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Abstract

In this paper, we study the nonnegativity and stability properties of the solutions of a

newly proposed extended SEIR epidemic model, the so-called SE(Is)(Ih)AR epidemic

model which might be of potential interest in the characterization and control of the

COVID-19 pandemic evolution. The proposed model incorporates both

asymptomatic infectious and hospitalized infectious subpopulations to the standard

infectious subpopulation of the classical SEIR model. In parallel, it also incorporates

feedback vaccination and antiviral treatment controls. The exposed subpopulation

has three different transitions to the three kinds of infectious subpopulations under

eventually different proportionality parameters. The existence of a unique

disease-free equilibrium point and a unique endemic one is proved together with the

calculation of their explicit components. Their local asymptotic stability properties

and the attainability of the endemic equilibrium point are investigated based on the

next generation matrix properties, the value of the basic reproduction number, and

nonnegativity properties of the solution and its equilibrium states. The reproduction

numbers in the presence of one or both controls is linked to the control-free

reproduction number to emphasize that such a number decreases with the control

gains. We also prove that, depending on the value of the basic reproduction number,

only one of them is a global asymptotic attractor and that the solution has no limit

cycles.

Keywords: SEIR epidemic model; SE(Is)(Ih)AR epidemic model; Vaccination control;

Antiviral treatment control; Reproduction number; Nonnegativity of solutions; Limit

cycles

1 Introduction

Along the last two decades, an important effort has been devoted to the research of

mathematical epidemic models based on integro-differential equations and/or difference

equations. Such models describe the evolution through time of various subpopulations

integrated in the epidemic model. The classical so-called SEIR (Susceptible–Exposed–

Infectious–Recovered) epidemicmodel splits the infectious population into two subpopu-

lations (or compartments), namely, the so-called “infected” or “exposed” (E) (those having

the disease but with no external symptoms) and the “infectious” or “infective” (I) (those
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having external symptoms). The SEIR model has multiple variants with different degrees

of complexity, including those admitting controls like, for instance, constant and feedback

vaccination and treatment controls and/or impulsive controls (exerted on very short peri-

ods of time) or those involving several interacting patches associated with different towns

or regions; see, for instance, [1–3] and [4–12] and references therein. In [11] an epidemic

model subject to a ratio-dependent saturation incidence rate is proposed. On the other

hand, a new SIR (Susceptible–Infectious–Recovered) epidemic model under impulsive

vaccination is investigated in [12], and a nonautonomous SIRVS epidemicmodel with vac-

cination controls is proposed and studied in [13]. Also, an epidemic delayed model with

diffusion is characterized and studied in [14]. It is worth mentioning that a relevant at-

tention has been paid to the investigation of the stability and nonnegativity and positivity

properties of epidemicmodels in both vaccination-free and vaccination control situations.

See, for instance, [14–26], and also [17, 18] in the stochastic framework context. On the

other hand, we can point out that the nonnegativity of the solution is commonly required

in biological processes to appropriately approach in a coherent fashion their natural evo-

lution. See, for instance, [27] and some references therein, concerning the Beverton–Holt

equation of population model evolution at successive stages.

On the other hand, it is known that there may be some individuals who are infective but

have no significant external symptoms, the so-called “asymptomatic” (A) subpopulation;

see [28–32], and references therein. This occurs even in the common known influenza dis-

ease. If such an asymptomatic subpopulation is incorporated to the model, then it turns

out that the exposed have different transitions to the infective and to the asymptomatic

in such a way that a proportion of the exposed become asymptomatic after a certain time

period while others become infectious. Note, for instance, that in the Ebola disease the

lying dead corpses are also infective [4, 28–31, 33], which can cause very serious sanitary

problems in third-world tropical countries with low or scarce sanitary means. In particu-

lar, SEIADR-type epidemic models are considered in [29–31], which incorporate asymp-

tomatic and dead populations to the typical SEIR models and which include, in general,

vaccination and treatment controls as well as impulsive controls to retire the infective

bodies from the streets in third-world countries hit by Ebola outbreaks.

In this paper, we propose and investigate an extended SEIR model with six subpopu-

lations, the so-called SE(Is)(Ih)AR. There are four infective subpopulations integrated in

such a model, which are the exposed subpopulation, the symptomatic slight infectious

subpopulation, the symptomatic serious infection subpopulation, and the asymptomatic

subpopulation. It is important to specifically consider the seriously infectious subpopula-

tion as a separate one from the slightly infectious individuals due to their high consump-

tion of hospital resources (intensive care attention means, respirators, etc.) and special

staff attention related to the slight infectious individuals. Each individual of exposed sub-

population has a transition either to one of the symptomatic infectious subpopulation or

to the asymptomatic one. The respective transmission rates are different in general be-

cause of different reasons; for instance, the asymptomatic individuals do not cough or can

cough occasionally due to other reasons than COVID disease such as allergies, asthma, or

gastroesophageal reflux disease, so it is expected that their transmission rate for contagion

of susceptible individuals is smaller than that of the infectious ones. Also, the hospitalized

individuals do not contact usually the same average numbers of susceptible as the asymp-

tomatic or slight infectious contact, whereas the hospital staff members that contact with
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them are expected to have protection suits and sanitary contact means. So, it is also ex-

pected that the hospitalized individuals have a smaller transmission rates than those of the

slight infectious ones. The proposed epidemic model is also subject, in the most general

framework, to feedback vaccination and treatment controls. It is tested through numeri-

cal worked and tested examples under parameterizations related to the recent COVID-19

pandemic, which is exhaustively studied in the medical and computational background

literature; see, for instance, [34–48] and references therein. Therefore the current study is

of important potential interest, although nowadays there is no yet an approved vaccine for

COVID-19 to be applied on the population. It turns out that COVID-19 is a respiratory

viral infectious disease, which has a very high contagiousness related to the typical in-

fluenza or the known common cold. Therefore intervention rules, such as confinements,

social distance keeping, limitation of events, and attendance numbers or use of facemasks,

are recommended or even mandatory to mitigate the disease spread. The use of masks is

probably the simpler, cheaper, and most efficient weapon against the pandemic, although

it can have also secondary effects on the health [43], mainly due to the incomplete ejec-

tion of carbon dioxide outside with the exhalation of air phase. COVID-19 pandemic also

exhibits very different symptoms and later secondary effects depending on the particular

infected individual running from asymptomatic, or very slight, symptoms to very seri-

ous ones, needing extreme hospital care, sometimes producing serious damage in organs

like lungs, liver, or heart and sometimes ending with the patient’s death. In particular,

the particle swarm optimization algorithm (PSO) is used to estimate an SEIR model pa-

rameterization of COVID-19 using available Hubei province data. Also, a fractional-order

model SEIRD model (an SEIR model, which includes deceased) is proposed in [35] for

COVID-19 pandemic emphasizing that the fractional models possess an inherent mem-

ory effect. On the other hand, an epidemic model for COVID-19 that takes into account

undetected infective cases and different sanitary and infectiousness conditions of the hos-

pitalized individuals is discussed in [36], whereas an extended SEIRmodel is considered in

[37], which incorporates as a new subpopulation the concentration of the coronavirus in

the environment reservoir. Also, the dynamics of such a concentration is driven by the ex-

posed and infectious subpopulations. Ageing population layers for control interventions

and re-susceptibility and time delay are considered in [38].

Some new recent work [44] is devoted to discussion of the relevance of lockdowns and

quarantines to fight against the spread of the recent COVID-19 pandemic. Further work

in the fractional framework for a SIRVmodel under combined vaccination and treatment

controls is reported in [45] and also in [49] concerning rubella propagation. On the other

hand, the use of vaccination controls for an SEIRS model under temporary immunity is

discussed in [50], whereas the use of impulsive vaccination under short term immunity is

proposed in [51] for an SEIR epidemicmodel. Also, polynomial approaches for the analysis

of epidemic models were also proposed. In particular, the use of a Hermite polynomial

approach for the solution of an SIR epidemic model is discussed in [52].

