
On Analysis and Synthesis of (n,k)-Non-Linear Feedback
Shift Registers

Elena Dubrova Maxim Teslenko Hannu Tenhunen
Royal Institute of Technology (KTH),
Electrum 229, 164 46 Kista, Sweden
{elena, maximt, hannu}@imit.kth.se

Abstract— Non-Linear Feedback Shift Registers (NLFSRs) have been
proposed as an alternative to Linear Feedback Shift Registers (LFSRs) for
generating pseudo-random sequences for stream ciphers. In this paper, we
introduce (n,k)-NLFSRs which can be considered a generalization of the
Galois type of LFSR. In an (n,k)-NLFSR, the feedback can be taken from
any of the n bits, and the next state functions can be any Boolean function
of up to k variables. Our motivation for considering this type NLFSRs
is that their Galois configuration makes it possible to compute each next
state function in parallel, thus increasing the speed of output sequence
generation. Thus, for stream cipher application where the encryption
speed is important, (n,k)-NLFSRs may be a better alternative than the
traditional Fibonacci ones. We derive a number of properties of (n,k)-
NLFSRs. First, we demonstrate that they are capable of generating output
sequences with good statistical properties which cannot be generated by
the Fibonacci type of NLFSRs. Second, we show that the period of the
output sequence of an (n,k)-NLFSR is not necessarily equal to the length
of the largest cycle of its states. Third, we compute the period of an
(n,k)-NLFSR constructed from several parallel NLFSRs whose outputs
are XOR-ed and show how to maximize this period. We also present an
algorithm for estimating the length of cycles of states of (n,k)-NLFSRs
which uses Binary Decision Diagrams for representing the set of states
and the transition relation on this set.

I. INTRODUCTION

Information security is of paramount importance to many insti-
tutions of our society: governments, military, financial, businesses,
etc. Many confidential information about research, products, financial
status, customers, or employees, is nowadays processed and stored
on computers, or transmitted to other computers.

In order to protect the confidential information from unauthorized
or accidental discloser, cryptographic methods are applied. A com-
mon approach is to use a symmetric stream cipher which combines
plain text bits with a pseudo-random bit key-stream, typically by
an XOR operation. Encrypted information can be transformed back
into its original form only by an authorized user possessing the
cryptographic key.

The pseudo-random bit sequences are often generated using Linear
Feedback Shift Registers (LFSRs). Advantages of LFSRs include
the ease of implementation, simplicity, speed, and the ability to
generate a maximal cycle sequence with the same uniform statistical
distribution of 0’s and 1’s as in a truly random sequence [1]. The
main disadvantage of LFSRs is their linearity, leading to a relatively
easy cryptanalysis [2].

A common solution to this problem in LFSR-based stream ci-
phers is to feed the outputs of several parallel LFSRs into a non-
linear Boolean function to form a combination generator [3], [5].
The combining function has to be carefully selected to ensure the
security of the resulting scheme, for example, in order to prevent
correlation attacks [4]. Other approaches are to combine several
bits from the LFSR state using a non-linear function, or to use the
irregular clocking of the LFSR [6], [7]. Important LFSR-based stream
ciphers include A5/1 stream cipher which used to provide over-the-air
communication privacy in the GSM cellular telephone standard [8],

E0 stream cipher which is used in the Bluetooth protocol [9], [10],
and the shrinking generator [11].

As another alternative, Non-Linear Feedback Shift Register
(NLFSR) whose current state is a non-linear function of its previous
state can be used. A number of different implementations of NLFSR-
based stream ciphers for RFID and smartcards applications have been
proposed, including Achterbahn [12], Grain [13], [14], KeeLoq [15],
Trivium [16], VEST [17], and [18]. NLFSRs have been shown to
be more resistant to cryptanalytic attacks than LFSRs [19], [20].
However, construction of large NLFSRs with guaranteed long pe-
riods remains an open problem. A systematic algorithm for NLFSR
synthesis has not been discovered so far. Only solutions to some
special cases have been presented [1], [21], [22], [23], [24], [25],
[26], [27].

Most commonly, the Fibonacci implementation of NLFSR, shown
in Figure 1, is used. The Fibonacci type of NLFSR consists of
a number of bits numbered from right to left as 0, . . . ,n− 1 with
feedback from each bit to the n−1th bit. At each clocking instance,
the value of the bit i is moved to the bit i−1. The value of the bit 0
becomes the output of the register. The new value of the bit n−1 is
computed as some non-linear function of the previous values of bits
0, . . . ,n−1, depending on the feedback function used.

In this paper, we introduce an alternative type of NLFSRs, which
we call (n,k)-NLFSRs. An (n,k)-NLFSR can be considered as a
generalization of the Galois type of LFSR to the non-linear case.
Each bit i in an (n,k)-NLFSR is updated according to its next-state
function, which is a non-linear function of the bit i + 1 and up to
k other bits. Thus, in contrast to the Fibonacci NLFSR in which
feedback is applied to the n−1th bit only, in (n,k)-NLFSRs feedback
is potentially applied to every bit. For the case of k = n, an (n,n)-
NLFSR can be considered as a special case of a general autonomous
n-state machine [1]. We are not aware of any work on (n,k)-NLFSRs
for the case of k < n.

