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Abstract: In this paper, we point out some similarities between results on the existence and

uniqueness of �nite order entire solutions of the nonlinear di�erential equations and di�erential-

di�erence equations of the form

fn þ Lðz; fÞ ¼ h:
Here n is an integer �2, h is a given non-vanishing meromorphic function of �nite order, and Lðz; fÞ
is a linear di�erential-di�erence polynomial, with small meromorphic functions as the coef�cients.

Key words: Di�erence-di�erential polynomial; di�erence polynomial; di�erence-di�erential
equation; Nevanlinna theory.

1. Introduction. Nevanlinna value distribu-

tion theory of meromorphic functions has been exten-

sively applied to resolve growth (see e.g. [7]), value
distribution [7], and solvability of meromorphic solu-

tions of linear and nonlinear di�erential equations

(see e.g. [6, 9{11]). Considering meromorphic func-
tions f in the complex plane, we assume that the

reader is familiar with the standard notations and re-

sults such as the proximity function mðr; fÞ, count-
ing function Nðr; fÞ, characteristic function T ðr; fÞ,
the �rst and second main theorems, lemma on the

logarithmic derivatives etc. of Nevanlinna theory, see
e.g. [5, 7]. Given a meromorphic function f, recall

that a meromorphic function � is said to be a small

function of f , if T ðr; �Þ ¼ Sðr; fÞ, where Sðr; fÞ is
used to denote any quantity that satis�es Sðr; fÞ ¼
oðT ðr; fÞÞ as r!1, possibly outside of a set of r of

�nite logarithmic measure. A polynomial P ðz; fÞ is
called a di�erential polynomial in f whenever f is a

polynomial in f and its derivatives, with small func-

tions of f as the coef�cients. Similarly, a polynomial
Qðz; fÞ is called a di�erential-di�erence polynomial in

f whenever f is a polynomial in fðzÞ, its derivatives

and its shifts fðzþ cÞ, with small functions of f

again as the coef�cients.

The following lemma (Clunie [2]) has been ex-

tensively applied in studying the value distribution

of a di�erential polynomial P ðz; fÞ, as well as the

growth estimates of solutions and meromorphic solv-

ability of di�erential equations in the complex plane:
Lemma 1.1. Let f denote a transcendental

meromorphic function, and Pðz; f Þ;Qðz; f Þ be two

di�erential polynomials of f . If

f nP ðz; fÞ ¼ Qðz; fÞ

holds and if the total degree of Qðz; f Þ in f and its

derivatives is �n, then mðr ;Pðz; f ÞÞ ¼ Sðr ; f Þ.
Remark. The key tool in the proof of this

lemma is the core part of value distribution theory,

namely the lemma on the logarithmic derivatives.
We now give three results to serve as a back-

ground for our considerations in the next section. Re-

calling [10, Theorem 1], and [6, Theorem 4.2], we have
Theorem 1.2. Consider a di�erential equation

pðzÞf n � Lðz; fÞ ¼ h;ð1:1Þ
where pðzÞ is a small function of f of degree n, Lðz; f Þ
is a linear di�erential polynomial in f , and h is a

meromorphic function. If n � 4, then equation (1.1)

may admit at most n distinct entire solutions.

Remark. As pointed out in [6], there may be
either one entire solution, n entire solutions, or none

of them.

Lemma 1.3. Suppose c is a nonzero constant

and � is a nonconstant meromorphic function.

Then the di�erential equation f 2 þ ðcf ðnÞÞ2 ¼ � has

no transcendental meromorphic solutions satisfying

Tðr ; �Þ ¼ Sðr; f Þ.
The preceding lemma, see [11], has a key role in

proving the following
Theorem 1.4. Let p be a non-vanishing poly-
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nomial, and let b; c be nonzero complex numbers. If p

is nonconstant, then the di�erential equation

f 3 þ pðzÞf 00 ¼ c sin bzð1:2Þ

admits no transcendental entire solutions, while if p

is constant, then equation (1.2) admits three distinct

transcendental entire solutions, provided ðpb2=27Þ3 ¼
1
4 c2.

