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Abstract. How is it that entropy derivatives almost in their own are charac-
terizing the state of a system close to equilibrium, and what happens further
away from it? We explain within the framework of Markov jump processes why
fluctuation theory can be based on considerations involving entropy production
alone when perturbing around the detailed balance condition. Variational prin-
ciples such as that of minimum entropy production are understood in that way.
Yet, further away from equilibrium, dynamical fluctuations reveal a structure
where the time-symmetric sector crucially enters. The fluctuations of densities
and currents get coupled and a time-symmetric notion of dynamical activity
becomes the counterpart and equal player to the entropy production. The re-
sults are summarized in an extended Onsager –Machlup Lagrangian, which in
its quadratic approximation is expected to be quite general in governing the
small fluctuations of nonequilibrium systems whose macroscopic behavior can
be written in terms of a Master equation autonomously describing the time-
dependence of densities and currents.

Keywords: nonequilibrium fluctuations, dynamical large deviations

AMS Subject Classification: 82C05, 60F10, 82C35, 60J25

1. Scope

The breaking of time-reversal symmetry is certainly an important feature
of nonequilibrium systems. While the underlying microscopic dynamics is (un-
der usual circumstances) time-reversal symmetric, the plausibility of the time-
reversed history of mesoscopic or even more macroscopic conditions can greatly
differ from that of the original history. These considerations are very much
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linked with the concept of entropy and its production. As written by Max
Planck in 1926 [20]: “. . . there is no other general measure for the irreversibility

of a process than the amount of increase of entropy.” As an example, the by now
well-known fluctuation symmetries of the entropy production, be it transient or
in the steady state, are on a formal level nothing but expressions of that rela-
tion between entropy production and time-reversal breaking. That point was
especially emphasized in [3, 12, 13].

In particular and even if not always explicit, much emphasis in the study of
nonequilibrium phenomena has gone to the study of the entropy production, or
to some nonequilibrium extension and generalization of thermodynamic poten-
tials. Nevertheless there are reasons to doubt the unique relevance of the entropy
production concept, as traditionally understood, in far from equilibrium set-ups.
Similar thoughts have already been expressed longer time ago in [11]. The char-
acterization of nonequilibrium could very well require to consider observations
that are somewhat foreign to equilibrium thermodynamics. Entropy produc-
tion governs equilibrium fluctuations and remains useful for close-to-equilibrium
processes via the concept of heterogeneous equilibrium. Yet, that hydrodynamic

experience is mostly related to the problem of return to equilibrium. For all we
can imagine, perhaps other quantities must complement the entropy produc-
tion to account for other relevant nonequilibrium features that have to do not
only with dissipation but perhaps also with more constructive aspects of the
nonequilibrium kinetics and its dynamical activity.

We are interested here in the fluctuation functionals for the nonequilibrium
statistics of state-occupations and of state-transitions. Much research into this
has already been done, and for a review of this we refer to [1]. Our emphasis
lies on the joint fluctuations of these time-symmetric and time-antisymmetric
sectors of the dynamical fluctuations. The most important observations will
be, that these sectors are coupled and that they are not solely determined by
the stationary entropy production. A similar emphasis was put already in the
treatment of the steady state statistics of diffusions, [16], and in the elucidation
of a canonical structure of the steady fluctuations [15]. Here we are adding
the discussion on the transient regime and for the steady state we concentrate
fully on the small fluctuations around the stationary values. That suffices to
appreciate the appearance of a new quantity, that we have called traffic and
that measures the dynamical activity in a time-symmetric way.

The type of nonequilibrium systems to which we believe our analysis applies
almost literally are composed of weakly interacting particles, as in a driven
dilute gas for which a Boltzmann –Grad limit can be taken, or as in a driven
Lorentz gas, or consist of a multi-level system in contact with particle or heat
reservoirs. The latter are frequently encountered in quantum transport systems
on the nanoscale. When dealing with interacting particles, we would think that
the line of analysis can be kept but interesting new behavior, including phase
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transitions, can result and be accompanied by a less trivial application of the
theory of large deviations. We refer to [7] and references therein for an update.

The text is not a fully mathematical treatment. Our excuse is that we think
more important today to put the physical concepts in place and to suggest a
fruitful line of physical reasoning. Moreover, the mathematical formulation and
proofs are expected to be rather straightforward, and not adding substantially
to the interest of the paper. Nevertheless, we realize that the paper can still
appear a bit heavy on the formal side; no standard examples are included from
the recent nonequilibrium literature. We hope that future contributions will
remedy that.

The next section presents the set-up; the particular framework is that of
Markov jump processes to be used as start for a nonequilibrium thermodynamics
of free particles. Section 3 reminds us of the notion of entropy production. A
separate Section 4 is devoted to the notion of dynamical fluctuations. The rest of
the paper analyzes the resulting generalized Onsager –Machlup Lagrangian, first
around equilibrium in Section 5.1 and then for more arbitrary nonequilibrium
conditions in Section 5.2.