The paper is organized as follows. In Sect. 2, we establish a new SE(Is)(Ih)AR epidemic

model, which involves six subpopulations, namely, Susceptible (S), Exposed (E), Slight

Symptomatic Infectious Is (not requiring hospital care), Seriously Symptomatic Infectious,

or hospitalized, Ih (requiring hospital care), Asymptomatic (A), and Recovered (R). The

exposed subpopulation has transitions to the slight, hospitalized, and asymptomatic in-

fectious, in general, under distinct proportions, and those proportions belong to the set
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of parameters of the model as it has been previously mentioned. In general, one defines a

basic transmission rate for contacts of slight infectious to susceptible, whereas the other

two transmission rates for asymptomatic versus susceptible and hospitalized versus sus-

ceptible are characterized by relative transmission rates related to the above basic one.

On the other hand, it is assumed that the disease mortality affects the fraction of the hos-

pitalized subpopulation only. The model is subject eventually to two different feedback

controls, which can be combined, namely, the vaccination control on the susceptible and

the treatment control on the hospitalized infectious. In general, the transmission rate and

the feedback control gains can be time-varying. The property of nonnegativity of any so-

lution under any nonnegative initial conditions is investigated and proved as well as the

boundedness of all the subpopulations for all time, which is a global Lyapunov stability

property. Section 3 is devoted to the characterization of the location of the disease-free

and the endemic equilibrium points, which are proved to be unique, and to proving their

local asymptotic stability conditions. It is seen that the disease-free equilibrium point is

locally asymptotically stable when the basic reproduction number is smaller than unity. It

is proved that the endemic equilibrium point is attainable (or reachable) in the sense that

the nonnegativity of the solutions is kept for all time, as the disease-free equilibrium point

is unstable. On the other hand, it is also emphasized that the equilibriumpoints are depen-

dent on the basic reproduction number (and, equivalently, on the transmission rate if all

the remaining model parameters are fixed) and that increase of the values of control gains

reduces the value of the basic reproduction number. As a result, the disease-free equilib-

rium point can be an attractor for higher values of the transmission rate in comparison

with the control-free case. It is also shown that no limit cycle can surround any or both

equilibrium points if the transmission rate and the control gains converge asymptotically

to constant values. As a result, no limit cycle exists under weak conditions on the param-

eterization of the uncontrolled model and the control gains, whereas only one of the two

equilibrium points is a global asymptotic attractor depending on the current value of the

basic reproduction number compared to unity.

Section 4 is devoted to the discussion of some numerical examples based on previously

tested parameterizations of COVID-19, which are available in the background literature.

Finally, some conclusions end the paper.

2 The SE(Is)(Ih)AR epidemic model

The proposed SE(Is)(Ih)AR model is an extended SEIR model with the following charac-

teristics: It includes the subpopulations “Susceptible” (S), “Exposed”, who are infected but

not yet infective (E), “Slight Symptomatic Infective” or “Slight Symptomatic Infectious”

(Is), “Seriously Symptomatic Infectious” or “Hospitalized”(Ih), “Asymptomatic Infectious”

(A), and “Recovered” (R). These subpopulations are appropriate to describe COVID-19,

where there is a wide range of influence of the virus on different people, and the model

may be the basis of a generic classification of the infectious population into asymptomatic

individuals, slightly infectious individuals, and hospitalized individuals. The tested slightly

infectious individuals and the asymptomatic ones stay typically at home or in ad hoc pre-

pared and monitored lodgings until further recovery. The slight infectious, serious in-

fectious, and asymptomatic individuals are considered distinct subpopulations since they

are originated by different transitions from the exposed subpopulation. Furthermore, the

slight and asymptomatic individuals do not need hospital treatment.
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The proposed model also incorporates two optional feedback control actions, the stan-

dard vaccination control V (t) on the susceptible and the antiviral treatment T(t) on the

hospitalized infectious subpopulation. The slight and asymptomatic infectious do not

need intensive treatment. Therefore the vaccination control is applied to the susceptible

individuals, and the treatment control is applied to the hospitalized or seriously infectious

individuals. Through the paper, we both formally and intuitively emphasize how those

controls help to reduce the reproduction number. See, for instance, [29–31] and [36–38]

and references therein for the motivation and use of the controls and the modeling issues

for COVID-19, respectively. The SE(Is)(Ih)ARmodel to be discussed is the following one:

Ṡ(t) = b1 –
[

b2 + β(t)
(

Is(t) + βhrIh(t) + βarA(t)
)

+ kV (t)
]

S(t) + ηR(t), (1)

Ė(t) = –(b2 + γ )E(t) + β(t)
(

Is(t) + βhrIh(t) + βarA(t)
)

S(t), (2)

İs(t) = –(b2 + τ0)Is(t) + γ psE(t), (3)

İh(t) = –
(

b2 + α + τ0 + kT (t)
)

Ih(t) + γ phE(t), (4)

Ȧ(t) = –(b2 + τ0)A(t) + γ (1 – ps – ph)E(t), (5)

Ṙ(t) = –(b2 + η)R(t) + τ0
(

Is(t) + Ih(t) +A(t)
)

+ kT (t)Ih(t) + kVS(t), (6)

for t ≥ 0 with initial conditions S(0) = S0, E(0) = E0, Is(0) = Is0, Ih(0) = Ih0, A(0) = A0, and

R(0) = R0 subject to min(S0,E0, Is0, Ih0,A0,R0) ≥ 0, where: b1 is the recruitment rate, b2

is the natural average death rate, β(t),βhrβ(t),βarβ(t) are the transmission rates to the

susceptible from the respective slight (un-hospitalized) symptomatic infectious, serious

(hospitalized) symptomatic infectious, and asymptomatic infectious subpopulations, η is

a parameter such that 1/η is the average duration of the immunity period reflecting a tran-

sition from the recovered to the susceptible, γ is the transition rate from the exposed to

all (i.e. both symptomatic and asymptomatic) infectious, α is the average extra mortality

associated with the symptomatic infectious subpopulation, τ0 is the natural immune re-

sponse rate for the whole infectious subpopulation (i.e.A+ I), ps,ph,pa = 1–ps –ph are the

fractions of the exposed that become slight symptomatic infectious, serious symptomatic

infectious, and asymptomatic infectious, respectively.

V (t) = kV (t)S(t) and T(t) = kT (t)Ih(t) are, respectively, the vaccination and antiviral

treatment linear feedback controls on the susceptible and hospitalized infectious, respec-

tively, of gains kV ,kT : R0+ → R0+.

Note that deterministic models offer a balanced trade-off between complexity and real-

ity representation capabilities. In this way, they are able to reproduce accurately the real

behavior of the spreading while maintaining a lower degree of mathematical complexity

that allows gaining deep insight into the underlying aspects of the propagation. On the

other hand, it has been recently reported that sometimes simple models can give good

results in the research on COVID-19. See, for instance, [53], where the main objective is

determining the rates of infective contacts along different periods of time. Therefore, in

this study, we prefer a deterministic framework for the model in contrast to more sophis-

ticated ones. On the other hand, the integrated inclusion of four infective subpopulations,

namely, exposed, asymptomatic, slight asymptomatic infectious, and seriously infectious

requiring hospital care, with three different transitions from the exposed individuals to

various subpopulation of infectious, is well adapted to the transmission characteristics of

the recent COVID-19 pandemic.
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Remark 1 In the above parameterization, all parameters are positive while we assume

that β(t) can be time-varying in general. This is a reasonable assumption due to differ-

ent factors like seasonality or geographic area of application (for instance, rural, popu-

lated or with very high population density), which can influence the contacts infectious—

susceptible, or the public intervention actions (like confinement, quarantines, or isolation

measures), which also modify the average number of infective contagions. The relative

values of the other two transmission rates βhr and βar are assumed to be constant. In prac-

tice, the primary infectivity of the hospitalized infectious can be smaller than that of the

slight ones β(t) due to potentially taken protection measures on the hospital staff related

and due to the fact that they have less numbers of contacts than average. The transmis-

sion rates of the asymptomatic infectious can also be smaller than β(t) due, for instance,

to the fact that they cough less intensively. So, it will not be surprising that the values of

the relative transmission rates from the hospitalized and asymptomatic βhr and βar to the

susceptible might typically be less than one.