Our motivation for considering (n,k)-NLFSRs is that the Galois
type of their configuration gives us a potential opportunity to increase
the speed of output sequence generation. In (n,k)-NLFSRs, next state
functions of individual bits are placed within the register, making
possible to compute each next state function in parallel. Therefore, the
propagation time is reduced to that of smaller functions of individual
bits rather than the time of a large feedback function of the Fibonacci
type of NLFSRs. We target stream ciphers application in which high
encryption speed is very important.

We derive a number of properties of (n,k)-NLFSRs. First, we show
that (n,k)-NLFSRs are capable of generating output sequences with
good statistical properties which cannot be generated by the Fibonacci
type of NLFSRs. While every Fibonacci NLFSR has a matching
(n,k)-NLFSRs, the opposite is not true.

Second, we show that the period of the output sequence of an (n,k)-
NLFSR is not necessarily equal to the length of the longest cyclic

978-3-9810801-3-1/DATE08 © 2008 EDAA

... 0n−1 n−2 n−3
output

feedback function

Fig. 1. An n-bit Fibonacci NLFSR.

sequence of its consecutive states. These two notions are always the
same for the Fibonacci type of NLFSRs.

Similarly to LFSRs and the Fibonacci type of NLFSRs, one can
construct a larger (n,k)-NLFSR from several smaller ones working
in parallel by XOR-ing their outputs. We show how to select these
NLFSRs in order to maximize the period.

Another contribution of this paper is an algorithm for estimating
the length of the cycles of states of (n,k)-NLFSRs. This algorithm
uses reduced ordered Binary Decision Diagrams [28] for representing
the set of states of an (n,k)-NLFSR and the transition relation on
this set. Unlike other compressed representations of relations or sets,
Binary Decision Diagrams perform the actual operations directly on
the compressed representation, without decompressing its first. The
efficiency of the presented algorithm makes it useful, for example,
for analyzing a large number of randomly generated (n,k)-NLFSRs.

The paper is organized as follows. Section II describes main no-
tions and definitions used in the sequel. Section III introduces (n,k)-
NLFSRs. Section IV analyzes a relation between (n,k)-NLFSRs and
the Fibonacci type of NLFSRs. In Section V, we investigate how the
length of the longest cycle of states of an (n,k)-NLFSR is related to
its period. In Section VI, we estimate the period of an (n,k)-NLFSR
constructed from several NLFSRs working in parallel. Section VII
presents an algorithm for computing the length of the cycles of states
of (n,k)-NLFSRs and Section VIII evaluates it. Section IX concludes
the paper and discusses open problems.

II. BACKGROUND

A. Properties of a good pseudo-random sequence

In order to look like a random sequence, a pseudo-random
sequence should satisfy the following properties, called Golomb’s
postulates [1]:

G1. The number of zeros and ones should be as equal as possible
per period.

G2. Half of the runs in a period have length 1, one-quarter have
length 2, ... , 1/2i have length i. Furthermore, for any length,
half of the runs are blocks and the other half are gaps. A block
is a subsequence of 1’s and a gap is a subsequence of 0’; either
type of subsequences is a run.

G3. The out-of-phase autocorrelation AC(k) has the same value for
all k. The autocorrelation is defined as

AC(k) =
(Agreements - Disagreements)

p
,

where a sequence of period p is compared to its shift by k bits.
The autocorrelation is out-of-phase if p does not divide k evenly.

To be of practical use for cryptography, a good pseudo-random
sequence is also required to satisfy the following properties [29]:

1) The period should be very long, ≈ 1050 as minimum.
2) The sequence should be easy to generate, for fast encryption.
3) The cryptosystem based on the sequence should be crypto-

graphically secure against chosen plain text attack.

...

...... ...

n−1 n−2fn−2fn−1 0f0
output

Fig. 2. An (n,k)-NLFSR. Each function fi, i ∈ {0,1, . . . ,n−1} has up to k
inputs.

B. Transition relation

A transition relation defines the next state values of a transition
system in terms of the current state values. We derive the transition
relation in the standard way, by making two copies of the set of
state variables: s = (x0,x1, . . . ,xn−1), denoting the variables of the
current state, and s+ = (x+

0 ,x+
1 , . . . ,x+

n−1), denoting the variables
of the next state [30]. For example, the transition relation of the
Fibonacci NLFSR in Figure 1 is given by the following characteristic
formula:

T (s,s+) = (x+
n−1 ↔ f (x0,x1, . . . ,xn−1))∧ (

n−2∧

i=0

(x+
i ↔ x+

i+1)).

C. Reachability analysis

In forward reachability analysis [30], a sequence of formulas Fi(s)
representing the set of states that can be reached from a given set of
initial states Init in i steps is computed as:

F0 = Init,

Fi+1(s+) = ∃s.(T (s,s+)∧Fi(s)).

The sequence generation is terminated when the fixed point is reached
for some p:

p∨

i=1

Fi(s) →
p−1∨

i=1

Fi(s).

In backward reachability analysis [30], a sequence of formulas
Bi(s) representing the set of states from which a given set of final
states Final can be reached in i steps is computed as:

B0 = Final,

Bi+1(s) = ∃s+.(T (s,s+)∧Bi(s+)).

The sequence generation is terminated when the fixed point is reached
for some p:

p∨

i=1

Bi(s) →
p−1∨

i=1

Bi(s).

D. Binary Decision Diagrams

A Binary Decision Diagram (BDD) is a rooted directed acyclic
graph which consists of decision nodes and two terminal nodes called
0- and 1-terminal [28]. Each decision node is labeled by a Boolean
variable and has two children called low and high child. The edge
from a node to a low (high) child represents an assignment of the
variable to 0 (1). A path from the root node to the 1 (0)-terminal
node represents an assignment of variables for which the represented
Boolean function evaluates to 1 (0).

