 < Re(s) < n, then Ff(x) = γ‖x‖s−nY ( x
‖x‖

),

where γ = i−kπs−
n
2Γ(n+k−s2 )/Γ(s+k2 ).

Comparing constant multiples in the two formulas for Ff above and applying Euler’s reflec-

tion formula, we have

Mαk(s) = 2n−1−sπn/2−1
Γ(n+k−s2 )Γ(s−n−k+1

2 )Γ(n+k+1−s
2 )

Γ(s+k2 )Γ(n− s)

for n− 1 < Re(s) < n. By analytic continuation, we deduce the equality for all s ∈ C away

from poles. The duplication formula for the Γ-function implies that

Mαk(s) = 2n+k−1π
n−1
2

Γ(s− n+ 1)

Γ(s+ k)
·

Γ(s+k+1
2 )

Γ(s−n−k2 + 1)
, (3.13)
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as stated in Theorem 3.4.4. To finish the proof of Theorem 3.4.4, it remains to show that

(Mβk)
−1 equals the right hand side of (3.13). By considering the Beta function we see that

Γ(s−n−k2 + 1)/Γ(s+k+1
2 ) is the Mellin transform of ν(t)dt, where

ν(t) =
2

Γ(n+2k−1
2 )

t1−n−k(1− t2)
n+2k−3

2
+ . (3.14)

The generalized function (1 − t2)
n+2k−3

2
+ is defined in the paragraph after Theorem 3.4.2.

Multiplying the right hand side of (3.14) by Γ(s+k)/Γ(s−n+1) = (s−n+1) · · · (s+k−1)

amounts to replacing ν by Lk(ν), where Lk := (− d
dt · t−n+1) · · · (− d

dt · t+ k− 1). Observe

that Lk = tk−1(− d
dt)

n+k−1tn. Therefore Mβk = (Mαk)
−1, where βk is defined by (3.8).

This proves Theorem 3.4.4.

In the case n = 2, the formula (3.13) is well-known (cf. [68, Lemma 7.17], [16, Proposition

2.6.3]).

3.4.7 The non-K-finite situation

In this subsection we consider the situation where we remove K-finiteness from the defini-

tions of C+ and C−. Let C+ be the space of smooth functions on Rn \ {0} with bounded

support, and let C− be the space of smooth functions on (Rn)∗ \ {0} supported away from

a neighborhood of 0.

We have the operator R : C+ → C− defined by

Rf(ξ) =

∫

〈ξ,x〉=1
f(x)dµξ

(cf. formula (3.1)). One can deduce that R is injective from the injectivity of R : C+ → C−.

However we will show below that R is not surjective, and hence not an isomorphism.

Let f ∈ C+. Define Cf = supp(f)∪{0}, which is a compact subset of Rn. Let Ĉf denote

its convex hull.
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Let C ⊂ Rn be a convex set containing 0. Define C∗ ⊂ (Rn)∗ to be the set of ξ such

that the hyperplane 〈ξ, x〉 = 1 is disjoint from C. By convexity,

C∗ = {ξ | 〈ξ, x〉 < 1 for all x ∈ C}.

Observe that C∗ is a convex set3 containing 0. If Č ⊂ (Rn)∗ is a convex set containing 0, one

similarly defines the dual Č∗ ⊂ Rn. Taking duals gives mutually inverse maps between the

collection of compact convex subsets of Rn containing 0 and the collection of open convex

subsets of (Rn)∗ containing 0.

Proposition 3.4.7. The connected component of (Rn)∗ \ supp(Rf) containing 0 is equal to

(Ĉf )
∗. In particular, it is convex.

Corollary 3.4.8. The operator R : C+ → C− is not surjective.

Lemma 3.4.9. Let ξ0 ∈ (Rn)∗ \ {0}. If Rf vanishes on a neighborhood of the segment

[0, ξ0] := {tξ0 | 0 ≤ t ≤ 1}, then f vanishes on the half-space 〈ξ0, x〉 ≥ 1.

Proof. By replacing f by a compactly supported function that is equal to f outside of a

small neighborhood of 0, we may assume that f is compactly supported. There exists an

open convex neighborhood Č of [0, ξ0] such that Rf vanishes on Č. Then C = Č∗ is a

compact convex subset of Rn and C∗ = Č, so the integral of f along any hyperplane disjoint

from C vanishes. Therefore [40, Corollary 2.8] implies that supp f ⊂ C. Since ξ0 ∈ Č, one

sees that C is contained in the half-space 〈ξ0, x〉 < 1.

We have the support function H : (Rn)∗ → R associated to Cf , which is defined by

H(ξ) = sup{〈ξ, x〉 | x ∈ Cf}.

3. C∗ is called [19] the dual (polar) set of C. Note that if C is compact, then C∗ is open. If 0 is an
interior point of C, then C∗ is bounded.

100



For ξ 6= 0, the set {x | 〈ξ, x〉 = H(ξ)} is a supporting hyperplane of Ĉf . The function H

uniquely determines the compact convex set Ĉf , and (Ĉf )
∗ = H−1(R<1).

Proof of Proposition 3.4.7. It is clear that H−1(R<1) is an open subset of (Rn)∗\supp(Rf).

Note that since supp(Rf) is closed, Lemma 3.4.9 implies that if H(ξ) = 1 then ξ ∈

supp(Rf). Thus (Ĉf )
∗ = H−1(R<1) is also closed in (Rn)∗ \ supp(Rf).

3.5 F complex

In this section we prove the invertibility of R when F = C. Recall that in this case K =

U(n). The inversion formula is given in Theorem 3.5.2, and a reformulation using the Mellin

transform is given in Theorem 3.5.4. The K-finiteness of C plays a crucial role in the proofs,

so we begin by recalling the classification of the K-isotypic components of C.

3.5.1 Spherical harmonics

Let S2n−1 denote unit sphere of norm 1 vectors in Cn = R2n, which has a natural action by

U(n). Let C(S2n−1) be the space of smooth K-finite functions on S2n−1. For nonnegative

integers p, q, let Hp,q denote the homogeneous polynomials of degree p+ q on R2n that are

harmonic and satisfy

Y (λz1, . . . , λzn) = λpλ
q
Y (z1, . . . , zn)

for λ ∈ C, (z1, . . . , zn) ∈ Cn = R2n.

Theorem 3.5.1 ([42, Theorem 3.1], [47]). Let Hp,q|S2n−1 denote the space of harmonic

polynomials restricted to S2n−1. Then

(i) C(S2n−1) =
⊕

p,q≥0H
p,q|S2n−1 as U(n)-representations,

(ii) the U(n)-representations Hp,q are irreducible and not isomorphic to each other.
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3.5.2 Decomposing C into K-isotypes

We have a decomposition Cn \ {0} = R>0×S
2n−1, with O(2n) (and hence U(n)) acting on

the S2n−1 component. Let C(R>0) denote the space of smooth functions on R>0 and define

the subspaces C±(R>0),Cc(R>0) as in §3.2.2.

Theorem 3.5.1 implies that there is a decomposition

C =
⊕

p,q≥0

C(R>0)⊗H
p,q.

For u ∈ C(R>0) and Y ∈ H
p,q, we define u⊗Y ∈ C by (u⊗Y )(x) := u(‖x‖) · Y ( x

‖x‖
).

3.5.3 Radon inversion formula

We have an isomorphism Inv : C− → C+ defined by

(Invϕ)(x) = ‖x‖−2nϕ

(
x

‖x‖2

)

where x is coordinate-wise conjugation. Set R̃ := Inv−1 ◦M . Consider R>0 as a subgroup of

diagonal matrices in G. Then it follows from (3.2) that R̃ is a K ×R>0 equivariant operator

from C+ to C+.

Let A be the space of distributions on R>0 supported on (0, 1] (see §3.4.3). The action

of R>0 on C+ induces an action of A.

Theorem 3.5.2. The operator R : C+ → C− is an isomorphism. For ϕ ∈ C−(R>0)⊗H
p,q,

the inverse R−1 : C− → C+ is given by the formula

R−1ϕ = βp,q ∗ Inv(ϕ)
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where βp,q is the distribution on R>0 defined by

βp,q(t) =
1

2n+m−2πn−1Γ(m)

n+m−1∏

j=1

(
−
d

dt
· t+ p+ q − 2j

)(
t−p−q−2n+1(1− t2)m−1+

)
dt

(3.15)

where m = min(p, q).

The derivative d
dt is applied in the sense of generalized functions. The generalized function

(1 − t2)λ+ is defined by analytic continuation for λ ∈ C (see the paragraph following the

statement of Theorem 3.4.2). In particular, the regularization of 2
Γ(m)

(1 − t2)m−1+ dt at

m = 0 is equal to δ(1− t).

Corollary 3.5.3. For any number N one has R−1(C≤−N ) ⊂ C≥N .

Proof. Observe that βp,q is supported on (0, 1] for all p, q.

3.5.4 A formula for R̃ in terms of convolution

We consider the dot product on S2n−1 ⊂ Cn induced by the dot product on Cn. For

t ∈ (−1, 1), define At : C(S
2n−1) → C(S2n−1) such that (Atf)(x) is the average value of f

on the (2n− 3)-sphere {ω ∈ S2n−1 | ω · x = t}. Then At is U(n)-equivariant, so by Schur’s

lemma it acts on Hp,q|S2n−1 by a scalar ap,q(t). One observes that ap,q is a smooth function

on (−1, 1), |ap,q(t)| ≤ 1 for all t ∈ (−1, 1), and limt→1 ap,q(t) = 1.

Suppose that f ∈ C(R>0)⊗H
p,q and there exist C > 0 and σ > n − 1 such that

|f(x)| ≤ C‖x‖−2σ for all x with ‖x‖ ≥ 1. One can deduce as in the real case that

R̃f = αp,q ∗ f (3.16)

where αp,q is the measure mes(S2n−3) · t1−2n · ap,q(t)(1 − t2)n−2dt on the interval (0, 1)

extended by zero to the whole R>0. The convolution αp,q ∗f is well-defined due to the bound

on |f(x)|, and mes(S2n−3) denotes the surface area of the (2n − 3)-sphere. By considering
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zonal spherical functions, one can check [69, Lemma 1.2] that ap,q(t) is the scalar multiple

of the Jacobi polynomial P
(n−2,|p−q|)
min(p,q)

(2t2 − 1) normalized by ap,q(1) = 1.

The Mellin transform Mαp,q is defined for s ∈ C by integrating ts against αp,q if Re(s) >

2n− 2.

Theorem 3.5.4. The distribution αp,q is invertible in A. The inverse βp,q is defined by

(3.15). The Mellin transforms are given by

Mβp,q(s) =
1

Mαp,q(s)
= π1−n

Γ(s+p+q2 )

Γ(
s+|p−q|

2 − n+ 1)
·
Γ(s−p−q2 − n+ 1)

Γ(
s−|p−q|

2 − n+ 1)
. (3.17)

Theorem 3.5.4 implies Theorem 3.5.2.

3.5.5 Relation to the Fourier transform

Let S(Cn) denote the space of Schwartz functions on Cn and S′(Cn) the dual space of

tempered distributions on Cn. The Fourier transform is defined for an integrable function f

on Cn by

Ff(ξ) =

∫

Cn
f(x)e−2πiRe(ξ·x)dx.

This definition coincides with the one from §3.4.5 by identifying Cn = R2n. The Fourier

transform can be extended to an isomorphism of tempered distributions F : S′(Cn)→ S′(Cn)

.

Let F : S′(C)→ S′(C) denote the Fourier transform over C. For f ∈ S(Cn), one gets Ff

from the Radon transform by

Ff(rω) = F (Rf(ω, t))(r) (3.18)

where F is the Fourier transform with respect to the t variable, r ∈ C, and ω ∈ S2n−1 is

a unit vector. We have the following complex analog of Lemma 3.4.5, which is proved in

exactly the same way.
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Lemma 3.5.5. Let f be a locally integrable function on Cn for which there exist C > 0 and

σ > n− 1 such that |f(x)| ≤ C‖x‖−2σ for all x with ‖x‖ ≥ 1. Then:

(i) Rf is a locally integrable function on S2n−1×C.

(ii) Rf(ω, t) is bounded for |t| ≥ 1.

(iii) The right hand side of (3.18) is well-defined as a generalized function on C×S2n−1.

(iv) Equation (3.18) holds as an equality between generalized functions on R>0×S
2n−1.

3.5.6 Proof of Theorem 3.5.4

Let Y ∈ Hp,q and define f(x) = ‖x‖−s · Y ( x
‖x‖

) for s ∈ C. If 2n − 2 < Re(s) < 2n, then f

is locally integrable on Cn and satisfies the hypothesis of Lemma 3.5.5. Moreover by (3.16)

and homogeneity of f we see that

Rf(ω, t) = tptq|t|2n−2−p−q−sR̃f(ω) = tptq|t|2n−2−p−q−sMαp,q(s)Y (ω)

as a locally integrable function on S2n−1×C. Then Lemma 3.5.5 implies that

Ff(rω) = F (tptq|t|2n−2−p−q−s)(r)Mαp,q(s)Y (ω)

as generalized functions on R>0×S
2n−1.

Lemma 3.5.6. If 2n− 2 < Re(s) < 2n, then

F (tptq|t|2n−2−p−q−s)(r) = πs−2n+1i−|p−q|
Γ(

2n+|p−q|−s
2 )

Γ(
s−2n+2+|p−q|

2 )
rprq|r|s−2n−p−q

as locally integrable functions on C.

Proof. Apply Theorem 3.4.6 for n = 2, k = |p− q|, and Y (x1, x2) = (x1 + ix2)
p−q if p ≥ q

or Y (x1, x2) = (x1 − ix2)
q−p if p ≤ q.

Alternatively, we can use Theorem 3.4.6 to find that Ff(x) = γ‖x‖s−2nY ( x
‖x‖

), where
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γ = i−p−qπs−nΓ(2n+p+q−s2 )/Γ(s+p+q2 ). Comparing the two formulas we have derived for

Ff and applying Euler’s reflection formula, we conclude that

Mαp,q(s) = πn−1
Γ(

s+|p−q|
2 − n+ 1)Γ(

s−|p−q|
2 − n+ 1)

Γ(s+p+q2 )Γ(s−p−q2 − n+ 1)
, (3.19)

as stated in Theorem 3.5.4. The equation holds a priori for 2n − 2 < Re(s) < 2n, and we

deduce by analytic continuation that it holds for all s ∈ C, away from poles.

