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1. Introduction.

Let us consider the initial boundary value problem:

$u_{t}-a(x, u)u_{xx}=0$ in $Q_{T}$ , (1.1)

$u(x, 0)=0$ for $0<x<1$ , (1.2)

$u(O, t)=f(t)$ and $u(1, t)=0$ for $0<t<T$ , (1.3)

where $Q_{T}\equiv\{(x, t):0<x<1,0<t<T\}$ .
Assume that the following conditions for $a$ and $f$ are satisfied:

(i) for any finite $M>0,$ $a(x, z)\in C^{1}([0,1]\times[-M, M])$ ,
(ii) for fixed, positive constantsv and $\mu,$ $ 0<v\leq a(x, z)\leq\mu$ on $[0,1]\times[-M, M]$ ,
(iii) for fixed, positive constant $C,$ $|\partial_{x}a(x, z)|+|\partial_{z}a(x, z)|\leq C$ on $[0,1]\times[-M, M]$ ,
(iv) $f\in H^{1+\beta/2}([0, T])(0<\beta<1)$ with $f^{\prime}(t)>0$ for $0<t<T$,
(v) $f(0)=0=f^{\prime}(0)$ .

From the conditions $(i)-(v)$ applying Theorem 5.2 and Remark 5.1 in [5], we see
that there exists a unique solution $u(x, t)\in H^{2+\beta,1+\beta}([0,1]\times[0, T])$ to the initial
boundary value problem $(1.1)-(1.3)$ . So we may define D-N map as follows:

$\Lambda(a, f):u(O, t)=f(t)\mapsto u_{x}(0, t)$ on $[0, T]$ .

We are interested in uniqueness results for $a(x, u)$ of the equation (1.1) from $\Lambda(a, f)$ .
Isakov [4] proved the uniqueness for $a(x, u)$ in the case that the spatial dimension is
greater than or equal to 2 by using the completeness of products of solutions for linear
parabolic equations. But in the case that the spatial dimension is one, the completeness
of products of solutions has not been proved yet. So we need another method for
proving the uniqueness for $a(x, u)$ . In [1] it was shown that the coefficient $\kappa$ of the
equation $a(u)u_{t}=\kappa(a(u)u_{x})_{x}$ was uniquely determined from overspecified boundary data
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by transforming the original equation to the linear one $v_{t}=\kappa v_{xx}$ . In [3] DuChateau
studied the monotonicity and the uniqueness of the coefficient $a(u)$ of the equation
$u_{t}-(a(u)u_{x})_{x}=0$ by using the methods in Muzylev [6]. In this paper we will prove the
uniqueness for $a(x, u)$ in an admissible class $A$ by modifying and extending the methods
in [6] for the equation $u_{t}-a(x, u)u_{xx}=0$ .

DEFINITION. Two functions $a(x, z)$ and $b(x, z)$ satisfying the conditions $(i)-(iii)$ will
be said to belong to the admissible class $A[0,1]\times[0, d]$ provided that, if $a(x, O)=b(x, 0)$

on $[0,1]$ , then there exists $d>0$ such that $a(x, z)=b(x, z)$ on $[0,1]\times[0, d]$ .

Our theorem is as follows:

THEOREM. Let $u^{j}$ be a solution to the problem $(1.1)-(1.3)$ with $ a=a^{j}\in$

$A[0,1]\times[0, f(T)],j=1,2$ . If $\Lambda(a^{1},f)=\Lambda(a^{2}, f)$ , then a $=a^{2}$ on $[0,1]\times[0, f(T)]$ .

We will prove our theorem by using an integral identity (Lemma 2.1). This paper
is organized as follows. Some lemmas are proved in Section 2. Section 3 is devoted to
the proof of our theorem.

2. Lemmas.

From (ii) in Introduction, we may define

$c(x, u)=\int_{0}^{u}\frac{1}{a(x,z)}dz$ .

