
On Analyzing Elasticity Relationships of Cloud
Services

Daniel Moldovan, Georgiana Copil, Hong-Linh Truong, Schahram Dustdar

Distributed Systems Group, Vienna University of Technology

E-mail: {d.moldovan, e.copil, truong, dustdar}@dsg.tuwien.ac.at

Abstract—With the increasing cloud popularity, substantial
effort has been paid for the development of emerging elastic cloud
services, consisting of different units distributed among virtual
machines/containers in different clouds. Due to the software stack
and deployment complexity in single and multi-cloud scenarios,
developing and managing such services is impeded by a lack of
tools and techniques for understanding the elasticity relationships
among individual service units, which influence the service’s
overall elasticity. In this paper we characterize the elasticity
relationships, and develop mechanisms for analyzing them, based
on service monitoring information and elasticity requirements.
From collected monitoring information we abstract the elasticity
behavior of the whole cloud service and individual units, over
which we design a customizable algorithm for relationships
analysis. We illustrate our approach via several experiments
with an elastic data service for M2M platforms, highlighting
the importance of determining elasticity relationships for the
development and operation of elastic services.

Keywords-elastic service, relationship analysis, cloud comput-
ing

I. INTRODUCTION

Due to the increasing number of available technologies

for developing cloud services, from hypervisors and virtual

containers to platforms, cloud services are becoming more and

more complex. Service developers are able to run service units

on top of virtual containers (e.g., Docker1), distributed among

virtual machines in different clouds. However, in such cloud

services, individual service units are typically not behaving

independently. Instead, due to communication dependencies

(e.g., unit A sends/retrieves data from unit B) or run-time

control dependencies (e.g., data end re-balancing after scal-

ing), there exist different relationships between service units,

influencing their run-time behavior.

We will refer to such relationships, which affect the run-time

elasticity of the service, as elasticity relationships. Particular

relationships can be of interest for particular stakeholders, in-

cluding service owners, developers, and elasticity controllers.

For example, a relationship between performance and resource

usage could be used by a developer to estimate the maximum

achievable performance before the resource becomes a bot-

tleneck. Another relationship between cost and performance

could indicate how much is a service owner expected to pay

for certain performance. We have seen that existing tools

This work was partially supported by the European Commission in terms
of the CELAR FP7 project (FP7-ICT-2011-8 #317790)

1https://www.docker.com/

for analyzing elasticity of cloud services focus on individual

performance metrics [1], or discovering elasticity boundaries

for individual service units [2]. However, relying only on

information provided by these tools, service developers are

unable to discover hidden design issues with future service

elasticity, which can be captured by relationships between

apparently unrelated service units. Moreover, current elasticity

controllers can evaluate only the impact of their decisions

on individual units, and are unable to understand how en-

forcing one elasticity capability on one unit affects the other

units in the service. Thus, starting from service monitoring

information, we must further analyze and understand if there

exist relationships between individual service units, towards

assisting the development and refinement of elastic cloud

services and controllers.

However, analyzing such relationships is challenging. First,

due to the potential complexity of the service’s software

stack, each software layer can introduce different relationships.

Second, due to possible multi-cloud service deployments, the

relationships can vary with different cloud providers. Thus,

there is a need to investigate new concepts and techniques for

determining and analyzing elasticity relationships in complex

multi-cloud elastic services, based on collected monitoring

information.

To this end, we focus on determining, based on monitored

metrics, relationships between any of the service’s perfor-

mance, cost, and resource usage. For this, we characterize

elasticity relationships of elastic cloud services, based on

which we apply various analysis techniques for determining

them. In this paper we make the following contributions:

• characterization of elasticity relationships of cloud ser-

vices

• a mechanism for analyzing elasticity relationships based

on service monitoring information

• a framework for run-time analysis of elasticity relation-

ships of cloud services

We evaluate our approach on an elastic service deployed

in single and multi-cloud configurations, on both private and

public cloud providers.

The rest of this paper is structured as follows. Section II

presents the motivation and approach, and discusses related

work. Section III introduces the concept of elasticity relation-
ship and our approach for discovering and analyzing elasticity

relationships. Section IV describes our prototype. Section V

2014 IEEE 6th International Conference on Cloud Computing Technology and Science

978-1-4799-4093-6/14 $31.00 © 2014 IEEE

DOI 10.1109/CloudCom.2014.93

447

Fig. 1: Elastic multi-cloud data-as-a-service (DaaS)

presents the experiments. Section VI concludes the paper and

outlines the future work.

