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Abstract. For multi-scale simulations, the quality of the input data
as well as the quality of algorithms and computing environments will
strongly impact the intermediate results, the final outcome, and the per-
formance of the simulation. To date, little attention has been paid on
understanding the impact of quality of data (QoD) on such multi-scale
simulations. In this paper, we present a critical analysis of how QoD in-
fluences the results and performance of basic simulation building blocks
for multi-scale simulations. We analyze the impact of QoD for Finite
Element Method (FEM) based simulation building blocks, and study
the dependencies between the QoD of input data and results as well
as the performance of the simulation. We devise and implement novel
QoD metrics for data intensive, FEM-based simulations and show exper-
iments with real-world applications by demonstrating how QoD metrics
can be efficiently used to control and tune the execution of FEM-based
simulation at runtime.

1 Introduction

For complex multi-scale simulations, e.g. to investigate structural changes within
a human bone after a fracture of the arm, a common approach to perform sci-
entific simulations is to transform the partial differential equations (PDEs) by
means of the FEM to a system of linear or nonlinear matrix equations that
must be solved. In such multi-scale simulations, FEM algorithms can be used at
different scales, such as the skeleton, the bone structure and the bone cell sim-
ulations. Therefore, FEM algorithms play an important role in computational
science. Because of their importance, understanding quality of these algorithms
have attracted several research projects. However, most of them focus on subar-
eas, for instance, optimizing matrix solver [1] or other performance aspects [2].
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FEM algorithms, in general, consume or produce input data (e.g. to describe the
simulation object), intermediate results (e.g. results for intermediate time steps),
the final result, other output data (e.g. status data), and internal used data (e.g.
FEM grid or matrix). These types of data have large volume and some of them
have complex data structures.

We argue that the quality of the input data, together with, the quality of
algorithms and computing environments will strongly impact the intermediate
results, the final simulation output, as well as the performance and storage provi-
sioning of the simulation. This is particular applicable to multi-scale simulations
in which the output data in one scale will be used as input data on the other
scale. Not to mention that even in a single scale simulation, there are various
steps, in which different types of data are processed and produced. Quality of
data (QoD) can strongly affect the selection and operation of algorithms as well
as computing and storage resources in these steps and in the data exchange
among these steps and among scale-specific simulations. While several research
papers have discussed possible computing environments and algorithms in detail
for FEM, little attention has been paid on understanding the impact of QoD on
the performance and resource/storage provisioning in phases of FEM-based sim-
ulations. Because FEM-based simulations in computational science are typical
long running and produce large amount of data, and are expensive in terms of
time and money [3,4]. Detecting poor data quality and able to understanding
the impact of QoD in FEM-based simulations could potentially save time and
money. In particular, being able to understand QoD influences on performance
and resource provisioning for FEM-based simulations can also help to develop
better strategies for pay-per-use resources in cloud computing environments.

In this paper, we focus on understanding major QoD metrics for FEM-based
simulations and on analyzing the dependencies among QoDmetrics to the quality
of according intermediate results, performance, storage needs, and the QoD of
the simulation as a whole. Fundamentally, we focus our work on general FEM-
based simulation steps that can be considered as a basic building block for multi-
scale simulations. We have developed several QoD metrics and analyzed trade
offs between different QoD findings and simulation execution time. We present
our experiments with a real world simulation. To the best of our knowledge, this
is the first attempt to analyze the impact of FEM QoD metrics on simulations.

The rest of this paper is organized as follows: Section 2 discuss the background
of our work. Section 3 presents and defines QoD metrics. Section 4 presents our
prototype and experiments. Section 5 presents related work, followed by the
conclusions and future work follows in Section 6.