2. Set-up

Imagine a large number N of degrees of freedom (x1
t , . . . , x

N
t ) evolving in

continuous time t. The case we consider is that of a collection of jump processes,
with a common state space Ω. On the level of a macroscopic description, two
types of empirical averages present themselves: first,

pNt (x) =
1

N

N
∑

k=1

χ[xkt = x], x ∈ Ω (2.1)

where the indicator function χ, possibly understood in a distributional sense,
gives the state-occupation. Secondly, there is the empirical distribution of jumps
x→ y for all pairs of states x, y ∈ Ω, that we write in the form

1

N
#{ jumps x→ y within [t, t+ τ ]} = τpNt (x)kNt (x, y) + o(τ) (2.2)

that adds the empirical jump rates. The pN and kN are not completely arbitrary
but they have to satisfy the consistency (or balance) relation, per trajectory,

dpNt (x)

dt
=

∑

y 6=x

{

pNt (y)kNt (y, x) − pNt (x)kNt (x, y)
}

. (2.3)

One recognizes in (2.3) the form of a Master equation. It is one of the
challenges of nonequilibrium statistical mechanics to actually derive such Master
equations from more microscopic evolution laws. Here we ignore that problem
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and we actually start from the xit as a collection of independent and identical
Markov jump processes. To make it even simpler, we assume that Ω is finite
and that the process (xit) is ergodic with unique stationary law ρ. All that is
believed not to be extremely important, as we have in mind the N ↑ +∞ limit.
The possibility of phase-transitions or of non-smooth behavior is not considered
here in exchange for a thorough look at the fluctuation theory of the (pNt , k

N
t )t

and derived quantities.

2.1. Macroscopic limit

We consider a collection of identical independent ergodic continuous time
Markov processes xit, each taking values in the finite state space Ω and with rates
λ(x, y) ≥ 0 for jumps between the states x→ y. We interpret the process (xit)t
as the random trajectory of the ith particle, where randomness refers to some
reduced description where further degrees of freedom are integrated out possibly
in combination with some particular limiting procedure. On the macroscopic
level, we deal with the trajectory (pNt , k

N
t )t from (2.1) and (2.2). It defines the

whole empirical process which is (time-inhomogeneous) Markov even for finiteN
by construction; note that we do not include three- and higher-time empirical
correlations into our macroscopic description. From the law of large numbers,
the random occupations (pNt )t concentrate in the limit N → ∞ on the unique
solution of the Master equation

dpt(x)

dt
=

∑

y 6=x

{

pt(y)λ(y, x) − pt(x)λ(x, y)
}

. (2.4)

2.2. Path distribution

The trajectories of the particle do not all have the same probability. And the
same trajectory has different probabilities depending on the rates of the process.
All that can be studied via standard tools for comparing probability densities,
in particular via the so called Girsanov formula for Markov processes. For our
context, the density of one path-space measure Pµ over a time T , starting at
probability law µ, with respect to another one P̄µ̄ is given by

dPµ
dP̄µ̄

(ω) =
µ(x0)

µ̄(x0)
exp

{

−

T
∫

0

(

ξ(xt) − ξ̄(xt)
)

dt+
∑

0<t<T

log
λ(xt− , xt)

λ̄(xt− , xt)

}

(2.5)

where ω = (xt)
T
0 , xt ∈ Ω, is a piecewise constant trajectory (or path) and, in the

first integral of the exponent, the ξ(x) =
∑

y 6=x λ(x, y) are escape rates; the last
sum in the exponent is over the jump times t where the path takes xt to xt+ . As
a convention, we always take right-continuous versions of the trajectories. As
usual with probability densities, there is the assumption of absolute continuity
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making the indefiniteness not worse than giving weight zero to terms of the
form 0/0. Mathematical details and derivation can be found in e.g. Appendix
2 of [9].

That is useful for our fluctuation theory as we can obtain the probability
of an event as the density of the original process with respect to a new process
which makes the event typical, conditioned on that event. That is sometimes
referred to as the Cramer-trick in the theory of large deviations; a gentle intro-
duction is contained in [22].

Remark that the exponent in (2.5) contains two terms, the first one (with
the escape rate) is time-symmetric, the second one is time-antisymmetric. In
fact, soon we will see (in Sections 3.1 and 3.4) that the time-antisymmetric
part in the action governing the path-space distribution is exactly the entropy
production.

2.3. Relation to thermodynamics: local detailed balance

Up to here, we have only statistically defined our model. To get a physical
(measurable) interpretation we should associate thermodynamics to it. In the
case of equilibrium, this is well-known: by equilibrium we mean that case where

ρ(x)λ(x, y) = ρ(y)λ(y, x) (2.6)

where ρ(x) ∝ exp{−βU(x)} is a Gibbs-distribution. This relation expresses a
reversal symmetry for each of the transitions x ⇆ y, which finally amounts to
the time-reversal symmetry of the stationary process. We restrict us here to
state spaces for which the kinematical time-reversal is trivial (no velocities).
That is a serious restriction, which is typical for chemical reaction networks or
for overdamped motion but one should understand that it greatly influences the
relation between time-reversal, equilibrium and entropy production.

For models of nonequilibrium systems, a thermodynamic interpretation be-
comes difficult because one expects that the condition of detailed balance (2.6)
is broken. What replaces it, is either derived from more microscopic models
or is assumed. What guides that procedure is known as the condition of local
detailed balance. For our purposes we can write it in terms of an energy func-
tion U(x) and a work function (or driving) F (x, y) = −F (y, x) to assign rates
to the transitions between each x and y, satisfying

λ(x, y)

λ(y, x)
= eβ(F (x,y)+U(x)−U(y)) (2.7)

where β ≥ 0 is a parameter that stands for the inverse temperature of a reference
reservoir.