II. MOTIVATION AND RELATED WORK

A. Motivation

Let us consider a realistic elastic data-as-a-service (DaaS)

application for an M2M cloud platform-as-a-service (Fig. 1),

having as elasticity capabilities addition and removal of Data
Node and Event Processing instances. At run-time, an

elasticity controller scales the service using these capabilities,

according to elasticity requirements defined over various mon-

itored metrics, e.g., response time ≤ 100 ms for the

Event Processing, and cpu usage ≤ 90 %.

The DaaS provides data storage and exchange services for

Machine-to-Machine (M2M) gateways, such as smart cities

or vehicle fleets. Data received from gateways is processed

by Event Processing units running in virtual containers

hosted on virtual machines, and is stored in a distributed data

end running a distributed data store platform. Due to data

privacy concerns, the data end units are hosted in a private

cloud, while event processing instances can run both in private

and public cloud providers.

From Fig. 1 we can see that elasticity relationships should

exist between units which communicate directly, such as Load
Balancer and Event Processing. However, other re-

lationships might not be so obvious, being generated by

indirect communication, such as between Load Balancer
and Data Node. Depending on the service, the relationship’s

interpretation can also differ, a relationship between metrics

belonging to the same individual unit being potentially less

important than if determined between two different units.

Focusing on the DaaS potential elasticity relationships

(TABLE I), due to communication dependencies, a rela-

tionship could be present between monitored cpuUsage
on the Data Node units, and responseTime of the

Event Processing units, indicating if the data end is

a bottleneck or not. Another relationship could exist be-

tween throughput on Event Processing unit, and

cpuUsage on Data Controller, indicating what is the

maximum achievable throughput before cpuUsage is too

high. While the previous relationships are direct, we can also

have indirect relationships, such as the connectionRate
on Load Balancer influencing throughput on Event
Processing, which in turn influences cpuUsage on Data
Node units. Finally, beside one-to-one relationships, we can

Elasticity relationship (element:metric → element:metric)
DataNode: cpuUsage → EventProcessing: responseTime
EventProcessing: throughput → DataController: cpuUsage
LoadBalancer: connectionRate → EventProcessing: throughput
EventProcessing: throughput → DataNode: cpuUsage
DaaS:cost → DataNode: cpuUsage & EventProcessing: responseTime

TABLE I: Potential DaaS elasticity relationships

also have many-to-one relationships. For example, if the

previous requirements are used to scale the DaaS, the overall

DaaS cost could depend on both requirements’ metrics,

cpuUsage on Data Node, and responseTime of the

Event Processing units.

Specific stakeholders could be interested in specific relation-

ships. For example, a DaaS provider might be interested in cost

relationships, to better plan their business. Service developers

might be interested in performance relationships, which they

can use to adjust the service to eliminate bottlenecks or reduce

resource underutilization. Various parameters of elasticity re-

lationships can further be interpreted by software controllers,

ensuring better automated control decisions. For example, an

elasticity controller would benefit from understanding that

after scaling out the event processing end, the data end might

not be able to handle the increasing number of requests, and

thus, will become in turn a performance bottleneck.

While current tools [3], [4] can show metrics related to per-

formance, cost, or resource usage of individual service units,

or give indicators about the future evolution of such metrics

[5], they do now answer the following crucial questions:

• what metrics are involved in elasticity relationships

• what are the functions describing the relationships

• how are the relationships affected by different clouds

To this end, we develop a mechanism for analyzing elas-

ticity relationships of cloud services based on the service’s

monitored behavior abstracted w.r.t its elasticity requirements.

B. Background

As we aim to determine elasticity relationships, we expect

that ”elasticity” means different things for different cloud

services and units, according to specific requirements. To

this end, we denote with Elasticity Metric any monitored

service metric which can be used to determine if the service

is elastic or not. Following the multi-dimensional principle

of elasticity [6], an elasticity metric belongs to one of the

elasticity dimensions: Cost, Quality, or Resources. Different

services and their units could have different elasticity metrics,

such as response time for an elastic web service, or data access

latency for a data repository.

Elastic services have elasticity requirements associated to

elasticity metrics, describing their desired behavior. Thus, in

determining elasticity relationships, we consider such require-

ments, and use the concept of Elasticity Boundary, introduced

in [2], for representing requirements that bound the values of

one or more metrics. An Elasticity Boundary has the form

ElBoundary(m) = 〈mu,ml)〉, where mu and ml denote the

upper and lower bound over the allowed values of metric m.

