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Abstract. Formal power series over non-commuting variables have been
investigated as representations of the behavior of automata with multi-
plicities. Here we introduce and investigate the concepts of aperiodic and
of star-free formal power series over semirings and partially commuting
variables. We prove that if the semiring K is idempotent and commuta-
tive, or if K is idempotent and the variables are non-commuting, then
the product of any two aperiodic series is again aperiodic. We also show
that if K is idempotent and the matrix monoids over K have a Burnside
property (satisfied, e.g. by the tropical semiring), then the aperiodic
and the star-free series coincide. This generalizes a classical result of
Schützenberger (1961) for aperiodic regular languages and subsumes a
result of Guaiana, Restivo and Salemi (1992) on aperiodic trace lan-
guages.

1 Introduction

In the theory of automata, Kleene’s fundamental theorem on the coincidence of
regular and rational languages in free monoids has been extended in many ways.
Schützenberger [26] investigated formal power series over arbitrary semirings
(e.g., like the natural numbers) and with non-commuting variables and showed
that the recognizable formal power series, which represent precisely the behavior
of automata with multiplicities (cf. Eilenberg [10]), coincide with the rational
series. This was the starting point for a large amount of work on formal power
series, cf. [25, 16, 1, 15] for surveys. Special cases of automata with multiplici-
ties are networks with capacities (weights) and have been also investigated in
operations research for algebraic optimization problems, cf. [32] and in the ‘max-
plus-community’ [11].

Schützenberger [27] also showed that in free monoids the aperiodic regular
languages coincide with the star-free languages. Such languages are important for
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and arise from counter-free automata, and have been also investigated intensively
due to characterizations using first order logic (McNaughton and Papert [21]) or
temporal logic (Kamp [14]).

An algebraic characterization of the sub-algebra of series over commutative
fields generated by letters and geometric series was announced by Reutenauer [24]
as an analogue of Schützenberger’s theorem. However, in the case of the boolean
semiring, his class of series restricts to a proper subclass of the aperiodic lan-
guages (dot-depth 3/2).

It is the aim of this paper to introduce and investigate the concepts of aperi-
odicity and star-freeness for formal power series over arbitrary semirings. In fact,
we will allow the variables to be partially commutative. A recognizable series is
called aperiodic if, when iterating any complex task in a representing automaton
with multiplicities, there is a fixed bound of iterations after which the computed
value (weight) remains stable. This is an assumption often made in optimiza-
tion problems, cf. [32]. A series is star-free, if it can be constructed from finitely
many polynomials using the operations sum, product and complement, with the
latter being applied only to characteristic series. This generalizes the concepts
of aperiodic and of star-free languages, respectively.

Before stating our results, let us recall the notion of partially commuting
variables. A trace alphabet (Σ, I) consists of a finite alphabet Σ and an irreflex-
ive symmetric relation I indicating when two elements a, b of Σ commute, e.g.
can occur independently of each other in a given concurrent system. A trace
monoid M is therefore defined as the quotient of the free monoid Σ∗ modulo the
congruence generated by the relations ab ∼ ba if a I b. These monoids were in-
troduced by Mazurkiewicz [19, 20] as an important mathematical model for the
behavior of concurrent systems, see also [3, 5, 4] for their well-developed theory.

Now let K be an arbitrary semiring, and let K〈〈M〉〉 be the collection of all
formal power series S =

∑
m∈M(S,m) ·m. These can also be regarded as series

with entries (S,m) from K in which certain of the variables (= elements of Σ)
are allowed to commute, as indicated by the relation I.

Whereas formal power series over non-commuting variables represent the
behavior of sequential systems with weights, series over partially commuting
variables can be viewed as the behavior of concurrent systems with multiplici-
ties (‘weights’ for the actions). For an investigation of recognizable and rational
formal power series over trace monoids, we refer the reader to [7].

Let us now give a summary of our main results. They all require that the
semiring K of coefficients be idempotent. In applications, this is satisfied when
‘addition’ means the operation of taking minimum or maximum. We first show
that the product of any two aperiodic series with non-commuting variables is
again aperiodic. This means that the sequentialization of two such aperiodic sys-
tems stays aperiodic. We then show that this remains true even with partially
commuting variables, but under the additional assumption that K be commu-
tative. With an example, we show that the idempotence of K is necessary.