To finish the proof of Theorem 3.5.4, it remains to show that (Mβp,q)
−1 is equal to the

right hand side of (3.19). By considering the Beta function we see that Γ(s−p−q2 − n +

1)/Γ(
s−|p−q|

2 − n+ 1) is the Mellin transform of ν(t)dt, where

ν(t) =
2

Γ(m)
t−p−q−2n+1(1− t2)m−1+ (3.20)

for m = min(p, q). Note that if m = 0, then ν(t)dt = δ(1 − t). Multiplying the right hand

side of (3.20) by Γ(s+p+q2 )/Γ(
s+|p−q|

2 −n+1) =
∏n+m−1
j=1 (s+p+q2 − j) amounts to replacing

ν by Lp,q(ν), where Lp,q is the differential operator

21−n−m
n+m−1∏

j=1

(
−
d

dt
· t+ p+ q − 2j

)
.

Theorem 3.5.4 is proved.

In the case n = 2, the formula (3.19) is well-known (cf. [68, Lemma 7.23], [28, Proposition

III.3.7]).
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APPENDIX A

GEOMETRIC REPRESENTATION THEORY

A.1 Substacks of the Hecke stack

To keep the notation consistent throughout this chapter, in this section M denotes an arbi-

trary connected split reductive group over a perfect field k.

We will attach to any algebraic normal irreducible monoid M̃ with group of units M a

substack of a symmetrized version of the Hecke stack. This substack is the global model for

the formal arc space of the embedding M →֒ M̃ , and it was also considered in [11, §2]. We

are particularly interested in the case when M is the Levi factor of a parabolic subgroup

of G and M̃ = M is the closure of the M -orbit of the coset U in G/U . The monoid M is

studied in detail in Chapter 1.

We recall the relation between the Hecke stack and the Beilinson–Drinfeld Grassmannian.

We use a symmetrized factorizable version of the affine Grassmannian. A detailed exposition

on the factorizable version of the affine Grassmannian over the Ran space can be found in

[71].

A.1.1 Recollections on normal reductive monoids

Let M̃ be an algebraic normal irreducible monoid with group of units M .

Fix a maximal torus T ⊂ M . The Renner cone Č ⊂ Λ̌Q of M̃ is the rational convex

cone corresponding by [45] to the closure of T in M̃ after base changing to an algebraic

closure of k. This cone is stable under the actions of WM and Gal(k̄/k). The Renner cone

is canonical and only depends on the abstract Cartan of M (which identifies with T after

choosing a Borel subgroup). L. Renner showed in [56, Theorem 5.4] that algebraic normal

irreducible monoids with group of units M bijectively correspond (via the Renner cone)

to convex rational polyhedral cones generating Λ̌Q as a vector space and stable under the

actions of WM and Gal(k̄/k).
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Since M is scheme-theoretically dense in M̃ , the restriction functor

Rep(M̃)→ Rep(M)

is fully faithful, so we may consider Rep(M̃) as a full subcategory of Rep(M).

We will consider the algebraic stackM\M̃/M which sends a test scheme S to the groupoid

of pairs of M -bundles F1
M ,F2

M on S equipped with a section

βM : S → M̃
M ×M
× (F1

M ×
S
F2
M ).

Such a section βM will be called an M̃ -morphism from F2
M to F1

M . By the Tannakian

formalism, giving an M̃ -morphism βM is the same as giving a collection of assignments

V ∈ Rep(M̃) βVM : V
F2
M
→ V

F1
M

where βVM is OS-linear, and the Plücker relations hold. This means that for V being the trivial

representation, βVM is the identity map OS → OS , and for an M -morphism V1⊗V2 → V3,

the diagram

(V1⊗V2)F2
M

β
V1
M ⊗β

V2
M

//

��

(V1⊗V2)F1
M

��

(V3)F2
M

β
V3
M

// (V3)F1
M

commutes. Observe that the Plücker relations imply that the assignments βVM are functorial

in V .

Observe that the fiber bundle M ×M ×M (F1
M ×S F2

M ) canonically identifies with the

scheme of isomorphisms Isom(F2
M ,F1

M ) over S. In other words, anM -morphism is an isomor-

phism of M -bundles. Therefore the stack M\M̃/M contains the open substack M\M/M ,

which canonically identifies with the classifying stack BM =M\pt of M .
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A.1.2 Definition of H̃M

Let X be a smooth projective geometrically connected curve over a field k. We consider

the mapping stack Maps(X,M\M̃/M) whose value on a test scheme S is the groupoid of

all maps X ×S → M\M̃/M . Such a map is said to be non-degenerate if the preimage of

M\M/M ⊂ M\M̃/M is a subset of X ×S whose projection on S is surjective. We will

denote

H̃M := Maps◦(X,M\M̃/M) ⊂ Maps(X,M\M̃/M)

the open substack consisting of non-degenerate maps. A map X ×S → M\M̃/M is the

datum of a pair of M -bundles F1
M ,F2

M on X ×S and an M̃ -morphism βM : F2
M → F1

M

between them. In the Tannakian language, βM is non-degenerate if and only if for every

geometric point s→ S, the restriction of βVM to the fiberX × s is generically an isomorphism.

The last condition is equivalent to requiring that βVM is an embedding of coherent sheaves

such that the quotient is S-flat.

Relation to the full Hecke stack. The projection M →M/[M,M ] induces an inclusion

Λ̌M/[M,M ] ⊂ Λ̌. Recall that Č denotes the Renner cone of M̃ , which is a WM -stable

convex polyhedral cone that generates Λ̌Q as a group. If M/[M,M ] is not finite (i.e., M

is not semisimple), then there exists a character λ̌ ∈ Λ̌ that lies in the interior of the cone

Č ∩ Λ̌Q

M/[M,M ]
. If M is semisimple, we put λ̌ = 0 (in this case M̃ must equal M).

Considering λ̌ as a homomorphism M̃ → A1, the open subscheme λ̌−1(Gm) coincides

with M ⊂ M̃ . The closed subscheme λ̌−1(0) has the same reduced scheme structure as

(M̃ −M)red.

Let Div+ denote the scheme of relative effective divisors of X. The map λ̌ : M̃ → A1

induces a map

H̃M → Div+ . (A.1)

More explicitly, an S-point X ×S → M\M̃/M is sent to the preimage of M\λ̌−1(0)/M ,

which is a relative effective divisor of X ×S.

109



Define the stack Hecke(M)Div+ as follows: its S-points are quadruples (D,F1
M ,F2

M , βM )

where D is a relative effective divisor on X ×S, F1
M and F2

M are two M -bundles on X ×S,

and βM is an isomorphism of M -bundles on the restrictions

F2
M |X ×S−D

∼= F1
M |X ×S−D.

From this definition it is evident that we have a closed embedding of stacks

H̃M →֒ Hecke(M)Div+ .

Remark A.1.1. The above inclusion slightly depends on the choice of λ̌, which is used to

define (A.1). This choice goes away if we consider Ran versions of the corresponding Hecke

stacks, since a point of Hecke(M)Div+ only depends on the reduced structure Dred of the

divisor D.

We let
←
h ,
→
h denote the two forgetful maps H̃M → BunM . We use the convention where

←
h is the map corresponding to F1

M .

Proposition A.1.2. The morphism H̃M → BunM ×BunM is schematic, quasi-affine, and

of finite presentation.

Proof. Consider a test scheme S and a map S → BunM ×BunM corresponding to M -

bundles F1
M ,F2

M on X ×S. Then the fiber product H̃M ×
BunM ×BunM

S is isomorphic to an

open subspace of the space of sections of the map

M̃
M ×M
× (F1

M ×
X ×S

F2
M )→ X ×S.

This map is affine and of finite presentation because M̃ is, which implies that the space of

sections is representable by a scheme affine and of finite presentation over S.

The monoid structure on M̃ allows us to compose two M̃ -morphisms F2
M → F1

M and
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F3
M → F2

M to get an M̃ -morphism F3
M → F1

M . The composition of two non-degenerate

morphisms is non-degenerate. This defines a map

comp : H̃M ×
→
h ,BunM ,

←
h

H̃M → H̃M .

Remark A.1.3. The map (A.1) takes the composition of M̃ -morphisms into the sum of

effective divisors (which is a proper map Div+×Div+ → Div+). Hence Proposition A.1.6

below implies that comp is a proper map.

Lemma A.1.4. Let FM ∈ BunM (S) for a k-scheme S. Any non-degenerate M̃-morphism

βM : FM → FM is an M-bundle automorphism.

Proof. Let V ∈ Rep(M̃). Then βVM : VFM
→ VFM

is generically an isomorphism on geomet-

ric fibers of X ×S. The same is true for det(βVM ), and Γ(X,OX) = k implies that βVM is an

isomorphism. Since M is the group of units of M̃ , we conclude that βM is an automorphism

of FM .

Corollary A.1.5. Suppose there exist M̃-morphisms βM : F2
M → F1

M and β′M : F1
M → F2

M .

Then βM , β′M are both isomorphisms.

A.1.3 Affine Grassmannians

In this section, we explain the relation between the Hecke stack and the Beilinson–Drinfeld

affine Grassmannian. We refer the reader to [71] for a far more complete treatment of the

affine Grassmannian.

For this purpose we introduce the divisor version of the jet groupM(o). ForD ∈ Div+(S),

let D̂ denote the formal completion of D in X ×S (which is a formal scheme). Define

M(o)Div+ = {(D, γ) | D ∈ Div+(S), γ ∈M(D̂)},

which is representable by a scheme affine over Div+ (cf. [71, Proposition 3.1.6]).
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We define the symmetrized version of the Beilinson-Drinfeld affine Grassmannian as

GrM,Div+ := Spec(k) ×

F0
M ,BunM ,

←
h

Hecke(M)Div+

where F0
M ∈ BunM (k) is the trivial bundle.

The Hecke stack Hecke(M)Div+ can be regarded as a twisted product BunM ×̃GrM,Div+ .

More precisely, consider the stack

Y = {(D,F1
M , γ̃) | D ∈ Div+, F

1
M ∈ BunM , γ̃ : F0

M |D̂
∼= F1

M |D̂}.

Then Y → Div+×BunM is a M(o)Div+-torsor. Observe that the group scheme M(o)Div+

also acts on GrM,Div+ over Div+. We have a canonical isomorphism

Hecke(M)Div+
∼= Y

M(o)Div+
× GrM,Div+ ,

where on the right hand side we take the fiber product Y×Div+ GrM,Div+ and quotient by

the anti-diagonal action of M(o)Div+ .

Proposition A.1.6. The morphism H̃M → BunM ×Div+ is proper, where H̃M maps to

BunM by either
←
h or

→
h .

Proof. Without loss of generality we will consider the projection
←
h : H̃M → BunM . Let

G̃rM,Div+ := Spec(k)×
F0
M ,BunM

H̃M , which is a closed subspace of GrM,Div+ . Choose a

uniformizer ̟v ∈ ov at a place v. Let C ⊂ ΛQ denote the dual of the Renner cone of M̃ .

Over a divisor nv · v supported at a single point, the fiber of G̃rM,Div+ is equal to the union

of the orbits

M(ov) · θv(̟v) ⊂ (M̃(ov) ∩M(Fv))/M(ov)

for θv ∈ C ∩ Λ+
M satisfying 〈λ̌, θv〉 = nv, where λ̌ is the character chosen in §A.1.2. Since λ̌

lies in the interior of Č ∩ Λ̌Q

M/[M,M ]
, there are only finitely many θv such that 〈λ̌, θv〉 = nv.
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We deduce, by factorization, that G̃rM,Div+ is representable by a scheme of finite type over

Div+. It is known that GrM,Div+ is ind-proper over Div+ (cf. [71, Remark 3.1.4]). Thus

G̃rM,Div+ is proper over Div+. The Proposition follows by considering H̃M as a twisted

product BunM ×̃G̃rM,Div+ as explained in §A.1.3.

A.1.4 Slope comparisons

Let π1(M) denote the quotient of Λ by the subgroup generated by coroots of M . It is

well-known that there is a bijection degM : π0(BunM ) ≃ π1(M). Note that π1(M)⊗Q =

ΛQ

M/[M,M ]
= ΛQ

Z0(M)
. We call the composition

BunM → π1(M)→ ΛQ

Z0(M)

the slope map. Its fibers are not necessary connected but have finitely many connected

components. The slope map coincides with the composition

BunM → BunM/[M,M ] → π0(BunM/[M,M ]) = ΛM/[M,M ] ⊂ ΛQ

Z0(M)
.

Following the notation of [25, Theorem 7.4.3], let Bun
(λ)
M , λ ∈ Λ

+,Q
M denote the quasi-

compact locally closed reduced substack of M -bundles with Harder-Narasimhan coweight

λ. We refer the reader to [25, §7] and [61] for statements and proofs of the main results of

reduction theory for a general reductive group.

Lemma A.1.7. Suppose F1
M ∈ Bun

(λ1)
M (k), F2

M ∈ Bun
(λ2)
M (k) for λ1, λ2 ∈ Λ

+,Q
M , and there

exists an isomorphism βM : F2
M |X−D → F1

M |X−D for a divisor D ⊂ X. At each closed point

v ∈ D, the restriction of βM to Fv determines a coweight λv ∈ Λ+
M = KM,v\M(Fv)/KM,v.

Then

wM0
∑

v

nv · λv ≤
Q
M λ1 − λ2 ≤

Q
M

∑

v

nv · λv, (A.2)

where nv = dimk(kv) is the dimension of the residue field of v.
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Proof. Consider the Harder–Narasimhan flag of F1
M : this is a canonical reduction of F1

M

to a Q-bundle F1
Q, where Q ⊂ M is the parabolic subgroup corresponding to the Harder–

Narasimhan coweight λ1. Recall that a reduction of F2
M to Q is the same as a section of

the proper map F2
M/Q := F2

M ×
M M/Q→ X. The reduction F1

Q and the isomorphism βM

determine a section X −D → F2
M/Q. By properness, this extends to a reduction F2

Q of F2
M

with an isomorphism

βQ : F2
Q|X−D → F1

Q|X−D

inducing βM . Let L denote the Levi quotient of Q, and let F1
L,F

2
L, βL denote the corre-

sponding induced objects. Then the restriction of βL to SpecFv for v ∈ D determines a

coweight νv ∈ Λ+
L via the quotient map Q → L. Since νv and λv are both induced by βQ,

we see that νv(̟v)UQ(Fv) ∩KM,vλv(̟v)KM,v 6= ∅ where ̟v ∈ ov is a uniformizer. This

implies that νv is contained in the convex hull of WM · λv (cf. [17, p. 148]).