2 Quality of Data Implications in FEM Based Simulations

2.1 Identifying Important Types of Data in FEM-Based Simulations

Different tools and frameworks exist to execute FEM based simulations. Some of
them, e.g. Ansys1, use pre-implemented functions and have a strong FEM focus

1 http://www.ansys.com/



On Analyzing Quality of Data Influences 795

Time Loop (8)      for i = 1 to n

Create FEM
Parameters (3)

geometry
data

FEM impl. +
FEM grid type

boundary
condition

solver type +
error tolerance

Adjust Boundary
Conditions (4)
Ad

Visualization
(9)

Chose Matrix
Solver (6)

Define Geometry
Data (1)

D

Preprocessing Phase

Solving Phase

Postprocessing Phase

Define Material
Parameter (2)
D

material
parameters

initial
condition

Adjust Initial
Conditions (5)

Solve Matrix
Equation (7)

matrix
equation

(intermediate)
results

FEM
grid

initial
FEM grid

Legend:

Control flow

Data dependencies

postprocessing
output

Fig. 1. Steps in a basic FEM-based simulation building block and important types of
data and important data dependencies

while others could be part of a global technical computing environment, such
as MatLab2. Physics specific FEM frameworks, like PANDAS3, permit to create
simulations in a very flexible way.

A FEM-based multi-scale simulation can have millions of basic simulation
building blocks, e.g. a human skeleton has approximately 206 bones, each bone
has thousands to millions of cells, where each cell can be simulated by a FEM-
based simulation building block. Nevertheless a FEM-based simulation building
block has a common procedure that can be divided into three phases: (i) pre-
processing, (ii) solving, and (iii) postprocessing. The three phases can be divided
again into different steps. Figure 1 illustrates the main steps for transient prob-
lems, in which the preprocessing phase includes steps 1 to 6, steps 7 and 8
belongs to the solving phase, and step 9 is in the postprocessing phase. In the
preprocessing phase all relevant input data are collected, based on that an ini-
tial FEM grid and matrix equation can be generated. Matrix equations will be
adapted and solved in the solving phase. The results are processed (e.g. visual-
ized) in the postprocessing phase. In this paper, we focus on QoD metrics for
the FEM-based simulation building block, in particular for the preprocessing
and the solving phases.

From our study, we determine five relevant classes of data in the preprocessing
and solving phases: (i) PDE driven input data (input data), (ii) FEM driven

2 http://www.mathworks.com/products/matlab/
3 http://www.mechbau.uni-stuttgart.de/pandas/index.php
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input data (input data), (iii) internal/temporary FEM data (output/input data),
(iv) intermediate results (output data), and (v) final result (output data). PDE
and FEM driven input data are generated during the preprocessing phase. Most
of the internal and temporary FEM data as well as intermediate and final results
are computed at the solving phase. Generally, the QoD in these classes is critical
for the quality of the simulation result, the performance, and the amount of data.
Several types of data that can influence the QoD of FEM based simulations,
such as the geometry, material parameter, FEM interpolation, FEM grid type,
boundary condition, initial condition, matrix solver type, matrix error tolerance,
matrix equation, FEM grid, and time step4.

2.2 Defining and Evaluating Quality of Data Metrics

In general, there can be several QoD metrics. However, [6] pointed out that the
term QoD is used in different domains with several meanings and must be re-
garded specific to the application domain. QoD can be measured with the aid
of metrics [6]. A metric must be provided by one or more well defined measure-
ment method. Furthermore, several meta information are necessary: (i) where
the measurement is taken, (ii) what data are included, (iii) the measurement
device, and (iv) the scale on which results are reported. To evaluate QoD, we
distinguish between QoD verification and validation with respect to the FEM
phases. Related to the IEEE-STD-610 definition of validation and verification in
software products [7] QoD verification and validation is defined as follow:

Definition 1 (Quality Of Data Verification). The process of evaluating
quality of data during or at the end of the preprocessing phase to determine
whether it satisfies specified quality of data demands.

Definition 2 (Quality Of Data Validation). The process of evaluating qual-
ity of data during or at the end of the solving phase to determine whether it
satisfies specified quality of data demands.

The QoD Verification definitions means that verification makes sure that the
simulation (i) fulfills the specification of the simulation object, (ii) is derived
from the specification of the simulation object that the simulation fulfills the
specification of the PDE, and (iii) is derived from the specification of the PDE
that the simulation fulfills the specification of the FEM; or for short: computes
the problem right. The QoD Validation definitions means that validation make
sure that the simulation actually fulfills the simulation intention; or for short:
computes the right problem.

