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1. Introduction 

Anderson's probability inequality [l] has led to a significant 

development of research on probability inequalities, especially applicable 

to multivariate inference. The 1955 paper of Anderson has three major 

facets. Firstly, it introduced a definition of multivariate unimodal 

function. Secondly, under unimodal probability density, it studied the 

probability content of a centrally synnnetric convex set translated along 

a ray through the origin. Thirdly, it demonstrated that the convolution 

of two centrally symmetric unimodal densities in Rn (n > 1) may not be 

unimodal. 

It seems to be appropriate to discuss some modifications, generaliza­

tions and consequences of Anderson's inequalities on the occasion of 

his sixty-fifth birthday in order to indicate the impact of Anderson's 

contributions. Let us now state Anderson's inequality..: . 

Theorem (Anderson). Let Ebe a convex set inn-space, symmetric 

about the origin. Let f(x) ;ai: 0 be a function such that (i) f(x):_=_ f(-x) 

(ii) {x If (x) ~ u} = Ku is convex for every u(O < u < 00), and (iii) J E f (x) dx < 00 

(in the Lebesgue sense). Then JE f(x+ky)dx~ JE f(x+y)dx for O~k~l. 
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2. Generalizations with Symmetric Functions 

First let us indicate the basic steps in the proof of Anderson's 

inequality. Note that 

(2.1) 

where 

. (2. 2) 

H{y) a J f (x) dx = J; h(y, u) du, 
E+y 

h ( y , u) = J X ( x; K ) X ( x; E + y) dx, 
u 

Rn 

and ·x stands for indicator function. 

An application of Brunn-Minkowski inequality yi~lds. 

(2.3) 

where O ~Al, A
2 
~ 1. Specializing Al= (1 + A) /2, y 

1 
= y, y 

2 
= -y, and noting that 

(2.4) h (y, u) = h (-y, u) , 

we get 

(2.5) h ( AY, u) ~ h (y, u) • 

The above result implies 

(2.6) H(Ay) ~ H(y), 

A function H will be called ray-unimodal if it satisfies (2.6). 

We may write 

(2. 7) H(y) = ff (x):x(x - y; E) dx 

So H is the convolution of f and :x( • ,D). The first question on generaliza-
-··---·~------

tion considered in the literature was whether the ray-unimodality property is 

enjoyed by the convolution of more general types of symmetric functions. 

It follows easily that the convolution of two functions, each of which is 

a positive mixture of symmetric unimodal functions, is ray-unimodal. 

Following this line of throught, Sherman [151 has shown that the closed 

(in the sense of max of 1
1

-norm and sup-norm) convex cone c
3 

generated µy 

indicator functions of symmetric compact convex sets in Rn is closed under 
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convolution. Moreover, any function Hin c
3 

satifies 

H(y) = H(-y), H(Ay) ~ H(y), 

for O~A~l. Since J f(x+y)dx E c
3

, Anderson's inequality follows from 
E 

Sherman's result. 

Dharmadhikari and Jogdeo [ 6] introduced two notions of multivariate 

unimodality. They called a distribution Pon Rn central convex UM 

if it is the closed (in the sense of weak convergence) convex hull of the 

n 
set of all uniform distributions on symmetric compact convex bodies in R. 

Moreover, a distribution Pon Rn is called monotone UM if for every 

symmetric convex set C in Rn and every nonzero vector x in Rn, P(C + kx) 

is nonincreasing ink E [O,(X)). It follows easily that a central convex UM 

distribution and a monotone UM distribution is symmetric. 

Anderson's result essentially states that every distribution in 

Rn with symmetric unimodal density is monotone UM. Dharmadhikari and 

Jogdeo [ 6] have shown that monotone unimodality is closed under weak 

convergence. Thus Sherman's result (15] implies that every central convex 

UM distribution is monotone UM. 

It follows trivially that Jf(x+ky)dP(x) is nonincreasing in kE [O,(X)), 

where f is a symmetric UM function and Pis a monotone UM distribution; 

this generalization is due to Dharmadhikari and Jogdeo [6 ]. 

The basic question relating Anderson's inequalities is regarding the 

notion of multivariate unimodality. It appears that Anderson's definition 

is too restrictive. For example the function 

f ( ) 
·'.l 1 1 • 

X y =- -- --
' ~2 l+x2 l+y2 

is not unimodal according to Anderson's definition. Another drawback 

of Anderson's notion of unimodality is the fact that it is not closed 
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under convolution. This was in fact demonstrated by an example of Anderson 

[ 1 ] • On the other hand, Dharmadhikari and Jogdeo [ 6 ] have shown that 

the convolution between a central convex UM distribution and a monotone 

UM distribution is monotone UM. 