448

C. Related Work

Analysis of elastic services is approached from two perspec-

tives in current research: (i) service monitoring and identifica-

tion of abnormal events, and (ii) determining relations among

different monitored metrics.

Doelitzscher et al. [7] use neural networks analysis on

customer’s usage behavior to identify anomalies in services

running on IaaS clouds, and validate their approach using

a cloud simulator. Trihinal et al. [3] introduce a monitoring

framework for elastic cloud services, providing dynamic addi-

tion/removal of monitoring metrics and virtual resources dur-

ing run-time. He et al. [1] propose a cloud services monitoring

framework analyzing monitoring information and detecting ab-

normal behavior, while Venzano et al. [8] study traffic patterns

on a private cloud, highlighting that relationships between

metrics are influences by network, virtualization layer, and

VM collocation. We differ as we do not focus on monitoring,

and instead rely on existing solutions to collect monitoring

information used in analyzing elasticity relationships.

Gullhav et al. [9] apply an extended response time block

method to monitor and approximate the response time of cloud

services, considering the horizontal scalability of a single

business tier. Lloyd et al. [10] correlate physical and virtual

machine resource utilization statistics to predict application

performance across VMs, while Mdhaffar et al. [11] analyze

different architectures and deployment patterns for complex

event processing frameworks. Singh et al. [5] focus on esti-

mating in terms of absolute values the behavior of distributed

services when the underlying infrastructure changes, and Ding

et al. [12] extract application dependency paths from the

application-layer connectivity graph inferred from passive net-

work monitoring data. Xiong et al. [4] introduce vPerfGuard, a

framework for service performance diagnosis in consolidated

cloud environments, automatically discovering metrics which

are most descriptive of service performance, and adaptively

detecting changes in performance

We differ as we analyze both direct and indirect relation-

ships based on the elasticity behavior of the service, and not

absolute metric values, crucial in analyzing elastic services

which scale up/down, potentially bursting in different clouds.

III. ANALYZING CLOUD SERVICES’ ELASTICITY

RELATIONSHIPS

A. Classifying elasticity relationships

Depending on the service’s software stack and cloud de-

ployment, various elasticity relationships can exist at different

software layers between service units. Thus, we must be

able to analyze multiple service types, from simple single-

cloud services, to complex services running multiple units in

virtual containers distributed among virtual machines hosted

in different clouds. To this end, we use as input the model for

representing elastic cloud services presented in [13], describ-

ing a cloud service as composed of service units (i.e. functional

blocks) logically grouped in service topologies (Fig. 2). Any of

the units, topologies, or whole service is considered an Elastic

Fig. 2: Elastic cloud service

Element, as each can have elasticity metrics, requirements, and

capabilities.

Usually, elasticity of cloud services is driven by quality,

cost, resource usage, or a combination of the three. Moreover,

service owners usually view their services from a perspective

driven by cost, quality, or both. As different elasticity rela-

tionships can exist between different perspectives, we classify

relationships after the two fundamental business dimensions,

Cost and Quality, and the three elasticity dimensions, Quality,

Cost, and Resources (TABLE II). The relationship category

is given by the type of monitoring information used to de-

termine it, different categories being potentially of interest

to different stakeholders. Service developers and elasticity

controllers might be interested in Quality dependency or

Resource quality relationships, which they can use to eliminate

bottlenecks or reduce resource underutilization. A DaaS owner

might be interested in cost-related relationships, such as Cost
effectiveness, Benefit-Cost dependency, or Cost composition.

Various parameters of elasticity relationships can further be

interpreted by intelligent software controllers, ensuring better

control decisions, such as understanding that after scaling out

the DaaS event processing end, the data end might not be able

to handle the increasing number of requests.

B. Elasticity relationship

Elasticity of cloud services is driven by elasticity require-

ments, which specify boundaries over the service’s metrics.

To fulfill these requirements, elastic services change their

structure and used virtual resources at run-time through recon-

figuration actions. Due to this reconfiguration, we should not

determine relationships based on absolute monitored values,

as such relationships might not hold after a reconfiguration.

Instead, we determine relationships based on the service’s

behavior with respect to its elasticity boundaries, which, by

abstracting from the absolute monitored values, can be used

to describe the service behavior under different configurations.