2.3 Identifying Factors Influencing Quality of Data

Each step has different influences to simulation characteristics like QoD, data
quantity, or performance. In Figure 1, in step 1, the dimension (e.g. 3 D) or

4 Due to the lack of space, we provide a supplement report to document important
types of data and their possible influences as well as possible FEM-based specific
QoD metrics in [5].
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complexity (e.g. smoothness) of the simulation object – described by geometry
data – has strong influences to the size of the result data and to the performance.
The material parameters in step 2 approximate the material behavior within
the PDE based on a given physics. Changes to material parameter influences
the behavior of the PDE. In step 3, data that describe the FEM grid type, the
FEM implementation, and an initial FEM grid are involved. Hence, interpolation
functions (e.g. power series) affect the performance and the result quality. The
size, complexity, and type of the FEM grid strongly influence the performance,
the data quantity, and the QoD. Boundary condition and initial condition in step
4 and 5 could be defined with several accuracies and numerical characteristics
which affect the QoD and the performance. A matrix solver type and, in some
cases, an error tolerance must be chosen in step 6. Each solver has different
characteristics in relation to error behavior, QoD, and performance.

Based on a FEM grid a matrix equation (step 7) could be solved with different
precisions which influence the performance and the result quality. Additional
internal or temporary data, such as the Jacobian determinant, influence the
quality of the (intermediate) result. In step 8 the increment of time step δti
influences the accuracy, the performance, and the data quantity.

Furthermore, there are relevant constrains between the steps regarding to
QoD. Figure 1 depict essential data dependencies that need to be observed.
Considering the important role of quality of data, we present novel QoD metrics
for FEM based simulations and discuss the influences.

3 QoD Metrics for FEM-Based Simulations

QoD metrics are determined based on our evaluation important types of data
that influence FEM based simulations detailed in [5]. We distinguish between
basic and constrained input data as characteristics of types of data. As shown in
Figure 1, basic input data have no strong dependencies to other input data and
are typically data to describe the PDE. Constrained input data are essentially
dependent on basic input data and can have relations to other constrained input
(or combined output/input) data.

We consider QoD as a tuple of characteristics and goodness [8]. A characteris-
tics of data will be analyzed without any simulation context, while the goodness
of the characteristics of data will be evaluated with respect to the specific sim-
ulation context. To simplify the wording, we use the term QoD metric result in
the following as a synonym for the goodness value of the QoD tuple. Regarding
to [6], a QoD metric result will have a value calculated by a well-defined quality
objective. In this paper, we use for the quality objective an interval from 0 to 1.
Hence, we defined the QoD metric result for FEM-based simulations as follows:

Definition 3 (Quality of Data / Goodness). The Quality of Simulation
Data / Goodness (or QoD metric result) is an objective represented by a value
Q ∈ [0, 1] that determines the quality of input and output data of a FEM based
simulation with both limits 0 = bad and 1 = good. Q ∈ (0, 1) determines a quality
between bad and good.
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Table 1. Selected Quality of Data metrics for FEM-based simulations

QoD Metrics Description

Geometry Accuracy Metric related to Figure 1 step 1 to verify geometry data of
the PDE

Material Parameter Ac-
curacy

Metric related to Figure 1 step 2 to verify material parame-
ters of the PDE

Interpolation Accuracy Metric related to Figure 1 step 3 to verify interpolation func-
tions of FEM implementation data

FEM Grid Type Ade-
quacy

Metric related to Figure 1 step 3 to verify the FEM grid type

FEM Grid Accuracy Metric related to Figure 1 step 3 to verify the fineness of the
(initial) FEM grid

Boundary Condition
Accuracy

Metric related to Figure 1 step 4 to verify the accuracy of
the boundary condition of the PDE

Initial Condition Accu-
racy

Metric related to Figure 1 step 5 to verify the accuracy of
the initial condition of the PDE

Matrix Solver Accuracy Metric related to Figure 1 step 6 to verify the accurate selec-
tion of a matrix solver type for the FEM

Matrix Solver Error Metric related to Figure 1 step 6 to verify the maximal error
tolerance for a matrix solver type for the FEM

FEM Element Condi-
tion

Metric related to Figure 1 step 7 to validate the condition of
an element within a FEM grid

Matrix Equation Con-
dition

Metric related to Figure 1 step 7 to validate the numerical
condition of a matrix within a matrix equation

Vector Condition Metric related to Figure 1 step 7 to validate the numerical
condition of a vector within a matrix equation

Time Discretization
Accuracy

Metric related to Figure 1 step 8 to validate the accuracy of
a time step

Based on this definition a value QQoDmetric determines the QoD metric result
with respect to the specific QoDmetric. Corresponding to the influencing factors,
Table 1 presents a list of QoD metrics we have developed and their associated
data as well as data types described in Section 2 (see our supplement report [5]
for detailed explanation).