Let ν2 ∈ ΛQ

L/[L,L]
be the slope of F2

L. Then λ1−ν2 is equal to the image of
∑
v∈D nv ·νv

under the projection ΛQ → ΛQ

L/[L,L]
= ΛQ

Z0(L)
. In particular, λ1− ν2 lies in the convex hull

of the WM -orbit of
∑
v∈D nv · νv, so λ1 − ν2 ≤

Q
M

∑
nv · λv. By the comparison theorem

[61, Theorem 4.5.1], ν2 ≤
Q
M λ2. We have shown the second inequality in (A.2). Switching

F1
M ,F2

M and considering β−1M proves the first inequality by symmetry.

Corollary A.1.8. Suppose F1
M ∈ Bun

(λ1)
M (k),F2

M ∈ Bun
(λ2)
M (k) for λ1, λ2 ∈ Λ

+,Q
M , and

there exists a non-degenerate M̃-morphism βM : F2
M → F1

M . Let C ⊂ ΛQ be the dual of the

Renner cone of M̃ . Then λ1 − λ2 belongs to the rational convex cone generated by C and

Λ
pos,Q
M .

Proof. Since βM is non-degenerate, there exists a divisor D ⊂ X such that βM |X−D is an

isomorphism. For v ∈ D, the coweight λv defined in Lemma A.1.7 corresponds to an element

in KM,v\(M(Fv)∩ M̃(ov))/KM,v. By the classification of double orbits of M(Fv)∩ M̃(ov),

the latter set identifies with C∩Λ+
M . Therefore theWM -stable cone C contains wM0

∑
nv ·λv.

The corollary follows from Lemma A.1.7.
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A.1.5 The stack H+
M

Let P be a standard parabolic subgroup of G with Levi factor M . We recall that G/U

is quasi-affine. Let G/U denote the affine closure. We embed M →֒ G/U by m 7→ mU

and define M to be the closure of M in G/U . Then M is a monoid acting on G/U (see

Chapter 1).

We now specialize the above discussion of Hecke stacks to the case M̃ =M . Let

H+
M = Maps◦(X,M\M/M) (A.3)

denote the stack studied above.

Remark A.1.9. By Lemma 1.3.4, the dual of the Renner cone ofM equals Λ
pos,Q
U . Therefore

if we are in the setting of Corollary A.1.8, the rational cone generated by Λ
pos,Q
U and Λ

pos,Q
M

is Λ
pos,Q
G , and the corollary implies that λ1 − λ2 ∈ Λ

pos,Q
G , i.e., λ2 ≤

Q
G λ1.

The rational cone generated by Λ
pos,Q
U and −Λpos,Q

M is wM0 Λ
pos,Q
G , and Lemma A.1.7 also

implies that λ1 − λ2 ∈ w
M
0 Λ

pos,Q
G .

Remarks on G. We assume for the rest of this Appendix that G has a simply connected

derived group [G,G]. The reader may refer to [61, §7] for how to remove this hypothesis,

and the relevant geometry remains the same.

The graded Ran space. Let ΛG,P := π1(M) denote the quotient of Λ by the subgroup

generated by the coroots of M . We have a natural projection Λ→ ΛG,P . Let Λ
pos
G,P denote

the submonoid of ΛG,P generated by the image of the positive coroots of G.

Any θ ∈ Λ
pos
G,P can be uniquely written as a sum

∑
njαj for j ∈ ΓG − ΓM . Let Xθ

denote
∏
X(nj). Define Ran(X,Λ

pos
G,P ) to be the disjoint union of Xθ for θ ∈ Λ

pos
G,P . Here we

are using the notation of [29], but we include 0 ∈ Λ
pos
G,P with X0 = Spec(k). We can regard

Ran(X,Λ
pos
G,P ) as the scheme of Λ

pos
G,P -colored divisors on X, which is a Λ

pos
G,P -graded version

of the Ran space. The grading allows us to use the language of factorization algebras graded

by a monoid introduced in [29, §2], which is slightly simpler than the more general set-up
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of factorization algebras from [8] (the difference is that we can replace the Ran space with

genuine schemes).

Let us review the construction of the map H+
M → Ran(X,Λ

pos
G,P ), following [62, §3.1.7].

Recall from [13] that the quotient G/[P, P ] is strongly quasi-affine, and let G/[P, P ] denote

its affine closure. Let M/[M,M ] denote the closure of M/[M,M ] in G/[P, P ] under the

natural embedding

M/[M,M ] = P/[P, P ] →֒ G/[P, P ] ⊂ G/[P, P ].

The projection G/U → G/[P, P ] extends to a map of affine closures G/U → G/[P, P ], and

therefore the projection M → M/[M,M ] extends to a map M → M/[M,M ]. This induces

a map of stacks

H+
M → Maps◦(X,M/[M,M ]/(M/[M,M ])). (A.4)

Consider Λ̌M/[M,M ] as a sub-lattice of Λ̌M . Then one can check that k[M/[M,M ]] has a

basis consisting of the characters in the submonoid Λ̌+
G∩ Λ̌M/[M,M ]. Since [G,G] is assumed

to be simply connected, Λ
pos
G,P is the monoid dual to Λ̌+

G ∩ Λ̌M/[M,M ]. We deduce that the

right hand side of (A.4) is isomorphic to the scheme Ran(X,Λ
pos
G,P ). Thus (A.4) becomes a

map of stacks

H+
M → Ran(X,Λ

pos
G,P ).

For θ ∈ Λ
pos
G,P , denote the preimage of the connected component Xθ ⊂ Ran(X,Λ

pos
G,P ) by

H+
M,Xθ .

Remark A.1.10. We defined the map (A.4) “group-theoretically” following [62, §3.1.7]. One

can also define this map using the Tannakian formalism, which is essentially done in [13, 12].

We use the character 2ρ̌P = 2ρ̌ − 2ρ̌M ∈ Λ̌M/[M,M ] to define the map (A.1), which is

then equal to the composition

H+
M → Ran(X,Λ

pos
G,P )→ Div+,
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where the last map sends Xθ to the symmetric power X(2|θ|) ⊂ Div+ for |θ| := 〈ρ̌P , θ〉.

As in §A.1.3, we can express H+
Xθ as a twisted product

H+
M,Xθ

∼= BunM ×̃Gr+
M,Xθ (A.5)

where Gr+
M,Xθ := Spec(k)×

F0
M ,BunM ,

←
h
H+
M,Xθ , using the action of the jet groupM(o)X(|θ|) .

We will always consider the twisted product with respect to the projection
←
h .

By a partition A of θ we mean a decomposition

θ =
∑

λ∈Λpos
G,P−0

nλ · λ, nλ ∈ Z+.

Let Pθ denote the set of all partitions of θ. For a partition A ∈ Pθ, let X
A :=

∏
λX

(nλ).

This is a scheme of dimension |A| :=
∑
nλ. Note that there is a natural map XA → Xθ.

Let (XA)disj ⊂ XA denote the open subscheme with all diagonals removed. A k-point

xA ∈ (XA)disj is a formal sum
∑
v∈|X| θv · v for θv ∈ Λ

pos
G,P , such that for each λ ∈ Λ

pos
G,P ,

we have nλ =
∑
v|θv=λ deg(v). The composition (XA)disj →֒ XA → Xθ is a locally closed

embedding, and the subschemes (XA)disj for A ∈ Pθ form a stratification of Xθ. Thus we

can stratify H+
M,Xθ by the substacks

H
+,A
M := H+

M,Xθ ×
Xθ

(XA)disj.

This stack H
+,A
M is the same as the one defined in [12, §1.8].

The diagonal X → Xθ corresponds to the trivial partition θ = 1 · θ, and we denote by

H
+,θ
M (resp. Gr

+,θ
M ) the stack H+

M,Xθ ×
Xθ

X (resp. the scheme Gr+
M,Xθ ×

Xθ
X).

Let A ∈ Pθ. The stack H
+,A
M is fibered over (XA)disj×BunM with respect to

←
h . Similar
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to §A.1.3, one can express H
+,A
M as a twisted product

H
+,A
M
∼= BunM ×̃Gr

+,A
M , (A.6)

where Gr
+,A
M := Gr+

M,Xθ ×Xθ(XA)disj. To define the twisted product one considers the

action of the jet group M(o)X(|A|) on Gr
+,A
M over X(|A|). The embedding

H
+,A
M →֒ H+

M,Xθ (A.7)

lies over the map of symmetric powers X(2|A|) → X(2|θ|). The latter map induces a map

of jet groups M(o)X(2|A|) → M(o)X(2|θ|) . Therefore (A.7) can be thought of as a twisted

product of idBunM with the embedding Gr
+,A
M →֒ Gr+

M,Xθ , which is equivariant with respect

to the actions of the corresponding jet groups.

Let xA ∈ (XA)disj(k) be a Λ
pos
G,P -colored divisor

∑
θv · v, and let F1

M be a k-point of

BunM . Then the fiber of H
+,A
M over this k-point (xA,F1

M ) is isomorphic to

∏
Gr

+,θv
M,v

where Gr
+,θv
M,v is the closed subscheme of the affine Grassmannian GrM,v defined in [12, §1.6].

In terms of loop and jet groups,

Gr+M,v(k) = (M(ov) ∩M(Fv))/M(ov) ⊂ GrM,v(k) =M(Fv)/M(ov).

A.1.6 Convolution products

Consider the diagram

H+
M H+

M ×
→
h ,BunM ,

←
h

H+
M

comp
oo

(pr1,pr2)
// H+

M ×H+
M (A.8)
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and recall (Remark A.1.3) that the left arrow comp is proper. Using (A.5), one sees that

comp is isomorphic to the twisted product of idBunM with the proper map

conv : Gr+
M,Xθ1

×̃Gr+
M,Xθ2

→ Gr+
M,Xθ , (A.9)

where θ = θ1+ θ2 and the left hand side is the convolution Grassmannian (cf. [71, (3.1.21)]).

We give D(H+
M ) the structure of a monoidal category by the convolution product

F̃1, F̃2 7→ F̃1 ⋆ F̃2 := comp!((pr1, pr2)
∗(F̃1⊠ F̃2)) = comp!(pr

∗
1(F̃1)⊗ pr∗2(F̃2)),

where pr1, pr2 : H+
M ×BunM H+

M → H+
M are the projection maps.

Let Sph+
M,Xθ = D(Gr+

M,Xθ)
M(o)

X(|θ|) . Define a product

⋆ : Sph+
M,Xθ1

⊗ Sph+
M,Xθ2

→ Sph+
M,Xθ ,

by F1 ⋆ F2 := conv!(F1 ⊠̃F2), which is a symmetrized version of the “external convolution

product” (cf. [71, §5.4]) for θ = θ1 + θ2.

For F1 ∈ Sph+
M,Xθ1

, F2 ∈ Sph+
M,Xθ2

, we can form the sheaves (Qℓ)BunM ⊠̃Fi on H+
M,Xθi

using (A.5). By construction, there is a canonical isomorphism

(Qℓ ⊠̃F1) ⋆ (Qℓ ⊠̃F2) ∼= Qℓ ⊠̃(F1 ⋆ F2),

We remark that ⋆ commutes with Verdier duality on Sph+
M,Xθ .

The category

Sph+M := {θ 7→ Fθ ∈ Sph+
M,Xθ}

has a natural monoidal structure with respect to ⋆: for two families {Fθ1} and {F
θ
2} the value
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of their product in Sph+
M,Xθ is

⊕

θ=θ1+θ2

F
θ1
1 ⋆ Fθ22 .

Factorization property. For θ = θ1+ θ2, let (X
θ1 ×Xθ2)disj denote the the open locus of

Xθ1 ×Xθ2 consisting of pairs of colored divisors with disjoint supports. We have a natural

étale map (Xθ1 ×Xθ2)disj → Xθ.

The schemes Gr+
M,Xθ , θ ∈ Λ

pos
G,P factorize in the sense that there exist Cartesian diagrams

(Gr+
M,Xθ1

×Gr+
M,Xθ2

) ×
Xθ

1 ×X
θ2

(Xθ1 ×Xθ2)disj //

��

Gr+
M,Xθ

��

(Xθ1 ×Xθ2)disj // Xθ

for θ = θ1 + θ2.

The internal convolution (i.e., fusion) product (cf. [71, (5.4.4)])

⊛ : D(Gr
+,θ1
M )M(o)X ⊗D(Gr

+,θ2
M )M(o)X → D(Gr

+,θ
M )M(o)X

for θ = θ1 + θ2 is related to the ⋆ product as follows: Let ∆θ : Gr
+,θ
M →֒ Gr+

M,Xθ denote the

closed embedding. Then there is a canonical isomorphism

F1 ⊛ F2
∼= ∆θ∗(∆θ1

∗ (F1) ⋆∆
θ2
∗ (F2)). (A.10)

A.2 Factorization algebras in Sph+M

In this section we review some of the objects introduced in [14, 29] and their properties. For

our purposes, we only need to work with these objects at a very coarse level (e.g., in the

Grothendieck group) so we omit much of the higher categorical nuances.

Let G be a connected split reductive group over a perfect field k. Let P be a standard

parabolic subgroup of G. While the results of loc. cit. are stated only in the case P = B, we
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state them for arbitrary parabolics. The reader may check that the proofs readily generalize.

We will continue using the notation of Appendix A.1 for the monoidM , the Hecke stack,

the affine Grassmannian, and the graded Ran space.

A.2.1 Remarks on G

For simplicity, we assume throughout this Appendix that G has a simply connected derived

group [G,G], so that we may use the same construction of B̃unP as in [13, 12]. The reader

may refer to [61, §7] for how to remove this hypothesis, and the basic geometry of the Zastava

space and Drinfeld’s compactification remains the same.

A.2.2 Geometric Satake

For simplicity, we will only use the non-factorizable geometric Satake functor. Let M̌ denote

the Langlands dual group of M over the field Qℓ. Observe that each θ ∈ Λ
pos
G,P defines a

central character of M̌ . Let Rep(M̌)θ denote the subcategory of M̌ -modules with central

character θ. Then we have a t-exact (with respect to the perverse t-structures) functor

SatnaiveX : D(Rep(M̌)θ)⊗D(X)→ D(Gr
+,θ
M,X)M(o)X ,

which is a special case of the factorizable geometric Satake functor Satnaive
Ran(X)

constructed

in [55, §6]. If we allow θ to range over all of Λ
pos
G,P , then SatnaiveX is monoidal with respect to

the usual tensor structure on the left hand side and the internal convolution product ⊛ on

the Beilinson-Drinfeld Grassmannian (cf. §A.1.6) on the right hand side.