Kanter [10] introduced a more general notion of symmetric unimodal 

distributions which enjoy many desirable properties. Note that a symmetric 

n 
unimodal function f on R may be expressed as 

f (x) = J ;' ){(x; Ku) du, 

where K~ = {x: f (x) ~ u} is a symmetric convex set in Rn. Following this 

type of decomposition, Kanter defined a random vector in Rn to be 

symmetric unimodal, if its distribution is a "mixture" (with respect to 

a probability measure) of all uniform probability distributions on symmetric 

. Rn. compact convex sets in It has been shown by Kanter that his symmetric 

unimodal functions are closed under weak convergence, and so they are 

essentially central convex UM. 

Since log-concavity of measures (or densities) is closed under 

convolution, it follows easily that the class of symmetric unimodal functions 

of Kanter is closed under convolution [10]. It is still an open question 

whether monotone unimodality is closed under convolution. 

Sherman [15] conjectured that a monotone UM distribution in Rn is in 

the closed (in 1
1

-norm) convex hull of all uniform distributions on symmetric 

. Rn compact convex sets in • However, using an example of Dharmadhikari and 

Jogdeo [ 6], Wells [18] has shown that a monotone UM distribution in R
2 

need not be central convex UM. 
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3. Questions on Marginal Functions 

The basic question here is whether a marginal of a symmetric unimodal 

function is unimodal. Das Gupta [ 2] has shown that a marginal function of 

a symmetric unimodal function is ray-unimodal, but such a marginal function 

may fail to satisfy Anderson:' s condition for unimodal functions. To 

prove Das Gupta's first result it is sufficient to consider the indicator 

function of a symmetric compact convex set C in the space of x and y, 

n m 
x E R , y E R • Let 

n 
C(y) = {x ER : (x,y) EC}. 

Note that 

It now follows from Brunn-Minkowski inequality that 

µ n [ C (A.1 y 1 + A 2 y 2) ] ~ min [ µn ( C ( y 1) ) ' µ n ( c ( Y 2) ) ) ' 

where O ~ A , ).
2 
~ 1, and µ is the Lebesgue measure on Rn. Specializing 

1 n 

Al= (1 + A) /2, y
1 

= y, y 
2 

= -y, and noting that C(y) = -C(-y), we get 

µ (C().y)) ~ µ (C(x)). 
n n 

Anderson's inequality follows from Das Gupta's result by considering 

the function h defined by 

h(x,y) = f(x+y) x(x;E). 

Furthermore, Das Gupta [ 2] has shown that a marginal of the product of k 

symmetric unimodal functions is ray-unimodal. Dharmadhikari and Jogdeo [6] 

have shown that both central convex unimodality and monotone unimodality 

are inherited by marginal functions. A similar result also holds for 

symmetric unimodal functions of Kanter [10]. 
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4. Results on Log-concave Functions 

If the function fin Anderson's Theorem happens to be log-concave 

or strongly unimodal and Eis a convex set in Rn, then Prekopa's Theorem 

implies that J f (x + y) dx is a log-concave function of y. Prekopa' s 
E 

Theorem [14] states that the convolution of two log-concave functions 

is log-concave. This again is a consequence of the fact that a marginal 

function of a log-concave function is log-concave. The above result on 

convolution was proved by Davidovic, Karenbljum and Hacet [ 5] using a 

weaker version of Anderson's inequality. The fact that marginality pre­

serves the log-concavity property follows from Das Gupta's result. The 

key to the proof of this result is the following. If g is a log-concave 

function defined on Rn x Rm, then 

f(y,v;x,u) = g{x-y,(u-v)/2) g(x+y,(u+v)/2) 

is a centrally symmetric unimodal function in (y,v) for every (x,u); 

n m 
x, y ER , u, v ER • On the other hand, the above result also implies 

Brunn-Minkowski inequality which was used to prove Anderson's inequality. 

To see this fact note that for any two convex sets A
0 

and A
1 

in Rn the 

characteristic function of the set 

. D = { (a, x) : a E [ 0, 1] , x E ( 1 - 8) Ao + 8Al} 

is strongly unimodal. Next note that 

(1- 8)A
0 

+ aA
1 

= [ (1- n)A~ + nA~] [ (l - e) µ!/n(A
0

) + eµ!/n(A
1
)], 

where 

=0 l/n(A )/[(1-0) l/n(A )+0 l/n(A )] n µn 1 µn O µn 1 ' 

* 1/n 
A.=A./µ (A.). 

l. l. n l. 
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5. More General Invariance and Pre-ordering 

If f is a unimodal function on Rn, invariant under a group G of 

Lebesgue-measure preserving transformations, and Eis a G-invariant 

convex set in Rn, then 

J f ( x - y*) dx ~ J f ( x - y) dx 
E E 

~here y* lies in the convex hull of the G-orbit of {y}. Anderson's 

inequality is the special case of the above result, when G is the group 

of sign transformations. The above generalization is due to Mudholkar [13]. 