Then the solution $u(x, t)$ to the original problem $(1.1)-(1.3)$ satisfies the equation
$(c(x, u))_{t}-u_{xx}=0$ . It is easily seen that for any $\phi(x, t)\in C^{2,1}(\overline{Q}_{T})$, we have

$0=\int_{\overline{Q}_{T}}\{(c(x, u))_{t}-u_{xx}\}\phi dxdt$

$=-\int_{\overline{Q}_{T}}\{c(x, u)\phi_{t}+u\phi_{xx}\}dxdt+\int_{0}^{1}[c(x, u)\phi]_{0}^{T}dx+\int_{0}^{T}[u\phi_{x}-u_{x}\phi]_{0}^{1}dt$ .

This implies

$\int_{\overline{Q}_{T}}\{c(x, u)\phi_{t}+u\phi_{xx}\}dxdt$

$=\int_{0}^{1}\{c(x, u(x, T))\phi(x, T)-c(x, u(x, O))\phi(x, O)\}dx$

$+\int_{0}^{T}\{u(1, t)\phi_{x}(1, t)-u_{x}(1, t)\phi(1, t)-u(O, t)\phi_{x}(0, t)+u_{x}(0, t)\phi(O, t)\}dt$ . (2.1)

Using (2.1), we prove the following Lemma 2.1.
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LEMMA 2.1. Let $u^{j}$ be a solution to the mixed problem $(1.1)-(1.3)$ with $a=a^{j}$ ,
$j=1,2$ . If $\Lambda(a^{1}, f)=\Lambda(a^{2}, f)$ , then we have

$I_{T}\equiv\int_{\overline{Q}_{T}}(\frac{1}{a^{2}(x,u^{2})}-\frac{1}{a^{1}(x,u^{2})})u_{t}^{2}\phi dxdt=0$ , (2.2)

where $\phi(x, t)$ is a solution to the following mixed problem:

$\phi_{t}+p(x, t)\phi_{xx}=0$ in $Q_{T}$ , (2.3)

$\phi(x, T)=0$

$\phi(1, t)=0$

$\phi(0, t)=\chi(t)$

here $p(x, t)>0$ defined by

for $0<x<1$ , (2.4)

for $0<t<T$ , (2.5)

for $0<t<T$ , (2.6)

$p(x, t)=\left\{\begin{array}{l}\frac{u^{1}-u^{2}}{c^{1}(x,u^{1})-c^{1}(x,u^{2})}\\\frac{1}{\partial_{u}c^{1}(x,u^{1})}\end{array}\right.$ $forfor$ $u^{1}(x,t)=u^{2}(x,t)u^{1}(x,t)\neq u^{2}(x, t)$

’

and $\chi(t)$ is an infinitely differentiable function satisfying $\chi(t)>0$ for $0<t<T$ and $\chi(T)=0$ .

PROOF. If $p(x, t)$ is Lipschitz with respect to $x$ and $t$ , then it is known that there
exists a unique classical solution for the mixed problem $(2.3)-(2.6)$ . First we prove $p(x, t)$

is Lipschietz with respect to $x$ . From the definition of $c$ , if $u^{1}(x, t)=u^{2}(x, t)$ , then we
see that $p(x, t)=a^{1}(x, u^{1}(x, t))$ . Hence we obtain

$|p_{x}(x, t)|\leq\max_{x,z}|a_{x}^{1}(x, z)|+\max_{x,z}|a_{z}^{1}(x, z)|\cdot\max|u_{x}^{1}|\overline{Q}_{T}$

Therefore, using (ii) in Introduction and $u^{1}\in H^{2+\beta.1+\beta}(\overline{Q}_{T})$ , there exists a positive
constant $C_{1}>0$ such that

$|p_{x}(x, t)|\leq C_{1}$ if $u^{1}(x, t)=u^{2}(x, t)$ .