A BDD is ordered if different variables appear in the same order
on all paths from the root to the terminal nodes. A BDD is reduced
if all isomorphic subgraphs are merged, and any node whose two
children are isomorphic is eliminated. The advantage of a reduced
ordered BDD is that, for a chosen order of variables, it is unique for
the represented function. This property makes reduced ordered BDDs

TABLE I
(4,k)-NLFSRS WITH THE PERIOD 15.

Next state functions Output
N f3 f2 f1 f0 sequence
1 x0 x3 ⊕1⊕ x0 ⊕ x1 ⊕ x0x1 x2 ⊕1⊕ x3 ⊕ x1 x1 ⊕1⊕ x2 ⊕ x0 ⊕ x2x0 001100011110101
2 x0 x3 ⊕ x0x2 x2 ⊕ x3 ⊕ x1 x1 ⊕ x0 ⊕ x0x2 110011110001010
3 x0 x3 ⊕ x0x2 x2 ⊕1⊕ x3 ⊕ x0x3 x1 ⊕1⊕ x2 ⊕ x0 ⊕ x2x0 110100100011110
4 x0 x3 ⊕ x0x2 x2 ⊕1⊕ x0 ⊕ x1x0 x1 ⊕1⊕ x2 ⊕ x0x2 110100010011110
5 x0 x3 ⊕1⊕ x1 ⊕ x2 ⊕ x1x2 x2 ⊕ x1 ⊕ x0x1 x1 ⊕1⊕ x0 ⊕ x0x2 010001111001101
6 x0 x3 ⊕ x1x2 x2 ⊕ x1 ⊕ x1x0 x1 ⊕ x2x0 100011001111010
7 x0 x3 ⊕ x1x2 x2 ⊕1⊕ x0 x1 ⊕1⊕ x2 ⊕ x3 ⊕ x2x3 110001001011110
8 x0 x3 ⊕1⊕ x1 ⊕ x2 ⊕ x1x2 x2 x1 ⊕1⊕ x2 ⊕ x0 ⊕ x2x0 010111100011001
9 x0 x3 ⊕ x1 ⊕ x0x1 x2 ⊕1⊕ x3 ⊕ x1 x1 ⊕ x2 ⊕ x0x2 011011110001001
10 x0 x3 ⊕ x2 ⊕ x0x2 x2 ⊕1⊕ x0 ⊕ x1 ⊕ x0x1 x1 ⊕1⊕ x0 ⊕ x0x2 010011110001101
11 x0 x3 ⊕ x2 ⊕ x1x2 x2 ⊕ x3x1 x1 ⊕ x2 ⊕ x3 ⊕ x2x3 011011110010001
12 x0 x3 ⊕ x2 ⊕ x1x2 x2 ⊕ x0x1 x1 ⊕ x2 ⊕ x0x2 001101111010001
13 x0 x3 ⊕ x2 ⊕ x1x2 x2 ⊕ x0 x1 ⊕ x2 ⊕ x0x2 010111100110001
14 x0 x3 ⊕ x2 ⊕ x2x0 x2 x1 ⊕ x2x0 110010001011110
15 x0 x3 ⊕1⊕ x1 ⊕ x2 ⊕ x1x2 x2 ⊕1⊕ x0 ⊕ x1x0 x1 ⊕1⊕ x0 ⊕ x2 ⊕ x2x0 100100011011110
16 x0 ⊕1⊕ x1 ⊕ x2 ⊕ x1x2 x3 x2 x1 ⊕ x2 ⊕ x3 001010011110001
17 x0 ⊕1⊕ x1 ⊕ x2 ⊕ x1x2 x3 x2 ⊕ x3 ⊕ x1x3 x1 ⊕ x3 001001111010001
18 x0 ⊕ x1x2 x3 ⊕ x0x2 x2 x1 ⊕1⊕ x3 ⊕ x0 100100111100010
19 x0 ⊕1⊕ x1 ⊕ x2 ⊕ x1x2 x3 ⊕1⊕ x0 ⊕ x2 ⊕ x0x2 x2 ⊕ x0x1 x1 ⊕ x3 ⊕ x0 010100111100100
20 x0 ⊕ x1x2 x3 ⊕ x0x2 x2 x1 ⊕1⊕ x0 ⊕ x2 ⊕ x2x0 101100011110010
21 x0 ⊕1⊕ x1 ⊕ x2 ⊕ x1x2 x3 ⊕1⊕ x1 ⊕ x2 ⊕ x1x2 x2 x1 ⊕ x2 011001011110001
22 x0 ⊕ x1x2 x3 ⊕1⊕ x1 ⊕ x2 ⊕ x1x2 x2 ⊕1⊕ x1 x1 ⊕1⊕ x3 ⊕ x0 100100011110010
23 x0 ⊕ x1x2 x3 ⊕1⊕ x1 ⊕ x2 ⊕ x1x2 x2 x1 ⊕1⊕ x2 100011110100110
24 x0 ⊕ x1x2 x3 ⊕1⊕ x0 x2 ⊕ x3 ⊕ x3x1 x1 ⊕1⊕ x3 ⊕ x0 100101000111100
25 x0 ⊕1⊕ x1 ⊕ x2 ⊕ x1x2 x3 ⊕ x2 x2 ⊕ x0x1 x1 ⊕1⊕ x2 ⊕ x3 100111100101000
26 x0 ⊕1⊕ x1 ⊕ x3 ⊕ x1x3 x3 x2 x1 ⊕ x2 ⊕ x3 001111010010001
27 x0 ⊕1⊕ x1 ⊕ x3 ⊕ x1x3 x3 x2 x1 ⊕1⊕ x2 ⊕ x3 101111001000100
28 x0 ⊕1⊕ x1 ⊕ x3 ⊕ x1x3 x3 x2 ⊕ x3 ⊕ x1x3 x1 ⊕ x2 ⊕ x3 ⊕ x2x3 001001011110001
29 x0 ⊕1⊕ x1 ⊕ x3 ⊕ x1x3 x3 x2 ⊕ x3x1 x1 ⊕1⊕ x2 ⊕ x3 ⊕ x2x3 100100011110100
30 x0 ⊕1⊕ x1 ⊕ x3 ⊕ x1x3 x3 ⊕ x0x1 x2 ⊕1⊕ x0 x1 ⊕1⊕ x2 ⊕ x0 011000101111001
31 x0 ⊕1⊕ x2 ⊕ x3 ⊕ x2x3 x3 x2 ⊕ x1 ⊕ x3x1 x1 ⊕ x3 001000101111001
32 x0 ⊕ x2x3 x3 ⊕ x1 ⊕ x2 ⊕ x1x2 x2 ⊕ x1 ⊕ x1x3 x1 ⊕ x0 100011010011110