The fundamental reason for local detailed balance is the time-reversibility of
an underlying microscopic dynamics over which our effective stochastic model
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is presumably built. Hence, violating such a condition reduces the physical
interpretation of our stochastic model. As further explained in the next section,
condition (2.7) is also intimately related to the symmetries of nonequilibrium
fluctuations and to the role of entropy production in there. At any event, (2.7)
allows to write

ρo(x)λ(x, y) = γ(x, y)e(β/2)F (x,y) (2.8)

with ρo(x) = exp{−βU(x)}/Z a reference equilibrium probability distribution
and some symmetric γ(x, y) = γ(y, x), which is left unspecified. To reveal the
meaning of γ, notice that in equilibrium, i.e. for ρ = ρo and F = 0, one has
2γ(x, y) = ρ(x)λ(x, y) + ρ(y)λ(y, x). The right-hand side is the expectation of
the empirical observable

τNt (x, y) = pNt (x)kNt (x, y) + pNt (y)kNt (y, x) (2.9)

that measures the time-symmetric dynamical activity (the total number of
jumps across the bond (x, y)) and we call it traffic. As we will see in Sec-
tions 6 and 5, the traffic is a crucial quantity to characterize the nonequilibrium
fluctuations far from equilibrium.

3. Entropy production

The notion of entropy production should not be fully re-invented when deal-
ing with Markov jump processes. It must match with the thermodynamic or
hydrodynamic interpretations. We start however with a view that goes beyond
model-specifics and that emphasizes the relation with time-reversal.

3.1. Statistical interpretation: time-irreversibility

Dynamical time-reversal plays on the level of single trajectories ω = (xt)
T
0 .

We define the time-reversal as θω = (xT−t)
T
0 , not indicating the trivial mod-

ifications at the jump times for restoring the right-continuity of paths. If we
denote the original Markov process started at distribution µ by Pµ, then there
is a time-reversed process PµT

θ starting at the (time-evolved) distribution µT .
There is a density of one with respect to the other, and that we call the (variable,
fluctuating) entropy production

STµ (ω) = log
dPµ

dPµT
θ
(ω). (3.1)

We can use the Girsanov formula (2.5) for its computation, see the details in [17].
That formula (3.1) captures the idea of the entropy production as measuring
the amount of time-reversal breaking. The so called fluctuation theorem, steady
or transient, time-dependent or not, very much rests on that unifying idea [13].



On and beyond entropy production: the case of Markov jump processes 451

For a foundation starting from the Hamiltonian dynamics and microcanonical
ensemble, see [12]. We come back to fluctuation relations in Section 3.4.

It is interesting to note that by convexity 〈STµ 〉µ ≥ 0 as it should for an
entropy production, where the brackets take the average with respect to Pµ,
the path-space measure starting at µ.

Being interested in an instantaneous (average) entropy production rate when
the distribution is µ, we define

σ(µ) = lim
T↓0

1

T

〈

log
dPµ

dPµT
θ

〉

µ
(3.2)

so that, by the Markov property, 〈STµ 〉µ =
∫ T

0
σ(µt) dt with (µt)

T
0 the time-

evolved measures. The instantaneous entropy production rate σ(µ) can easily
be computed for our Markov process:

σ(µ) =
∑

(xy)

[

µ(x)λ(x, y) − µ(y)λ(y, x)
]

log
(µ(x)λ(x, y)

µ(y)λ(y, x)

)

. (3.3)

The notation (xy) under the sum will from now on be used to mean that we
sum over unordered pairs of states.

The previous expressions do make physical sense even for a single Markov
process defining a dynamics for a small finite number of degrees of freedom,
thinking of an open system effectively coupled to and/or driven by large external
reservoirs. It becomes however more physically transparent when formulated in
terms of the empirical distribution as explained next.

3.2. Thermodynamic interpretation

An open system dissipates heat that results in a change of entropy in the
environment. Assuming a large environment we can compute it as the re-
versible heat. From the first law of thermodynamics that dissipated heat is
identical to the work plus the change in internal energy. So, again in our
ensemble-interpretation, the rate of change of energy is −

∑

x,y j
N
t (x, y)U(x)

with, see (2.3),

jNt (x, y) = pNt (x)kNt (x, y) − pNt (y)kNt (y, x) (3.4)

being the empirical currents, and the power is
∑

(xy) j
N
t (x, y)F (x, y). If there-

fore the empirical currents at time t equal jNt (x, y) = j(x, y), then the dissipated
heat is

Q(j) =
∑

(xy)

j(x, y)
(

U(x) − U(y) + F (x, y)
)

(3.5)

and the entropy current is βQ(j) (setting Boltzmann’s constant equal to one)
for an environment at temperature β−1.
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Secondly, there is the change of the entropy of the system itself. Here we
only have the densities (2.1) as macroscopic variable and

Ssys(p) = −
∑

x

p(x) log p(x) (3.6)

is the (static) fluctuation functional in the probability law for observing the
empirical density p when sampling the particles from the flat distribution. Its
change in time is the internal entropy production: Ṡsys(p, j) =

∑

(xy) j(x, y)×

(log p(x) − log p(y)). Summing it up, we get the total (macroscopic) entropy
production rate

Ṡ(p, j) ≡ Ṡsys(p, j) + βQ(j) (3.7)

for the empirical values p and j for densities (2.1) and currents (3.4), respec-
tively.