The following result relies on the solutions in closed form of the proposed SE(Is)(Ih)AR

epidemic model, which will be also used to prove the nonnegativity of any solution under

any given arbitrary nonnegative initial conditions.

Theorem 1 Each solution of the SE(Is)(Ih)AR model (1)–(6) is uniquely defined, and it is

nonnegative all the time for any given nonnegative initial conditions and any given vacci-

nation and antiviral controls V (t) = kV (t)S(t) and T(t) = kT (t)Ih(t) of gains kV ,kT : R0+ →

R0+. Each solution is expressed in closed form as follows:

S(t) = e–
∫ t
0 �(τ )dτS0 +

∫ t

0

e–
∫ t
τ �(ξ )dξ

(

b1 + ηR(τ )
)

dτ , ∀t ∈ R0+, (7)

E(t) = e–(b2+γ )tE0 +

∫ t

0

e–(b2+γ )(t–τ )	(τ )S(τ )dτ , ∀t ∈ R0+, (8)

from (1)–(2), where

�(t) = 	(t) + b2 + kV (t), 	(t) = β(t)
(

Is(t) + βhrIh(t) + βarA(t)
)

, ∀t ∈ R0+. (9)

Also, from (3)–(6) we get that

Is(t) = e–(b2+τ0)tIs0 + γ ps

∫ t

0

e–(b2+τ0)(t–τ )E(τ )dτ , ∀t ∈ R0+, (10)

Ih(t) = e–(b2+α+τ0)t–
∫ t
0 kT (τ )dτ Ih0 + γ ph

∫ t

0

e–(b2+α+τ0)(t–τ )–
∫ t
τ kT (ξ )dξE(τ )dτ ,

∀t ∈ R0+, (11)

A(t) = e–(b2+τ0)tA(0) + γ (1 – ps – ph)

∫ t

0

e(b2+τ0)(t–τ )E(τ )dτ , ∀t ∈ R0+, (12)

R(t) = e–(b2+η)tR0 +

∫ t

0

e(b2+η)τ
(τ )dτ , ∀t ∈ R0+, (13)

where 
(t) = τ0(Is(t) + Ih(t) + A(t)) + kT (t)Ih(t) + kVS(t), ∀t ∈ R0+. Now from (7) we have

that S0 ≥ 0⇒ S(t)≥ 0, ∀t ∈ R0+, and since E0 ≥ 0 and S(t)≥ 0, ∀t ∈ R0+, from (8) we have
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E(t) ≥ 0, ∀t ∈ R0+. Then from (10)–(12) it follows that Is(t) ≥ 0, Ih(t) ≥ 0, and A(t) ≥ 0,

∀t ∈ R0+, since E(t) ≥ 0, ∀t ∈ R0+, and Is0 ≥ 0, Ih0 ≥ 0, and A0 ≥ 0. Finally, from (13) it

follows that R(t)≥ 0, ∀t ∈ R0+, since R0 ≥ 0 and 
(t) ≥ 0, ∀t ∈ R0+. The proof is complete.

The boundedness of the subpopulations all the time is proved in the subsequent result,

whose proof is supported by the nonnegativity of the state-trajectory solution concluded

from Theorem 1.

Theorem 2 We have the following properties under the assumptions of Theorem 1:

(i) lim supt→∞ Ih(t)≤ b1/α,

(ii) The total population N(t) = S(t) + E(t) + Is(t) + Ih(t) +A(t) + R(t) is bounded for

t ∈ R0+ under any initial finite conditions

(iii) max(supt∈R0+
S(t), supt∈R0+

E(t), supt∈R0+
Is(t), supt∈R0+

Ih(t), supt∈R0+
A(t),

supt∈R0+
R(t)) < +∞ for any given finite nonnegative initial conditions. As a result,

system (1)–(6) is globally Lyapunov stable.

Proof Assume that lim supt→∞ I(t) > b1/α and proceed by contradiction. By summing up

(1)–(6) we get:

Ṅ(t) = –b2N(t) + b1 – αIh(t), ∀t ∈ R0+, (14)

which leads to the following unique solution for any given N(0) =N0:

N(t) = e–b2t
(

N0 +

∫ t

0

eb2τ
(

b1 – αIh(τ )
)

dτ

)

, ∀t ∈ R0+. (15)

We proceed by contradiction by assuming that lim supt→∞ Ih(t) > b1/α. Then there is

a finite tf ∈ R0+ such that Ih(t) > b1/α, ∀t ∈ � = [tf ,∞)\�0, where �0 ⊂ [tf ,∞) ∩ R0+ is

empty or nonempty but of zero Lebesgue measure. Note that � has infinite Lebesgue

measure by construction. Thus from (15) we have:

lim inf
t→∞

(

–N(t) +

∫ tf

0

e–b2(t–τ )
(

b1 – αIh(τ )
)

dτ –

∫ t

tf

e–b2(t–τ )
(

αIh(τ ) – b1
)

dτ

)

= lim inf
t→∞

(

–N(t) +

∫ tf

0

e–b2(t–τ )
(

b1 – αIh(τ )
)

dτ –

∫

�

e–b2(t–τ )
(

αIh(τ ) – b1
)

dτ

)

≥ lim inf
t→∞

(

–N(t) +C(tf ) –
1 – e–b2(t–tf )

b2

∫

�

e–b2(t–τ )
(

αIh(τ ) – b1
)

dτ

)

≥ 0, (16)

where C(t) =
∫ t

0
e–b2(t–τ )|b1 – αIh(τ )|dτ , ∀t ∈ R0+, implies that C(tf ) < +∞ since [0, tf ) is

a finite interval and the integrand is a continuous and thus bounded function of time,

and 1–e
–b2tf

b2

∫

�
e–b2(t–τ )(αIh(τ ) – b1)dτ = +∞. Then limt→∞ N(t) = –∞, a contradiction if

lim supt→∞ Ih(t) ≤ b1/α does not hold. As a result, lim supt→∞ Ih(t) ≤ b1/α, and property

(i) is proved. Now, from property (i) and (15) it follows that, for some finite ta,

N(t)≤ e–b2tN0 +

∫ ta

0

e–b2(t–τ )
∣

∣b1 – αIh(τ )
∣

∣dτ +

∫ t

ta

e–b2(t–τ )
(

b1 – αIh(τ )
)

dτ

≤ e–b2tN0 +C(ta) +

∫ t

ta

e–b2(t–τ )
(

b1 – αIh(τ )
)

dτ
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≤ N0 +C(ta) +
1 – e–b2(t–ta)

b2
sup

ta≤t<+∞

∣

∣b1 – αIh(t)
∣

∣

≤ N0 +C(ta) + b–12 sup
ta≤t<+∞

∣

∣b1 – αIh(t)
∣

∣ < +∞, ∀t ∈ R0+, (17)

and property (ii) is proved. Since by Theorem 1 all the subpopulations are nonnegative all

the time, property (ii) implies that they are also bounded all the time, and property (iii) is

proved. �

Remark 2 Note that Theorems 1–2 hold irrespectively of the vaccination and treatment

control laws V (t) = kV (t)S(t) and T(t) = kT (t)Ih(t) of gains kV ,kT : R0+ → R0+, which also

covers the absence of one of both such controls. In particular, note from (15) that the total

population is not constant through time in general because of the recruitment and disease

mortality in its differential form (14). This fact is also clearly viewable in some simulated

experiments of Sect. 4.

3 Equilibrium points and stability results

In this section, we discuss the equilibrium points and their associated properties of local

and global stability. As a final combined result of the local stability with the global stability

and the nonnegativity properties proved in the former section, we establish the global

asymptotic stability.

3.1 Disease-free equilibrium point and its local stability and instability properties

The following result is concerned with the disease-free equilibrium point and its local sta-

bility properties if the basic reproduction number is less than one and the control gains

converge to constant values. The result visualizes the dependence of the basic reproduc-

tion number with the asymptotic values of the control gains. Basically, the reproduction

number is seen to become smaller as the limit control gains increase as time tends to in-

finity. In other words, the stability of the disease-free equilibrium point is improved by the

vaccination and treatment control compared to the control-free situation. In parallel, we

see that the reachable susceptible and recovered disease-free equilibrium values can be

monitored by appropriate choices of the limit control gains.