Thus, based on the previous model and the elasticity bound-

449

Category Relationship Interested stakeholder Usefulness
Quality dependency Quality→Quality Developer, Controller Indicates potential quality/performance bottlenecks
Benefit-Cost Quality→Cost Owner, Developer, Controller Indicates potential resource bottlenecks
Resource quality Quality→Resource Owner, Developer Describes expected quality/performance when using certain resources
Cost effectiveness Cost→Quality Owner, Developer Describes expected quality/performance under certain cost scheme
Cost composition Cost→Cost Owner, Developer Describes the cost elements contributing to overall service’s cost, indicating

potential cost hot spots
Cost utility Cost→Resource Owner, Developer Indicates potential resource bottlenecks under certain cost schemes

TABLE II: Elasticity relationships

ary concept, we define an elasticity relationship, as follows:

Definition 1: An Elasticity relationship between one elastic

element and a set of elements describes the change in the

behavior of the first element w.r.t. its elasticity boundaries,

triggered by a change in the behavior of the other elements.

The most important for a relationship is determining the

change function describing how much the values of the elas-

ticity metrics of one element change, w.r.t. metric’s boundaries,

when the values of the metrics monitored on other elements

change. According to the internal processes executed by each

element, the change function might be might be observed at

run-time with a certain delay, and could attenuate over time.

Considering these issues, we capture an elasticity relation-

ship ElRelationship between one or more elastic elements from

a set ,ElasticElements, as a tuple of functions: ChangeFct,
DelayFct and AttenuationFct as follows:

ElRelationship : ElasticElements→
(ChangeFct,DelayFct, AttenuationFct) (1)

where ChangeFct is the function describing the change in the

metrics of the related elements as a result of the relationship,

DelayFct is the delay with which the ChangeFct is observed

at run-time, and AttenuationFct the attenuation function

which diminishes the effect of ChangeFct over time.

We characterize the change function, ChangeFct, as taking

for input a set of elastic elements ElasticElements, and hav-

ing as output the estimated values for the elasticity behavior

Elasticity of elastic element e:

ChangeFcte : ElasticElements× ...

× ElasticElements→ Elasticity(e) (2)

Relying on the change function, users can estimate the be-

havior of each element, predicting quality and cost problems,

or resource bottlenecks, and improving the overall elasticity

of the service, depending on the determined relationships.

C. Elasticity relationships analysis

As elasticity of services is evaluated based on boundaries

over the service’s metrics defined by elasticity requirements,

for determining the ChangeFct (Eq. 2), we need to abstract,

from concrete monitored values, the behavior of elastic ser-

vices with respect to their boundaries. To this end we define

the concept of Elasticity Work of a cloud service as the current

load on the service with respect to its elasticity boundaries,

and the Elasticity Energy as the difference between the current

Fig. 3: Elasticity Boundary, Work and Energy concepts

and maximum acceptable load (upper boundary). Using these

concepts illustrated for a single metric in Fig. 3, we can

determine relationships between the elasticity energy of two

services, and not individual metric values

First, for determining the ChangeFct (Eq. 2), we quantify

the absolute distance between the upper and lower elasticity

boundaries for each elasticity metric of an elastic element

using the Initial Elasticity Energy (IElEnergy):

IElEnergy(e) = {
‖ElBoundary(m)u − ElBoundary(m)l‖

| m ∈ elasticity metrics ∈ {Cost,Quality,Resource}}
(3)

where ElBoundary(m)u and ElBoundary(m)l denote the

upper and lower bound of elasticity metric m belonging to

any of elasticity dimensions Cost, Quality, Resource.

Using the IElEnergy we quantify the load monitored on

the elasticity metrics of an elastic element w.r.t. its initial

elasticity energy using the Load Unit, defined as a unit of

usage over the energy of a metric in a time frame. Converting

monitored values to load units, we capture the load on the

elasticity metrics of an element using the Elasticity Work,

ElWork, as the percentage of energy used relative to the

initial energy of the element over its metrics:

ElWork(m) =
x ∗ LoadUnit(m)

IElEnergy(m)
(4)

where x is the number of load units used per 1 time unit

over which the load is measured, from the initial energy

IElEnergy of metric m.