For our further results we need that the matrix monoids Kn×n of (n × n)-
matrices over K have a Burnside property: each finitely generated torsion sub-
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monoid of Kn×n be finite. We note that since Burnside’s question in 1902, this
property has been deeply investigated in group and semigroup theory, cf. the
surveys of Simon [29] and Pin [23] for its relevance to automata theory. By a
deep result of Simon [28], the important tropical semiring (N ∪ {∞},min,+)
(and several others) satisfies this property. We can then show that any series
over K and partially commuting variables is aperiodic if and only if it is star-
free. If here K = B, the Boolean semiring, we obtain as a consequence that in
trace monoids the aperiodic languages are precisely the star-free ones, a result
of Guaiana, Restivo and Salemi [13] which in turn contains Schützenberger’s
classical result for aperiodic languages of words.

Note that this provides a syntactic construction of how to obtain the behavior
of a given aperiodic concurrent system by combining singleton automata using
the operations parallel sum, sequentialization, and complementation.

A preliminary version of this work appeared in the extended abstract [8].

2 Preliminaries

Here we recall the necessary notation and background for formal power series
and for trace theory. For more details, we refer the reader to [25, 1, 3, 5].

Let M be any monoid and (K,+, ·, 0, 1) any semiring, i.e., (K,+, 0) is a com-
mutative monoid, (K, ·, 1) is a monoid, multiplication distributes over addition,
and 0 · x = x · 0 = 0 for each x ∈ K. If multiplication is commutative, we say
that K is commutative. If the addition is idempotent, then the semiring is called
idempotent. For instance, the Boolean semiring B = ({0, 1},+, ·, 0, 1) is both
commutative and idempotent. The semiring of natural numbers (N,+, ·, 0, 1)
is commutative but not idempotent. The semiring (P(Σ∗),∪, ·, ∅, {1}) of lan-
guages over some alphabet Σ is idempotent but not commutative. The semi-
ring Nn×n of (n × n)-matrices is neither commutative nor idempotent. Other
semirings useful in computer science (and also in optimization problems of op-
erations research [32]) are the min-plus (or max-plus or min-max) semirings
over the integers or the reals. For instance the min-plus semiring over the reals
(R ∪ {∞},min,+,∞, 0) is both commutative and idempotent.

A formal power series is a mapping

S : M −→ K
m 7−→ (S,m)

It is usually denoted as a formal sum S =
∑

m∈M (S,m).m. The set Im(S) =
{(S,m) | m ∈ M} is called the image of S. The set Supp(S) = {m ∈ M |
(S,m) 6= 0} is called the support of S. If Supp(S) is finite, then S is called a
polynomial. We consider elements of K also as polynomials in the natural way,
having a non-zero entry only at 1 ∈ M . If L ⊆ M , we define the characteristic
series 1L of L by letting 1L(m) = 1 if m ∈ L and 1L(m) = 0 otherwise. The
collection of all formal power series is denoted by K〈〈M〉〉.

The external product of k ∈ K and S ∈ K〈〈M〉〉, the sum S + S′ and the
Hadamard product S�S′ of two series S, S′ ∈ K〈〈M〉〉 are defined componentwise,
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that is, for m ∈M let

(k · S,m) = k(S,m),
(S + S′,m) = (S,m) + (S′,m),
(S � S′,m) = (S,m) · (S′,m).

With sum and Hadamard product, K〈〈M〉〉 is a semiring. In order to define the
(Cauchy) product of two series, we assume that each element m ∈ M has only
finitely many factorizations m = m1 · m2. Then, the (Cauchy) product of two
series S, S′ in K〈〈M〉〉 is the series defined for m ∈M by

(S · S′,m) =
∑

m=m1·m2

(S,m1) · (S′,m2).