3.3. Relating the two interpretations

Using the local detailed balance condition (2.7), the macroscopic entropy
production rate in (3.7) is

Ṡ(p, j) =
∑

(xy)

j(x, y) log
p(x)λ(x, y)

p(y)λ(y, x)
(3.8)

in terms of the instantaneous densities p(x) and currents j(x, y) = p(x)k(x, y)−
p(y)k(y, x). Remember that p(x)k(x, y) is the fraction of particles that actually
make the transition x→ y, and j(x, y) is the (net) current of particles. By the
law of large numbers, the typical value of these currents at given densities p(x)
is p(x)λ(x, y) − p(y)λ(y, x) and hence the typical entropy production rate (3.8)
just coincides with σ(p), see (3.3). This not only justifies our form of the local
detailed balance assumption, it also explains the relation between the single
Markov process formalism of Section 3.1 and the empirical description for an
ensemble of the processes, cf. (2.1)–(2.2); this duality is exploited throughout
the whole text.

A different decomposition that is equally useful (and used in the following
subsection) writes

Ṡ(p, j) = Ṡext(j) + Ṡint(p, j) (3.9)

for the entropy current

Ṡext(j) =
∑

(xy)

j(x, y)F (x, y) (3.10)

in excess with respect to the equilibrium reference, and

Ṡint(p, j) =
∑

(xy)

j(x, y)
(

log
p(x)

ρo(x)
− log

p(y)

ρo(y)

)
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is now the rate of change of the system’s relative entropy (always summing over
pairs). Note that this decomposition differs only from the former (3.7) in the
use of another reference. In (3.7) the reference is the flat distribution. To end
this section we review two simple applications of the single process formalism
of Section 3.1.

3.4. Fluctuation relations

The decomposition (3.9) into the internal and external change of the entropy
can equivalently be done pathwise for a single process, starting from (3.1). Note
that it depends on the choice of the reference equilibrium process; using the no-
tation Poρo

for such a reference started from a reversible measure ρo. Then (2.5)
can be written in the form dPµ(ω) = dPoρo

(ω) [µ(x0)/ρo(x0)] exp{−A(ω)} with
the action A that can be read from (2.5). Since the reference process is time-
reversal invariant, we can now rewrite (3.1) as

STµ (ω) = log
µ(x0)ρo(xT )

µT (xT )ρo(x0)
+A(θω) −A(ω).

That corresponds to the decomposition (3.9) and we call Sext(ω) = A(θω)−A(ω)
the (variable) entropy flux for a single chain, in excess with respect to the
reference equilibrium process. Obviously, we also have

Sext(ω) = log
dPρo

dPρo
θ
(ω)

and hence, for all path-dependent observables f ,

〈f〉ρo
= 〈fθ exp(−Sext)〉ρo

(3.11)

which gives an exact (for all finite times T ) symmetry in the distribution of the
(excess) entropy flux Sext = −Sextθ at least when started from the reference
equilibrium. Steady fluctuation symmetries are then obtained as the asymp-
totics for T ↑ +∞. Note that in general one needs to deal with the temporal
boundary term. However, in the present framework of ergodic Markov processes
over a finite state space the dependence on the initial condition is irrelevant.

The fluctuation symmetry (3.11) also has a formulation in terms of the
macroscopic fluctuation theory within the ensemble formalism of the previous
subsection; this will be discussed at the end of Section 4.1.

3.5. Stationary measure

One may wonder how the above considerations are reflected on the level of
the stationary distribution ρ itself. That in fact is the subject of earlier work
by Zubarev and by McLennan [18]: what is a first order correction around a
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reference equilibrium/detailed balance, and is there a systematic perturbation
theory? There are a number of ways to discuss that question. One possible di-
rection is to try to formulate a variational principle for the ρ; this approach will
be discussed later. Another, more direct approach is to compute the asymptotics
T ↑ +∞ of the time-evolved measure µT or, equivalently, to project the path-
space distribution PT

µ on the time T , again asymptotically. As explained in a re-
cent preprint [10], the latter approach can be conveniently started from the fluc-
tuation symmetry (3.11). Indeed, by taking f(ω) = χ[xT = x] exp(−Sext(ω)/2),
one has fθ(ω) = χ[x0 = x] exp(Sext(ω)/2) and therefore

〈

χ[xT = x] exp
(

−
Sext

2

)〉

ρo

=
〈

χ[x0 = x] exp
(

−
Sext

2

)〉

ρo

.

As a consequence, the probability to see x at time T when started from reference
equilibrium ρo is

P
T
ρo

(xT = x) = ρo(x)
〈exp(−Sext/2)〉x0=x

〈exp(−Sext/2)〉xT =x,ρo

(3.12)

where we have to condition on the final-time event xT = x in the denomina-
tor. The ratio is one for the equilibrium dynamics, and the nonequilibrium
correction is made by the time-asymmetry in the fluctuations of the entropy
production. An advantage of this representation of the evolved measure lies in
the cancellation of various nontransient (i.e. unbounded upon T growing) terms
when expanding the exponents, so that the limit T ↑ +∞ can be controlled,
see [10] for more details.