Remark A.2.1. Suppose k = Fq. Fix a closed point v ∈ |X| and let mv ∈ Gr
+,θ
M,v(Fq). As

explained in [71, §5.6], the geometric Satake functor corresponds to the classical Satake iso-

morphism Sv : HM,v → K(Rep(M̌))⊗Qℓ by Grothendieck’s functions–sheaves dictionary:
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the trace of the geometric Frobenius at the ∗-fiber at mv of SatnaiveX (V ⊗(Qℓ)X) equals

S−1v ([V ])(mv),

where [V ] is the image of V in the Grothendieck group K(Rep(M̌)). Here HM,v is the

spherical Hecke algebra of M(Fv), and Sv is Langlands’ reformulation of the classical Satake

isomorphism (cf. §2.3.4).

A.2.3 Factorization algebras

We use the language of factorization algebras graded by the monoid Λ
pos
G,P introduced in [29,

§2]. This is simply a particular case of the general notion of factorization algebra defined in

[8].

A Λ
pos
G,P -graded factorization algebra F ∈ Sph+M is a family of sheaves Fθ ∈ Sph+

M,Xθ

such that for θ = θ1 + θ2, we have an isomorphism

Fθ|(Xθ1 ×Xθ2)disj
∼= (Fθ1 ⊠Fθ2)|(Xθ1 ×Xθ2)disj

,

of sheaves on Gr+
M,Xθ ×Xθ(Xθ1 ×Xθ2)disj satisfying the natural compatibilities. On the

left hand side, we are restricting along the étale map (Xθ1 ×Xθ2)disj → Xθ. On the right

hand side, we restrict along the open embedding (Xθ1 ×Xθ2)disj →֒ Xθ1 ×Xθ2 and use the

factorization property of Gr+
M,Xθ explained in §A.1.6.

Let F ∈ Sph+M be a commutative algebra object in the monoidal category. For θ = θ1+θ2,

the multiplication map Fθ1 ⋆ Fθ2 → Fθ induces, by adjunction, a map

(Fθ1 ⊠Fθ2)|(Xθ1 ×Xθ2)disj
→ Fθ|(Xθ1 ×Xθ2)disj

.

We say that F is a commutative factorization algebra if these maps are isomorphisms for all

θ = θ1 + θ2.
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Let F ∈ Sph+M be a cocommutative coalgebra object in the monoidal category. For

θ = θ1 + θ2, the comultiplication map Fθ → Fθ1 ⋆ Fθ2 induces, by adjunction, a map

Fθ|(Xθ1 ×Xθ2)disj
→ (Fθ1 ⊠Fθ2)|(Xθ1 ×Xθ2)disj

.

We say that F is a cocommutative factorization algebra if these maps are isomorphisms for

all θ = θ1 + θ2.

A.2.4 Cocommutative factorization algebras

Let us recall the definition of the cocommutative factorization algebra Υ(ǔP ) ∈ Sph+M intro-

duced in [14].

For θ ∈ Λ
pos
G,P , let ∆

θ : Gr
+,θ
M →֒ Gr+

M,Xθ denote the closed diagonal. The Λ
pos
G,P -graded

M̌ -module

ǔP =
⊕

α∈Φ+
G−Φ

+
M

ǔα

gives a complex

ǔP,Sph+M
:=

⊕

α∈Φ+−Φ+
M

∆α
∗ (Sat

naive
X (ǔα⊗(Qℓ)X)) ∈ Sph+M .

The Lie algebra structure on ǔP gives a Lie algebra structure to ǔP,Sph+M
with respect to the

⋆ monoidal structure on Sph+M . Then

Υ(ǔP ) := C•(ǔP,Sph+M
)

is the homological Chevalley complex associated to this Lie algebra, and Υ(ǔP ) is a cocom-

mutative factorization algebra.

Let U(ǔP )Sph+M
denote the universal enveloping algebra of the Lie algebra ǔP,Sph+M

. This

is a cocommutative factorization algebra in Sph+M with a compatible associative algebra
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structure with respect to ⋆.

Remark A.2.2. If we consider ǔP,Sph+M
[1] as a Lie superalgebra in degree −1, then

Υ(ǔP ) = U(ǔP,Sph+M
[1]).

Restriction to strata. For θ ∈ Λ
pos
G,P and A ∈ Pθ a partition, let xA ∈ (XA)disj(k) be a

Λ
pos
G,P -colored divisor

∑
θv · v. Then the fiber of Gr

+,A
M → (XA)disj over x

A is isomorphic to
∏

Gr
+,θv
M,v by the factorization property.

Since Υ(ǔP ) is a factorization algebra and SatnaiveX is a monoidal functor, (A.10) implies

that the ∗-restriction of Υ(ǔP ) to this fiber of Gr
+,A
M canonically identifies with

⊠
v
Satnaivev (C•(ǔP )

θv)

where C•(ǔP )
θv denotes the θv-graded piece of the Chevalley complex of the Lie algebra ǔP

in D(Rep(M̌)), and Satnaivev is the non-relative geometric Satake functor for Gr
+,θv
M,v .

The ∗-restriction of U(ǔP )Sph+M
to the fiber

∏
Gr

+,θv
M,v canonically identifies with

⊠
v
Satnaivev (U(ǔP )

θv)

where U(ǔP )
θv is the θv-graded piece of the universal enveloping algebra of ǔP .

Koszul resolution. Let 1 denote the constant sheaf Qℓ on Spec(k) = Gr+
M,X0 . Then 1 is

the unit in the monoidal category Sph+M .

Consider the acyclic complex ǔP,Sph+M
→ ǔP,Sph+M

as a Lie superalgebra in degrees −1, 0.

The universal enveloping algebra of this Lie superalgebra is quasi-isomorphic to 1. This

resolution endows 1 with the structure of a comodule with respect to Υ(ǔP ) and of a module

with respect to U(ǔP )Sph+M
.

124



A.2.5 Commutative factorization algebras

We define the commutative factorization algebra Ω(ǔ−P ) ∈ Sph+M as the Verdier dual of

Υ(ǔ−P ). (Here we use the opposite Lie algebra ǔ−P so that Ω(ǔ−P ) is still Λ
pos
G,P -graded.)

One can also define Ω(ǔ−P ) from scratch by considering

(ǔ−
P,Sph+M

)∨ := D(ǔ−
P,Sph+M

) ∼=
⊕

α∈Φ+
G−Φ

+
M

∆α
∗ (Sat

naive
X (ǔ∨−α⊗(Qℓ)X(1)[2])).

Then (ǔ−
P,Sph+M

)∨ is a Lie coalgebra in Sph+M with respect to the ⋆ monoidal structure. There

is a canonical isomorphism

Ω(ǔP )
∼= C•((ǔ−

P,Sph+M
)∨),

where the right hand side is the cohomological Chevalley complex associated to this Lie

coalgebra.

Let U∨(ǔ−P )Sph+M
denote the universal co-enveloping coalgebra of (ǔ−

P,Sph+M
)∨. This is

a commutative factorization algebra in Sph+M with a compatible coalgebra structure with

respect to ⋆.

Restriction to strata. For θ ∈ Λ
pos
G,P and A ∈ Pθ a partition, let xA ∈ (XA)disj(k) be a

Λ
pos
G,P -colored divisor

∑
θv · v. Then the fiber of Gr

+,A
M → (XA)disj over x

A is isomorphic to
∏

Gr
+,θv
M,v .

Since Ω(ǔ−P ) is a factorization algebra and SatnaiveX is a monoidal functor, the ∗-restriction

of Ω(ǔ−P ) to this fiber of Gr
+,A
M canonically identifies with

⊠
v
Satnaivev (C•((ǔ−P )

∨(1)[2])θv)

where C•((ǔ−P )
∨(1)[2])θv denotes the θv-graded piece of the cohomological Chevalley com-

plex, and Satnaivev is the non-relative geometric Satake functor for Gr
+,θv
M,v .
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The ∗-restriction of U∨(ǔ−P )Sph+M
to the fiber

∏
Gr

+,θv
M,v canonically identifies with

⊠
v
Satnaivev (U((ǔ−P )

∨(1)[2])θv)

where U((ǔ−P )
∨(1)[2])θv is the θv-graded piece of the universal co-enveloping coalgebra.

Koszul resolution. Applying Verdier duality to the Koszul resolution in §A.2.4 gives

1 ∈ Sph+M the structure of a module with respect to Ω(ǔ−P ) and of a comodule with respect

to U∨(ǔP )Sph+M
.

A.2.6 Eisenstein series

Let

 : BunP →֒ B̃unP

denote the open embedding into Drinfeld’s compactification of BunP .

Action on Drinfeld’s compactifications. For every θ ∈ Λ
pos
G,P there corresponds a proper

map

ῑθ : B̃unP ×
BunM

H+
M,Xθ → B̃unP .

Using (A.5), we can express B̃unP ×BunM H+
M,Xθ as a twisted product B̃unP ×̃Gr+

M,Xθ .

Given E ∈ D(B̃unP ) and F ∈ Sph+
M,Xθ , we can form a sheaf

E ⊠̃F ∈ D(B̃unP ×
BunM

H+
M,Xθ).

We define an action of Sph+
M,Xθ on D(B̃unP ) by

E,F 7→ E ⋆ F := ῑθ∗(E ⊠̃F),

which is compatible with the monoidal product ⋆ on Sph+M .
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It was established in [14, Theorem 4.2] (cf. [29, Theorem 5.2.2]) that there exists a map

∗(ICBunP )→ ∗(ICBunP ) ⋆Υ(ǔP )

that gives ∗(ICBunP ) the structure of an Υ(ǔP )-comodule.

By [14, Theorem 6.6] (cf. [29, Theorem 5.2.4]), we have a quasi-isomorphism

∗(ICBunP ) �Υ(ǔP )
1→ IC

B̃unP
(A.11)

where � denotes the homotopy cotensor product over Υ(ǔP ) (i.e., the coBar construction),

which can be computed using the Koszul resolution of 1 from §A.2.5.

Recall that 1 is also a U(ǔP )-module. Thus applying the homotopy tensor product over

U(ǔP ) to (A.11), we get a quasi-isomorphism

∗(ICBunP )
∼= ∗(ICBunP ) �Υ(ǔP )

1 ⊗
U(ǔP )

1 ∼= IC
B̃unP

⊗
U(ǔP )

1, (A.12)

where the first quasi-isomorphism follows from the Koszul duality Υ(ǔP )
∼= 1⊗U(ǔP )

1.

A.2.7 The factorization algebra Υ̃(ǔP )

Let ιθ denote the composition

ῑθ ◦ (× id
H

+

M,Xθ
) : BunP ×

BunM
H+
M,Xθ → B̃unP .

The maps ιθ are locally closed embeddings and their images define a stratification of B̃unP

(cf. [13, §6.2], [12]).

Following [29, Proposition 6.1.3], there exists a canonically defined factorization algebra
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Υ̃(ǔP ) equipped with the structure of a coassociative coalgebra in Sph+M such that

ιθ∗(∗(ICBunP ))
∼= ICBunP ⊠̃ Υ̃(ǔP )

θ.

We now describe the image of Υ̃(ǔP ) in the Grothendieck group of Sph+M . Taking the

image of (A.12) in the Grothendieck group gives the equality [∗(ICBunP )] = [IC
B̃unP

⋆

Υ(ǔP )]. For µ ∈ ΛG,P , let Bun
µ
M denote the corresponding connected component consisting

of M -bundles of degree µ. Let Bun
µ
P := BunP ×BunM Bun

µ
M . We have a Cartesian square

Bun
µ
P ×

BunM
H+
M,Xθ1

×
BunM

H+
M,Xθ2

//

idBunP
× comp

��

B̃un
µ−θ1
P ×

BunM
H+
M,Xθ2

ῑθ2
��

Bun
µ
P ×

BunM
H+
M,Xθ

ιθ
// B̃un

µ−θ
P

where θ = θ1 + θ2. Therefore pulling back by ιθ∗ gives

[ιθ∗∗(ICBunP )] =
∑

θ1+θ2=θ

[ιθ1∗(IC
B̃unP

) ⋆Υ(ǔP )
θ2 ] (A.13)

in the Grothendieck group of BunP ×BunM H+
M,Xθ . The following result is proved in [12,

Theorem 1.12] after passing to the Grothendieck group, and it is proved in the derived

category in [14, Proposition 4.4]:

Proposition A.2.3. There exists a canonical isomorphism in D(BunP ×BunM H
+,θ
M ):

ιθ∗(IC
B̃unP

) ∼= ICBunP ⊠̃U
∨(ǔ−P )

θ
Sph+M

.

Combining (A.13) and Proposition A.2.3, we deduce that

[Υ̃(ǔP )
θ] =

∑

θ1+θ2=θ

[U∨(ǔ−P )
θ1
Sph+M

⋆Υ(ǔP )
θ2 ] (A.14)
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in the Grothendieck group of Sph+M .

Proposition A.2.4. Suppose k = Fq. The trace of the geometric Frobenius on ∗-stalks of

Υ̃(ǔP )
θ is equal to the function

(FM , βM ) ∈ Gr+
M,Xθ(Fq) 7→ q−〈ρ̌P ,θ〉

∏

v

νM,v(mv),

where mv ∈ Gr+M,v(Fq) ⊂ M(Fv)/M(ov) is determined by βM , and νM,v is the KM,v-bi-

invariant measure on M(Fv) defined in §2.3.3.

Proof. Let xA ∈ (XA)disj(Fq), A ∈ Pθ, denote the image of (FM , βM ) under Gr+
M,Xθ → Xθ.

Then the fiber of xA is isomorphic to
∏
v Gr

+,θv
M,v , and the point (FM , βM ) corresponds to the

collection {mv ∈ Gr
+,θv
M,v (Fq)}. Since Υ̃(ǔP ) is a factorization algebra, it suffices to consider

the case when βM is an isomorphism on X − v for a fixed closed point v, i.e., xA = θv · v is

supported at a single point v.