Without any assumptions on M , a product S1 ·S2 of two series S1, S2 ∈ K〈〈M〉〉
can also be naturally defined as above if S1, S2 have finite image and K is
idempotent, using the convention that an infinite sum of a constant value k ∈ K
equals k. Note that if K = B, the Boolean semiring, the mapping L 7→ 1L

constitutes a bijection between P(M) and B〈〈M〉〉 with inverse S 7→ supp(S).
Under this bijection, the operations union, intersection and product for languages
correspond to sum, Hadamard product and Cauchy product for series. With sum
and Cauchy product, K〈〈M〉〉 is again a semiring.

Next we define inverse images and left and right quotients. Let S ∈ K〈〈M〉〉
be a series and let h : N → M be a mapping. The inverse image of S by h
is the series h−1(S) ∈ K〈〈N〉〉 defined for n ∈ N by (h−1(S), n) = (S, h(n)). If
h is a monoid morphism then h−1(S) is called an inverse homomorphic image
of S. Now, if p ∈ M then the left and right quotients of S by p are the series
p−1S, Sp−1 ∈ K〈〈M〉〉 defined respectively for m ∈ M by (p−1S,m) = (S, pm)
and (Sp−1,m) = (S,mp). Note that p−1S is the inverse image of S by the
mapping h : M →M defined by h(x) = px, and similarly for Sp−1.

Let n ≥ 1 and [n] = {1, . . . , n}. Note that Kn×n is a monoid (with matrix
multiplication as usual). A series S ∈ K〈〈M〉〉 is called recognizable, if there
exists an integer n ≥ 1, a monoid morphism µ : M → Kn×n and vectors
λ ∈ K1×n, γ ∈ Kn×1 such that

(S,m) = λ · µ(m) · γ =
∑

i,j∈[n]

λiµ(m)ijγj

for each m ∈ M . In this case, the triple (λ, µ, γ) is called a representation of
dimension n of the series S, and we often shortly write S = (λ, µ, γ) to denote
this. We also call (λ, µ, γ) a weighted automaton recognizing the series S. With
this terminology, the set of states is [n], the weight for entering the automaton
in state i is λi and similarly the weight for leaving the automaton in state j
is γj . Also, µ(m)i,j denotes the weight (cost) for going from i to j reading m
in the automaton. If M = Σ∗ is a free monoid then µ can be defined by the
matrices (µ(a))a∈Σ and µ(a)i,j is the weight of the transition from i to j which
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is labeled a. Then, the weight of a path P = i0, a1, i1, . . . , an, in is the product
λi0µ(a1)i0,i1 · · ·µ(an)in−1,inγin and one can check that for w ∈ Σ∗ the value
(S,w) is the sum over all paths P labeled w of the weight of P . We let Krec〈〈M〉〉
denote the set of all recognizable formal power series.

In some proofs, we will use the Kronecker product, which is defined for any
two matrices A = (aij) ∈ Km×n and B = (bi′j′) ∈ Kp×q as the matrix A⊗B ∈
Kmp×nq whose block representation is

A⊗B =

 a11B · · · a1nB
...

...
am1B · · · amnB

 .

More formally, we have (A ⊗ B)(i−1)p+i′,(j−1)q+j′ = aijbi′j′ . Using a standard
bijection, we could also view A⊗B as a ([m]×[p])×([n]×[q])-matrix over K with
entries (A⊗B)(i,i′),(j,j′) = aijbi′j′ . It is easy to verify that if K is commutative
and if A′ ∈ Kn×` and B′ ∈ Kq×r then we have (A⊗B)(A′⊗B′) = (AA′)⊗(BB′).
In particular, if m = n and p = q, then (A⊗B)k = Ak ⊗Bk for each k ≥ 1.

Next we recall basic notions from trace theory. A pair (Σ, I) is called a trace
alphabet, if Σ is a finite set and I is an irreflexive symmetric binary indepen-
dence relation on Σ. Let ∼ denote the smallest congruence on Σ∗ containing
{(ab, ba) | a I b}. The quotient monoid M = M(Σ, I) := Σ∗/ ∼ is called the trace
monoid (or free partially commutative monoid) over (Σ, I) and its elements are
called traces. Note that in a trace monoid, each element has only finitely many
factorizations.