particularly useful in formal verification, since the equivalence of two
BDDs can be checked in constant time. Other logical operations,
such as conjunction, disjunction, negation, existential quantification,
universal quantification, can be performed on BDDs in linear or
quadratic time in the size of the graphs [31].

III. (n,k)-NLFSR DEFINITION

An (n,k)-NLFSR can be considered a generalization of the Galois
type of LFSRs to the non-linear case. The general structure is shown
in Figure 2. In the Galois type of LFSRs, the feedback is taken from
the 0th bit only and the next state functions fi are restricted to the
2-input XORs. In an (n,k)-NLFSR, the feedback can be taken from
any bit. The next state function can be any Boolean function of up
to k variables.

More formally, an (n,k)-NLFSR can be defined as follows. Let xi

and x+
i be state variables representing the current and the next states

of the bit i, respectively, and let fi : {0,1}k → {0,1}, 1 ≤ k ≤ n, be

TABLE II
4-BIT FIBONACCI NLFSRS WITH THE PERIOD 15.

N Feedback function Output sequence
1 x0 ⊕ x1 (LFSR x4 + x+1) 111000100110101
2 x0 ⊕ x1 ⊕ x2 ⊕ x1x2 111000101101001
3 x0 ⊕ x2 ⊕ x3 ⊕ x1x2 111010001100101
4 x0 ⊕ x1 ⊕ x2 ⊕ x1x3 111011000101001
5 x0 ⊕ x2 ⊕ x1x2 ⊕ x1x3 111010001011001
6 x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x1x2 ⊕ x1x3 111000110100101
7 x0 ⊕ x1 ⊕ x1x2 ⊕ x2x3 111010110001001
8 x0 ⊕ x1 ⊕ x2 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 111000101001101

the next state function of the bit i. The function fi always depends
on the bit (i + 1)mod n. It also depends on up to k− 1 other bits.
If the indexes of these bits are i1, . . . , ik−1, i j ∈ {0,1, . . . ,n−1}, j ∈
{1,2, . . . ,k−1}, then the next state value of the ith bit is given by:

x+
i = fi(x(i+1)mod n,xi1 , . . . ,xik−1).

The output of the (n,k)-NLFSR is the output of its 0th bit.
The state of an (n,k)-NLFSR is defined by the ordered set of values

of its state variables (x0,x1, . . . ,xn−1). Since an (n,k)-NLFSR is
deterministic and finite, any sequence of consecutive states eventually
converges to either a single state, or a cycle of states.

The period of an (n,k)-NLFSR is the length of the longest cyclic
output sequence it produces. The period of an (n,k)-NLFSR can be
less of equal to 2n [32].

Throughout the paper, we use the algebraic normal form to
represent Boolean functions. The algebraic normal form (ANF) of
a Boolean function f : {0,1}n →{0,1} is a polynomial in GF(2) of
type

f (x0, . . . ,xn−1) = ∑
(i0,..,in−1)∈{0,1}n

c(i0, . . . , in−1) · xi0
0 . . .xin−1

n−1

where c(i0, . . . , in−1) ∈ {0,1}.

IV. RELATION BETWEEN (n,k)-NLFSRS AND THE FIBONACCI

TYPE OF NLFSRS

If the next state functions fi of all bits from 0 to n−2 are of type
fi = xi+1 and k = n, then an (n,k)-NLFSR reduces to the Fibonacci
type of NLFSRs shown in Figure 1.

Being a generalization of the Fibonacci type of NLFSRs, (n,k)-
NLFSRs are capable of generating all output sequences which can be
generated by the Fibonacci ones. However, (n,k)-NLFSRs can also
produce many output sequences with good statistical properties which
cannot be generated by the Fibonacci NLFSRs. To demonstrate this,
in Table I we show 32 (4,3)-NLFSRs generating output sequences
with the period 15 which cannot be produced by any of 4-bit
Fibonacci NLFSRs. All output sequences in Table II satisfy the 1st
and 2nd postulates of Golomb. For a reference, Table II lists all
possible output sequences with the period 15 which can be generated
by the Fibonacci NLFSRs, excluding reverse (i.e. mirror image) and
complemented cases.