Theorem 3 Assume that β(t) → β0, kV (t) → kV0, and kT (t) → kT0 as t → ∞. Then the

following properties hold:

(i) There is a unique disease-free equilibrium point

x∗
df := lim

t→∞
x(t) =

(

S∗
df ,E

∗
df , I

∗
sdf , I

∗
hdf ,A

∗
df ,R

∗
df

)T
=

(

S∗
df , 0, 0, 0, 0,R

∗
df

)T
, (18)

where

S∗
df =

b1 + ηR∗
df

b2 + η + kV0

=
b1(b2 + η)

b2(b2 + η + kV0)
, (19)

R∗
df =

kV0S
∗
df

b2 + η
=

kV0b1

b2(b2 + η + kV0)
, (20)

leading to a total population at the disease-free equilibrium point:

N∗
df = S∗

df + R∗
df =

b1

b2
. (21)
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(ii) Suppose, in addition, that kV0 = 0, that is, there is no limiting vaccination control.

Then the basic reproduction number is

R0 =
β0γ b1

b2(b2 + γ )

(

ps

b2 + τ0
+

βhrph

b2 + α + τ0 + kT0
+

βarpa

b2 + τ0

)

. (22)

If this number is less than one, then the disease-free equilibrium point is locally

asymptotically stable in the sense of Lyapunov. If it exceeds one, then the disease-free

equilibrium point is unstable.

(iii) Assume that kV0 �= 0. Then the basic reproduction number is

R0 =
β0γ b1(b2 + η)

b2(b2 + γ )(b2 + η + kV0)

(

ps

b2 + τ0
+

βhrph

b2 + α + τ0 + kT0
+

βarpa

b2 + τ0

)

. (23)

If this number is less than one, then the disease-free equilibrium point is locally

asymptotically stable in the sense of Lyapunov. If it exceeds one, then the disease-free

equilibrium point is unstable.

Proof Property (i) follows directly by equalizing to zero (1)–(6) with E∗
df = I∗sdf = I∗hdf =

A∗
df = 0 and the constraints β(t) → β0, kV (t)→ kV0, and kT (t) → kT0 as t → ∞. This leads

directly to (19)–(20), which summed up yield (21). To prove property (ii), first note that

the Jacobian matrix of the linearized trajectory solution of (1)–(6) is

A∗
df =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

–(b2 + kV0) 0 –β0S
∗
df –β0βhrS

∗
df –β0βarS

∗
df η

0 –(b2 + γ ) β0S
∗
df β0βhrS

∗
df β0βarS

∗
df 0

0 γ ps –(b2 + τ0) 0 0 0

0 γ ph 0 –(b2 + α + τ0 + kT0) 0 0

0 γ pa 0 0 –(b2 + τ0) 0

kV0 0 τ0 τ0 + kT0 τ0 –(b2 + η)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(24)

If there is no limit vaccination control, then, in particular, it becomes

A∗
df 0 =A∗

df ]kV0=0

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

–b2 0 –β0S
∗
df –β0βhrS

∗
df –β0βarS

∗
df η

0 –(b2 + γ ) β0S
∗
df β0βhrS

∗
df β0βarS

∗
df 0

0 γ ps –(b2 + τ0) 0 0 0

0 γ ph 0 –(b2 + α + τ0 + kT0) 0 0

0 γ pa 0 0 –(b2 + τ0) 0

0 0 τ0 τ0 + kT0 τ0 –(b2 + η)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(25)

so that it has two stable eigenvalues –b2 < 0 and –(b2 + η) < 0, and thus A∗
df 0 is a stability

matrix if and only if the following fourth-order matrix of is also a stability matrix:

Ā∗
df 0 =

⎡

⎢

⎢

⎢

⎣

–(b2 + γ ) β0S
∗
df β0βhrS

∗
df β0βarS

∗
df

γ ps –(b2 + τ0) 0 0

γ ph 0 –(b2 + α + τ0 + kT0) 0

γ pa 0 0 –(b2 + τ0)

⎤

⎥

⎥

⎥

⎦

=Q + P, (26)
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where Q is the transition matrix, and P is the transmission matrix, which are defined by

Q =

⎡

⎢

⎢

⎢

⎣

–(b2 + γ ) 0 0 0

γ ps –(b2 + τ0) 0 0

γ ph 0 –(b2 + α + τ0 + kT0) 0

γ pa 0 0 –(b2 + τ0)

⎤

⎥

⎥

⎥

⎦

(27)

and

P = β0S
∗
dfP0; P0 =

⎡

⎢

⎢

⎢

⎣

0 1 βhr βar

0 0 0 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

. (28)

Note that Q is a lower-triangular stability matrix (thus nonsingular with inverse Q–1 =

(Q–1
ij )). Then

Ā∗
df 0 =Q

(

I4 +Q–1P
)

=
(

I4 + β0S
∗
dfP0Q

–1
)

Q =Q
(

I4 + β0S
∗
dfQ

–1P0

)

(29)

is a stabilitymatrix if and only if the spectral radius r(PQ–1) ofPQ–1 is less than one. Under

the stronger condition that for any matrix norm, ‖PQ–1‖ < 1, since r(PQ–1) ≤ ‖PQ–1‖, by

the Banach perturbation lemma [54] we get:

∥

∥Ā∗–1
df 0

∥

∥ ≤
∥

∥

(

I4 +Q–1P
)–1∥

∥

∥

∥Q–1
∥

∥ ≤
‖Q–1‖

1 – β0S
∗
df r(Q

–1P0)
≤

‖Q–1‖

1 – ‖Q–1P‖
, (30)

so that ‖Ā∗–1
df 0‖ if β0S

∗
df < 1/r(Q–1P0), which proves the sufficiency part. To prove the ne-

cessity part, note that:

(a) If β0 = 0, then Ā∗
df 0 = I4 is nonsingular;

(b) the eigenvalues of any matrix are continuous functions with respect to any of its

entries;

(c) the only possibly nonunity eigenvalue of I4 +Q–1P is λ = 1 + β0S
∗
df (Q

–1
21 + βhrQ

–1
31 +

βarQ
–1
41 ), which is nonzero only ifβ0S

∗
df < 1/r(Q–1P0), which proves the “only if” part, where

Q–1 =

⎡

⎢

⎢

⎣

–(b2 + γ )–1 0 0 0

– γ ps
(b2+γ )(b2+τ0)

–(b2 + τ0)
–1 0 0

–
γ ph

(b2+γ )
(b2 + α + τ0 + kT0) 0 –(b2 + α + τ0 + kT0)

–1 0

– γ pa
(b2+γ )(b2+τ0)

0 0 –(b2 + τ0)
–1

⎤

⎥

⎥

⎦

,

(31)

so that the unique nonzero row of Q–1P is its first row such that

(

Q–1P0

)

11
=Q–1

21 + βhrQ
–1
31 + βarQ

–1
41 , (32)

and thus

λ = 1 –
β0γ S

∗
df

b2 + γ

(

ps

b2 + τ0
+

βhrph

b2 + α + τ0 + kT0
+

βarpa

b2 + τ0

)

> 0 (33)
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with S∗
df =

b1
b2

in the absence of vaccination from (19), and I4 +Q–1P is nonsingular if and

only if

β0γ b1

b2(b2 + γ )

(

ps

b2 + τ0
+

βhrph

b2 + α + τ0 + kT0
+

βarpa

b2 + τ0

)

< 1, (34)

where pa = 1 – ps – ph. Since all the eigenvalues of the Jacobian matrix A∗
df 0 around the

disease-free equilibrium point are in the stability region, the disease-free equilibrium

point is locally asymptotically stable. If the basic reproduction number exceeds one, then

the disease-free equilibrium point is unstable. Property (ii) is proved.