If $u^{1}(x, t)\neq u^{2}(x, t)$ , by the mean value theorem, we have

$|p(x, t)-p(y, t)|=|\frac{u^{1}(x,,’ t)-u^{2}(x,t)u^{1}(y,}{\int_{u^{2}(xt)}^{u^{1}\langle xt)}dz/a^{1}(x,z)\int_{u^{2}\langle yt)}^{u^{1}\langle yt)}dz/a^{1}(y,z)}|=|a^{1}(x, \xi_{1})-a^{1}(y, \xi_{2})|$

$\leq|a^{1}(x, \xi_{1})-a^{1}(y, \xi_{1})|+|a^{1}(y, \xi_{1})-a^{1}(y, \xi_{2})|$

$\leq\max_{x,z}|a_{x}^{1}(x, z)|\cdot|x-y|+\max_{x.z}|a_{Z}^{1}(x, z)|\cdot|\xi_{1}-\xi_{2}|$ ,

where
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$\xi_{1}=\theta u^{1}(x, t)+(1-\theta)u^{2}(x, t)$ , $0<\theta<1$ ,

$\xi_{2}=\eta u^{1}(y, t)+(1-\eta)u^{2}(y, t)$ , $0<\eta<1$ .

We define an interval such as

$M(z)\equiv(\min\{u^{1}(z, t), u^{2}(z, t)\}, \max\{u^{1}(z, t), u^{2}(z, t)\})$ .

If $ M(x)\cap M(y)=\emptyset$ , then $p(x, t)=a^{1}(x, \xi_{1})$ is differentiable with respect to $x$ and we
obtain

$p_{x}(x, t)=a_{x}^{1}(x, \xi_{1})+a_{z}^{1}(x, \xi_{1}K\theta u_{z}^{1}(x, t)+(1-\theta)u_{x}^{2}(x, t))$ .
Hence there exists a positive constant $C_{2}>0$ such that

$|p_{x}(x, t)|\leq\max_{x,z}|a_{x}^{1}(x, z)|+\max_{x,z}|a_{z}^{1}(x, z)|(\overline{Q}_{T}\max|u_{x}^{1}|+\max\overline{Q}_{T}|u_{x}^{2}|)\leq C_{2}$ .

If $ M(x)\cap M(y)\neq\emptyset$ , then there exists $z\in(x, y)$ such that $u^{1}(z, t)=u^{2}(z, t)$ . By the mean
value theorem, there exist $\gamma_{j},$ $0<\gamma_{j}<1(j=1,2,3,4)$ such that

$u^{1}(x, t)=u^{1}(z, t)+u_{x}^{1}(\gamma_{1}, t)(x-z)$ ,

$u^{2}(x, t)=u^{2}(z, t)+u_{x}^{2}(\gamma_{2}, tKx-z)$ ,

$u^{1}(y, t)=u^{1}(z, t)+u_{x}^{1}(\gamma_{3}, t)(y-z)$ ,

$u^{2}(y, t)=u^{2}(z, t)+u_{x}^{2}(\gamma_{4}, t)(y-z)$ .

Thus there exists a positive constant $C_{4}>0$ such that

$|\xi_{1}-\xi_{2}|=|\theta u^{1}(z, t)+\theta u_{x}^{1}(\gamma_{1}, t)(x-z)+(1-\theta)u^{2}(z, t)+(1-\theta)u_{x}^{2}(\gamma_{2}, tKx-z)$

$-\eta u^{1}(z, t)-\eta u_{x}^{1}(\gamma_{3}, t)(y-z)-(1-\eta)u^{2}(z, t)-(1-\eta)u_{x}^{2}(\gamma_{4}, t)(y-z)|$

$\leq C_{4}|x-y|$ ,

here we have used $u^{1}(z, t)=u^{2}(z, t)$ . Therefore we get

$|p(x, t)-p(y, t)|\leq(C+CC_{4})|x-y|$ .

The proof is similar in the case of variable $t$ . Hence $p(x, t)$ is Lipschitz with respect to
$x$ and $t$ .

Now we are going to derive (2.2) in Lemma 2.1. From (2.1), (2.4), (2.5), (2.6) and
noting that $c^{j}(x, u^{j}(x, 0))=c^{j}(x, 0),j=1,2$ , we have

$\int_{\overline{Q}_{T}}\{c^{j}(x, u^{j})\phi_{t}+u^{j}\phi_{xx}\}dxdt=\int_{0}^{T}\{\chi(t)u_{x}^{j}(0, t)-f(t)\phi_{x}(0, t)\}dt$ , $j=1,2$ .