Proof. We leave the proof as an exercise for the

reader. The idea to be applied may be collected from
the proof of Theorem 2.5 below. r

Remark. As an example of the case with pðzÞ
constant, recall the nonlinear di�erential equation

4f 3 þ 3f 00 ¼ �sin 3z:ð1:3Þ

As pointed out by Li and Yang in [9], equation

(1.3) admits exactly three distinct transcendental en-
tire solutions: f1ðzÞ ¼ sin z, f2ðzÞ ¼

ffiffi

3
p

2 cos z� 1
2 sin z,

f3ðzÞ ¼ �
ffiffi

3
p

2 cos z� 1
2 sin z. As one may immediately

see, the condition given in Theorem 1.4 is satis�ed.
This paper aims to present some studies on

di�erential-di�erence analogues of equation (1.2),

showing that similar conclusions follow if one re-
stricts the solutions to be of �nite order.

2. Main results and their proofs. Our

results below mainly are di�erential-di�erence ana-
logues of previous results concerning equation (1.3).

A natural tool in studying equations of this type is

the di�erence variant of Nevanlinna theory, and in
particular, di�erence counterpart of the Clunie lemma

above, see [8]. For completeness, we recall basic

notions to this end: Given a meromorphic functions
fðzÞ and a constant c, fðzþ cÞ is called a shift of f .

As for a di�erence product, we mean a di�erence

monomial of type
Qk

j¼1 fðzþ cjÞ
nj , where c1; . . . ; ck

are complex constants, and n1; . . . ; nk are natural

numbers.

De�nition 2.1. A di�erence polynomial, resp.
a di�erential-di�erence polynomial, in f is a �nite

sum of di�erence products of f and its shifts, resp. of

products of f , derivatives of f and of their shifts,
with all the coef�cients of these monomials being

small functions of f .

Remark. As far as Clunie type lemmas
are concerned, same conclusions hold as long as the

proximity functions of the coef�cients �ðzÞ satisfy

mðr; �Þ ¼ Sðr; fÞ. The next lemma is a rather gen-
eral variant of di�erence counterpart of the Clunie

Lemma 1.1 above, see [8], for the corresponding re-

sults on di�erential polynomials, see [12].

Lemma 2.2. Let f be a transcendental mero-

morphic solution of �nite order � of a di�erence equa-

tion of the form

Hðz; fÞP ðz; fÞ ¼ Qðz; fÞ;ð2:1Þ
where Hðz; f Þ;Pðz; f Þ;Qðz; f Þ are di�erence polyno-

mials in f such that the total degree of Hðz; f Þ in f

and its shifts is n, and that the corresponding total

degree of Qðz; f Þ is �n. If Hðz; f Þ contains just one

term of maximal total degree, then for any " > 0,

mðr; P ðz; fÞÞ ¼ Oðr��1þ"Þ þ Sðr; fÞ;ð2:2Þ
possibly outside of an exceptional set of �nite loga-

rithmic measure.

Remark. If in the above lemma, Hðz; fÞ ¼
f n, then a similar conclusion holds, if P ðz; fÞ; Qðz; fÞ
are di�erential-di�erence polynomials in f .

The �nal element in our preparations is the fol-

lowing lemma on quotients of shifts, see [1] and [3],
which may be understood as the di�erence counter-

part of the lemma on the logarithmic derivatives:

Lemma 2.3. Let f be a transcendental mero-

morphic function of �nite order �. Then for any given

complex numbers c1; c2, and for each " > 0,

m r;
fðzþ c1Þ
fðzþ c2Þ

� �

¼ Oðr��1þ"Þ:ð2:3Þ

Remark. Since the preceding lemma fails

for meromorphic functions of in�nite order, see e.g.
fðzÞ ¼ expðezÞ, we have been forced to restrict our-

selves to �nite order solutions of nonlinear di�erence

equations, resp. di�erential-di�erence equations in
what follows.