The trace of geometric Frobenius on ∗-stalks of a complex only depends on the image

of the complex in the Grothendieck group. Therefore (A.14), the discussion in §A.2.4 and

§A.2.5, and the compatibility of geometric Satake with the classical Satake transform (Re-

mark A.2.1) together imply that the trace of geometric Frobenius at the ∗-stalk of (FM , βM )

equals

S−1v

((
∑

n=0

(−1)n[∧nǔP ]

)
⊗

(
∞∑

n=0

[Symn ǔP ] · q
−n
v

))
(mv).

Comparing with (2.20), we deduce the proposition.

A.2.8 Geometric proof

We prove Proposition A.2.4 above using (2.19), which is essentially the classical Gindikin–

Karpelevich formula. However, the Satake transform does not appear in the statement of

Proposition A.2.4. In this subsection we give a more direct proof of Proposition A.2.4 using

derived algebraic geometry.
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Zastava spaces. Let ZP,θ denote the Zastava space defined in [12] corresponding to the

parabolic P , and let
◦
ZP,θ denote the open Zastava space (called Z

P,θ
max in loc. cit.). We have

a map πZ : ZP,θ → Gr+
M,Xθ . Let

◦
πZ :

◦
ZP,θ → Gr+

M,Xθ denote the restriction.

Let Ω̃(ǔ−P ) denote the Verdier dual of Υ̃(ǔ−P ). Then Ω̃(ǔ−P ) is a factorization algebra on

Sph+M with the defining equation

ιθ!(!(ICBunP ))
∼= ICBunP ⊠̃ Ω̃(ǔ−P )

θ

for θ ∈ Λ
pos
G,P . Using the local model of [12, §3] and the contraction principle ([12, Proposition

5.2]), one sees that there is a canonical isomorphism

Ω̃(ǔ−P )
θ ∼= (

◦
πZ)!(IC◦

ZP,θ
). (A.15)

From this equation, factorization of Ω̃(ǔ−P ) follows from the factorization property of
◦
ZP,θ.

Lemma A.2.5. Suppose k = Fq. The trace of geometric Frobenius on ∗-stalks of Ω̃(ǔ−P )
θ is

equal to the function

(FM , βM ) ∈ Gr+
M,Xθ(Fq) 7→ q−〈ρ̌P ,θ〉

∏

v

µM,v(mv),

where mv ∈ Gr+M,v(Fq) ⊂ M(Fv)/M(ov) is determined by βM , and µM,v is the KM,v-bi-

invariant measure on M(Fv) defined in §2.3.1.

Proof. Let xA ∈ (XA)disj(Fq), A ∈ Pθ, denote the image of (FM , βM ) under Gr+
M,Xθ → Xθ.

Then the fiber of xA is isomorphic to
∏
v Gr

+,θv
M,v , and the point (FM , βM ) corresponds to the

collection {mv ∈ Gr
+,θv
M,v (Fq)}. Since Ω̃(ǔP ) is a factorization algebra, it suffices to consider

the case when βM is an isomorphism on X − v for a fixed closed point v, i.e., xA = θv · v.
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Therefore we can restrict our attention to the central fiber

◦
Zθv :=

◦
ZP,θ ×

Xθ
Spec(k)

where Spec(k) → Xθ is the point θv · v. Let GrθvP,v denote the preimage under GrP,v →

GrM/[M,M ],v of the point corresponding to θv. By [12, Proposition 2.6], there is a natural

identification
◦
Zθv
∼= GrθvP,v ∩GrU−,v such that

◦
πZ corresponds to the map

GrθvP,v ∩GrU−,v →֒ GrP,v → GrM,v .

In other words, the central fiber of the open Zastava space is an intersection of semi-infinite

orbits in the affine Grassmannian. Recall from §2.3.1 that µM,v is defined as the measure

of certain semi-infinite orbits. By Grothendieck’s trace formula, we deduce that the trace

of geometric Frobenius on ∗-stalks of (
◦
πZ)!(Qℓ)◦

ZP,θ
equals the function mv 7→ µM,v(mv).

Since
◦
ZP,θ is a smooth scheme of dimension 〈2ρ̌P , θ〉, we have proved the lemma.

By [29, Proposition 6.2.2], we have a Koszul duality

1 ⊗
Ω̃(ǔ−P )

1 ∼= Υ̃(ǔP ).

At the level of Grothendieck groups, this tells us that we have an equality [Ω̃(ǔ−P )]⋆[Υ̃(ǔP )] =

[1]. Therefore the Grothendieck function of Ω̃(ǔ−P ) is the inverse, with respect to convolution,

of the Grothendieck function of Υ̃(ǔP ). Since νM,v is defined to be the convolution inverse

of µM,v, Lemma A.2.5 implies Proposition A.2.4.

A.3 The Drinfeld–Lafforgue–Vinberg compactification

Let k be a perfect base field. In this section we review the definition and properties of

the stack VinBunG introduced in [62]. In §A.3.6, we mention an alternate definition of
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VinBunG in the general case when [G,G] is not simply connected. For k = Fq, we use

results from loc. cit. to compute the trace of the geometric Frobenius acting on the ∗-stalks

of the ∗-pushforward of the constant sheaf Qℓ under the diagonal morphism ∆ of BunG (see

Theorem A.3.12). This is done by using a certain compactification of ∆, which we construct

in §A.3.8.

A.3.1 The Deconcini–Procesi–Vinberg semigroup

Set Tadj := T/Z(G), where Z(G) is the center of G. The simple roots identify Tadj with

G
|ΓG|
m .

Let Genh denote the Vinberg semigroup of G, which admits a homomorphism

π̄ : Genh → Tadj

where Tadj := (A1)|ΓG|. Any representation of Genh decomposes into ones of the form

V ⊗ kλ̌ where V ∈ Rep(G) and λ̌ ∈ Λ̌ is a weight of T , such that for all weights µ̌ of V , the

difference λ̌ − µ̌ belongs to the root lattice. By definition, V ⊗ kλ̌ ∈ Rep(Genh) if and only

if λ̌− µ̌ ∈ Λ̌
pos
G for all weights µ̌ of V .

We recall some facts whose proofs can be found in [67, §8] in the characteristic zero case

and in [58] in general. Let V (λ̌) denote the irreducible G-module of highest weight λ̌ ∈ Λ̌+
G.

Following [24, Lemma D.4.2, Definition D.4.3], we let
◦

Genh denote the non-degenerate

locus of Genh. By definition, this is the open subscheme of Genh whose k̄-points are the

elements g ∈ Genh(k̄) with nonzero action on V (λ̌)⊗ k̄λ̌ for all dominant weights λ̌ ∈ Λ̌+
G.

It is known that
◦

Genh is smooth over Tadj. The choice of Cartan subgroup T ⊂ G defines

a section s : Tadj → Genh by s(t) = (t−1, t), which extends to a homomorphism of monoids

s̄ : Tadj → Genh

with image contained in
◦

Genh (cf. [24, Lemma D.5.2]). The G×G-action on
◦

Genh gives an
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equality ([24, Corollary D.5.4])

◦

Genh = G · s̄(Tadj) ·G.

For a standard parabolic P with Levi subgroup M , let cP ∈ Tadj be the point defined

by the condition that α̌i(cP ) = 1 for simple roots α̌i contained inside M , and α̌i(cP ) = 0

for all other simple roots.

There is a canonical T -stable stratification of Tadj indexed by standard parabolics, with

the point cP contained in the stratum (Tadj)P corresponding to the parabolic P . In other

words,

(Tadj)P = {t ∈ Tadj | α̌i(t) 6= 0, i ∈ ΓM and α̌j(t) = 0, j ∈ ΓG − ΓM}.

The T -action on cP induces an isomorphism T/Z(M) ∼= (Tadj)P . Define

(Tadj)≥P = {t ∈ Tadj | α̌i(t) 6= 0, i ∈ ΓM}

to be the open locus of Tadj obtained by removing all strata corresponding to parabolic

subgroups not containing P .

Example A.3.1. Let G = SL(2). Then Genh = GL(2) and Genh = Mat(2), the monoid of

2× 2 matrices. In this case Tadj = Gm, Tadj = A1, and π̄ : Mat(2)→ A1 is the determinant

map. The non-degenerate locus
◦

Genh = Mat(2)−{0} is the open subset of nonzero matrices.

Let B equal the Borel of upper triangular matrices and identify T with the subgroup of

diagonal matrices in G. The section s̄ corresponding to (B, T ) is the map A1 → Mat(2)

sending x 7→
(
1 0
0 x

)
. The idempotent cG equals 1 ∈ A1, and cB equals 0.

Note that the projection Tadj = T/Z(G) → T/Z(M) = G
|ΓM |
m has a natural splitting

T/Z(M) →֒ T/Z(G) corresponding to the inclusion G
|ΓM |
m ×{1} →֒ G

|ΓG|
m . Set T/Z(M) :=

(A1)|ΓM |. We have a decomposition Tadj = (T/Z(M))×(Z(M)/Z(G)), which extends to a
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decomposition

Tadj = T/Z(M)×Z(M)/Z(G),

where Z(M)/Z(G) ∼= (A1)|ΓG|−|ΓM | is the closure of Z(M)/Z(G) ⊂ Tadj in Tadj. Under the

above decomposition, the point (1, 0) corresponds to cP , the stratum (Tadj)P corresponds

to T/Z(M)×{0} = G
|ΓM |
m ×{0}, and

(Tadj)≥P = T/Z(M)×Z(M)/Z(G) = G
|ΓM |
m ×(A1)|ΓG|−|ΓM |.

A.3.2 The stack VinBunG

Following [62], the stack

VinBunG ⊂ Maps(X,G\Genh/G)

is the open substack1 of maps generically landing in the non-degenerate locus
◦

Genh. For

a test scheme S, an S-point of VinBunG is a datum of (F1
G,F

2
G, β), where F1

G,F
2
G are

G-bundles on X ×S and

β : X ×S → Genh
G×G
× (F1

G ×
X ×S

F2
G)

is a section over X ×S that generically lands in
◦

Genh over every geometric point of S. We

call such a section β a Genh-morphism F2
G → F1

G.

The map π̄ induces a map

π̄Bun : VinBunG → Maps(X, Tadj) = Tadj,

where the last equality holds because X is proper and geometrically connected.

1. The definition of VinBunG is deceptively similar to that of H̃M in §A.1.2. We note the differences: in
the definition of VinBunG, we consider the quotient stack by G×G and not Genh×Genh. More importantly,

the non-degenerate locus
◦

Genh is larger than the subgroup Genh.
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Let VinBunG,P (resp. VinBunG,≥P ) denote the preimage of (Tadj)P (resp. (Tadj)≥P )

under π̄Bun. Note that VinBunG,≥P contains the open stratum VinBunG,G.

A.3.3 The Tadj-action on VinBunG

In what follows, we will define a canonical action of Tadj on VinBunG which is equivariant

with respect to π̄Bun and the identity action on Tadj.

Suppose we have an exact sequence of algebraic groups

1→ H ′ → H → H ′′ → 1

and an action of H on a k-scheme Y . Then the stack H ′\Y is an H ′′-torsor over the stack

H\Y : indeed, the morphism H ′\Y → H\Y is obtained by base change from the H ′′-torsor

H ′\ pt→ H\ pt, where pt = Spec(k).

In particular, H ′′ acts on H ′\Y over H\Y . One can think of this action as follows. An S-

point of H\Y is an H-torsor FH → S equipped with an H-equivariant morphism FH → Y .

Lifting these data to a morphism S → H ′\Y is the same as specifying an H ′-structure on

FH , which is the same as specifying an H-equivariant morphism FH → H ′′. The set of all

such morphisms FH → H ′′ is equipped with an action of H ′′(S) (by right translations).

Applying the discussion above to Y = Genh and the exact sequence

1→ G×G→ Genh×Genh → Tadj×Tadj → 1

(so H = Genh×Genh, H
′ = G×G, and H ′′ = Tadj×Tadj), one gets a canonical action of

Tadj×Tadj on G\Genh/G. We will be considering only the action of Tadj = Tadj×{1} ⊂

Tadj×Tadj (which comes from the action of Genh on Genh by left translations).

The Tadj-action on G\Genh/G preserves G\
◦

Genh/G, so it induces an action of Tadj on

VinBunG ⊂ Maps(X,G\Genh/G).
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This action can be described explicitly as follows. A G-bundle FG on X ×S is equivalent

to a Genh-bundle FGenh
on X ×S together with a trivialization of the induced Tadj-bundle

π(FGenh
). The group Tadj(S) acts on the space of such trivializations, so Tadj acts on

VinBunG by leaving the Genh-bundle F1
Genh

induced by F1
G fixed and changing the trivial-

ization of π(F1
Genh

).

A.3.4 Fiber bundles

Fix a standard parabolic subgroup P , and consider the open locus VinBunG,≥P lying over

(Tadj)≥P = T/Z(M)×Z(M)/Z(G).

Let VinBunG,≥P,strict = π̄−1Bun({1}×Z(M)/Z(G)). Since we have the splitting T/Z(M) →֒

Tadj (see §A.3.1), the Tadj-action on VinBunG defined in §A.3.3 restricts to a T/Z(M)-action

on VinBunG,≥P . This action induces an isomorphism

VinBunG,≥P
∼= VinBunG,≥P,strict×(T/Z(M)), (A.16)

i.e., VinBunG,≥P is a trivial fiber bundle over the projection to T/Z(M).

Note that cP is the zero element in Z(M)/Z(G). Let (Genh)cP denote the fiber of π̄ over

cP . Then VinBunG,cP := π̄−1Bun(cP ) is equal to the stack

Maps◦(X,G\(Genh)cP /G)

where the superscript ◦ denotes the open substack of maps generically landing in the non-

degenerate locus. Intersecting (A.16) with the P -locus gives

VinBunG,P
∼= VinBunG,cP ×(T/Z(M)). (A.17)
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In the case P = G, the G-locus VinBunG,G is isomorphic to BunG×Tadj.

It is known (cf. [24, Appendix C]) that the G×G-action on s̄(cP ) ∈
◦

Genh induces an

isomorphism

XP := (G×G)/(P ×
M
P−) ∼= (

◦

Genh)cP .

We learned of the following lemma from [62, Lemma 2.1.11].

Lemma A.3.2. The variety (Genh)cP is isomorphic to XP .

Proof. By [58, Theorem 7], the irreducible affine variety (Genh)cP is normal. Since (Genh)cP

contains the non-degenerate locus (
◦

Genh)cP
∼= XP as a dense open subscheme, the extension

property of regular functions on normal varieties implies that it suffices to show that the

degenerate locus in (Genh)cP has codimension at least 2. This can be checked by considering

the combinatorial description of G×G-orbits in Genh from [58, Theorem 6]. In characteristic

0, this is the same combinatorial description as in [67].