To prove property (iii), note that A∗
df has the same determinant as

Â∗
df =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

–(b2 + kV0) 0 –β0S
∗
df

0 –(b2 + γ ) β0S
∗
df

0 γ ps –(b2 + τ0)

0 γ ph 0

0 γ pa 0

0 0 τ0 + β0S
∗
df

kV0
b2+kV0

–β0βhrS
∗
df –β0βarS

∗
df η

β0βhrS
∗
df β0βarS

∗
df 0

0 0 0

–(b2 + α + τ0 + kT0) 0 0

0 –(b2 + τ0) 0

τ0 + kT0 + β0βhrS
∗
df

kV0
b2+kV0

τ0 + β0βarS
∗
df

kV0
b2+kV0

–(b2 + η(1 + kV0
b2+kV0

))

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(35)

with the last row defined by adding to it the first row multiplied by θ = – kV0
b2+kV0

. The ma-

trix A∗
df defined in (24) is a stability matrix, so that its six eigenvalues are in the complex

open left-hand-side plane, and Â∗
df has two negative real eigenvalues –(b2 + kV0) < 0 and

–(b2 + η(1 + kV0
b2+kV0

)) < 0 by direct inspection of (35). So, the product of the four remaining

eigenvalues must be a positive amount in order that both determinants be equal and A∗
df

be a stability matrix. But by construction the remaining eigenvalues are those of the 4× 4

submatrix Ā∗
df 0 of (26) being common to A∗

df and Â∗
df obtained by deleting from both the

first and sixth rows and columns. It has been proved that such a submatrix is a stability

matrix if and only if R0 defined in (23) is less than one. As a result, Â∗
df is a stability ma-

trix if and only if Ā∗
df 0 is a stability matrix. Then the rest of the proof is identical to that

of property (ii). Then the local asymptotic stability of the disease-free equilibrium point

holds if and only if (33) holds with S∗
df =

b1(b2+η)
b2(b2+η+kV0)

modified by the vaccination control

from (19) related to its value b1/b2 in the vaccination-free case of property (ii). This results

in the following condition:

β0γ b1(b2 + η)

b2(b2 + γ )(b2 + η + kV0)

(

ps

b2 + τ0
+

βhrph

b2 + α + τ0 + kT0
+

βarpa

b2 + τ0

)

< 1, (36)

and property (iii) is proved. �

Remark 3 Note that it is possible to quantify the attenuation of the basic reproduction

number depending on the limiting control gains related to the control-free situation or
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related to the case where only the vaccination or the treatment control is used. This quan-

tification of the improvement of the reproduction number by the control action (in the

sense that it is reduced) becomes explicit by comparing (23) and its particular cases re-

sulting when one or both controls are zero, that is, with its particular case given by (22).

This concern is an important issue associated with the use of controls against the control-

free case since the reproduction number is mathematically related to the relative stability

of the Jacobian matrix around the disease-free equilibrium point being a measure of how

far its dominant eigenvalue is from the unstable region, which is the closed complex right-

hand side plane. Biologically, the basic reproduction number is interpreted as the average

of primary contagions caused by each infectious individual. This number should be less

than one to asymptotically remove the infection. Simple calculations of comparisons of

(23) with (22) lead to

R0(kV0,kT0) = CaVT (kV0,kT0)R0(0, 0),

R0(kV0, 0) = CaV (kV0)R0(0, 0),

R0(0,kT0) = CaT (kT0)R0(0, 0),

and

CaVT (kV0,kT0) =
(b2 + η)(b2 + α + τ0)

(b2 + η + kV0)(b2 + α + τ0 + kT0)

×
(ps + βarpa)(b2 + α + τ0 + kT0) + βhrph(b2 + τ0)

(ps + βarpa)(b2 + α + τ0) + βhrph(b2 + τ0)
,

CaT (kT0) = Ca(0,kT0) =
(b2 + α + τ0)(ps + βarpa)(b2 + α + τ0 + kT0) + βhrph(b2 + τ0)

(b2 + α + τ0 + kT0)(ps + βarpa)(b2 + α + τ0) + βhrph(b2 + τ0)
,

CaV (kV0) = Ca(kV0, 0) =
b2 + η

b2 + η + kV0

,

where R0(kV0,kT0) is the reproduction number (23) denoted as a function of the two lim-

iting control gains to facilitate the immediate discussion which follows, and, in particular,

one of the two gains can be zero, and (22) is obtained if both of them are zero, which is

the basic reproduction number of the control-free case, and the coefficients Ca(·)(·, ·) are

the corresponding attenuation coefficients of the basic reproduction number under one

or both controls.

3.2 Endemic equilibrium point and its attainability and local stability

The next result gives the existence and uniqueness of the endemic equilibrium point and

it gives conditions for its attainability, nonattainability in the sense that all its components

are nonnegative, and the case where not all of them are nonnegative. Note that it is un-

derstood that the attainability (or reachability) of the endemic equilibrium point does not

mean, in principle, that it is stable, but that it is feasible related to the positivity property

of the SE(Is)(Ih)AR model in the sense that the state trajectory solution has nonnegative

components all the time under any nonnegative initial conditions (Theorem 1). The local

stability conditions of the endemic equilibrium point are also given related to the basic re-

production number value exceeding unity. Under weak supplementary conditions on the

parameters and the limit values of the transmission rate and control gains, the endemic
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equilibrium point is both attainable and locally asymptotically stable if the disease-free

one is unstable so if the reproduction number exceeds unity.

Theorem 4 Assume that

β(t)→ βe, kV (t)→ kVe and kT (t)→ kTe as t → ∞

and, correspondingly to a basic reproduction number equal to unity, define the critical

transmission rate

βc =
b2(b2 + γ )(b2 + η + kV0)

β0γ b1(b2 + η)

(b2 + τ0)(b2 + α + τ0 + kT0)

(ps + βarpa)(b2 + α + τ0 + kT0) + βhrph(b2 + τ0)
. (37)

Then the following properties hold:

(i) If βe ≥ βc, then there is a unique endemic equilibrium point

x∗
end := limt→∞ x(t) = (S∗

end,E
∗
end, I

∗
send, I

∗
hend,A

∗
end,R

∗
end)

T , with all positive

components, that is, it is attainable.

(ii) Assume that βe = β0 = βc (that is, R0 = 1), kVe = kV0, and kTe = kT0. Then S∗
end = S∗

df .

In addition, E∗
end ≤ 0, I∗send ≤ 0, I∗hend ≤ 0, and A∗

end ≤ 0 if βe = β0 ≤ βc (that is, if

R0 ≤ 1), provided that b1 – b2 ≤ a = kV0η(b1–τ0)
b2(η+τ0)+b1τ0η

, or, in particular, provided that

τ0 ≤ b1 ≤ b2, or if b1 ≤ b2 and kVe = 0. As a result, the infective endemic equilibrium

subpopulations are negative if b1 – b2 < a and R0 < 1 or if b1 – b2 ≤ a and R0 < 1, so

that the endemic equilibrium point is not attainable.

(iii) If βe = β0 > βc (that is, R0 > 1), then the attainable endemic equilibrium point is

locally asymptotically stable in the sense of Lyapunov.

Proof Firstly, equalize to zero (1)–(6) for nonzero equilibrium values of infective subpop-

ulations E∗
end, I

∗
send, I

∗
hend, andA

∗
end to get the components of the endemic equilibriumpoint.