We introduce in detail three implementations of QoD metrics: Material Param-
eter Accuracy (QMPA), Matrix Solver Accuracy (QMSA), and Vector Condition
(QV C). QMPA (Figure 1 step 2) and QMSA (step 6) verify the quality in the
preprocessing phase. QMPA is based on the quality of PDE driven basic input
data and will be used if the implemented parameter approximates a known pa-
rameter. QMSA is premised on the quality of FEM driven constrained input data
and makes a statement about the expected accuracy of the numerical solution
before the solving phase starts. With this knowledge a time and money con-
suming simulation can be adopted or aborted if a poor QoD is expected. QV C

(step 7) of both vectors b and x concerns the solving phase and determines the
quality of constrained internal/temporary FEM data within a matrix equation
Ax = b. In contrast to QMSA, QV C validates and makes a statement about the
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real condition of the numerical solution at the solving phase. Nevertheless, even
as the solving phase a simulation can be adopted or aborted to save time and
money.

3.1 Material Parameter Accuracy

Most simulations run with estimated material parameters or average values. The
QoD metric QMPA helps to verify implications of inaccurate material parame-
ters. The correctness of the material parameter to describe the phenomenological
behavior of the material based on a given physics depends on the accurate de-
scription of all relevant parameter. We define the error rate of all implemented
material parameter: Given a region bm that describes the model of the simu-
lation object and an interval [t0, tn] that describes the simulation time period.
Given a function rMP (x, t) that describe the phenomenological behavior of the
real material and a function mMP (x, t) that describe the phenomenological be-
havior of the material in the implemented FEM model. The characteristic of
material parameter accuracy QMPA without respect to the specific simulation

context is defined by min(
∣
∣
∣
mMP (x,t)
rMP (x,t)

∣
∣
∣ ,
∣
∣
∣
rMP (x,t)
mMP (x,t)

∣
∣
∣) for all x ∈ bm and t ∈ [t0, tn].

Based on this definition the error rate of a specific material parameter j can be
defined in the same manner.

3.2 Matrix Solver Accuracy

A matrix solver implements numerical methods to solve matrix equations and
approximates (in most cases) the exact solution of the matrix equation. QMSA

helps to verify implications of numerical problems. xe is the exact solution of a
test matrix equation Ax = b and xm is the numerical solution by using matrix
solver m. We define the characteristics of the matrix solver accuracy QMSA by
‖xe − xm‖ with ‖‖ is a appropriate norm. If it is not possible to determine the
exact solution xe objectively a domain expert can determine the characteristics
of QMSA subjectively.

3.3 Vector Condition

To solve a matrix equation Ax = b with numerical methods, the condition of
the vector b (and of A) influences the solving performance and the quality of
the solution x. QV C helps to validate implications of numerical problems. If the
difference regarding the least absolute value and the maximum absolute value of
b is ”too big” numerical errors can be estimated. bl is the least absolute value
with bl �= 0 and bm the maximum absolute value of b. The characteristics of the
vector condition without respect to the specific simulation context is defined by
QV C = bl

bm
. We define the vector condition for the vector x in the same way. For

this, we replace vector b and the values bl and bm by vector x and the values xl

and xm.
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4 Evaluating the Influence of Quality of Data Metrics

4.1 QoD Evaluation Framework

In order to measure, monitor, and evaluate QoD metrics for FEM-based sim-
ulations, we utilize our extensible QoD Evaluation Framework for workflows
developed in [8]. Generally, with this framework, we can determine QoD in a
very flexible way: (i) platform and language independent metrics and interpreta-
tions can be invoked, (ii) separate metrics as well as metrics that are included
in comprehensive algorithms (e.g. a solver that include algorithms to determine
the Jacobian determinant) can be used, and (iii) objective (automatically deter-
mined by a computer) and subjective (manual determined by a human) QoD
determination is supported. During runtime, relevant data is needed for the de-
termination of QoD is passed to the QoD Evaluation Framework by values or
by references. This approach enables us to shift data to QoD metrics and in-
terpretations or shift QoD metrics and interpretations to data to improve the
performance.