Lemma A.3.2 implies that VinBunG,cP is isomorphic to Maps◦(X,G\XP /G), where the

superscript ◦ denotes the open locus of maps generically landing in G\XP /G.

A.3.5 Defect stratification

Define the closed embedding M →֒ XP as the composition of the closed embeddings M →֒

G/U : m 7→ mU and G/U →֒ XP : g 7→ (g, 1). From Corollary 1.4.3 we know that M →֒ XP

extends to a closed embedding M →֒ XP . This induces a map

Maps◦(X,P\M/P−)→ Maps◦(X,G\XP /G) = VinBunG,cP ,

where Maps◦(X,P\M/P−) is the stack of maps X ×S → P\M/P− that generically land

in P\M/P− over every geometric point of S.

Let H+
M = Maps◦(X,M\M/M) denote the stack introduced in §A.1.5. Recall that there
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are two maps
←
h ,
→
h : H+

M → BunM . Observe that there is a canonical isomorphism

Maps◦(X,P\M/P−) ∼= BunP ×

BunM ,
←
h

H+
M ×
→
h ,BunM

BunP− .

Thus we have a map of stacks

BunP ×
BunM

H+
M ×

BunM
BunP− → VinBunG,cP . (A.18)

Let ΛG,P = π1(M) denote the quotient of Λ by the subgroup generated by the coroots

of M . Recall that there is a bijection π0(BunM ) ∼= ΛG,P . Let Bun
µ
M , µ ∈ ΛG,P denote the

corresponding connected component consisting of M -bundles of degree µ.

Let Bun
µ
P (resp. Bunλ

P−
) denote the preimage of Bun

µ
M (resp. BunλM ) under the projec-

tion BunP → BunM (resp. BunP− → BunM ).

For µ, λ ∈ ΛG,P , let H
+,µ,λ
M denote the preimage of Bun

µ
M ×BunλM under (

←
h ,
→
h ). One

can check using Remark A.1.9 that H
+,µ,λ
M is nonempty if and only if µ−λ lies in the image

of Λ
pos,Q
U ∩ Λ under the projection Λ→ ΛG,P .

Proposition A.3.3 ([62, Proposition 3.2.2]). (i) For µ, λ ∈ ΛG,P , the restriction of (A.18)

to the corresponding substack

Bun
µ
P ×

BunµM

H
+,µ,λ
M ×

BunλM

BunλP− → VinBunG,cP (A.19)

is a locally closed embedding. Let VinBun
µ,λ
G,cP

denote the corresponding locally closed sub-

stack.

(ii) The locally closed substacks VinBun
µ,λ
G,cP

form a stratification of VinBunG,cP . In

particular, the map (A.18) is a bijection at the level of k-points.

We call the stratification above the defect stratification of VinBunG,cP . By (A.17), we
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have an identical stratification of VinBunG,P with strata

VinBun
µ,λ
G,P
∼= VinBun

µ,λ
G,cP

×(T/Z(M)).

A.3.6 Remarks on the case when [G,G] is not simply connected

Note that we have not assumed that [G,G] is simply connected in this Appendix (unlike in

Appendices A.1–A.2). Without this assumption, it is possible for the image of Λ
pos,Q
U ∩ Λ

in ΛG,P to be larger than Λ
pos
G,P . Then Lemma A.3.11 below shows that the G-stratum

VinBunG,G is not necessarily dense in VinBunG when [G,G] is not simply connected.

We define a slightly different stack VinBuntrueG . We suggest that VinBuntrueG is the more

“philosophically correct” definition for VinBunG when [G,G] is not simply connected.

Remark A.3.4. We will continue using the original stack VinBunG in the rest of this chapter

(for arbitrary G) as it suffices for our purposes, but it is also possible to work directly with

VinBuntrueG everywhere.

The idea is to replace the Vinberg semigroup Genh, which is an algebraic monoid, by its

stacky version, which is an algebraic monoidal stack2.

Let Gssc denote the universal cover of [G,G] (as algebraic groups). Then Z(Gssc) is

a finite group scheme containing ker(Gssc → G). Since G = Z(G) · [G,G], we have an

isomorphism

G ∼= (Gssc×Z(G))/Z(Gssc), (A.20)

where Z(Gssc) is embedded in Gssc×Z(G) anti-diagonally. Furthermore, the following is

well-known (cf. [67, 57]):

Lemma A.3.5. The isomorphism (A.20) extends to an isomorphism of the Vinberg semi-

group Genh with the the GIT quotient of Gssc
enh×Z(G) by the anti-diagonal action of Z(Gssc).

2. An algebraic monoidal stack Y is an algebraic stack Y with a coherently associative composition law
Y×Y→ Y and a morphism Spec(k)→ Y such that for any scheme S, the composition S → Spec(k)→ Y is
a unit object of Y(S).
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Lemma A.3.5 motivates us to define the stacky version of the Vinberg semigroup as the

quotient stack

(Genh)
true := (Gssc

enh×Z(G))/Z(G
ssc). (A.21)

This is an algebraic monoidal stack. By Lemma A.3.5, we have a canonical map

(Genh)
true → Genh (A.22)

from the stack quotient to the GIT quotient, and we see that Genh is the coarse moduli

space of (Genh)
true.

By (A.20), we see that the homomorphism (A.22) restricts to an isomorphism of groups

Gssc
enh×

Z(Gssc) Z(G) ∼= Genh, so we have an open embedding

Genh →֒ (Genh)
true.

Moreover, Z(Gssc
enh) acts freely

3 on the non-degenerate locus
◦

Gssc
enh. Thus the open substack

(
◦

Genh)
true := (

◦

Gssc
enh×Z(G))/Z(G

ssc)

is representable by a scheme, and Lemma A.3.5 implies that (A.22) restricts to an isomor-

phism (
◦

Genh)
true ∼=

◦

Genh on non-degenerate loci.

Lemma A.3.6. The map (A.22) is an isomorphism if and only if [G,G] is simply connected.

Proof. Recall that Gssc
enh is an algebraic monoid with zero. Thus the action of ker(Gssc →

[G,G]) on Gssc
enh is free if and only if the kernel is trivial, i.e., [G,G] is simply connected.

Therefore if [G,G] is not simply connected, the stack quotient (Genh)
true cannot be repre-

sentable by a scheme.

In the other direction, suppose that [G,G] is simply connected. Then Z(Gssc) ⊂ Z(G)

3. The quotient
◦

Genh/Z(Genh) is the wonderful compactification of G/Z(G).
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acts freely on Gssc
enh×Z(G), so (A.22) is an isomorphism by Lemma A.3.5.

Definition of VinBuntrueG . As explained in §A.3.3, we have an action of G×G on the stack

(Genh)
true, where we are using the identification (A.20). Define

VinBuntrueG = Maps◦(X,G\(Genh)
true/G), (A.23)

where the superscript ◦ denotes the locus of maps that generically land in G\
◦

Genh/G over

every geometric point of a test scheme S.

The map (A.22) induces a canonical map of stacks

VinBuntrueG → VinBunG (A.24)

over BunG×BunG.

The open embedding Genh →֒ (Genh)
true induces an open embedding

VinBunG,G →֒ VinBuntrueG

over VinBunG.

The projection Gssc
enh×Z(G) → Z(G) induces a homomorphism of monoidal stacks

(Genh)
true → Z(G)/Z(Gssc). Note that Gab,st := Z(G)/Z(Gssc) is the stacky abelianization

of G defined in [43]. By (A.20), we also get a homomorphism of group stacks G → Gab,st.

The G×G-action on (Genh)
true is compatible with these maps to Gab,st.

Consider the map Spec(k) → Gab,st corresponding to 1 ∈ Z(G). We have Cartesian

squares

Gssc
enh

//

��

(Genh)
true

��

Spec(k) // Gab,st

G ×
Gab,st

G //

��

G×G

��

Spec(k) // Gab,st

where G×G maps to Gab,st by (g1, g2) 7→ g1g
−1
2 . Note that G×Gab,st G is isomorphic to a
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semidirect product of G and Gssc. Since Gab,st is a group stack, it follows formally that

(Genh)
true/(G×G) ∼= Gssc

enh/(G ×
Gab,st

G).

We can also repeat the above discussion at the coarse level: by Lemma A.3.5, we have

Genh = (Gssc
enh×Z(G))//Z(G

ssc), where // denotes the GIT quotient. Thus the projec-

tion to the second factor induces a homomorphism of monoids Genh → Z(G)//Z(Gssc) =

Z(G)/Z([G,G]) = G/[G,G] =: Gab such that the G×G-action on Genh lies over Gab. Let

(Genh)1 denote the fiber Genh×Gab Spec(k) over 1 ∈ Gab(k). Then it again follows formally

that

Genh/(G×G)
∼= (Genh)1/G ×

Gab
G.

We have a group homomorphism G×Gab,st G → G×Gab G whose kernel is isomorphic

to ker(Gssc → [G,G]). We also have a finite homomorphism of monoids Gssc
enh → (Genh)1.

Thus we deduce that there is a commutative diagram

VinBuntrueG

�� **

Maps◦(X, (Genh)1/(G×Gab,st G)) //

��

BunG×
Gab,st G

��

VinBunG // BunG×
Gab G

// BunG×BunG

where the square is Cartesian, the superscript ◦ denotes the substack of maps generically

landing in (
◦

Genh)1/(G×Gab,st G), and the composition of the left vertical maps equals the

map (A.24). Here we have factored the map (A.24) into a “change of space” map and a

“change of group” map. The following lemma is well-known.

Lemma A.3.7. Let H be a connected reductive group, and let A ⊂ Z(H) be a finite central

subgroup. Then BunH → BunH/A is a torsor by the group stack BunA over an open and
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closed substack of BunH/A. More specifically, this substack is the union of the connected

components in π0(BunH/A) = π1(H/A) corresponding to π1(H) ⊂ π1(H/A).

Proof. Let B be a Borel subgroup of H. Then BunB → BunH and BunB/A → BunH/A

are surjective by [26]. Thus to prove the statement about the image of BunH in BunH/A,

it suffices to consider π0(BunB)→ π0(BunB/A). This reduces to an analogous statement in

the case where H is a torus, which is straightforward.

It is a standard fact that the action of BunA on BunH defines an isomorphism between

BunA×BunH and the fiber product BunH ×BunH/A
BunH . Therefore to prove that the

map from BunH to its image in BunH/A is a torsor, we must show that this map is flat.

The map is flat because it is a morphism between smooth stacks of the same dimension with

0-dimensional fibers.

We now consider the “change of space” map

VinBuntrueG = Maps◦
(
X,Gssc

enh/(G ×
Gab,st

G)

)
→ Maps◦

(
X, (Genh)1/(G ×

Gab,st
G)

)
.

(A.25)

Lemma A.3.8. Let Y1 → Y2 be a finite schematic morphism of stacks. Then the induced

morphism Maps(X,Y1)→ Maps(X,Y2) is also finite schematic.

Proof. Fix a test scheme S and a map XS := X ×S → Y2. Let Y denote the fiber

product XS ×Y2
Y1, which is representable by a finite scheme over XS . Then the corre-

sponding fiber product of S and Maps(X,Y1) over Maps(X,Y2) is representable by the

S-scheme Sect(XS , Y ) of sections of Y → XS . It is well-known that since Y → XS is affine,

Sect(XS , Y )→ S is also affine. Therefore to show that Sect(XS , Y )→ S is finite, it suffices

to show that it is proper. We use the valuative criterion of properness:

Let R be a discrete valuation ring with field of fractions K, and suppose that we have

a map Spec(R) → S and a section XK := X × Spec(K) → Y over XS . This section and

the natural map Spec(K)→ Spec(R) define a section XK → YR := Y ×S Spec(R). Let ZK
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denote the image of XK → YR, and let ZR denote the scheme-theoretic closure of ZK in

YR. Extending the section XK → Y to a section XR := X × Spec(R) → Y is equivalent

to showing that the projection ZR → XR is an isomorphism. Note that ZR is an integral

scheme (because ZK is) and the map ZR → XR is birational (because the map ZK → XK

is an isomorphism). On the other hand, the map ZR → XR is finite since YR → XR is

finite. Lastly, smoothness of X implies that XR is a regular scheme. Hence XR is normal,

and ZR → XR is an isomorphism. This checks the condition of the valuative criterion and

hence proves the lemma.

Let A denote the finite abelian group scheme ker(Gssc → [G,G]).

Corollary A.3.9. The map (A.25) is schematic and finite. More specifically, it is the

composition of an A-torsor followed by a closed embedding.

Proof. The map Gssc
enh → (Genh)1 is finite, and the preimage of (

◦

Genh)1 equals
◦

Gssc
enh. Then

Lemma A.3.8 implies that the map (A.25) is schematic and finite. Let

Y ⊂ Maps◦(X, (Genh)1/(G ×
Gab,st

G))

denote the (scheme-theoretic) image, which is a closed substack. Take (P, β) ∈ Y(S) for a

test scheme S, where P is a G×Gab,st G-torsor over XS := X ×S and β is a section XS →

((Genh)1)P over XS such that β|Spec(F )×S lands in ((
◦

Genh)1)P. Since
◦

Gssc
enh → (

◦

Genh)1 is

an A-torsor, the set of sections β̃|Spec(F )×S : Spec(F )×S → ((
◦

Genh)1)P lifting β has a

simply transitive action by A(Spec(F )×S). Since A is finite over k and X is geometrically

connected, we deduce that A(Spec(F )×S) = A(S). Thus the canonical A(S)-action on the

set of sections β̃ : XS → (Gssc
enh)P lifting β is simply transitive. By definition of Y, a lift β̃

exists after restricting along some fppf covering S′ → S. We conclude that VinBuntrueG → Y

is an A-torsor.

Proposition A.3.10. The map VinBuntrueG → VinBunG is finite schematic.
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Proof. We first show that the map VinBuntrueG → VinBunG is proper. By Lemma A.3.7,

the map BunG×
Gab,st G → BunG×

Gab G is proper. Thus by base change, the map

Maps◦
(
X, (Genh)1/(G ×

Gab,st
G)

)
→ Maps◦

(
X, (Genh)1/(G ×

Gab
G)

)
= VinBunG

is proper. Composing this map with (A.25), which is finite by Corollary A.3.9, we conclude

that VinBuntrueG → VinBunG is proper.