4. Dynamical fluctuations

In the ensemble picture, trajectories ωN = (x1
t , . . . , x

N
t )t have their coarse-

grained counterparts in the empirical distributions (pNt )t and the empirical
rates (kNt )t. They fluctuate around their typical values ρ and λ, the typicality
being in the sense of a law of large numbers with N as the large parameter.
Computing the probability of the event pNt = pt, k

N
t = kt for all 0 ≤ t ≤ T is

done via the Girsanov formula (2.5), by comparing the system with modified
dynamics (such that pt and kt are typical) with the original system. Clearly,
a macroscopic trajectory (pt, kt)t satisfying the consistency condition (2.3) be-
comes typical under the modified (time-inhomogeneous) Markov dynamics with
the rates (kt)t and the initial measure p0. Its probability with respect to the
original i.i.d. Markov processes x1, . . . , xN started each from the distribution µ
has the large deviation form

P
N
µ

{

(pNt = pt, k
N
t = kt)0≤t≤T

} .
= exp

{

−N

[

S(p0 |µ)+

T
∫

0

dtL(pt, kt)

]}

(4.1)
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where
.
= refers to the logarithmic equivalence as N → ∞, and the relative

entropy S and the Lagrangian L are

S(p0 | µ) =
∑

x

p0(x) log
p0(x)

µ(x)
, (4.2)

L(p, k) =
∑

x,y 6=x

p(x)
[

k(x, y) log
k(x, y)

λ(x, y)
− k(x, y) + λ(x, y)

]

. (4.3)

In particular, the Lagrangian on this level of description has a simple explicit
form, irrespective of any detailed balance or stationarity assumptions. It is
therefore a natural point of departure for the investigation of also more coarse-
grained dynamical fluctuations.

Next we consider one step of such a conceivable hierarchy.

4.1. Lagrangian for currents

A quantity of special interest is the collection of empirical currents jNt (x, y) =
−jNt (y, x) given in (3.4). The Lagrangian L(p, j) that governs the joint occu-
pation-current dynamical fluctuations is

L(p, j) = inf
k

{

L(p, k) | p(x)k(x, y) − p(y)k(y, x) = j(x, y); ∀x, y
}

(4.4)

where j is an arbitrary antisymmetric current matrix. The distribution of em-
pirical trajectories (pNt , j

N
t )t follows from the large deviation law (4.1) via the

contraction principle:

P
N
µ

{

(pNt = pt, j
N
t = jt)0≤t≤T

} .
= exp

{

−N

[

S(p0 | µ) +

T
∫

0

dtL(pt, jt)

]}

whenever the consistency constraint (2.3), ṗt(x)+
∑

y 6=x jt(x, y) = 0, is satisfied.
It can be made explicit by the method of Lagrange multipliers. One finds
L(p, j) = L(p, kj) where the kj solve the equations

kj(x, y) = λ(x, y) exp{(β/2)ψj(x, y)}, (4.5)

j(x, y) = p(x)kj(x, y) − p(y)kj(y, x), (4.6)

for some specific ψj(x, y) = −ψj(y, x), or explicitly,

kj(x, y) =
1

2p(x)

{

j(x, y) + [j2(x, y) + 4p(x)p(y)λ(x, y)λ(y, x)]1/2
}

. (4.7)

Hence, the typical macroevolution constrained by fixing the currents to some j
becomes unrestrainedly typical by modifying correspondingly the antisymmetric
part of the transition rates, as in (4.5).
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From (4.7) we check that p(x)kj(x, y) = p(y)k−j(y, x). It is then straight-
forward to derive that

L(p,−j) − L(p, j) = Ṡ(p, j) (4.8)

so that the entropy production rate (3.8) is (indeed) the time-antisymmetric
part of the Lagrangian. As a consequence, always in the logarithmic sense and
in the limit N ↑ +∞,

P
N
µ {(pNt = pt, j

N
t = jt)0≤t≤T }

P
N
µT

{(pNt = pT−t, jNt = −jT−t)0≤t≤T }
(4.9)

.
= exp

{

N

[

S(pT |µT ) − S(p0 | µ) +

T
∫

0

dt Ṡ(pt, jt)

]}

which is a macroscopic variant of the fluctuation relations described in Sec-
tion 3.4.

4.2. Fluctuations of empirical time averages

Instead of looking at the probabilities of specific macroscopic trajectories of
the system, we now consider empirical time averages:

p̄NT =
1

T

T
∫

0

pNt dt, j̄NT =
1

T

T
∫

0

jNt dt. (4.10)

For a fixed initial distribution µ, the asymptotic (T ↑ +∞) probability that the
empirical time averages are equal to some density p and current j is

P
N,T
µ {p̄NT = p, j̄NT = j}

.
= e−NAT (p,j) (4.11)

with the rate AT given by

AT (p, j) = inf
pt,jt

{

S(p0 | µ) +

T
∫

0

dtL(pt, jt)
∣

∣

∣
p̄T = p, j̄T = j

}

(4.12)

where the infimum is over all macrotrajectories (pt, jt)0≤t≤T such that ṗt(x) +
∑

y 6=x jt(x, y) = 0. The infimum in (4.12) is easy to compute in the limit of
infinite time span, T ↑ +∞, in which the minimizing trajectory becomes essen-
tially constant, (pt, jt)t ≡ (p, j), and the initial distribution loses its relevance.
One obtains AT (p, j) = TL(p, j) + o(T ), yielding

P
N,T

{

p̄NT = p, j̄NT = j
} .