In the Fibonacci NLFSRs, any output sequence with the period
2n −1 always satisfies the 1st and 2nd postulates of Golomb. This is
not the case for (n,k)-NLFSRs. Some of the output sequences with
the period 2n −1 generated by (n,k)-NLFSRs do not satisfy the 1st
or 2nd postulates. The 3rd postulate of Golomb is never satisfied
by either type of NLFSRs because the sum of two shifted NLFSR
sequences is not always another output sequence.

V. RELATION BETWEEN THE LENGTH OF THE LONGEST CYCLE OF

STATES OF AN (n,k)-NLFSR AND ITS PERIOD

Another specific property of (n,k)-NLFSRs is that the period of
their output sequence of is not necessarily equal to the length of
the longest cycle of their states. For example, a (4,k)-NLFSR going
through the following 16 states:

1,3,0,2,8,5,7,6,9,11,4,10,14,13,15,12

generates the output sequence 1100011011000110 which has the
period 8. For the Fibonacci type of NLFSRs, the period is always
equal to the length of the longest cycle of states.

It is easy to prove that this problem never occurs if the number of
0’s and 1’s in the output sequence of an (n,k)-NLFSRs differs by 1.

VI. SYNTHESIS OF (n,k)-NLFSRS BY COMPOSITION

Similarly to LFSRs and the Fibonacci type of NLFSRs, we can
construct an (n,k)-NLFSR with a guaranteed long period by compos-
ing several smaller NLFSRs working in parallel and combining their
outputs using an XOR. The length of the period of such an NLFSR
can be easily derived from the result for general finite deterministic
transition systems, e.g. [33], as follows.

Let R1,R2, . . . ,Rm be (n1,k1),(n2,k2), . . . ,(nm,km)-NLFSRs, re-
spectively, and R be an (n,k)-NLFSR which they compose, where
n = n1 + n2 + . . . + nm and k = max(k1,k2, . . . ,km). Let Ni denote
the number of different cycles of states produced by Ri, and let Li j

denote the length of the jth cycle of states of Ri, i = {1,2, . . . ,m},
j = {1,2, . . . ,Ni}. The state of R is defined as a concatenation of
states of R1,R2, . . . ,Rm.

Theorem 1: The length of the longest cycle of states of an (n,k)-
NLFSR R which is composed of m parallel (ni,ki)-NLFSRs Ri, i ∈
{1,2, . . . ,m}, is given by

Lmax = max
∀(i1,...,im)∈I

((L1i1 �L2i2)�L3i3) . . . �Lmim

and the total number of cycles of states produced by R is given by

N = ∑
∀(i1,...,im)∈I

m

∏
j=2

(((L1i1 �L2i2)�L3i3) . . . �L j−1i j−1)
L ji j

where ”�” is the least common multiple, ”
” is the greatest common
divisor, and I = I1 × I2 × . . .× Im is the Cartesian product of sets
Ii = {i1, i2, . . . , iNi}, where the set Ii represents indexes of cycles of
states of the NLFSR Ri.

We can see from the Theorem 1 that in order to maximize the
length of the cycles of states produced by R we should choose
the NLFSRs R1,R2, . . . ,Rm so that their longest cycles of states
L1max,L2max, . . . ,Lmmax satisfy the condition:

gcd(Limax,L jmax) = 1, (1)

for each pair i, j ∈ {1,2, . . . ,m}. In this case, the least common
multiple of L1max,L2max, . . . ,Lmmax equals to their product, since

lcm(a,b) =
a∗b

gcd(a,b)

for any non-zero integers a and b. The condition 1 is satisfied if, for
each pair i, j ∈ {1,2, . . . ,m}, Limax and L jmax are relatively prime.
Then, the longest cycle of states produced by R is given by

Lmax = L1max ·L2max · . . . ·Lmmax.

It can be shown that, if the outputs of NLFSRs R1,R2, . . . ,Rm are
combined using an XOR, and the period of each Ri is equal to Limax

for all i ∈ {1,2, . . . ,m}, then the period of R is equal to Lmax.

VII. DESCRIPTION OF THE ALGORITHM

In order to be able to compute the length of cycles of states
of (n,k)-NLFSRs without simulating them, we developed a simple
algorithm presented in this section. First we describe its general
structure, and then discuss each of its steps in details.

The presented algorithm iterates through the following steps. Let
S be initially the set of all states of an (n,k)-NLFSR.

1) Compute the set Call ⊆ S consisting of all states of all cycles
of states of the (n,k)-NLFSR.

2) Choose at random a state sinit ∈ S. Compute the state scycle ∈ S
reachable from sinit in 2n steps.

3) Compute the set A ⊆ S of all states from which scycle can be
reached in up to 2n steps.

4) Compute the intersection C = A∩Call . The resulting set consists
of all states of the cycle containing scycle. Its size is equal to
the length of the cycle.

5) Update S as S := S−A. If S is empty, the algorithm terminates.
Otherwise, the steps 2, 3 and 4 are repeated starting from a
randomly chosen state in S to find the remaining cycles.