Theorem 2.4. Let p; q be polynomials. Then a

nonlinear di�erence equation

f2ðzÞ þ qðzÞfðzþ 1Þ ¼ pðzÞð2:4Þ
has no transcendental entire solutions of �nite order.

Proof. Suppose that f is a transcendental entire
solution of �nite order � to equation (2.4). Without

loss of generality, we may assume that qðzÞ does not

vanish identically. From (2.4), we readily conclude
by Lemma 2.3 that

2mðr; fÞ ¼ mðr; pðzÞ � qðzÞfðzþ 1ÞÞ
� mðr; fðzþ 1ÞÞ þOðlog rÞ
� mðr; fÞ þmðr; fðzþ 1Þ=fðzÞÞ þOðlog rÞ
� mðr; fÞ þOðr��1þ"Þ þOðlog rÞ:

Therefore,

T ðr; fÞ ¼ mðr; fÞ ¼ Oðr��1þ"Þ þOðlog rÞ;
hence �ðfÞ < �, a contradiction. r
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Remark. It seems likely that a similar result
holds for di�erence equations of type

f2ðzÞ þ Lðz; fÞ ¼ pðzÞ;
where Lðz; fÞ is a linear di�erential-di�erence polyno-
mial of f with polynomial coef�cients.

Theorem 2.5. A nonlinear di�erence equation

f 3ðzÞ þ qðzÞfðzþ 1Þ ¼ c sin bz;ð2:5Þ
where qðzÞ is a nonconstant polynomial and b; c 2 C

are nonzero constants, does not admit entire solu-

tions of �nite order. If qðzÞ ¼ q is a nonzero con-

stant, then equation (2.5) possesses three distinct en-

tire solutions of �nite order, provided b ¼ 3�n and

q3 ¼ ð�1Þnþ1 27
4 c2 for a nonzero integer n.

Proof. Let f be an entire solution of equation

(2.5). Without loss of generality, we may assume that

f is transcendental entire.
Di�erentiating (2.5) results in

(2.6)

3f 2ðzÞf 0ðzÞ þ q0ðzÞfðzþ 1Þ þ qðzÞf 0ðzþ 1Þ ¼ bc cos bz:

Combining (2.6) and (2.5), we get

ðbf 3ðzÞ þ bqðzÞfðzþ 1ÞÞ2 þ ð3f 2ðzÞf 0ðzÞ

þ q0ðzÞfðzþ 1Þ þ qðzÞf 0ðzþ 1ÞÞ2 ¼ b2c2:

This means that

f 4ðzÞðb2f 2ðzÞ þ 9f 0 2ðzÞÞ ¼ T4ðz; fÞ;ð2:7Þ
where T4ðz; fÞ is a di�erential-di�erence polynomial
of f , of total degree at most 4. If now T4ðz; fÞ van-

ishes identically, then f 0 ¼ �i b3 f , and therefore,

f 00 þ ðb=3Þ2f ¼ 0:ð2:8Þ
Otherwise, the Clunie lemma applied to a di�erential-

di�erence equation, see Remark after Lemma 2.2, im-

plies that

(2.9)

T ðr; b2f2 þ 9f 02Þ ¼ mðr; b2f 2 þ 9f 02Þ ¼ Sðr; fÞ:

Therefore, � :¼ b2f2 þ 9f 02 is a small function of f ,

not vanishing identically. By Lemma 1.3, � must be

a constant. Di�erentiating b2f2 þ 9f 02 ¼ �, we im-
mediately conclude that (2.8) holds in this case as

well. Solving (2.8) shows that f must be of the form

fðzÞ ¼ c1e
ibz=3 þ c2e

�ibz=3:ð2:10Þ

Substituting the preceding expression of f into

the original di�erence equation (2.5), expressing

sin bz in terms of exponential functions, and denoting
!ðzÞ :¼ eibz=3, an elementary computation results in

a6!
6 þ a4!