= e−NTL(p,j) (4.13)
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whenever the currents are stationary,
∑

y 6=x j(x, y) = 0. The equality is meant
in the logarithmic sense and after taking first the limit N ↑ +∞ and then the
limit T ↑ +∞. For details on these manipulations and techniques from the
theory of large deviations, we refer to [4–6,8, 22].

It thus appears that the Lagrangian L of (4.4)–(4.7) governs the joint steady
statistics of time-averaged occupations and currents. Its study has already been
started in [15, 16], emphasizing a canonical structure. As it is fully explicit,
one can use it as variational functional to characterize the steady state, and for
further contractions to obtain variational functionals for the occupations and
currents separately. That is however not the subject of the present paper. What
comes in the sequel is an analysis of the structure of the above Lagrangians in
the quadratic approximation and its physical consequences.

5. Structure of normal fluctuations

The most accessible fluctuations are small — both mathematically and prac-
tically. The Lagrangians can be expanded in both the densities and currents
around their typical (= steady) values and the strictly positive quadratic form
obtained in the leading order describes normal fluctuations. From a physical
point of view, the structure of these normal fluctuations have been first ana-
lyzed by Onsager and Machlup, [19], for the case of relaxation to equilibrium.
Here we show a natural extension of the original Onsager –Machlup formalism
to nonequilibrium systems by starting from the above macroscopic fluctuation
theory.

We distinguish the two following scaling regimes: first, we analyze the
nonequilibrium fluctuations in the immediate vicinity of a reference equilibrium
through the scaled Lagrangian

L0(u, j;F ) = lim
ε↓0

ε−2L(ρo + ερou, εj; εF ) (5.1)

where we have explicitly denoted here the dependence on the work function F as
it quantifies the distance from equilibrium and participates in the scaling. The
Lagrangian corresponds to the dynamics (2.8) with some γ, ρ0, and β fixed.

Second, we consider a steady state arbitrarily far from equilibrium and ex-
amine the structure of small deviations through the function

L(v, j;F ) = lim
ε↓0

ε−2L(ρ+ ερ v, j̄ + εj;F ). (5.2)

Note that the work function is kept fixed here and both the density and current
are expanded around the stationary values ρ respectively j̄. We will see below
how the structure of fluctuations remarkably changes in this regime.
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5.1. Close to equilibrium

Starting from the dynamics with transition rates parameterized as in (2.8),
λ(x, y) = ρ−1

0 (x)γ(x, y) exp{(β/2)F (x, y)}, the scaled Lagrangian (5.1) is easily
computed from (4.4)–(4.7):

L0(u, j;F ) =
∑

(xy)

1

4γ(x, y)

{

j(x, y) − γ(x, y)[u(x) − u(y) + βF (x, y)]
}2

=
1

2

[ 1

2
D(j) +

1

2
E(u) − ṡ(u, j)

]

(5.3)

where we have introduced the scaled entropy production, cf. (3.8),

ṡ(u, j) = lim
ε↓0

ε−2Ṡ(ρo + ερou, εj; εF ) =
∑

(xy)

j(x, y)[u(x) − u(y) + βF (x, y)]

(5.4)

and the pair of (variant Onsager– Machlup) dissipation functions

D(j) =
∑

(xy)

j2(x, y)

γ(x, y)
, E(u) =

∑

(xy)

γ(x, y)[u(x) − u(y) + βF (x, y)]2. (5.5)

In contrast with the equilibrium Onsager– Machlup theory [19], we keep here
the currents j as the variables of the Lagrangian.

Fixing some u, the typical current ju minimizes the Lagrangian, which has
the immediate solution

ju(x, y) = γ(x, y)[u(x) − u(y) + βF (x, y)]. (5.6)

That variational problem for ju, i.e. (1/2)D(j)− ṡ(u, j) = min, is known as the
Onsager least dissipation principle. Equivalently, it is sometimes formulated as
a transient maximum entropy production principle: the ju solves ṡ(u, j) = max
under the constraint D(j) = ṡ(u, j).