A. Step 1

The intuitive idea behind the approach for computing the set Call
is the following. Suppose that we choose some state sinit of S at
random and move from this state 2n steps forward. The state which
we reach, scycle, always belongs to one of the cycles of states of
the (n,k)-NLFSR. This is because an (n,k)-NLFSR is deterministic
and finite, and therefore it cannot take more than 2n steps to reach a
cycle. Furthermore, a cycle cannot be missed by making more steps
because, once entered, it is never escaped.

Next, suppose that instead of making a 2n step transition starting
from one state only, we start from all states of S simultaneously. It is
easy to see that the resulting set of states Call contains all states of
all cycles of the (n,k)-NLFSR. To measure their length, it remains
to distinguish between the different cycles.

The key to an efficient implementation the idea described above
is our ability to compute the states reachable from any state in 2n

steps in n iterations. This can be done by applying the iterative
squaring technique introduced in [34] on the transition relation of
the (n,k)-NLFSR. We use reduced ordered BDDs for representing
the set of states and the transition relation implicitly using a formula
in propositional logic. This makes the implementation of iterative

TABLE III
(n,k)-NLFSRS WITH THE PERIOD 2n −1. THE NEXT STATE FUNCTIONS fi FOR ALL i ∈ {0, . . . ,n−4} ARE OF TYPE fi = xi+1.

Next state functions
(n,k) fn−1 fn−2 fn−3
(5,4) f4 = x0 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 f3 = x4 ⊕ x0 ⊕ x1 f2 = x3
(6,4) f5 = x0 ⊕ x2 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 f4 = x5 ⊕ x2 ⊕ x3 f3 = x4 ⊕ x3
(7,4) f6 = x0 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 f5 = x6 ⊕ x1 f4 = x5 ⊕ x1
(8,4) f7 = x0 ⊕ x1 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 f6 = x7 ⊕ x1 ⊕ x2 f5 = x6 ⊕ x3
(9,4) f8 = x0 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 f7 = x8 ⊕ x0 ⊕ x4 f6 = x7
(10,5) f9 = x0 ⊕ x3 ⊕ x6 ⊕ x12x13x6 f8 = x9 ⊕ x1 ⊕ x7 ⊕ x0x10 f7 = x8 ⊕ x2 ⊕ x3 ⊕ x7
(11,4) f10 = x0 ⊕ x1 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 f9 = x10 ⊕ x1 ⊕ x2 ⊕ x6 f8 = x9 ⊕ x2 ⊕ x3
(12,4) f11 = x0 ⊕ x1 ⊕ x3 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 f10 = x11 ⊕ x3 ⊕ x5 f9 = x10 ⊕ x7 ⊕ x9
(13,4) f12 = x0 ⊕ x1 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 f11 = x12 ⊕ x4 ⊕ x6 f10 = x11 ⊕ x9
(14,4) f13 = x0 ⊕ x1 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 f12 = x13 ⊕ x2 ⊕ x8 f13 = x12 ⊕ x8
(15,4) f14 = x0 ⊕ x1 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 f13 = x14 ⊕ x5 ⊕ x8 f12 = x13 ⊕ x9
(16,7) f15 = x0 ⊕ x6 ⊕ x7x9 ⊕ x3x6 ⊕ x3x4x12 f14 = x15 ⊕ x7 ⊕ x10 f13 = x14 ⊕ x10
(17,4) f16 = x0 ⊕ x2 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 f15 = x16 ⊕ x7 ⊕ x11 f14 = x15 ⊕ x14
(18,8) f17 = x0 ⊕ x7 ⊕ x4x14 ⊕ x3x16 ⊕ x1x4x15 f16 = x17 ⊕ x7 ⊕ x9 ⊕ x12 f15 = x16
(19,6) f18 = x0 ⊕ x8 ⊕ x10 ⊕ x4x6 ⊕ x8x10 f17 = x18 ⊕ x1 ⊕ x10x17 ⊕ x11x15x17 f16 = x17
(20,5) f19 = x0 ⊕ x3 ⊕ x3x5 ⊕ x3x6x11 f18 = x19 ⊕ x8 ⊕ x6x11 ⊕ x6x12 f17 = x18 ⊕ x4 ⊕ x13 ⊕ x17
(21,7) f20 = x0 ⊕ x11 ⊕ x1x6 ⊕ x12x14x18 f19 = x20 ⊕ x12 ⊕ x4x9 ⊕ x9x16 f18 = x19 ⊕ x18

squaring very efficient. Unlike other compressed representations of
relations or sets, BDDs perform the actual operations directly on the
compressed representation, without decompressing its first.

Let T j(s,s+) denote the transition relation describing the set of
next states that can be reached from any current state in exactly
j steps. For example, for j = 2, the transition relation T 2(s,s+) is
computed as follows:

T 2(s,s+) = ∃s++.(T (s,s++)∧T (s++,s+)). (2)

By applying the squaring iteratively, we can obtain T 2 j
(s,s+) in j

steps for any j [34].
We terminate the iterative computation of j if it becomes equal to

n, or if
T 2 j

(s,s+) → T 2 j−1
(s,s+),

for some j ∈ {1, . . . ,n−1}, i.e. if we reached a fixed point.
Using the resulting transition relation, we can compute the set of

states that can be reached from any state in 2n steps as:

Call(s+) = ∃s.T 2n
(s,s+).

Call(s+) represents the set of states of all cycles of states of the
(n,k)-NLFSR.

B. Step 2

At the second step of the algorithm, we select some state sinit of S
at random and compute the state reachable from sinit in 2n steps as:

scycle = ∃s.(T 2n
(s,s+)∧ sinit), (3)

where sinit is represented by the formula

sinit =
n−1∧

i=0

(xi ↔ initi(xi)),

with initi(xi) being the initial value of the state variable xi, i ∈
{0,1, . . . ,n−1}.