ElWork is a result of service’s load, or resource usage

while idle, based on which we can compute the instant

elasticity energy, ElEnergy, of an element e as the differ-

ence between its initial energy, normalized to 100, and the

450

sum of the work done in idle (ElWorkidle), and in load

(ElWorkload), as follows :

ElEnergy(e) = 100−ElWorkidle(e)−ElWorkload(e) (5)

ElEnergy is used to describe the behavior of the service,

a zero energy indicating it violates its requirements, while one

close to the initial energy indicates that it is underused. Using

ElEnergy for representing the co-domain of the ChangeFct
from Eq. 2 (Elasticity), from an elasticity relationship be-

tween one element ei and a set of other elements ek, ..., en,

we can compute the expected values of ei’s elasticity energy

at time t by applying the relationship’s ChangeFct over the

elasticity energy of metrics belonging to each related element,

as ChangeFcttei(ElEnergy(ek)
t, ..., ElEnergy(en)

t), con-

sidering the DelayFct, and AttenuationFct functions.

We develop Algorithm 1 for determining elasticity rela-

tionships. Depending on the type of relationships we want to

determine, we must be able to investigate from only a subset

of metrics, to all collected metrics for all service’s elements.

To this end, our algorithm can be applied for determining

for any metric of interest, the elasticity relationships it has

with another set of monitored metrics. For each analyzed

elastic metric, the ComputeElEnergy function (Lines 11-

18) applies Eq. 5 to compute the elasticity energy over each

metric monitored value, considering the monitored value as

indicator of complete elasticity work, elWork. By applying

ComputeElEnergy over all analyzed metrics (Lines 2-6),

we obtain for each metric a time series of elasticity energy

values. The elasticity energy is determined based on the initial

Algorithm 1 Determining elasticity relationships between

metrics belonging to same or different elastic elements

Input: m - elastic metric to discover relationships for

Input: metrics - elasticity metrics potentially related to m
Output: relationship

function AnalyzeELRelationships(m, metrics)1

mElEnergy = ComputeElEnergy (m);2

metricsElEnergy;3

foreach mi in metrics do4

metricsElEnergy.add(ComputeElEnergy (mi));5

end6

� function for analyzing elasticity energy time series7

return TimeSeriesAnalysis(mElEnergy, met-8

ricsElEnergy)
end function9

10

function ComputeElEnergy(metric)11

elEnergyInTime = [];12

iELEnergy = || m.Boundaryu −m.Boundaryl||;13

foreach elWork in metric.monitoredV alues do14

elEnergyInTime.add(100 - elWork
iElEnergy);15

end16

return elEnergyInTime;17

end function18

Fig. 4: Elasticity relationships analysis framework

elasticity energy, which can change at run-time due to scaling

actions, and energy work, which changes according to the ser-

vice load. The energy time series provides us with information

about the elasticity behavior of the analyzed elements over

each analyzed element’s metric in time. Over the elasticity

time series, various analysis techniques can be applied (Line

8), depending on the type of analyzed relationship.

IV. PROTOTYPE IMPLEMENTATION

A. Architecture

For applying our approach from Section III, we extend

MELA [2], an elasticity monitoring and analysis as a service,

with a new Elasticity Relationship Analysis service imple-

menting our techniques for analyzing elasticity relationships

(Fig. 4). MELA already provides an Elasticity Monitoring
service which collects monitoring data, structures and enriches

it, and an Elasticity Space Analysis service which uses this data

to determine the service’s elasticity space and boundaries.

While for the determined relationships we require elasticity

boundaries over all cloud service’s metrics for computing the

service’s elasticity energy, they might not be always known.

Thus, we use MELA’s Elasticity Space Analysis service for

determining the Elasticity Space of the target service

from supplied elasticity requirements and collected monitoring

information. The elasticity space contains the Elasticity
Boundaries determined for all elasticity metrics. Based

on the determined boundaries and monitoring information,

our Elasticity Relationships Analysis service uses an array of

functions and techniques to determine the service’s elasticity

relationships. The elasticity relationships’ analysis result is

evaluated by a Result Evaluator, and an Elasticity Relation-
ships Analysis Controller orchestrates all components.

B. Functions for determining elasticity relationship

In the current prototype, for determining the elasticity

relationships’ coefficient functions, i.e., energy change, delay,

and attenuation, we apply R2 functions. To use R, we compute

from monitoring information the elasticity energy of each

metric at each monitoring interval, obtaining elasticity energy

time series over which we apply R analysis functions. To

obtain a clear view over the usual behavior of the service,

we apply a preprocessing step over the time series and remove

2http://www.r-project.org/

451

(a) DaaS with structured monitoring information (b) DaaS with determined elasticity relationships graph

Fig. 5: Analyzing DaaS’s elasticity relationships

outliers determined by R mbox function. We further determine

the delay function DelayFct of an elasticity relationship by

computing the lag between the evaluated energy time series

using the cross-covariance estimation function ccf .