This and the assumption $u_{x}^{1}(0, t)=u_{x}^{2}(0, t)$ implies

$\int_{\overline{Q}_{T}}\{(c^{1}(x, u^{1})-c^{2}(x, u^{2}))\phi_{t}+(u^{1}-u^{2})\phi_{xx}\}dxdt$
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$=\int_{0}^{T}\chi(t)(u_{x}^{1}(0, t)-u_{x}^{2}(0, t))dt=0$ .

Combining this equality with (2.3), (2.4), and $c^{1}(x, 0)=c^{2}(x, 0)=0$ , we obtain

$0=\int_{\overline{Q}_{T}}\{(c^{1}(x, u^{1})-c^{2}(x, u^{2}))\phi_{t}+(u^{1}-u^{2})\phi_{xx}\}dxdt$

$=\int_{\overline{Q}_{T}}\{(c^{1}(x, u^{1})-c^{1}(x, u^{2}))\phi_{t}+(u^{1}-u^{2})\phi_{xx}\}dxdt$

$+\int_{\overline{Q}_{T}}\{c^{1}(x, u^{2})-c^{2}(x, u^{2})\}\phi_{t}dxdt$

$=\int_{\overline{Q}_{T}}\{c^{1}(x, u^{2})-c^{2}(x, u^{2})\}\phi_{t}dxdt$

$=\int_{0}^{1}[(c^{1}(x, u^{2})-c^{2}(x, u^{2}))\phi]_{0}^{T}dt-\int_{\overline{Q}_{T}}(\frac{1}{a^{2}(x,u^{2})}-\frac{1}{a^{1}(x,u^{2})})u_{t}^{2}\phi dxdt$

$=\int_{\overline{Q}_{T}}(\frac{1}{a^{2}(x,u^{2})}-\frac{1}{a^{1}(x,u^{2})})u_{t}^{2}\phi dxdt$ .

Therefore we get the desired equality (2.2). The proof is complete.

To prove our theorem, we need some lemmas related to the positivity of $u_{t}$ and $\phi$ .

LEMMA 2.2. Let $u$ be a solution to the problem $(1.1)-(1.3)$ with $(i)-(v)$ . Then the
following inequality holds:

$0\leq z(x, t)\leq u(x, t)\leq v(x, t)\leq f(t)$ in $\overline{Q}_{T}$ ,

where $z$ and $v$ are unique solutions to the following problems:

$\left\{\begin{array}{l}v_{t}-\mu v_{xx}=0inQ_{T}\\v(x,0)=0for0<x<1\\v(0,t)=f(t)for0<t<T\\v(1,t)=0for0<t<T\end{array}\right.$

$\left\{\begin{array}{l}z_{t}-vz_{xx}=0inQ_{T}\\z(x,0)=0for0<x<1\\z(0,t)=f(t)for0<t<T\\z(1,t)=0for0<t<T\end{array}\right.$

PROOF. From a maximum principle, we have

$0\leq v(x, t)\leq f(t)$ and $0\leq z(x, t)\leq f(t)$ .
$v-u$ satisfies the following mixed problem:
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$\left\{\begin{array}{l}(v-u)_{t}-a(x,u)(v-u)_{xx}=(\mu-a(x,u))v_{xx}\\(v-u)(x,0)=0\\(v-uK0,t)=0\\(v-uK1,t)=0\end{array}\right.$ $forforforinQ_{T}0<t<T0<x<10<t<T$

’

Noting that $\mu\geq a$ , if $v_{xx}\geq 0$ in $\overline{Q}_{T}$ , then a maximum principle yields $v-u\geq 0$ in $\overline{Q}_{T}$ . So
we are going to prove $v_{xx}\geq 0$ in $\overline{Q}_{T}$ . Set $w=v_{t}$ . Then $w$ satisfies the following:

$\left\{\begin{array}{l}w_{t}-\mu w_{xx}=0inQ_{T}\\w(x,0)\geq 0for0<x<1\\w(0,t)=f^{\prime}(t)>0for0<t<T\\w(1,t)=0for0<r<T\end{array}\right.$

A maximum principle implies that $w=v_{t}\geq 0$ in $\overline{Q}_{T}$ . Combining this with $\mu>0$ and
$v_{t}=\mu v_{xx}$ , we have $v_{xx}\geq 0$ in $\overline{Q}_{T}$ . By the same way, we get $u-z\geq 0$ in $\overline{Q}_{T}$ .