One checks that the dissipation function E(u) is a scaled version of the mean
entropy production rate (3.3):

E(u) = lim
ε↓0

ε−2σ(ρo + ερou; εF ) (5.7)

where F again enters via the parametrization of the rates (2.8). This is in accord
with the equality

ṡ(u, ju) = E(u) = D(ju) (5.8)

following from (5.3).
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The consistency condition (2.3) determines the typical macroscopic trajec-
tory as a solution of the equation

ρo(x)
dut(x)

dt
+

∑

y 6=x

jut(x, y) = 0 (5.9)

for all x, with ju the typical current (5.6). In particular, the stationary dis-
tribution ρ = ρ0 + εū + o(ε) is in this scaling limit found from the (linearized
version of the) Master equation

∑

y 6=x

γ(x, y)[ū(x) − ū(y) + βF (x, y)] = 0 (5.10)

that has to be solved under the normalization constraint
∑

x ρo(x)ū(x) = 0. Al-
ternatively, the (linearized) stationary density ū and the corresponding steady
current j̄ = jū can be found by minimizing the Lagrangian (5.3) subject to
the stationary constraint

∑

y 6=x j(x, y) = 0. Note a remarkable simplifica-
tion: because of this constraint, the entropy production (5.4) equals ṡ(u, j) =
β

∑

(xy) j(x, y)F (x, y) and hence it is independent of u. As a consequence,

the density and current become decoupled in the Lagrangian (5.3). By the
arguments of Section 4.2 this means that the time-averages p̄T and j̄T are un-
correlated in the close-to-equilibrium regime and within the quadratic approxi-
mation. An immediate consequence of this observation is a simple structure of
the marginal distributions of u respectively j that provides a fluctuation-based
justification of the two familiar stationary variational principles — the mini-
mum and the maximum entropy production principles — as we explain next.
See [2, 14–16] for some more details and illustrations.

MinEP principle. We consider the marginal distribution of the empirical

time-average p̄NT defined in (4.10). By (4.13) and in the present scaling limit
the asymptotic law of p̄NT reads

− lim
ε↓0

ε−2 lim
T↑+∞

lim
N↑+∞

log P
N,T{p̄NT = ρo + ερou}

= inf
j

{

L0(u, j;F )
∣

∣

∣

∑

y 6=x

j(x, y) = 0
}

=
1

4
[E(u) − E(ū)] (5.11)

where the last equality follows from (5.8) by using the decoupling between u
and j under the stationary constraint. The minimum entropy production prin-
ciple immediately follows: E(u) ≥ E(ū) with the equality only if u = ū, hence,
the stationary measure minimizes the entropy production rate, cf. (5.7).
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MaxEP principle. We proceed analogously for the time-averaged empirical
current (4.10). For any j satisfying the stationary condition

∑

x,y j(x, y) = 0
we have by the contraction principle from (4.13):

− lim
ε↓0

ε−2 lim
T↑+∞

lim
N↑+∞

log P
N,T
µ {j̄NT = εj}

= inf
u
L0(u, j;F ) (5.12)

= (1/2)[(1/2)D(j) + (1/2)E(ū) − ṡ(j)].

(Remember that ṡ is independent of u under the stationary condition.) Re-
stricting the set of currents even further by imposing the condition D(j) = ṡ(j),
the above equals

(5.12) = (1/4)[D(j̄) −D(j)] = (1/4)
[

ṡ(j̄) − ṡ(j)
]

. (5.13)

This in particular yields that the stationary current maximizes the entropy
production rate under the above two constraints, which is an instance of the
stationary maximum entropy production principle.

5.2. Far from equilibrium

As we have seen the most remarkable feature of small fluctuations in the
close-to-equilibrium regime is that the empirical distributions of occupations
and of currents become uncorrelated. This appears to be the fundamental rea-
son for the entropy production principles discussed in the previous section to
be valid. An important novel feature of the nonequilibrium statistics beyond
the close-to-equilibrium regime is that both empirical observables get coupled
as we can demonstrate via the other scaling limit introduced in (5.2). There
we do an expansion up to leading order around the stationary density ρ and
the corresponding stationary current j̄(x, y) = ρ(x)λ(x, y) − ρ(y)λ(y, x); recall
that F and hence the rates λ(x, y) remain fixed now. Using also the notation

τ̄(x, y) = ρ(x)λ(x, y) + ρ(y)λ(y, x) (5.14)

for the steady traffic, the scaled Lagrangian (5.2) obtains the form:

L(v, j;F ) = lim
ε↓0

ε−2L(ρ+ ερ v, j̄ + εj;F ) =
∑

(xy)

1

4τ̄

[

j − τ̄∇−v − j̄∇+v
]2

(x, y)

(5.15)

with the notation ∇±v(x, y) = (1/2)[v(x) ± v(y)]. This is the Lagrangian de-
scribing normal fluctuations around the typical evolution, with τ̄∇−v + j̄∇+v
being the typical (or expected) first-order deviation from the steady current j̄.
We see that the steady traffic τ̄ plays the role of a variance in this fluctuation law.
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In the stationary regime, i.e. under the constraint
∑

y 6=x j(x, y) = 0, the
Lagrangian (5.15) yields the rate function for the joint distribution of time-
average occupations and currents, cf. (4.13). We can write it in the form

L(v, j;F ) =
1

2

∑

(xy)

[ 1

2τ̄
j2 +

τ̄

2
(∇−v)2 −

j̄

τ̄
j∇+v +

j̄2

2τ̄
(∇+v)2

]

(x, y) (5.16)

which demonstrates that the emerged occupation-current coupling is propor-
tional to the stationary current and indeed vanishes only close to equilibrium
when moreover j̄ = O(ε).