Conceptually, Figure 2 describes how we utilize the QoD Evaluation Frame-
work for understanding the dependencies among QoD for inputs, intermediate re-
sults, and final outcomes, as well as the influences of QoD on the performance
and resource provisioning of the simulation. All necessary information about avail-
able QoD metrics and interpretations are stored into Metric Definition. Imple-
mentations of QoD metrics and interpretations can be found in Software-based

Evaluator for automatic QoD determination and in Human-based Evaluator for
manual QoD determination. Both kinds of evaluators and the data provisioning
are managed by Manager. Furthermore, the Manager has all meta information
described in Section 2.2. For QoD determination the Manager searches Metric
Definition for an appropriatedQoDmetric and a correspondingQoD Evaluator

and passes information about data (in XML messages) to the Evaluator. The
Evaluatoranalyzes the specified data about their characteristics and returnsXML-
based Metric Result – including values of QoD metrics – to the Manager. The
metric results will be analyzed and displayed together with, e.g., performance, fail-
ures, or storage informations.

4.2 Experiments

To analyze the influence of QoD metrics and goodness we used simulations de-
veloped atop the PANDAS framework. PANDAS was designed for simulations
of multiphasic materials [9]. We used it for two reasons: It represents a typical
FEM based simulation framework that can be used within a workflow environ-
ment (e.g. to perform multi scale simulations) and FEM-based basic simulation
building blocks can be structured into the steps shown in Figure 1 [10].

We implement two simple but well proved simulations [11] simulating the same
problem but having fundamental different characteristics in terms of the elastic-
ity of the boundary: “fluid-saturated elastic column in an impermeable rigid tub”
(EC) and “rigid slab on a fluid-saturated elastic half space” (RS). Furthermore,
two solvers (GMRES and BiCG) with different numerical behaviors are utilized.
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Fig. 2. Components and steps in evaluating QoD using the QoD Evaluation framework

To analyze the impact of QoD the presented QoD metrics Material Parame-
ter Accuracy (QMPA), Matrix Solver Accuracy (QMSA), and Vector Condition
(QV C) as well as performance measurement metrics (time in hour) are used. The
goodness of QoD metrics with respect to the simulation context is defined based
on domain expert’s knowledge (due to the lack of space, the exact setting of the
experiments can be found in [5]). We execute the experiments on a four CPU
machine because it is sufficient to calculate our QoD metrics for FEM-based ba-
sic simulation building blocks, in particular for the preprocessing and the solving
phase shown in Figure 1, of multi-scale simulations. Furthermore, it clarifies the
analysis of the influence of QoD metrics and performance. Nevertheless, in prac-
tice we could use our approach to control multi-scale simulations with the aid of
QoD findings within a multiple of computational resources when a large of basic
simulation building blocks are employed.

To demonstrate the applicability and strength of our novel approach we have
performed different correlations. We present three examples in detail: (i) the
correlation between the goodness of QMPA and QV C , (ii) the correlation be-
tween the goodness of QMPA and the fault behavior, and (iii) the correlation
between the goodness of QMSA and the performance. Several other correlations
can be implemented. Examples are the correlation between the goodness of a
QoD metric and storage provisioning or the correlation between the goodness of
QoD metrics determined in different scales with a multi-scale simulation. Due
the lack of space we present only selected findings in the following.

QoD-QoD Correlation: The QoD-QoD correlation (Figure 3 left) describes the
relation between the goodness of QMPA (material parameter accuracy) and QV C

(vector condition). Although the EC and the RS simulations are similar only with
the exception of the flexibility of the boundary, the results of the QV C differ
considerably. The RS simulation is less sensitive to material parameter changes
than the EC simulation. As shown in Figure 1 the QV C of matrix data outputted
in step 7 (vector x) depends on QMPA in step 2. In the RS simulation a poor
QoD within material parameter data do not influence the limited or good QoD
of the vector condition. In contrast, at the EC simulation the QV C is overall poor
and tends to have critical values when QMPA ≤ 0.7. Based on this QoD-QoD
correlation findings we concluded that: (i) the RS simulation has an uncritical
numerical behavior at the vector x with respect to a not well accurate material
parameters, (ii) the EC simulation has overall a poorer numerical behavior in
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solving the vector x, (iii) the EC simulation shows an critical numerical behavior
at the vector x with respect to a not well accurate material parameters. As a
consequence of the findings, our tool indicates that EC simulation should use
correct material parameters as well as suitable matrix solvers that can handle a
poor vector condition.