We get:

S∗
end =

b1 + ηR∗
end

b2 + βe(I
∗
send + βhrI

∗
hend + βarA

∗
end) + kVe

, (38)

E∗
end =

(βI∗send + βhrI
∗
hend + βarA

∗
end)S

∗
end

b2 + γ
, (39)

A∗
end = CAE

∗
end =

γ pa

b2 + τ0
E∗
end, (40)

I∗send = CIsE
∗
end =

γ ps

b2 + τ0
E∗
end, (41)

I∗hend = CIhE
∗
end =

γ ph

b2 + α + τ0 + kTe
E∗
end, (42)

R∗
end =

τ0(I
∗
send +A∗

end) + (kTe + τ0)I
∗
hend + kVeS

∗
end

b2 + η
, (43)

which yields that all the infective subpopulations (40)–(42) are linked to the endemic one

(39) through positive real constants CA = γ pa
b2+τ0

, CIs =
γ ps
b2+τ0

, and CIh =
γ ph

b2+α+τ0+kTe
. Then

substituting (40)–(42) into (39), we get

E∗
end =

γ

b2 + γ
S∗
endE

∗
endβe

(

ps

b2 + τ0
+

βhrph

b2 + α + τ0 + kTe
+

βarpa

b2 + τ0

)

. (44)
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Since E∗
end �= 0 at the endemic equilibrium point, we obtain

S∗
end =

b2 + γ

γβe

(b2 + α + τ0 + kTe)(b2 + τ0)

(ps + βarpa)(b2 + α + τ0 + kTe) + βhrph(b2 + τ0)
(45)

=
b2 + γ

γβe

γ ph
CIh

+ γ ps
CIs

(ps+βarpa)γ ph
CIh

+
βhrphγ ps

CIs

=
b2 + γ

γβe

phCIs + psCIh

(ps + βarpa)phCIs + βhrphpsCIh

. (46)

Now by replacing (40)–(42) into (43) and comparing the resulting constraint with (38),

we get

E∗
end

(

η

b2 + τ0

[

τ0(CIs +Ca) + (kTe + τ0)CIh – βe(CIs + βhrCIh + βarCa)
]

– βe(CIs + βhrCIh + βarCa)S
∗
end

)

=

(

b2 +KVe

(

1 –
η

b2 + τ0

))

S∗
end – b1, (47)

so that

E∗
end =

(b2(b2 + τ0) +KVe(b2 + τ0 – η))S∗
end – b1(b2 + τ0)

η(τ0(CIs +Ca) + (kTe + τ0)CIh) – (CIs + βhrCIh + βarCa)(βeη + βe(b2 + τ0)S
∗
end)

(48)

=
�1 –�2

�3 –�4

, (49)

where

�1 =
(

b2(b2 + τ0) +KVe(b2 + τ0 – η)
)

(phCIs + psCIh)(b2 + γ ), (50)

�2 = γβeb1(b2 + τ0)
(

(ps + βarpa)phCIs + βhrphpsCIh

)

, (51)

�3 =
(

γβeη
(

τ0(CIs +Ca) + (kTe + τ0)CIh

))(

(ps + βarpa)phCIs + βhrphpsCIh

)

, (52)

�4 = (CIs + βhrCIh + βarCa)
(

γβ2
e η

(

(ps + βarpa)phCIs + βhrphpsCIh

)

+ (b2 + τ0)βe(b2 + γ )(phCIs + psCIh)
)

. (53)

Note the following facts:

Fact 1: S∗
end is positive by (44) and is unique.

Fact 2: For sufficiently large transmission rate βe ≥ βc and some critical value of the

transmission rate βc > 0, �2 > �1, and �4 >�3, E
∗
end is positive and unique by (47)–(48).

Fact 3: By Facts 1–2 and (37)–(42) the endemic equilibrium point x∗
end := limt→∞ x(t) =

(S∗
end,E

∗
end, I

∗
send, I

∗
hend,A

∗
end,R

∗
end)

T is unique with all positive components (so that it is at-

tainable) for a sufficiently large transmission rate.

Fact 4: If βe = β0, kVe = kV0, and kTe = kT0, then the basic reproduction number (23)

exceeds unity; equivalently, if βc = βe = β0 in (37), then by (44)–(45) and (40)–(43) all

the endemic equilibrium subpopulations are nonnegative if R0 ≥ 1 and b1 – b2 ≥ a =
kV0η(b1–τ0)

b2(η+τ0)+b1τ0η
. In the same way, E∗

end ≤ 0, I∗send ≤ 0, I∗hend ≤ 0, and A∗
end ≤ 0 if b1 – b2 ≤ a,



De la Sen and Ibeas Advances in Difference Equations         (2021) 2021:92 Page 15 of 30

or, in particular, if τ0 ≤ b1 ≤ b2, or if b1 ≤ b2 and kVe = 0. As a result, the infective endemic

equilibrium subpopulations are negative if b1 – b2 < a and R0 ≤ 1 or if b1 – b2 ≤ a and

R0 < 1, so that the endemic equilibrium point is not attainable.

As a result, property (i) follows fromFact 1. On the other hand, property (ii) follows from

property (i) Facts 1–4, since from (23) and (45) we conclude that if βe is defined by (37)

and βe = β0, kVe = kV0, and kTe = kT0, then R0 = 1 and S∗
end = S∗

df . The remaining conditions

on the nonattainability of the equilibrium point of property (ii) follow from (45) and (48)

and the proportionality relations of the infectious subpopulations to the exposed one in

(40)–(42).

To prove property (iii), note that the linearized trajectory solution around the endemic

equilibrium is defined by the Jacobian matrix

A∗
end =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

–(b2 + βe(I
∗
send + βhrI

∗
hend + βarA

∗
end) +KVe) 0 –βeS

∗
end

βe(I
∗
send + βhrI

∗
hend + βarA

∗
end) –(b2 + γ ) βeS

∗
end

0 γ ps –(b2 + τ0)

0 γ ph 0

0 γ pa 0

KVe 0 τ0

,

–βeβhrS
∗
end –βeβarS

∗
end η

βeβhrS
∗
end βeβarS

∗
end 0

0 0 0

–(b2 + α + τ0 + kTe) 0 0

0 –(b2 + τ0) 0

τ0 + kTe τ0 –(b2 + η)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (54)

which has the same determinant as the matrix

Â∗
end =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

–(b2 + βe(I
∗
send + βhrI

∗
hend + βarA

∗
end) +KVe) 0 –βeS

∗
end

βe(I
∗
send + βhrI

∗
hend + βarA

∗
end) –(b2 + γ ) βeS

∗
end

0 γ ps –(b2 + τ0)

0 γ ph 0

0 γ pa 0

0 0 τ0 + |θe|βeS
∗
end

–βeβhrS
∗
end –βeβarS

∗
end η

βeβhrS
∗
end βeβarS

∗
end 0

0 0 0

–(b2 + α + τ0 + kTe) 0 0

0 –(b2 + τ0) 0

τ0 + kTe + |θe|βeβhrS
∗
end τ0 + |θe|βeβarS

∗
end –(b2 + η)(1 + |θ3|)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(55)

since the last row is defined by adding to it the first row multiplied by θe =

– kVe
b2+βe(I

∗
send

+βhr I
∗
hend

+βarA
∗
end

)+KVe
. Now invoke a close reasoning as that previously used for

the disease-free Jacobian matrix (26) versus (35), which has the same determinant. As a

result, we conclude that A∗
end and Â∗

end are nonsingular if and only if the 4× 4 submatrix

Ā∗
df 0 defined in (26) is nonsingular. In particular,A

∗
end and Â

∗
end are stability matrices if and

only if the 4× 4 submatrix Ā∗
df 0 defined in (26) is a stability matrix, and, equivalently, they
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are unstable if and only if the 4×4 submatrix Ā∗
df 0 is unstable since two of the eigenvalues

of both of them are always stable by construction. Then, under the constraint βe = β0 = βc,

if follows that A∗
end and Â∗

end are nonsingular if and only if βeS
∗
end > 1/r(Q–1P0). If such an

inequality becomes an inequality, then either a stable or unstable eigenvalue becomes a

critical eigenvalue so that Â∗
end and A∗

end become singular.

It is now proved that for R0 > 1 (equivalently, if βe = β0 > βc), the endemic equilibrium

point is locally asymptotically stable or, equivalently, the nonsingular matrix Â∗
end (and,

equivalently, the nonsingular matrix A∗
end) has all eigenvalues in the open complex left-

hand side plane. Assume on the contrary that for R0 > 1, the endemic equilibrium point is

unstable. Since the disease-free one is unstable too [Theorem 3(iii)], a stable limit cycle has

to surround the endemic equilibrium point, since according to the Poincaré–Bendixson

theorem:

(a) If no stable limit cycle exists, then no attractor exists, and the SE(Is)(Ih)AR model is

not globally Lyapunov stable, which contradicts Theorem 2(iii). So, a stable limit

cycle should exist.

(b) The stable limit cycle has to surround one of the equilibrium points only since all

the singular values surrounding it have a net Poincaré index equal to unity, and the

Poincaré index of two singular points would be –2 if both are saddle points, +2 if no

one is a saddle point, and 0 if one is a saddle point while the other is not.