6. Towards a more general theory

Adding a nonequilibrium driving not only generates nonzero steady currents
but it also modifies the steady averages of time-symmetric observables and their
fluctuation statistics. For a long time, the latter has not been of primary interest
in transport considerations, partially because of the success of linear response
theories in which only the currents and the entropy production play a funda-
mental role. The origin of that has been discussed in Section 5.1 on the struc-
ture of close-to-equilibrium normal fluctuations in which the time-symmetric
and the time-antisymmetric sectors become totally decoupled. Their coupling
away from equilibrium, cf. Section 5.2, suggests that some systematic and ro-
bust description of nonequilibrium fluctuations might be achieved by analyzing
the time-antisymmetric (currents) and the time-symmetric (e.g. the occupation
times) observables simultaneously; this is exactly the strategy brought up in the
present paper.

6.1. Traffic

An important drawback of the transport theories based on stochastic mod-
els is that we only have a direct thermodynamic interpretation for the time-
antisymmetric part of the transition rates, cf. the local detailed balance con-
dition (2.7), whereas rather little can generally be said about the symmetric
part and its dependence on the nonequilibrium driving. Yet, the fluctuation
theory can help also here: instead of giving an interpretation to the symmetric
part of the rates, one can try to understand the role of the traffic (5.14) as a
time-symmetric dynamical observable and a counterpart to the current. We
have already seen that in equilibrium the (mean) traffic coincides with 2γ(x, y),
and away from equilibrium it enters, according to (5.16), as a variance for nor-
mal dynamical fluctuations. More generally and even beyond the regime of
normal fluctuations, it can be shown that the dependence of the traffic on the
driving fully determines the structure of nonequilibrium fluctuations in the time-
symmetric sector, and also specifies the symmetric-antisymmetric coupling in a
canonical way [15, 16]. We give here a brief review of this approach.
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The Lagrangian L introduced in (4.4)–(4.7) has the form

L(p, j) =
∑

x,y

p(x)
[

kj(x, y)
β

2
ψj(x, y) − kj(x, y) + λ(x, y)

]

(6.1)

with the modified rates kj given by (4.5): they can be thought of as the original
rates but with the modified work function F → F+ψj fixed so that the current j
becomes typical,

j(x, y) = p(x)kj(x, y) − p(y)kj(y, x). (6.2)

Therefore,

L(p, j) =
∑

(xy)

[

j(x, y)ψj(x, y) − τp,F+ψj (x, y) + τp,F (x, y)
]

(6.3)

with the (mean) traffic τp,G = p(x)λG(x, y)+p(y)λG(y, x), λG(x, y) = λ0(x, y)×
exp{(β/2)G(x, y)} considered here as a function of the work matrix G; the
λ0(x, y) = ρ−1

o (x)γ(x, y) being the rates corresponding to the reversible refer-
ence dynamics G = 0, cf. (2.8). Note that λF+ψj = kj under the relation (6.2);
in fact the driving and the current appear to be conjugated variables in the
sense of a canonical formalism, see [15] for details.

Clearly, (6.3) splits in two parts: the first term is to be understood as an
excess of entropy production and the second one is an excess of overall traf-
fic. Starting from this general scheme, we can calculate the fluctuation rate
functions of arbitrary more coarse-grained dynamical observables. If that ob-
servable is purely time-symmetric, e.g. only depends on the occupations, then
the excess ψj is in fact a gradient, ψj(x, y) = V (y)−V (x) for state function V ,
and the first entropy production term in (6.3) vanishes for currents satisfying
the stationarity condition

∑

y 6=x j(x, y) = 0. Then, what remains is the excess
traffic as variational functional.

6.2. Why does the entropy production govern close-to-equilibrium?

By construction the traffic functionals are quite different from the entropy
production functionals. Yet, close to equilibrium the excess of traffic and the ex-
cess of entropy production are related to each other in a simple way: analogously
to the scaled mean entropy production (5.7),

EF (u) = lim
ε↓0

ε−2σ(ρo + ερou; εF ) (6.4)

we consider the scaled overall traffic

TF (u) = lim
ε↓0

ε−2
∑

(xy)

[

τρo+ερou; εF (x, y) − τρo+ερou; 0(x, y)
]

(6.5)
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(relatively with respect to the equilibrium reference so that the limit is well
defined), and we find the relation

TF (u) = (1/2)[EF (u) − E0(u)]. (6.6)

Hence, close to equilibrium the mean overall traffic is determined by the mean
entropy production. This observation remarkably simplifies the structure of
Lagrangian (6.1), and it finally leads to the (generalized) Onsager –Machlup
theory of Section 5.1 in which the entropy production and derived quantities
are the only players.

To summarize, we understand the dominance of entropy production and the
simple structure of the close-to-equilibrium regime as a consequence (1) of the
decoupling of the time-symmetric and the time-antisymmetric fluctuations, (2)
of the relation between the mean traffic and the mean entropy production in
this regime.

6.3. Beyond entropy production far from equilibrium

In a far-from-equilibrium regime the time-symmetric and the time-antisym-
metric fluctuations get coupled and the relation (6.6) is no longer valid. This
gives a motivation why it is natural to study both dynamical sectors jointly.
As we have seen, the entropy production alone is not sufficient to describe
fluctuations in either of these sectors, and the traffic functional enters as a new
important player in the nonequilibrium fluctuation theory. We hope that more
theoretical investigation and also experimental evidence will support this line
of research.
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