4 þ a2!
2 þ a0 ¼ 0;

where

a6 ¼ c3
1 þ 1

2 ic;

a4 ¼ 3c2
1c2 þ c1e

ib=3qðzÞ;
a2 ¼ 3c1c

2
2 þ c2e

�ib=3qðzÞ;
a0 ¼ c3

2 � 1
2 ic:

8

>

>

>

>

<

>

>

>

>

:

Since !ðzÞ is transcendental, we must have a0 ¼
a2 ¼ a4 ¼ a6 ¼ 0. Therefore, c1 6¼ 0, c2 6¼ 0, and the
condition a4 ¼ 0 implies that qðzÞ is a constant, say

q 6¼ 0. Combining now the conditions a4 ¼ 0 and

a2 ¼ 0 we conclude that e2ib=3 ¼ 1 ¼ e2�in, hence b ¼
3�n. The connection between q and c now follows

from 3c1c2 þ ð�1Þnq ¼ 0 and ðc1c2Þ3 ¼ 1
4 c

2. Finally,

observe that from the nine combinations of possible
values of c1; c2, three only satisfy the requirement

that 3c1c2 þ ð�1Þnq ¼ 0. r
Remark. In the special case of

f 3ðzÞ þ 3

4
fðzþ 1Þ ¼ � 1

4
sin 3�z;

a �nite order entire solution is

f1ðzÞ ¼ sin �z ¼ 1

2i
ðei�z � e�i�zÞ:

The other two immediately follow from the conditions
above:

f2ðzÞ ¼
1

2i
ð"ei�z � "2e�i�zÞ ¼ � 1

2
sin �zþ

ffiffiffi

3
p

2
cos �z;

f3ðzÞ ¼
1

2i
ð"2ei�z � "e�i�zÞ ¼ � 1

2
sin �z�

ffiffiffi

3
p

2
cos �z;

where " :¼ � 1
2þ

ffiffi

3
p

2 i is a cubic root of unity.

Concerning more general di�erential-di�erence
equations, we obtain

Theorem 2.6. Let n � 4 be an integer,

Mðz; f Þ be a linear di�erential-di�erence polynomial

of f , not vanishing identically, and h be a meromor-

phic function of �nite order. Then the di�erential-

di�erence equation

f n þMðz; fÞ ¼ hð2:11Þ
possesses at most one admissible transcendental en-

tire solution of �nite order such that all coef�cients

of M ðz; f Þ are small functions of f . If such a solution

f exists, then f is of the same order as h.

Proof. The arguments here are somewhat

similar to those in [10]. We �rst observe that
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�ðhÞ ¼ �ðfÞ for all entire solutions of �nite order of
(2.11). Since the inequality �ðhÞ � �ðfÞ trivially

holds, suppose for a while that �ðhÞ < � < �ðfÞ ¼: �,
and write (2.11) in the form

f n�1 ¼ h
f
�Mðz; fÞ

f
:

From Lemma 2.3 and the lemma on the logarithmic

derivatives we conclude that

ðn� 1ÞT ðr; fÞ ¼ ðn� 1Þmðr; fÞ

� T ðr; hÞ þ T ðr; fÞ þOðr��1þ"Þ þ Sðr; fÞ

� T ðr; fÞ þ r� þOðr��1þ"Þ þ Sðr; fÞ

for all r suf�ciently large, outside of an exceptional

set of �nite logarithmic measure. Provided " has been
chosen small enough, and removing the exceptional

set by standard reasoning, see [7, Chapter 1.1], we

obtain

�ðfÞ � maxð�� 1þ 2"; �þ "Þ < �;

a contradiction.