Note that the equation 3 always returns a single state.

C. Step 3

After the state scycle of a cycle is identified, we compute all states
from which this cycle can be reached as follows.

First, a transition relation T0...2 j (s,s+) which defines the set of all
next states that can be reached from any current state in up to 2 j

steps, j ∈ {0, . . . ,n}, is calculated as follows:

T0(s,s+) =
∧n

i=1(x
+
i ↔ xi),

T0...1(s,s+) = T (s,s+)∨T0(s,s+),

T0...2 j (s,s+) = T 2
0...2 j−1(s,s+),

where T0 is the transition relation which assigns the next state of
any state to be the state itself, and T 2

0...2 j−1(s,s+) is the square of
T0...2 j−1(s,s+) computed similarly to the one in the equation (2).

As previously, we terminate the iterative computation of
T0...2 j (s,s+) if j becomes equal to n, or if

T0...2 j (s,s+) → T0...2 j−1(s,s+),

for some j ∈ {1, . . . ,n−1}.
Using the resulting transition relation, we compute the set of states

from which the state scycle can be reached in up to 2n steps as

A(s) = ∃s+.(T0...2n(s,s+)∧ scycle).

D. Step 4

Clearly, by intersecting A and Call we obtain all states belonging to
the cycle C. If C = Call , then the (n,k)-NLFSR has a cycle of states
of length |C| and the algorithm terminates. Otherwise, we compute
the difference S−A and repeat the steps 2, 3 and 4 starting from a
randomly selected state in the resulting set until S is exhausted.

VIII. EVALUATION OF THE ALGORITHM

We have investigated whether the presented algorithms can be
of assistance in finding (n,k)-NLFSRs with the period 2n − 1 by
evaluating a large number of randomly generated NLFSRs. To bound
the random search, we have imposed the following restrictions:

1) The next state functions fi for all i ∈ {0, . . . ,n−4} are of type
fi = xi+1.

2) fn−1 is the XOR of the product x0, up to two other single-
variable products generated randomly, and the non-linear part
x1x2 ⊕ x1x3 ⊕ x2x3. If no (n,k)-NLFSR with this structure and
the period 2n − 1 can be found, then the non-linear part of
fn−1 is of type xi1 xi2 ⊕ xi3 xi4 ⊕ xi5 xi6 xi7 where the indexes i j

are generated randomly.

3) fn−2 is a linear function consisting of the XOR of the product
xn−1 and up to three other single-variable products generated
randomly. If no NLFSR with with this structure and the period
2n − 1 can be found, then fn−2 also has a non-linear part of
type xi1 xi2 ⊕xi3 xi4 ⊕xi5 xi6 xi7 where the indexes i j are generated
randomly.

4) fn−3 is constricted similarly to fn−2.

Note, that the configuration of xi1 xi2 ⊕ xi3 xi4 ⊕ xi5 xi6 xi7 may get
reduced if some indexes are equal. For example, if i1 = i2, then the
product xi1 xi2 reduces to a single-variable product.

Table III lists (n,k)-NLFSRs with the period 2n−1 for the smallest
value of k which we were able to find. Output sequences of all these
NLFSRs satisfy the 1st and 2nd postulates of Golomb.

Current version of our algorithm is too memory consuming for
functions larger than 21 variables. We are investigating a possibility to
reduce the memory consumption by combining BDDs with Boolean
circuits as in verification algorithms [35], [36].

IX. CONCLUSION

In this paper, we introduce (n,k)-NLFSRs and derive some of
their properties. This work is a first step towards developing a
general theory of (n,k)-NLFSRs. Many important open problem
remain, including deriving a lower bound on k as a function of n
and the period length, finding an algorithm for constructing (n,k)-
NLFSRs with a guaranteed long period and the minimum k, validating
the potential advantage of a higher encryption speed offered by
(n,k)-NLFSRs, estimating security of (n,k)-NLFSRs and performing
statistical tests to evaluate their output sequences.

REFERENCES

[1] S. Golomb, Shift Register Sequences. Aegean Park Press, 1982.
[2] B. Schneier, “A self-study course in block-cipher cryptanalysis,” Cryp-

tologia, vol. XXIV, no. 1, pp. 18–33, 2000.
[3] M. Robshaw, “Stream ciphers,” Tech. Rep. TR - 701, July 1994.
[4] W. Meier and O. Staffelbach, “Fast correlation attacks on certain stream

ciphers,” J. Cryptol., vol. 1, no. 3, pp. 159–176, 1989.
[5] Y. Tarannikov, “New constructions of resilent Boolean function with

maximum nonlinearity,” Lecture Notes in Computer Science, vol. 2355,
pp. 66–77, 2001.

[6] R. Bialota and G. Kawa, “Modified alternating k generators,” Des. Codes
Cryptography, vol. 35, no. 2, pp. 159–174, 2005.

[7] K. Zeng, C. Yang, D. Wei, and T. R. N. Rao, “Pseudo-random bit
generators in stream-cipher cryptography,” Computer, 1991.

[8] E. Biham and O. Dunkelman, “Cryptanalysis of the A5/1 GSM stream
cipher,” in INDOCRYPT ’00: Proceedings of the First International
Conference on Progress in Cryptology, (London, UK), pp. 43–51,
Springer-Verlag, 2000.