The change function of each relationship is determined

using a linear regression approach, computing the linear corre-

lations between two energy time series with the linear models

fitting function lm available in R. The change function is

extracted under the form ChangeFunction(mdependent) =
constant+coeffi∗mi+...+coeffn∗mn, where mdependent is

the metric from the relationship whose values can be computed

from the values of the other metrics in the relationship, by

adding to the constant, the values of metrics mx multiplied

by their corresponding coefficients, coeffx.

For each determined coefficient of the linear relationship,

we check if the estimation error is one order of magnitude

smaller than the coefficient, and if not, we discard the rela-

tionship as inaccurate. Finally, we obtain the change function,

with the associated Adjusted r coefficient of determination,

an indicator on how well the extracted relationship fits the

original data, from 0% (no fitting), to 100% (maximum fitting).

As linear model fitting is used to estimate the values of the

mdependent metric based on the related metrics, we evaluate

the quality of the estimation by computing the standard,

average, maximum, and minimum absolute variance based on

the absolute difference between the metric’s estimated values

based on the relationship, and the monitored values.

V. EXPERIMENTS

A. Setup

To evaluate the proposed approach, we deploy the DaaS

in both single and multi-cloud configurations, on our private

OpenStack3 cloud, and Flexiant4, a public commercial cloud,

using virtual machines of similar types (1 CPU with 1 GB

of RAM). The DaaS is structured in two logical topologies,

(i) Event Processing topology, containing instances of

Event Processing units and a Load Balancer, and

(ii) a Data End topology containing instances of Data
Node units and a Data Controller acting as data load

3http://www.openstack.org/
4http://www.flexiant.com/

Fig. 6: DaaS on private cloud - Quality relationship

balancer. The data end is implemented using Cassandra5,

the load balancer using HAProxy6, and the event processing

units as RESTful services. A software controllable Load
Generator was designed for applying stepwise increas-

ing/decreasing load over the DaaS, simulating sensors which

connect and send data to the DaaS.

B. DaaS deployed on private cloud

First, monitoring information is structured using MELA

(Fig. 5a), the metrics considered important being prop-

agated and associated to each unit and topology. In

this case throughput, averageThroughput, and

responseTime for Event Processing units, and

cpuUsage for all units, are obtained applying an average
or sum operation on the values monitored for each unit

instance running in a virtual machine, and are propagated

and associated to each topology. From the Load Balancer,

connectionRate is also collected, and cost per service unit

is computed by multiplying the assumed virtual machine cost

with the number of machines running instances of each unit.

First, the DaaS is deployed in our private OpenStack-

based cloud, with one VM for each service unit. As a

service developer, we want to understand if there exists any

Quality relationship between the throughput on the Event

5http://cassandra.apache.org/
6http://www.haproxy.org/

452

Fig. 7: DaaS on public cloud - Quality relationship

Processing and the CPU usage of Data End, as to under-

stand if data end CPU usage could be a bottleneck. The Load
Generator is used to apply a workload starting with 30

sensors, increasing to 90 in steps of 30, and decreasing to 30

again, according to expected DaaS usage. Each load step takes

around 5 minutes, providing enough monitoring information

during the same load to enable relationship analysis.

Using our prototype, relationships are determined as linear

functions, expressed under the form metric(t) : element =
constant + coeffi ∗ metrici(t) : elementi + To

understand resource quality, from the determined relation-

ships (Fig. 5b), we focus on the relationship between the

cpuUsage of the Data End and throughput of the

Event Processing. The determined relationship is a lin-

ear equation in which the elasticity energy of cpuUsage at

time t can be estimated by multiplying the throughput’s

energy value at time t with 0.29, and adding 2.86 to the

result. Converting the abstract energy to concrete values with

respect to the current elasticity boundaries of the service,

we can estimate cpuUsage based on the throughput’s

monitored values (Fig. 6). From the relationship, we estimate

that, using this deployment structure, with maximum accepted

CPU usage (from elasticity requirements) of around 90%,

the maximum achievable throughput is (90-2.86)/0.29 ≈ 300

sensors per second. From the relationship’s quality indicators,

i.e., standard deviation (std.) of 3.19, average (avg.) of 2.64

and maximum (max.) of 10, this relationship is trustworthy,

indicating that when more than 300 sensors are connecting to

the DaaS, the data end should be scaled out.