Next we prove that the map VinBuntrueG → VinBunG is schematic. Let S be an affine

scheme. A map S → VinBunG is the datum of a G×Gab G-torsor P on X ×S and a

G×Gab G-equivariant map P→ (Genh)1. Moreover, there is an open subset
◦
X ⊂ X such that

P| ◦
X ×S

is sent to (
◦

Genh)1. Recall that we have a surjective homomorphism G×Gab,st G →

G×Gab G with kernel A := ker(Gssc → [G,G]). Then an S′-point of the fiber product Y :=

S×VinBunG VinBuntrueG parametrizes a G×Gab,st G-torsor P̃ on X ×S′ and a G×Gab,st G-

equivariant map β̃ : P̃→ Gssc
enh such that the G×Gab G-torsor induced by P̃ is isomorphic to

P|X ×S′ , and the diagram

P̃

��

β̃
// Gssc

enh

��

P|X ×S′
// (Genh)1

commutes. This implies that P̃| ◦
X ×S′

lands in
◦

Gssc
enh. Since

◦

Gssc
enh → (

◦

Genh)1 is an A-torsor,

we get an isomorphism

P̃| ◦
X ×S′

∼= P| ◦
X ×S′

×

(
◦

Genh)1

◦

Gssc
enh,

where the r.h.s. only depends on the map S → VinBunG. Thus (P̃, β̃) are determined by

their restrictions to the formal completion of (X−
◦
X)×S′ in X ×S′. Using twisted versions

of the affine Grassmannian, we deduce that the fiber product Y is a closed subscheme of a

projective ind-scheme over S. Since Y is of finite type, we conclude that Y is a scheme.

We have shown that VinBuntrueG → VinBunG is a proper schematic map. One observes
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from Lemma A.3.7 and Corollary A.3.9 that VinBuntrueG → VinBunG is also quasi-finite.

Therefore this map is finite schematic.

Lemma A.3.11. The closure of the open substack VinBunG,G in VinBunG intersects the

stratum VinBun
µ,λ
G,P only if µ− λ ∈ Λ

pos
G,P .

Proof. The image of the proper map VinBuntrueG → VinBunG is a closed substack containing

the G-stratum. Let P be a standard parabolic subgroup of G with Levi factor M . Let G̃

denote Gssc×Z(G), and let M̃, P̃ denote the preimages of M,P under the isogeny G̃→ G.

We have the corresponding boundary degeneration X
P̃
⊂ G̃enh and its affine closure X

P̃
.

Define the closed embedding M̃ →֒ X
P̃

as in §A.3.5, and let M̃ denote the closure of M̃ in

X
P̃
. For a place v of X, Remark A.1.9 implies that

M̃(ov)\(M̃(ov) ∩ M̃(Fv))/M̃(ov) = Λ
pos,Q
U ∩ Λ

G̃
,

and Λ
pos,Q
U ∩ Λ

G̃
= Λ

pos
U since [G̃, G̃] is simply connected. Thus we deduce from the con-

struction of the defect stratification in §A.3.5 that the image of VinBuntrueG → VinBunG

intersects VinBun
µ,λ
G,P if and only if µ− λ ∈ Λ

pos
G,P . This implies the lemma.

A.3.7 The function b

Suppose k = Fq. Let

∆ : BunG → BunG×BunG

denote the diagonal morphism. Given G-bundles F1
G,F

2
G ∈ BunG(Fq), let b(F

1
G,F

2
G) denote

the trace of the geometric Frobenius acting on the ∗-stalk of the complex ∆∗(Qℓ) over the

point (F1
G,F

2
G) ∈ (BunG×BunG)(Fq).

Recall from §2.4.2 that AsympP (δK) is aK ×K-invariant function in C∞b (XP (A)), where

δK is the characteristic function of K on G(A). Let

β : X → (XP )F1
G,F

2
G
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denote a section that generically lands in the non-degenerate locus (XP )F1
G,F

2
G
.

Then for any v ∈ |X|, choosing trivializations of FiG×X Spec(ov) defines an isomorphism

(XP )F2
G,F

2
G
(ov) ∼= XP (ov). This defines an element βv ∈ XP (Fv)∩XP (ov), and theKv ×Kv-

orbit of βv does not depend on the choice of trivializations. Non-degeneracy of β implies that

(βv) ∈ XP (A). We define AsympP (δK)(β) to be the value of AsympP (δK) at this adelic

point.

Theorem A.3.12. Let E = Qℓ. We have an equality

b(F1
G,F

2
G) =

∑

P

(−1)dimZ(M)
∑

β

AsympP (δK)(β),

where P ranges over the standard parabolic subgroups of G, and β ranges over the non-

degenerate sections β : X → (XP )F1
G,F

2
G
.

The strategy for proving Theorem A.3.12 was suggested by Drinfeld, and it consists of

compactifying the diagonal morphism of BunG. The geometry of the compactification then

reduces to a theorem of [62], and the corresponding Grothendieck functions are computed

using the facts reviewed in Appendix A.2. The proof of Theorem A.3.12 is given at the end

of §A.3.9.

A.3.8 Compactifications of the diagonal morphism of BunG

The diagonal morphism ∆ is in general not proper, and one would like to compactify it (e.g.,

to compute ∗-restrictions of ∆∗). We first review the definition of the stack Bun
′
G (denoted by

BunG in [62]), which is a compactification of the morphism BunG×BZ(G)→ BunG×BunG,

which ∆ factors through. For the purposes of this thesis, we define a slightly different stack

BunG, which is a compactification of ∆ when G is semisimple. When G is not semisimple,

BunG is not quite a compactification of ∆, but it is equally good for our purposes.

Bun
′
G. The action of Z(Genh) = T on Genh induces a T -action on VinBunG. Define

Bun
′
G = VinBunG /T . There is an open embedding VinBunG,G /T = BunG×BZ(G) →֒
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Bun
′
G. Observe that ∆ factors as

BunG → BunG×BZ(G) →֒ Bun
′
G → BunG×BunG,

where BZ(G) is the classifying stack of Z(G)-bundles. The following lemma is well-known:

Lemma A.3.13. The map Bun
′
G → BunG×BunG is schematic and projective4.

Proof. Let F1
G,F

2
G ∈ BunG(S) for a test scheme S. Let Sect(XS , (Genh)F1

G,F
2
G
) denote the

S-scheme of sections for the fiber bundle (Genh)F1
G,F

2
G
→ XS := X ×S. Then

Bun
′
G ×

BunG×BunG
S ∼= Sect◦(XS , (Genh)F1

G,F
2
G
)/T, (A.26)

where the superscript ◦ denotes the open locus of sections generically landing in (
◦

Genh)F1
G,F

2
G
.

We wish to show (A.26) is a projective scheme over S.

Let ∆(λ̌) denote the Weyl G-module of highest weight λ̌ ∈ Λ̌+
G. It is known from the

general theory of reductive monoids (cf. proof of Proposition 1.2.2) that there exists a finite5

map

Genh →
∏

End(∆(λ̌)⊗ kλ̌)×Tadj, (A.27)

where the product ranges over any finite set of generators for the monoid Λ̌+
G. The image

of (A.27) satisfies the Plücker relations (cf. [13, 12]). Therefore by considering the Genh-

modules det(∆(λ̌)⊗ kλ̌) = det(∆(λ̌))⊗ kdim(∆(λ̌))λ̌, we see that the composition of (A.27)

with the projection to
∏

End(∆(λ̌)⊗ kλ̌) is a finite map. By Lemma A.3.8, we can reduce

to showing that

Sect◦(XS ,
∏

End(∆(λ̌)⊗ kλ̌)F1
G,F

2
G
)/T (A.28)

4. The proof shows that there exists a coherent sheaf F on the stack BunG×BunG and a closed embedding

Bun
′

G →֒ P(F).

5. In the particular case of the Vinberg semigroup, one can deduce that this map is a closed embedding
using [15, Exercises 6.1E, 6.2E].
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is representable by a projective scheme over S. Here the superscript ◦ denotes the locus of

maps generically landing in
∏
(End(∆(λ̌)⊗ kλ̌)− {0})F1

G,F
2
G
.

For a test scheme S′ → S, an S′-point of the stack (A.28) is the data of ((FT )S′ , βλ̌)

where (FT )S′ is a T -bundle over S′ and βλ̌ is an OX ×S′-module map

∆(λ̌)
F2
G
⊗
OS

Lλ̌ → ∆(λ̌)
F1
G
⊗
OS

OS′

that is generically nonzero over all geometric points of S′, where Lλ̌ = (kλ̌)(FT )S′
is the

corresponding line bundle on S′. Observe that βλ̌ is equivalent to an S′-fiberwise nonzero

map

π′∗(Lλ̌)→ (∆(λ̌)∗
F2
G
⊗∆(λ̌)

F1
G
) ⊗
OS

OS′ , (A.29)

where π′ is the projection X ×S′ → S′. Set E = ∆(λ̌)∗
F2
G
⊗∆(λ̌)

F1
G
, which is a locally free

OX ×S-module. Let π denote the projection X ×S → S, and observe that π∗(E) is a perfect

complex that commutes with base change (here and elsewhere, π∗ denotes the derived direct

image functor). Then by adjunction, (A.29) is equivalent to a map in the derived category

of coherent sheaves on S′

Lλ̌ → π∗(E) ⊗
OS

OS′

that is nonzero on every fiber of S′ (here the tensor product is derived). Applying derived

Hom(?,OS′), this map is equivalent to a fiberwise nonzero map

Hom(π∗(E),OS) ⊗
OS

OS′ → L−1
λ̌
. (A.30)

Since π∗(E)⊗OS
ks lives in cohomological degrees 0, 1 for any point Spec(ks) → S, we

deduce that π∗(E) is locally quasi-isomorphic to a complex of locally free OS-modules living

in degrees 0, 1. ThereforeHom(π∗(E),OS) lives in cohomological degrees −1, 0. We conclude
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that (A.30) is equivalent to a surjection of OS′-modules

H0Hom(π∗(E),OS) ⊗
OS

OS′ → L−1
λ̌
,

and H0Hom(π∗(E),OS) commutes with base change.

We have shown that for fixed λ̌, the data (L−1
λ̌
, βλ̌) defines an S

′-point of the projective

S-scheme ProjS SymOS
(H0Hom(π∗E,OS)). By the Plücker relations, we conclude that the

stack (A.28) is representable by a closed subscheme of a projective S-scheme.

Let Z0(G) denote the neutral connected component of the center of G. Then we have

a finite map T/Z0(G) → T/Z(G) = Tadj. The character lattice of Tadj corresponds to the

root lattice in Λ̌. If the Langlands dual group Ǧ does not have a simply connected derived

group, then the root lattice is not saturated in Λ̌, so T/Z0(G) 6= T/Z(G) in general.

Recall that k[Tadj] is the semigroup algebra of Λ̌
pos
G . Define T/Z0(G) so that k[T/Z0(G)]

is the semigroup algebra of Λ̌
pos,Q
G ∩ Λ̌. There is a natural finite map

T/Z0(G)→ Tadj

extending the map T/Z0(G)→ Tadj.

BunG. Consider the base change

(VinBunG)T/Z0(G)
:= VinBunG ×

Tadj

T/Z0(G)

over T/Z0(G). Then T acts diagonally on (VinBunG)T/Z0(G)
, and we define

BunG = (VinBunG)T/Z0(G)
/T.

Since π̄−1Bun(Tadj) = VinBunG,G = BunG×Tadj, we see that there is an open embedding

BunG×BZ0(G) →֒ BunG. There is a natural finite map BunG → Bun
′
G, and we have the
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commutative diagram

BunG // BunG×BZ0(G)
� � //

��

BunG

��

BunG×BZ(G) �
�

// Bun
′
G

// BunG×BunG

factoring the diagonal ∆. Then the composite map ∆ : BunG → BunG×BunG is also

proper, so BunG is a “compactification” of ∆. This is the compactification that we will use

to prove Theorem A.3.12.

Example A.3.14. Let G = SL(2). Then Z0(G) = {1}, and the map T/Z0(G) → Tadj

corresponds to the map A1 → A1 : ǫ 7→ ǫ2. An S-point of BunG is a collection (L1,L2, l, β, ǫ),

where

(a) L1,L2 are rank 2 vector bundles on X ×S with trivializations of their determinants,

(b) l is a line bundle on S,

(c) β ∈ Hom(L2,L1)⊗ l is not equal to 0 on X × s for every geometric point s→ S,

(d) ǫ ∈ l, and

(e) the equation det β = ǫ2 holds.

In comparison, an S-point of Bun
′
G is a collection (L1,L2, l, β) satisfying (a)–(c) above.

We have a Cartesian square

BunG×T //

��

BunG

��

BunG×(T/Z0(G))� _


��

// BunG×BZ0(G)� _

��

(VinBunG)T/Z0(G)
// BunG

(A.31)

where the horizontal maps are T -torsors, and the lower vertical maps are open embeddings.

Since Z0(G) is connected, T → T/Z0(G) is a trivial Z0(G)-bundle. Therefore the pushfor-
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ward of the constant sheaf (Qℓ)T to T/Z0(G) equals (Qℓ)T/Z0(G)
⊗H∗(Z0(G),Qℓ). Thus

by smooth base change, to compute the function b it suffices to compute the trace of the

geometric Frobenius acting on the ∗-stalks of ∗Qℓ.

A.3.9 The ∗-extension of the constant sheaf

Let

 : BunG×(T/Z0(G)) →֒ (VinBunG)T/Z0(G)

denote the open embedding. We want to compute the ∗-restriction of ∗Qℓ to the strata

VinBun
µ,λ
G,P ×Tadj

T/Z0(G) for µ, λ ∈ ΛG,P .

Recall that the P -locus (Tadj)P is isomorphic to T/Z(M).

Lemma A.3.15. The reduced part of (Tadj)P ×Tadj
T/Z0(G) is isomorphic to T/Z0(M).

Proof. The locally closed embedding (Tadj)P = G
|ΓM |
m ×{0} →֒ Tadj = (A1)|ΓG| identifies

with the spectrum of the algebra map

k[α̌j , j ∈ ΓG]→ k[α̌±1i , i ∈ ΓM ] (A.32)

sending α̌i 7→ α̌i for i ∈ ΓM and α̌j 7→ 0 for j ∈ ΓG−ΓM (here we consider α̌i as a character

and use the multiplicative notation). Note that k[α̌j , j ∈ ΓG] is the semigroup algebra of

Λ̌
pos
G .