(c) The limit cycle cannot surround the disease-fee equilibrium point since then any

solution trajectory violates the nonnegativity property (Theorem 1).

However, if the endemic equilibriumpoint is unstable and is surrounded by a stable limit

cycle, then the Jacobian matrix A∗
end of the linearized solution trajectory around the en-

demic equilibrium point within a small neighborhood centered at it has to have a critically

stable eigenvalue, but this implies that the inequality constraint βeS
∗
end > 1/r(Q–1P0) be-

comes violated by an equality implying that the reproduction number is unity. Therefore

it is impossible that for R0 > 1 (with the disease-free equilibrium point then being unsta-

ble), the endemic equilibrium point is also unstable and surrounded by a stable limit cycle.

Therefore if R0 > 1, then the disease-free equilibrium point is unstable, and the endemic

one is locally asymptotically stable. Property (iii) is proved. �

3.3 Global asymptotic stability

Some conclusions can be obtained about global stability from the characterizations of the

equilibrium points or periodic solutions and their local stability properties. Note from

Theorem 2 that the SE(Is)(Ih)AR model is globally stable under nonnegative initial finite

values of all subpopulations. It is proved that there is a unique disease-free equilibrium

point and a unique endemic one. On the other hand, the critical transmission rate βc was

defined by equalizing the limit transmission rate (23) to unity. We saw that if the current

limit transmission rate equalizes to β0 and it is smaller than its critical value βc, then the

endemic equilibrium point is not attainable, whereas the disease-free one was proved to

be asymptotically stable in Theorem 2. Also, if the current limit transmission rate exceeds

the critical value, then the disease-free equilibrium point is unstable, whereas the endemic

one is locally asymptotically stable. As a result, only one of the equilibrium points is lo-

cally asymptotically depending on the value of the limit transmission rate compared to its

critical value, which gives a unity basic reproduction number. On the other hand, we saw

in the last part of the proof of Theorem 4 that no limit cycle can exist surrounding any of

the two equilibrium points or both of them.
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Theorem 5 Assume that

(1) β(t)→ β0 = βe, kV (t)→ kV0 = kVe, and kT (t)→ kT0 = kTe as t → ∞,

(2) b1 – b2 < a = kV0η(b1–τ0)
b2(η+τ0)+b1τ0η

.

Then the following properties hold:

(1) The whole nonlinear linear SE(Is)(Ih)AR is globally asymptotically stable in the

sense of Lyapunov with the disease-free equilibrium point being the only global

attractor if β0 = βe < βc.

(2) The whole nonlinear linear SE(Is)(Ih)AR is globally asymptotically stable in the

sense of Lyapunov with the endemic equilibrium point being the only global

attractor if β0 = βe > βc.

Outline of Proof The proof is direct from the following previously proved results:

(a) Theorem 1 on the nonnegativity of any solution under nonnegative finite initial

conditions,

(b) Theorem 2 on the global stability in the sense of Lyapunov of any nonnegative

solution trajectory of the whole nonlinear SE(Is)(Ih)AR model,

(c) Theorem 3 on the local asymptotic stability in the sense of Lyapunov of the

disease-free equilibrium point if β0 < βc,

(d) Theorem 4 on the local asymptotic stability of the endemic equilibrium point in the

sense of Lyapunov if β0 = βe > βc with the additional results: (1) it is unique, (2) its

attainability holds under the instability of the disease-free equilibrium point, and (3)

no limit cycle can surround one or both equilibrium points.

�

4 Numerical worked examples

This section contains some numerical simulation examples illustrating the theoretical re-

sults introduced in Sects. 2 and 3. Thereforewe consider the parameter values correspond-

ing to COVID-19 and supplied in the background literature. Note that the estimation of

model parameters from available data faces two main challenges: (i) the first one is the

treatment of raw data. Data related to Covid-19 usually exhibit inconsistency and are sub-

ject to large uncertainties. Thus an exhaustive work of data preprocessing and analysis

is needed before using them in parameter estimation procedures. (ii) Furthermore, the

model has a large number of parametersmaking the estimation procedure complex. These

facts make the estimation problem hard to be tackled, requiring a special attention as a fo-

cused topic. Since the paper is devoted to themathematical properties of themodel and to

the effect of applying vaccination and antiviral control, we have employed the typical pa-

rameter values considered previously in the medical literature instead of starting from the

parameter identification process. There is a broad consensus in the scientific community

about the values considered for some parameters of the model, such as the basic repro-

duction numbers or average incubation periods. Therefore we believe that the presented

results are representative of the possibilities and usefulness of the method.

The numerical value of the reproduction number has been obtained through Eq. (23) by

using the numerical data collected inTable 1 fromprevious existing background literature.

Previous works report different reproduction numbers depending on the place and mo-

ment of the outbreak since the social habits and lifestyle, interchange level of population
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Table 1 Parameter values employed in simulations

Parameter Interpretation Value Source

b1 Recruitment rate 57,554 years–1 [55], year 2018

b2 Natural average death rate 1/85 years–1 [55]

β Transmission rate of symptomatic 1/N(0) [38], adjusted to provide a basic

reproduction number between 5-6

βar Specific transmission rate factor of

asymptomatic

1 [56, 57]

βhr Specific transmission rate factor of

severe cases (hospitalized)

1/50 (nominal) Sensitivity analysis for βhr ∈ [1/10, 1/100]

γ Average incubation period 1/5.5 days–1 [36]

η Average immunity loss rate 0 [36, 56]

α Mortality rate for severe cases associated

with disease

12% [58]

τ0 Average immune response rate 1/10 days–1 [36]

ps Fraction of slight cases 55% [58, 59]

ph Fraction of severe cases 20% [58, 59]

Table 2 Initial conditions for simulations

Population Value

S(0) 6,778,382

E(0) 1

Is(0) 0

Ih(0) 0

A(0) 0

R(0) 0

N(0) 6,778,383

with neighboring areas, and population density are eventually different these values are

even different for the first and second waves since they are also strongly dependent on the

interventionmeasures and rules. However, the situation described in the paper represents

a benchmark to show the usefulness of the proposed approach.

It has to be highlighted that reported data regarding COVID-19 exhibit high variability

among outbreaks or are even inconsistent. Thus the parameter values could be subject to

changes as further knowledge on the infection is attained. Moreover, parameters may suf-

fer changes in time due to different public health policies implemented to fight against the

spread of COVID-19. The simulations are performed with the initially estimated values

given in Tables 1 and 2 for the specific demographic case of the Madrid Region (Comu-

nidad de Madrid).

From Table 2 we can deduce that all simulations start with the total population being

susceptible and a single exposed case. Figures 1 and 2 display the evolution of all popula-

tions in the absence of control actions (vaccination and treatment). We concluded from

Fig. 1 that the spreading of the disease would end up affecting the total population if no

control action was taken, as it was concluded in [56] as well.

We also observe in Fig. 2 a large number of severe infected people (hospitalized) attained

at the peak. Such a large number of severe cases would definitely overflow the hospital

available resources. To avoid this situation, two control actions, vaccination and treatment,

are considered and analyzed in the following. Figure 3 displays the evolution of the total

population, representing essentially the deaths caused by the disease. Note that the total
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Figure 1 Evolution of susceptible and recovered in the absence of control actions

Figure 2 Evolution of exposed and infectious (slight, hospitalized, and asymptomatic) in the absence of

control actions

population is not constant through time as theoretically discussed in Remark 2. Figures 4

and 5 show the results of the sensitivity analysis performed for βhr with values ranging

between βhr =1/10 and βhr =1/100.We deduced that the shape of exposed does not change

significantly as βhr changes. In addition, observe in Figs. 1 and 2 that the model solution

is nonnegative and bounded as Theorems 1 and 2 establish.

Now we will discuss the effect of vaccination and treatment through simulation exam-

ples. Initially, we apply a vaccination action of kV = 0.001 to the model while no treatment

is used. In this case, we obtain Figs. 6, 7, and 8.
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Figure 3 Evolution of the total population in the absence of external actions

Figure 4 Variation of the number of exposed individuals with βhr in the absence of control actions

Observe in Fig. 7 a substantial reduction in the number of hospitalized cases, whereas

Fig. 6 shows that the population becomes immune faster than in the absence of control ac-

tions, as it could be intuitively expected. Furthermore, the death toll is also reduced as can

be concluded by comparing Figs. 3 and 8 regarding the evolution of the total population.