C. DaaS deployed on public cloud

We are further interested if the same relationship holds on

the public cloud, and analyze the DaaS deployed on Flexiant

public cloud, with same load and number of VMs. Although

the DaaS behavior on the public cloud differs in terms of CPU

usage pattern (Fig. 7), the same relationship type is detected,

cpuUsage(t)=3.47+0.26*throughput(t), with mi-

nor differences both in its coefficients, and quality indicators,

increasing the confidence that the determined relationship is

not generated by particular cloud infrastructures, but instead

is present in the service design, and thus, must be considered

when controlling the service’s elasticity on any cloud.

Fig. 8: DaaS on multi cloud - Quality relationship

Fig. 9: DaaS with controller - Quality relationship

D. DaaS deployed on multi-cloud

As both evaluations returned similar relationships, we fur-

ther want to evaluate if the same relationship holds when

the DaaS ”bursts” into a public cloud due to elasticity re-

quirements. To this end, we deploy the DaaS in a multi

cloud configuration, with 2 Event Processing instances

on each cloud, and the data end deployed on the private cloud.

The load on the DaaS is doubled, as the service is expected

to burst in public clouds only during high load periods.

From the same relationship determined for the multi-

cloud scenario (Fig. 8), we notice that the coefficient for

throughput, 0.18, is smaller than in the single cloud

scenario, and thus, it has less influence on the overall CPU

usage. This might indicate that other relationships between

other metrics are influencing the DaaS, and we would need to

investigate also the other determined relationships in order to

understand the DaaS’s behavior.

E. DaaS deployed on private cloud with elasticity controller

A developer might further want to determine if the previous

relationships also hold during run-time elasticity control. Thus,

we deploy the DaaS in the private cloud with an attached

elasticity controller (in this case RSYBL [13]). Due to re-

quirements of responseTime on Event Processing
topology ≤ 100 ms and cpuUsage on Data End ≤ 90%,

at run-time, the controller adds/removes unit instances.

In this scenario, the determined relationship (Fig. 9) also

includes responseTime, indicating that, during elasticity

453

Determined Elasticity Relationships Relationship quality statistics
Category No. Linear relationship function Adjusted Deviation

r Std Max Min Avg

Resource
1 cpuUsage(t):EventProcessingTopology = 11.7 + 0.87* cpuUsage(t):DataEndTopology 0.55 20.2 51.5 0 17

quality 2
responseTime(t):EventProcessingTopology = 11.5

+ 2.35* cpuUsage(t):DataEndTopology 0.19 122.9 347.9 0.1 93.2
3 cpuUsage(t):LoadBalancerUnit = 4.9 + 0.53* connectionRate(t):LoadBalancerUnit 0.66 63.7 137.2 0.05 52.6
4 cpuUsage(t):EventProcessingUnit = 16.9 + 0.71* connectionRate(t):LoadBalancerUnit 0.4 68.7 187.2 0.01 54

Quality 5 throughput(t):EventProcessingUnit = 2.5 + 0.56* connectionRate(t):LoadBalancerUnit 0.54 41.9 161 0.00 30.6
dependency

TABLE III: DaaS during run-time control - Other determined relationships

control, responseTime has a contribution on cpuUsage,

even if small. From the relationship, we notice that the

estimated cpuUsage goes over 100% between certain time

frames, indicating potential bottlenecks. The estimated bottle-

necks are not encountered in the monitored cpuUsage due

to the controller scaling out the data end. From the computed

quality indicators, i.e., std. deviation of 55, avg. of 40 and max.

of 173.6, we notice that due to enforcing elasticity actions, the

determined relationship is not trustworthy, as an average error

of 40% in cpuUsage is too high.

Thus, we investigate other relationships, captured in TA-

BLE III. The first determined Resource quality relation-

ships indicates that cpuUsage on the data end influences both

the cpuUsage on the event processing topology (1), and the

responseTime (2), meaning it still must be considered as

a metric influencing the elasticity of the service. Relationship

3 between the connectionRate reported by the Load
balancer and its cpuUsage can be used by the elasticity

controller to decide if and when the load balancer should

be scaled vertically, depending on the number of connected

DaaS users. From the Quality dependency relationship

5, we notice that the achieved throughput can be estimated

to 60% of the connectionRate monitored on the load

balancer, indicating potential performance problems.