To see this result, specialize y
1

=g
1

y and y
2

=g
2
y in (2.3), where g

1 

and g
2 

are elements in G. Next note that 

h(y,u)=h{gy,u) 

for all gin G. A similar generalization for marginal functions has been 

obtained by Das Gupta [ 2 ] • 

Mudholkar's generalization led to an interesting development as 

follows. Let C(y) be the convex-hull of the G-orbit of {y}. If we 

write y* ~ y if y* E C(y), then i.t follows easily that ~ is a pre-order 

on Rn. We call a function h on Rn G-decreasing if y* ~ y implies h(y*) ~ h(y). 

It is easy to see that if f is a G-invariant unimodal function then f is 

G-decreasing. 

Mudholkar's result naturally led to the following question [ 7]: 

For which groups G is the function defined by 

h(y) = J f 
1 

(x)f
2 

(x - y) dx 

would be G-decreasing, if £
1 

and £
2 

are non-negative and G-decreasing? 

It is now known that the above result holds when G is the permutation group 

[12] or more generally the reflection groups [ 8 ]. 
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Incidentally, these results also use Anderson's inequality as the 

basic s:tep.. One of the key facts is the following: For a non-negative 

G-decreasing function hon Rn with Gas the permutation group 

h(u+v, u- v, x
3

, ••• ,xn) 

is centrally symmetric unimodal function of v only. 

6. Ordering of Distributions 

As a corollary to his Theorem, Anderson (1] proved the following 

result: If X - Np(O,t), z-Np(O,r) and r- i: is positive semi-definite, 

then for any symmetric convex set in RP 

(6.1) P(XEC)~P(Z~C). 

This is an easy consequence of Anderson's inequality, since the 

normal density with zero means is synnnetric and unimodal and Z can be 

expressed as Z = X+Y where Y-Np(O, T- ~) independently of X. 

However, the relation (6.1) may be used to define an ordering (with 

respect to more concentration about 0) between two distributions. More 

generally, one may write P 
1 

< P 
2 

for two distributions P 
1 

and P 
2 

iff 

J f(x)dP
1 

(x) ~ J f(x)dP
2

(x) 

for all functions fin the convex cone generated by the indicators of 

congex symmetric sets [ 7]. 
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7. Results on Association 

Although Anderson's result deals with translation shift it has 

been used to derive interesting results on association and correlation. 

Let us go back to Anderson's theorem and assume that the function Hin 

{2.l)is differentiable. Furthermore, assume that the differentiation can 

be done within the sign of integral. Since H(ky) is a nonincreasing 

function of k > O, differentiating H(ky) with respect to k we set 

(7 .1) 

n 

J 
, ~ af ( X + ky) .,,,, Q 

L, y i ax. :::::: 
E i=l 1 

for k>O, where y= (y
1 

••. yn), x= (x
1 

••• xn). 

The above relation (7.1) is used to derive the following result: 

Theorem. Let (x
1

, ••• ,xn) be jointly normally distributed with zero means 

and covariance matrix 1: = (o .. ) • Let l:(A) be the covariance matrix with 
1J 

a
1

.(A) =Aa
1

. for j >l, and a . . (A) =a .. for all other i and j; O~A~l. 
· J . J 1J 1J 

Let PA be the normal distribution with zero means and covariance matrix 

I:(A). 

(7. 2) 

n-1 
Then for every c

1 
> 0 and symmetric convex set c

2 
in R , 

is nondecreasing in A E [0,1]. 

The above result is due to Sidak [16], and Sidak's proof was simplified 

by Jogdeo[9]. This result has been extended to elliptically contoured 

symmetric distributions by Das Gupta et al. [ ]. A particular case of 

the above Theorem is the following: 
n 

(7.3) P[IX. I ~C.,i= 1, ••• ,n] ~ II P(lx. I ~c.). 
1 1 ~1 1 1 

More generally, one may consider the following probability: 

where X= (X(l)'x(
2
))' Ci is a symmetric convex set in the space of X(i)' 
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and PA refers to the normal distribution of X with zero means and 

covariance matrix E(A) given by 

E(A) = 

0 ~ X~ 1. Pitt [17] has shown that 1r(A) is an increasing function of 

A when rank (E
12

) ~ 2. Khatri [11] has proved earlier tha'.t 

P[X(l) € cl, x(2) E C2] ~P[X(l) E cl] P[X(2) E C2] 

when rank (r
12

) = 1. 

Pitt's proof uses the fact that the marginal of a log-concave 

function is log-concave. On the other hand, Khatri's proof depends more 

directly on Anderson's inequality. All the above results have been proved 

by using a conditional argument and the relation (7.1) (or, the original 

form of Anderson's inequality). 

Remark. Anderson's inequality has been applied extensively to get 

many important results on power functions of multivariate tests, confidence 

regions, and association of random variables. However, in this review 

we have tried to restrict our attention only to probability inequalities. 
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