Assume now, contrary to the assertion, that f; g

are two distinct �nite order transcendental entire
solutions of (2.11), and write

f n þMðz; fÞ ¼ gn þMðz; gÞ:ð2:12Þ
Clearly, �ðfÞ ¼ �ðgÞ. From (2.12), we now obtain

f n � gn ¼Mðz; gÞ �Mðz; fÞ ¼Mðz; g� fÞ:
Therefore,

(2.13)

F :¼ f
n � gn
f � g ¼

Y

n�1

j¼1

ðf � �jgÞ ¼ �
Mðz; f � gÞ

f � g :

is an entire function; here �1; . . . ; �n�1 are the distinct
roots 6¼ 1 of equation zn ¼ 1. From this, Lemma 2.3

and the lemma on the logarithmic derivatives, we

conclude that

T ðr; F Þ ¼ mðr; F Þ ¼ m Mðz; g� fÞ
f � g

� �

¼ Oðr�ðf�gÞ�1þ"Þ þ Sðr; fÞ þ Sðr; gÞ

� Oðr�ðfÞ�1þ"Þ þ Sðr; fÞ ¼: S�ðr; fÞ:

Here " > 0 is arbitrary and suf�ciently small.

An immediate observation now results in

X

n�1

j¼1

N r;
1

f � �jg

� �

¼ Nðr; 1=F Þ ¼ S�ðr; fÞ;

and therefore,

N r;
1

f � �jg

� �

¼ S�ðr; fÞð2:14Þ

holds for all j ¼ 1; . . . ; n� 1. Since

1

f=g� �j
¼ g 1

f � �jg
;

we conclude that

N r;
1

f=g� �j

� �

¼ S�ðr; fÞ

for all j ¼ 1; . . . ; n� 1. Assuming now that n � 4,

the second main theorem implies for  :¼ f=g that

T ðr;  Þ ¼ T ðr; f=gÞ ¼ S�ðr; fÞ
and

T ðr; fÞ ¼ T ðr; gÞ þ S�ðr; fÞ:
Making use of (2.13), we infer that

F ¼
Y

n�1

j¼1

ðf � �jgÞ ¼ gn�1
Y

n�1

j¼1

ð � �jÞ:

Provided  is not identically equal to �j, j ¼
1; . . . ; n� 1, then

ðn� 1ÞT ðr; fÞ ¼ ðn� 1ÞT ðr; gÞ þ S�ðr; fÞ

� T ðr; F Þ þ T r;
Y

n�1

j¼1

ð � �jÞ�1

 !

þ S�ðr; fÞ

¼ S�ðr; fÞ;

a contradiction. Therefore, we must have  ¼ �j
for some j ¼ 1; . . . ; n� 1. But then f ¼ �jg, fn ¼ gn
and Mðz; fÞ ¼Mðz; gÞ. By the linearity of the

di�erential-di�erence polynomial M, we obtain
Mðz; fÞ ¼ �jMðz; gÞ. Since �j 6¼ 1, a contradiction

again follows. r
3. Discussion. By a recent result due to Hal-

burd et al., see [4, Theorem 5.1], the key tool in our

argument, Lemma 2.3, extends to the case of hyper-

order �2ðfÞ < 1. Therefore, it seems apparent that at
least some of our results above for the non-existence

of entire solutions of �nite order may be extended to

the case of hyper-order less than one as well. Inde-
pendently of this, we would like to pose the following

Conjecture 1. There exists no entire func-

tions of in�nite order that satis�es a di�erence equa-
tion of type

f nðzÞ þ qðzÞfðzþ 1Þ ¼ c sin bz;

where q is a nonconstant polynomial, b; c are non-

zero constants and n � 2 is an integer.
More generally, we propose
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Conjecture 2. Let f be an entire function
of in�nite order and n � 2 be an integer. Then a

di�erential-di�erence polynomial of the form f nþ
Pn�1ðz; fÞ cannot be a nonconstant entire function

of �nite order. Here Pn�1ðz; fÞ is a di�erential-

di�erence polynomial in f of total degree at most
n� 1 in f , its derivatives and its shifts, with entire

functions of �nite order as coef�cients. Moreover, we

assume that all terms of Pn�1ðz; fÞ have total degree
�1.
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