Based on the above elasticity relationships, the DaaS’s

elasticity could be improved by removing indicated potential

bottlenecks, and its elasticity controller redesigned to enforce

elasticity actions preemptively, based on estimated values.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we focused on analyzing elasticity relation-

ships in cloud services, enabling different stakeholders, from

developers to elasticity controllers, to understand the elasticity

relationships governing the run-time behavior of complex

cloud services. To this end, we have characterized the elasticity

relationships, and developed a mechanism for determining

elasticity relationships of cloud services, which can be applied

to a large array of service configurations, from single cloud to

multi-cloud services with complex software stacks.

We evaluated our approach on an elastic cloud service in

single and multi-cloud configurations, on both private and

public clouds, with and without an elasticity controller. We

have shown that using our approach, a user can easily discover

relationships crucial for understanding how service units and

topologies influence each other at run-time. We highlighted

the need to understand such relationships for different cloud

environments and elasticity controllers, as each can can gener-

ate different relationships, of interest to different stakeholders.

Currently, we plan to enhance our relationships analysis mech-

anism in order to also discover non-linear relationships, and

integrate cloud service patterns in the analysis process.

REFERENCES

[1] S. He, M. Ghanem, L. Guo, and Y. Guo, “Cloud resource monitoring
for intrusion detection,” in IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), vol. 2, Dec 2013, pp.
281–284.

[2] D. Moldovan, G. Copil, H.-L. Truong, and S. Dustdar, “Mela: Moni-
toring and analyzing elasticity of cloud services,” in Cloud Computing
Technology and Science (CloudCom), 2013 IEEE International Confer-
ence on, 2013, pp. 80–87.

[3] D. Trihinas, G. Pallis, and M. D. Dikaiakos, “JCatascopia: Monitoring
Elastically Adaptive Applications in the Cloud,” in IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (CCGRID),
2014.

[4] P. Xiong, C. Pu, X. Zhu, and R. Griffith, “vperfguard: an automated
model-driven framework for application performance diagnosis in con-
solidated cloud environments,” in ACM/SPEC International Conference
on Performance Engineering (ICPE), 2013, pp. 271–282.

[5] R. Singh, P. Shenoy, M. Natu, V. Sadaphal, and H. Vin, “Analytical
modeling for what-if analysis in complex cloud computing applications,”
SIGMETRICS Performance Evaluation Review, vol. 40, no. 4, pp. 53–
62, Apr. 2013.

[6] S. Dustdar, Y. Guo, B. Satzger, and H. L. Truong, “Principles of elastic
processes,” IEEE Computing, no. 5, pp. 66–71, 2011.

[7] F. Doelitzscher, M. Knahl, C. Reich, and N. Clarke, “Anomaly detection
in iaas clouds,” in IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), vol. 1, Dec 2013, pp. 387–394.

[8] D. Venzano and P. Michiardi, “A measurement study of data-intensive
network traffic patterns in a private cloud,” in DCC 2013, Workshop
on Distributed Cloud Computing, IEEE/ACM Conference on Utility and
Cloud Computing (UCC), Dresden, Germany, 2013.

[9] A. Gullhav, B. Nygreen, and P. Heegaard, “Approximating the re-
sponse time distribution of fault-tolerant multi-tier cloud services,” in
IEEE/ACM International Conference on Utility and Cloud Computing
(UCC), Dec 2013, pp. 287–291.

[10] W. Lloyd, S. Pallickara, O. David, J. Lyon, M. Arabi, and K. Rojas,
“Performance modeling to support multi-tier application deployment to
infrastructure-as-a-service clouds,” in IEEE International Conference on
Utility and Cloud Computing (UCC), Nov 2012, pp. 73–80.

[11] A. Mdhaffar, R. Ben Halima, M. Jmaiel, and B. Freisleben, “A dynamic
complex event processing architecture for cloud monitoring and analy-
sis,” in IEEE International Conference on Cloud Computing Technology
and Science (CloudCom), vol. 2, Dec 2013, pp. 270–275.

[12] M. Ding, V. Singh, Y. Zhang, and G. Jiang, “Application dependency
discovery using matrix factorization,” in IEEE Iternational Workshop on
Quality of Service (IWQoS), June 2012.

[13] G. Copil, D. Moldovan, H.-L. Truong, and S. Dustdar, “Multi-level
elasticity control of cloud services,” in Service-Oriented Computing, ser.
Lecture Notes in Computer Science, S. Basu, C. Pautasso, L. Zhang, and
X. Fu, Eds., 2013, vol. 8274, pp. 429–436.

454