The projection T/Z0(G)→ T/Z(G) is the spectrum of the inclusion of semigroup algebras

k[Λ̌
pos
G ] →֒ k[Λ̌

pos,Q
G ∩ Λ̌].

Therefore (Tadj)P ×Tadj
T/Z0(G) is the spectrum of the algebra

k[α̌±1i , i ∈ ΓM ] ⊗
k[Λ̌

pos
G ]

k[Λ̌
pos,Q
G ∩ Λ̌]. (A.33)
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Since the map (A.32) sends α̌j 7→ 0 for j ∈ ΓG − ΓM , the reduced algebra of (A.33) equals

k[α̌±1i , i ∈ ΓM ] ⊗
k[Λ̌pos

M ]
k[Λ̌

pos,Q
M ∩ Λ̌]. (A.34)

Since the non-negative integral span of Λ̌
pos,Q
M ∩ Λ̌ and −α̌i, i ∈ ΓM is equal to the lattice

Λ̌T/Z0(M) ⊂ Λ̌, the algebra (A.34) equals k[T/Z0(M)].

Recall from (A.17) that we have an isomorphism VinBunG,P
∼= VinBunG,cP ×(T/Z(M)).

Lemma A.3.15 implies that we have embeddings

ιP : VinBunG,cP ×(T/Z0(M)) →֒ (VinBunG)T/Z0(G)
(A.35)

that form a stratification as P ranges over all standard parabolic subgroups.

For µ, λ ∈ ΛG,P , let

ι
µ,λ
P : VinBun

µ,λ
G,cP

×(T/Z0(M)) →֒ (VinBunG)T/Z0(G)

denote the locally closed embedding defined by (A.35) and the defect stratification from

§A.3.5.

The following is proved in [62, Theorem B] in the case P = B. We give a proof using

Proposition A.2.4 at the end of this Appendix.

Theorem A.3.16. Suppose k = Fq. The trace of geometric Frobenius on ∗-stalks of

ι∗P (∗(Qℓ)) sends

(F1
G,F

2
G, β, t) ∈ (VinBunG,cP ×T/Z0(M))(Fq) 7→ (1− q)|ΓG|−|ΓM |AsympP (δK)(β).

(A.36)

Here we use Lemma A.3.2 to identify β with a sectionX → (XP )F1
G,F

2
G
, and AsympP (δK)(β)

is defined in §A.3.7.
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Assuming Theorem A.3.16, we prove Theorem A.3.12.

Proof of Theorem A.3.12. Let BunG denote the compactification of ∆ defined in §A.3.8.

Factor ∆ into ̄ : BunG → BunG and the proper map ∆ : BunG → BunG×BunG. For a

sheaf F, we will use fF to denote its Grothendieck function, i.e., the trace of the geometric

Frobenius acting on the ∗-stalks over the Fq-points. By the Grothendieck-Lefschetz trace

formula, b(F1
G,F

2
G) equals the sum of the values of f̄∗Qℓ

at the points of BunG(Fq) lying

over (F1
G,F

2
G) ∈ (BunG×BunG)(Fq).

We have the T -torsor (VinBunG)T/Z0(G)
→ BunG. Let

 : BunG×T/Z0(G) →֒ (VinBunG)T/Z0(G)

denote the open embedding. Recall that T → T/Z0(G) is a trivial Z0(G)-bundle, so the

pushforward of (Qℓ)T to T/Z0(G) equals (Qℓ)T/Z0(G)
⊗H∗(Z0(G),Qℓ). The trace of the

geometric Frobenius acting on H∗(Z0(G),Qℓ) equals (1 − q)
dim(Z0(G)). Since any T -torsor

over Fq is trivial, we deduce from the Cartesian square (A.31) and smooth base change that

b(F1
G,F

2
G) = (−1)dimT (1− q)−|ΓG|

∑

β̃

f∗Qℓ
(β̃),

where the sum is over β̃ ∈ (VinBunG)T/Z0(G)
(Fq) mapping to (F1

G,F
2
G). From (A.35), we

have a stratification of (VinBunG)T/Z0(G)
by VinBunG,cP ×(T/Z0(M)), where P ranges

over all standard parabolic subgroups. Theorem A.3.16 implies that

fι∗P ∗Qℓ
(F1
G,F

2
G, β, t) = (1− q)|ΓG|−|ΓM |AsympP (δK)(β)

for β : X → (XP )F1
G,F

2
G

a non-degenerate section and t ∈ (T/Z0(M))(Fq). Putting it all

together, we prove the theorem.

The remainder of this Appendix works towards setting up the proof of Theorem A.3.16,
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which is given at the end.

A.3.10 Reduction to the Hecke stack

The isomorphism

Bun
µ
P ×

BunµM

H
+,µ,λ
M ×

BunλM

BunλP−
∼= VinBun

µ,λ
G,cP

induced by (A.19) allows us to define the projection map

pr
µ,λ
M : VinBun

µ,λ
G,cP

→ H
+,µ,λ
M ,

which is smooth with equidimensional fibers.

For (F1
G,F

2
G, β) ∈ VinBun

µ,λ
G,cP

(Fq), let

(F1
M ,F2

M , βM ) := pr
µ,λ
M (β) ∈ H

+,µ,λ
M (Fq).

Choosing trivializations F1
M ,F2

M over Spec(ov), the M -morphism βM defines an element

(mv) in the restricted product
∏
v(M(ov) ∩ M(Fv)) with respect to the open subgroups

M(ov) ⊂M(Fv). The M(ov)×M(ov)-orbit of mv does not depend on the choice of trivial-

izations. One deduces from (2.21) that

AsympP,v(δKv
)(βv) = νM,v(mv), (A.37)

where νM,v is the KM,v-bi-invariant measure on M(Fv) defined in §2.3.3. Thus the function

(A.36) reduces to a function on H
+,µ,λ
M (Fq).

On the other hand, we have a similar reduction of ι
µ,λ∗
P (∗(Qℓ)) by a modified version of

[62, Theorem 4.3.1]:

Recall from Lemma A.3.11 that ι
µ,λ∗
P (∗(Qℓ)) = 0 unless µ − λ ∈ Λ

pos
G,P . Assuming
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that µ − λ ∈ Λ
pos
G,P , the relevant definitions and results from §A.2.7 still hold, without the

assumption that [G,G] is simply connected.

Theorem A.3.17. Let µ, λ ∈ ΛG,P with µ − λ ∈ Λ
pos
G,P . The ∗-restriction ιµ,λ∗P (∗(Qℓ)) to

the stratum VinBun
µ,λ
G,cP

×(T/Z0(M)) is equal to

pr
µ,λ∗
M

(
Qℓ ⊠̃ Υ̃(ǔP )

µ−λ
)
⊠(Qℓ(

1
2)[1])

−〈2ρ̌P ,µ−λ〉⊗H∗(Z0(M)/Z0(G),Qℓ).

Here Υ̃(ǔP )
µ−λ is the factorization algebra on Gr+

M,Xµ−λ defined in §A.2.7, and we can form

the sheaf (Qℓ)BunM ⊠̃ Υ̃(ǔP )
µ−λ ∈ D(H+

M,Xµ−λ) using (A.5).

The proof of Theorem A.3.17 follows the same reasoning as the proof of [62, Theorem

4.3.1], using the local models defined in loc. cit, which we now review.

A.3.11 Local models

Recall that π̄ : Genh → Tadj denotes the projection and s̄ : Tadj → Genh is a section. Let

(Genh)≥P := π̄−1((Tadj)≥P ) denote the open submonoid.

Define YP to be the scheme representing the substack

Maps◦(X,U−\(Genh)≥P /P ) ⊂ BunU− ×
BunG

VinBunG,≥P ×
BunG

BunP

of maps generically landing in U− · s̄((Tadj)≥P ) · P . Then π̄ induces a map

YP → (Tadj)≥P .

For θ ∈ ΛG,P , let YP,θ denote the preimage of Bun−θM under the projection BunP →

BunM .

One can define both left and right actions of Tadj on YP in a similar way as in §A.3.3.
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Then the action of T/Z(M) →֒ Tadj defines an isomorphism

YP ∼= YPstrict×(T/Z(M)),

where YPstrict := YP ×Tadj
Z(M)/Z(G) is the local model for VinBunG,≥P,strict considered in

[62, §6.1].

Let eP = s̄(cP ) and (Genh)≥P,strict = π̄−1({1}×Z(M)/Z(G)). By Theorem 1.4.8, we

have

eP · (Genh)≥P,strict · eP = eP · (Genh)cP · eP =M.

The map (Genh)≥P,strict → M factors through U−\(Genh)≥P,strict/U . Therefore we have a

map

πY : YP,θ → Gr+
M,Xθ ×(T/Z(M)).

The embedding M = eP · (Genh)cP · eP →֒ (Genh)cP induces a section

σY : Gr+
M,Xθ ×(T/Z(M))→ YP,θ

of πY. Both πY and σY are compatible with the projection

YP → (Tadj)≥P = G
|ΓM |
m ×(A1)|ΓG|−|ΓM | → G

|ΓM |
m = T/Z(M).

The scheme YP,θ is a local model for VinBunG,≥P . We will need to consider

ỸP,θ := YP,θ ×
Tadj

T/Z0(G),

which is a local model for VinBunG,≥P ×Tadj
T/Z0(G). Let (T/Z0(G))≥P and (T/Z0(G))P

denote the base changes of the corresponding loci in Tadj, so that Ỹ
P,θ lies over (T/Z0(G))≥P .
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By base change, we get maps

Gr+
M,Xθ ×(T/Z0(G))P

σ̃Y−→ ỸP,θ
π̃Y−→ Gr+

M,Xθ ×(T/Z0(G))P .

At the level of reduced schemes, Lemma A.3.15 implies that we have maps

(Gr+
M,Xθ)red×(T/Z0(M))

σ̃Y−→ Ỹ
P,θ
red

π̃Y−→ (Gr+
M,Xθ)red×(T/Z0(M)).

A.3.12 Contracting action on Ỹ
P,θ
red

Fix a cocharacter νM : GM → Z0(M) ⊂ T which contracts U− to the element 1 ∈ U−.

Then νM defines a Gm-action on YP,θ that contracts YP,θ onto the section σY by [62, Lemma

6.5.6].

By definition, the induced Gm-action on (Tadj)≥P is via the composition Gm
−2νM−→ T

and the usual T -action on Tadj. Therefore if we consider the Gm-action on T/Z0(G) via the

composition Gm
−2νM−→ T and the usual T -action on T/Z0(G), we get a Gm-action on ỸP,θ,

and hence on Ỹ
P,θ
red . Moreover from Lemma A.3.15 we deduce that this Gm-action contracts

Ỹ
P,θ
red onto the section (Gr+

M,Xθ)red×(T/Z0(M)).

We are now ready to prove Theorem A.3.17.

Proof of Theorem A.3.17. Since the open locus VinBunG,≥P contains the P - and G-loci, to

compute ι
µ,λ∗
P ∗Qℓ, we may restrict to VinBunG,≥P ×Tadj

T/Z0(G).

Let Y
P,θ
G ⊂ YP,θ denote the G-locus: the preimage of Tadj under the projection to Tadj.

Set Ỹ
P,θ
G = Y

P,θ
G ×Tadj(T/Z0(G)). The Tadj-action on YP,θ induces an isomorphism

Y
P,θ
G
∼=
◦
ZP,θ×Tadj,
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where
◦
ZP,θ is the open Zastava space (see §A.2.8). Hence there is an isomorphism

Ỹ
P,θ
G
∼=
◦
ZP,θ×(T/Z0(G)).

Let G : Ỹ
P,θ
G →֒ ỸP,θ denote the open embedding. Then the assertion of the theorem

reduces, as explained in [12, §3, §8], to proving that

σ̃∗Y(G∗(Qℓ))
∼= Υ̃(ǔP )

θ
⊠(Qℓ(

1
2)[1])

−〈2ρ̌P ,θ〉⊗H∗(Z0(M)/Z0(G),Qℓ). (A.38)

Since we are working with étale sheaves, we can work at the level of reduced schemes. Then

we can apply the contraction principle (cf. [12, §5], [62, Lemma 7.2.1]) to the Gm-action on

Ỹ
P,θ
red defined in §A.3.12. This gives an isomorphism σ̃∗

Y
(G∗(Qℓ))

∼= π̃Y∗(G∗(Qℓ)). At the

level of reduced schemes,

π̃Y ◦ G : Y
P,θ
G,red

∼=
◦
ZP,θ×(T/Z0(G))→ (Gr+

M,Xθ)red×(T/Z0(M))

is the product of
◦
πZ and the natural projection T/Z0(G) → T/Z0(M). Recall from (A.15)

that there is a canonical isomorphism Υ̃(ǔP )
θ ∼= (

◦
πZ)∗(IC◦

ZP,θ
). Noting that

◦
ZP,θ is smooth

of dimension 〈2ρ̌P , θ〉, we get the identification

(
◦
πZ)∗(Qℓ)

∼= Υ̃(ǔP )
θ⊗(Qℓ(

1
2)[1])

−〈2ρ̌P ,θ〉.

Since Z0(M)/Z0(G) is a torus, we observe that T/Z0(G) → T/Z0(M) is a trivial torsor.

Equation (A.38), and hence the theorem, now follows.

Proof of Theorem A.3.16. The trace of the geometric Frobenius on H∗(Gm,Qℓ) equals 1−q,

and Z0(M)/Z0(G) is a product of |ΓG|−|ΓM | copies of Gm. Therefore the trace of geometric

Frobenius on H∗(Z0(M)/Z0(G),Qℓ) equals (1 − q)
|ΓG|−|ΓM |. Theorem A.3.16 now follows

from Theorem A.3.17, Proposition A.2.4, and (A.37).
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2005.

[16] Daniel Bump. Automorphic forms and representations, volume 55 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 1997.

[17] P. Cartier. Representations of p-adic groups: a survey. In Automorphic forms, repre-
sentations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis,
Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, pages 111–155. Amer. Math.
Soc., Providence, R.I., 1979.

[18] W. Casselman. The unramified principal series of p-adic groups. I. The spherical func-
tion. Compositio Math., 40(3):387–406, 1980.

[19] J. W. S. Cassels. An introduction to the geometry of numbers. Classics in Mathematics.
Springer-Verlag, Berlin, 1997. Corrected reprint of the 1971 edition.
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