LEMMA 2.3. Let $u$ be a solution to the problem $(1.1)-(1.3)$ with $(i)-(v)$ , then it holds
that

$u_{t}(x, t)>0$ in $Q_{T}$ .

PROOF. Set $w=u_{t}$ , then $w$ satisfies the following:

$\left\{\begin{array}{l}w_{t}-a_{z}(x,u)w_{XX}-a(x,u)u_{XX}w=0\\w(x,0)\geq 0\\w(0,t)=f’(t)>0\\w(1,t)=0\end{array}\right.$ $forforinforQ_{T}0<t<T0<x<10<t<T$

’

From Lemma 2.2 and $u\in H^{2+\beta.1+\beta}(\overline{Q}_{T}),$ $a(x, u)u_{xx}$ is bounded. Hence a maximum prin-
ciple yields $u_{t}(x, t)>0$ in $Q_{T}$ .

3. Proof of Theorem.

A maximum principle implies that $\phi>0$ in $Q_{T}$ , here $\phi$ is a solution to the mixed
problem $(2.3)-(2.6)$ . Combining this with Lemma 2.3, we have $u_{t}^{2}\phi>0$ in $Q_{T}$ . If
$a^{1}(x, O)\neq a^{2}(x, 0)$ on $[0,1]$ , then there exist $\epsilon_{0},$

$\epsilon_{1}>0$ such that

$\frac{11}{a^{2}(x,u^{2})a^{1}(x,u^{2})}>\epsilon_{O}$ or $\frac{11}{a^{1}(x,u^{2})a^{2}(x,u^{2})}>\epsilon_{0}$

for $0<x<1$ and $0\leq u^{2}\leq\epsilon_{1}$ . Taking $f(t)$ such that $\max_{\overline{Q}_{T}}u=f(T)=\epsilon_{1}$ , then by Lemma
2.1 and $u_{t}^{2}\phi>0$ in $Q_{T}$ , we obtain $I_{T}>0$ . This contradicts (2.2). Since $a^{1}$ and a belong
to the admissible class stated in Introduction, then we get $a^{1}(x, z)=a^{2}(x, z)$ on
$[0,1]\times[0, f(T)]$ .



INVERSE PROBLEM 469

References

[1] J. R. CANNON and P. DuCHATEAU, Determining unknown coefficients in a nonlinear heat conduction
problem, SIAM J. Appl. Math. 24 (1973), 298-314.

[2] J. R. CANNON and H. YIN, A uniqueness result for a class of nonlinear parabolic inverse problems,
Inverse Problems 4 (1988), 411416.

[3] P. DuCHATEAU, Monotonicity and invertibility of coefficient-to-data mappings for parabolic inverse
problems, SIAM J. Math. Anal. 26 (1995), 1473-1487.

[4] V. ISAKOV, Uniqueness and stability in inverse parabolic problems, Inverse Problems in Diffusion
Processes, SIAM (1995), 21-41.

[5] O. A. LADYZHENSKAYA, V. A. SOLONNIKOV and N. N. URALCEVA, Linear and quasilinear equations
of parabolic type, Transl. Math. Monographs 23 (1968).

[6] N. V. MUZYLEV, Uniqueness theorems for some converse problems of heat conduction, USSR Comput.
Math. Math. Phys. 20 (1986), 120-134.

[7] M. H. PROTTER and H. F. WEINBERGER, Maximum Principles in Differential Equations, Prentice-Hall
(1967).

Present Address:
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF EAST ASIA,
SHIMONOSEKI, YAMAGUCHI, 751-0807 JAPAN.