QoD-Fault Correlation: The QoD-Fault correlation describes the relation be-
tween the goodness of QMPA and the fault behavior (termination of the sim-
ulation framework) by executing the EC simulation. When QMPA ≤ 0.3 the
simulation framework PANDAS frequently terminates the calculation during the
solving phase with error messages (no convergence). Overall we observed that in
one of five simulations PANDAS terminated at the initial time step δt0, in three
of five simulations PANDAS terminated before the time step δt5000, and in one
of five simulations ended without error. Based on this knowledge a simulation
should be adapted at the preprocessing phase with material parameters that
have a sufficient QoD value in order to avoid simulation failures.

QoD-Performance Correlation: The QoD-Performance correlation describes
the relation between QMSA and runtime of the EC simulation in hours. Figure
3 (right) shows that the used solvers have a different behavior: for 5000 time
steps, the BiCG matrix solver took a half of the execution time (7 hours and 10
minutes) that the GMRES solver (14 hours and 21 minutes) required. However,
for longer running simulations the GMRES solver provides results with a good
QoD (0.95) but the BiCG solver calculates results that differs slightly from a
proven result and the achieved QoD is limited to 0.8. Hence, our QoD framework
indicates that (i) the GMRES solver provides reliable results, (ii) for simulations
that run with a relative small number of time steps, the BiCG solver produces
good quality of results in a fast way. By using our framework, scientists can find
out the maximum number of time steps on which the QMSA is useful for their
specific simulations.



On Analyzing Quality of Data Influences 803

5 Related Work

This section presents related work in the fields of QoD influences for compu-
tational simulations. Batini et al. present general concepts, methodologies, and
techniques as well as a process to determine QoD [6]. We adopt it for the field of
FEM based computational simulations. Hey et al. pointed out the principle need
to observe QoD in scientific applications [3]. Heber and Gray concertize this need
for FEM driven computational simulations [4] and have implemented a runtime
environment for FEM based simulation [4,12]. But those implementations do not
support any QoD evaluation.

The principles of the FEM are characterized by [13]. Those principles includes
simulation dependent QoD aspects, e.g., basic approaches for error minimizing
in the overall FEM and for several FEM steps. But the authors do not focus on
simulation independent QoD metrics. Several approaches were already created
for error minimizing in FEM. Lots of papers discuss special aspects in one step in
detail. An example is description of the implementation of the concept of geomet-
ric multigrid algorithms and hierarchical local grid refinement [1]. Those kinds of
paper depict in each case not the whole simulation (preprocessing, solving, and
postprocessing phase). Nevertheless, we can use those approaches within specific
QoD metrics.

Beyond that, performance analysis of FEM based simulation is well studied
as well as optimization, e.g., in [2,14]. Our work is different as we focus primly
on understanding QoD and only effected by this on research questions like per-
formance or data quantity. In existing FEM tools or frameworks, such as Ansys,
MatLab, or PANDAS QoD checking has not been provided. To our best knowl-
edge, there is no work to define QoD metrics for FEM driven computational
simulations in general and to study how QoD metrics impact on simulations.

6 Conclusions and Future Work

This paper analyzes common steps in FEM based computational simulations and
proposes novel QoD metrics for the evaluation of the QoD and performance of
FEM-based simulations. We have investigated how such metrics could provide
benefit for understanding the inter-dependencies among QoD of inputs, interme-
diate data, and outputs as well as the performance needs of entire simulations.
By monitoring and analyzing QoD influences with two real world simulation ex-
amples, we have shows that different types of QoD analyses could be very useful
for understanding and steering FEM-based simulations.

We concentrate on basic simulation building blocks that can be used for
general FEM-based multi-scale simulations. Therefore, new metrics and anal-
ysis methods must be investigated for data exchanged among different building
blocks within and across specific simulation scales as well as for specific FEM
approaches. In our future work, we focus on steering multi scale simulations and
adapting resource provisioning based on QoD influences.
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