Figure 9 displays the vaccination action needed. The great improvement in the disease in-

cidence is achieved at the expense of a high effort in vaccination. Moreover, Fig. 10 shows

the effect of changing the vaccination gain kV between kV = 0.0005 and kV = 0.001 on the

evolution of hospitalized individuals. As the gain increases, the number of hospitalized

cases declines. As it is claimed in Sect. 3, the use of vaccination improves the behavior of

the coronavirus spread.
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Figure 5 Zoom on the variation of the number of exposed individuals with βhr in the absence of control

actions

Figure 6 Evolution of susceptible and recovered when vaccination is applied and no treatment is used. The

vaccination gain is set to kV = 0.001

Now the value of kV is fixed to kV = 0.001, and the value of kT ranges from kT = 0.002

to kT = 0.008. Figure 11 displays the evolution of hospitalized cases in this situation. We

conclude that the combined application of treatment along with vaccination drastically

reduces the number of severe cases and prevents the overflow of hospital resources.

Figures 11, 12, 13, and 14 display the evolution of all subpopulations, including the total

one when, in particular, kV = 0.001 and kT = 0.004. The corresponding vaccination and

treatment controls are displayed in Figs. 15 and 16, respectively.

Overall, vaccination and treatment have the effect of counteracting the effects of coron-

avirus COVID-19 spreading. The larger these actions, the higher the improvement at the
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Figure 7 Evolution of exposed and infectious (slight, hospitalized, and asymptomatic) when vaccination is

applied and no treatment is used. The vaccination gain is set to kV = 0.001

Figure 8 Evolution of the total population when vaccination is applied and no treatment is used. The

vaccination gain is set to kV = 0.001

expense of higher efforts and therefore a higher cost. With the proposed model, quanti-

tative prediction of the improvement and action efforts can be done as shown with the

simulation results. The basic reproduction number in the absence of external actions is

calculated through (23) as R(0, 0) =5.78.When kT = 0, Remark 3 allows calculating the ob-

tained reproduction number when a vaccination gain is applied. The shape of the curve is

depicted in Fig. 17 along with the calculated values of the reproduction number for some

particular vaccination gains. On the other hand, when there is no vaccination action and

a treatment is applied, the basic reproduction number changes a depicted in Fig. 18. We

deduce from Figs. 17 and 18 that vaccination has a stronger effect in modifying the repro-
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Figure 9 Vaccination action when kV = 0.001 and no treatment is applied

Figure 10 Effect of vaccination gain kV on the number of hospitalized infectious. The vaccination gain varies

between kV = 0.0005 and kV = 0.001. No treatment control is applied

duction number and controlling the epidemic spreading than the application of treatment.

Thus vaccination is proposed as themain way for controller spreading, whereas treatment

is devoted to heal the hospitalized cases and recover their heath the soonest and safest as

possible. Furthermore, Remark 3 (or in an equivalent graphical way, Fig. 17) can be used

as a guideline to calculate the critical vaccination gain that provides a unity reproduction

number. Thus, if we make

R0(kV0, 0) = 1 = CaV (kV0)R0(0, 0) =
b2 + η

b2 + η + kV0

R(0, 0),
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Figure 11 Effect of both actions, vaccination and treatment, on the evolution of hospitalized cases. The value

of kV is fixed to kV = 0.001, and the value of kT varies from kT = 0.002 to kT = 0.008

Figure 12 Evolution of Susceptible and Immune when vaccination and treatment are applied with

kV = 0.001 and kT = 0.004

then we can isolate kV (t) = kV0 as kV0 = (b2 + η)(R(0, 0) – 1) = 6.425 · 10–6 for the parame-

ters considered. If a vaccination gain larger than this critical value is used, then the repro-

duction number is less than unity. Consequently, the theoretical developments contained

in Sect. 3 provide useful guidelines to design the vaccination action aimed at controlling

COVID-19 spread.

Remark 4 We observed the following features from both the theoretical analysis and the

performed numerical experiments:
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Figure 13 Evolution of exposed, infectious (slight and hospitalized), and asymptomatic when vaccination

and treatment are applied with kV = 0.001 and kT = 0.004

Figure 14 Evolution of the total population when vaccination and treatment are applied with kV = 0.001 and

kT = 0.004

(1) The obtained results allow the calculation of the amounts of vaccination and treat-

ment efforts (given by the vaccination and treatment gains) needed to counteract the

spread of Covid-19 depending on the estimated original reproduction number R(0,0)

in the absence of controls since this control-free reproduction number is related to

and higher than the respective current reproduction numbers R0(kV0, 0), R0(0,kT0), and

R0(kV0,kT0) in the presence of one or both controls of respective limit gains kV0 for the

vaccination control and kT0 for the treatment control. Since the reproduction number is

proved to be dependent on the control gains and reduced related to its value in the control-

free case, it turns out that it is easier to keep the illness under low incidence levels by the
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Figure 15 Vaccination action when kV = 0.001 and kT = 0.004

Figure 16 Treatment action when kT = 0.004

correct planning of the vaccination policies. Note that since the reproduction number re-

flects the number of infections derived at a first stage from each primary one, keeping

such a number under unity is crucial to asymptotically extinguish the disease by leaving

the disease-free equilibrium as the unique attainable global asymptotic attractor.

(2) For a given population, the control gains allow determining the number of vaccina-

tion and treatment doses needed to keep the pandemic under control. This information

is crucial to go ahead with the purchase agreements with pharmaceutical companies with

the aim of investing the optimal economical burden in fighting against the infection, es-

pecially, in a situation where state public finances are subject to a great stress. The gen-

eral information is also useful for the sanitary authorities for planning their vaccination

policies, including the managing and monitoring aspects of generation, administration,
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Figure 17 Variation of the basic reproduction number with vaccination and without treatment

Figure 18 Variation of the basic reproduction number with treatment and without vaccination

storage, and distribution of the vaccination and treatment doses. This featured point fol-

lows as a result of the proved mentioned dependence and reduction of the reproduction

number on the control gains.

5 Conclusions and potential related future research

This paper has developed an SE(Is)(Ih)AR epidemic model which involves six subpopu-

lations and can be useful for modelling the COVId-19 pandemic. The infectious subpop-

ulation of the standard SEIR model is split into three subpopulations, namely, the slight

infectious individuals who do not need hospital care, the hospitalized ones who are seri-

ously infected, and the asymptomatic ones. The three above infectious subpopulations are

originated by different transitions from the exposed subpopulation. The proposed and dis-
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cussed epidemic model is eventually assumed to be subject to vaccination and treatment

controls. In general, the transmission rate and the feedback control gains can be moni-

tored to be time-varying along the transients.

The properties of nonnegativity and boundedness of all the subpopulations are proved

under any given finite nonnegative initial conditions. Also, the disease-free and the en-

demic equilibrium points are explicitly calculated, and their uniqueness and local asymp-

totic stability properties are also investigated with respect to the reference unity value of

the basic reproduction number. It is shown that just one of them, depending on the value of

the basic reproduction number, is the unique global asymptotic attractor. It is also proved

that no limit cycle can surround any individual or jointly both equilibrium points if the

transmission rate and the control gains converge asymptotically to constant values. Fi-

nally, some numerical examples are developed and discussed based on previously tested

parameterizations of COVID-19 available in the background literature data.

We plan to focus the future investigation on the estimation of the disease transmission

rate from recorded infection data while fixing the remaining disease modeling parame-

ters from supplied tested medical background data and to integrate its estimation in the

model running. A second idea for future investigation is designing the control strategies

so that the maximum availability of beds for both ordinary hospitalization and intensive

care unit management can be prefixed under certain upper-bounding constraints to keep

some resources for its use in other sanitary needs. This concern seems to be important

since now there is a very high pressure on hospital derived fromCoVID pandemic making

difficult the ordinary management of resources.
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