[9] B. Lohlein, “Attacks based on conditional correlations against the
nonlinear filter generator,” citeseer.ist.psu.edu/554481.html.

[10] O. Y. Shaked, “Cryptanalysis of the Bluetooth E0 cipher,” cite-
seer.ist.psu.edu/744254.html.

[11] D. Coppersmith, H. Krawczyk, and Y. Mansour, “The shrinking gener-
ator,” in CRYPTO ’93: Proceedings of the 13th annual international
cryptology conference on Advances in cryptology, (New York, NY,
USA), pp. 22–39, Springer-Verlag New York, Inc., 1994.

[12] B. Gammel, R. Göttfert, and O. Kniffler, “Achterbahn-128/80: Design
and analysis,” in SASC’2007: Workshop Record of The State of the Art
of Stream Ciphers, pp. 152–165, 2007.

[13] M. Hell, T. Johansson, and W. Meier, “Grain - a stream cipher for
constrained environments,” citeseer.ist.psu.edu/732342.html.

[14] A. Maximov, “Cryptanalysis of the ”Grain” family of stream ciphers,” in
ASIACCS ’06: Proceedings of the 2006 ACM Symposium on Information,
computer and communications security, (New York, NY, USA), pp. 283–
288, ACM Press, 2006.

[15] A. Bogdanov, “Cryptanalysis of the KeeLoq block cipher.” Cryptology
ePrint Archive, Report 2007/055, 2007. http://eprint.iacr.org/.

[16] C. D. Canniere and B. Preneel, “TRIVIUM specifications,” cite-
seer.ist.psu.edu/734144.html.

[17] B. Gittins, H. A. Landman, S. O’Neil, and R. Kelson, “A presenta-
tion on VEST hardware performance, chip area measurements, power
consumption estimates and benchmarking in relation to the aes, sha-
256 and sha-512.” Cryptology ePrint Archive, Report 2005/415, 2005.
http://eprint.iacr.org/.

[18] B. M. Gammel, R. Göttfert, and O. Kniffler, “An NLFSR-based stream
cipher,” in ISCAS, 2006.

[19] B. Preneel, “A survey of recent developments in cryptographic algo-
rithms for smart cards,” Comput. Networks, vol. 51, no. 9, pp. 2223–
2233, 2007.

[20] A. Canteaut, “Open problems related to algebraic attacks on stream
ciphers,” in WCC, pp. 120–134, 2005.

[21] J. Mykkeltveit, “Nonlinear recurrences and arithmetic codes,” Informa-
tion and Control, vol. 33, no. 3, pp. 193–209, 1977.

[22] J. Mykkeltveit, M.-K. Siu, and P. Tong, “On the cycle structure of some
nonlinear shift register sequences,” Information and Control, vol. 43,
no. 2, pp. 202–215, 1979.

[23] C. A. Ronce, Feedback Shift Registers, vol. 169. 1984.
[24] M. J. B. Robshaw, On Binary Cequences with Certain Properties. Ph.D.

Thesis, University of London, 1992.
[25] D. Linardatos and N. Kalouptsidis, “Synthesis of minimal cost nonlinear

feedback shift registers,” Signal Process., vol. 82, no. 2, pp. 157–176,
2002.

[26] A. Ahmad, M. J. Al-Mushrafi, and S. Al-Busaidi, “Design and study of
a strong crypto-system model for e-commerce,” in ICCC ’02: Proceed-
ings of the 15th international conference on Computer communication,
(Washington, DC, USA), pp. 619–630, International Council for Com-
puter Communication, 2002.

[27] J. S. I. Janicka-Lipska, “Boolean feedback functions for full-length non-
linear shift registers,” Telecommunications and Informatioin Technology,
vol. 5, pp. 28–29, 2004.

[28] R. Bryant, “Graph-based algorithms for Boolean function manipulation,”
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 35, pp. 677–691, August 1986.

[29] M. Luby, Pseudorandomness and Cryptographic Applications. Prince-
ton, NJ, USA: Princeton University Press, 1994.

[30] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang, “Symbolic
Model Checking: 1020 States and Beyond,” in Proceedings of the Fifth
Annual IEEE Symposium on Logic in Computer Science, (Washington,
D.C.), pp. 1–33, IEEE Computer Society Press, 1990.

[31] G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification Algo-
rithms. Norwell, MA, USA: Kluwer Academic Publishers, 2000.

[32] F. S. Annexstein, “Generating de bruijn sequences: An efficient imple-
mentation,” IEEE Trans. Comput., vol. 46, no. 2, pp. 198–200, 1997.

[33] E. Dubrova and M. Teslenko, “Compositional properties of Random
Boolean Networks,” Physical Review E, vol. 71, p. 056116, May 2005.

[34] J. Burch, E. Clarke, D. E. Long, K. McMillan, and D. Dill, “Symbolic
Model Checking for sequential circuit verification,” Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 13,
pp. 401–442, April 1994.

[35] S. M. Reddy, W. Kunz, and D. K. Pradhan, “Novel verification
framework combining structural and OBDD methods in a synthesis
environment,” in Proceedings of the 32th ACM/IEEE Design Automation
Conference, (San Francisco), pp. 414–419, June 1995.

[36] P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta, “Combining
decision diagrams and SAT procedures for efficient symbolic model
checking,” in Computer Aided Verification (CAV’00), (Chicago, IL),
pp. 125–138, Springer-Verlag, July 2000.