If w ∈ Σ∗, we let [w] denote the equivalence class of w in M. Also, let α(w)
be the set of all letters of Σ occurring in w, called the alphabet of w. Since
equivalent words have the same alphabet, we may put α([w]) = α(w).

We say that two subsets A,B of Σ are independent and we write A I B if
A × B ⊆ I. We also say that two words w,w′ of Σ∗ are independent, denoted
by w I w′, if α(w) I α(w′). Similarly, we define [w] I [w′], w I A, etc.

The following generalized Levi’s factorization is a very useful and classical
result in trace theory.

Lemma 2.1 ([2, 3]). Let u, v, w1, . . . , wn ∈ M. Then, uv = w1 · · ·wn if and
only if there are u1, . . . , un, v1, . . . , vn ∈ M such that u = u1 · · ·un, v = v1 · · · vn,
wi = uivi for all 1 ≤ i ≤ n and vi I uj for all 1 ≤ i < j ≤ n. Moreover, the
traces u1, . . . , un, v1, . . . , vn ∈ M with this property are unique.

A monoid N is said to be aperiodic if there exists some integer m ≥ 0 such
that xm = xm+1 for all x ∈ N . The index of an aperiodic monoid N is the
smallest integer m ≥ 0 such that xm = xm+1 for all x ∈ N .

A language L ⊆ M is aperiodic if there exists a morphism ϕ : M → N into
some finite aperiodic monoid N such that L = ϕ−1(ϕ(L)). When this holds,
we say that the morphism ϕ recognizes L. We denote by AP(M) the family of
aperiodic languages of M ; it contains ∅ and M and is closed under the operations
union and complement.
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Note that by definition, any aperiodic language is recognizable.The collection
SF(M) of all star-free languages in M is defined as the smallest set of languages
of M containing all finite languages and which is closed under the operations
union, product and complement.

A fundamental theorem by Schützenberger [27] states that in free monoids
aperiodic languages coincide with star-free languages. It was extended by Gua-
iana, Restivo and Salemi [13] to trace monoids. It is the aim of this paper to
generalize this theorem to formal power series both for free monoids and for
trace monoids.

3 Aperiodic series

In this section we introduce aperiodic and weakly aperiodic series and we study
closure properties of aperiodic series.

Definition 3.1. A recognizable series S ∈ K〈〈M〉〉 is aperiodic if there exists
a representation S = (λ, µ, γ) with µ(M) aperiodic, i.e. there is some integer
m ≥ 0 such that µ(um) = µ(um+1) for all u ∈ M . In this case, we say that the
morphism µ is aperiodic and that (λ, µ, γ) is an aperiodic representation of S.
The collection of aperiodic series in K〈〈M〉〉 is denoted by Kap〈〈M〉〉.

Also we say that a recognizable series is weakly aperiodic if there exists some
integer m ≥ 0 such that (S, uvmw) = (S, uvm+1w) for all u, v, w ∈ M . We
let Kwap〈〈M〉〉 denote the collection of all weakly aperiodic series. Clearly, all
aperiodic series are also weakly aperiodic. The converse does not hold, even for
idempotent semirings, as shown in the next section. We will see in Sections 4
and 5 that the converse is true when the semiring K is a field or locally finite.

First we show closure properties of aperiodic series.

Proposition 3.2. Let K be an arbitrary semiring and M be any monoid. The
collection Kap〈〈M〉〉 is closed under left and right quotients, external product and
sum. Inverse homomorphic images of aperiodic series are again aperiodic. If K
is commutative, Kap〈〈M〉〉 is also closed under Hadamard product.

Proof. Let S ∈ K〈〈M〉〉 be an aperiodic series and let (λ, µ, γ) = S with µ(M)
aperiodic.

Let p ∈ M . We have p−1S = (λµ(p), µ, γ) and Sp−1 = (λ, µ, µ(p)γ) hence
both quotients are aperiodic. Further, for b ∈ K the series b · S = (bλ, µ, γ) is
also aperiodic.

Let N be a monoid and h : N → M a morphism. We have h−1(S) =
(λ, µ◦h, γ) and µ◦h(N) is a submonoid of µ(M). Therefore, h−1(S) is aperiodic.

For i = 1, 2, let Si = (λi, µi, γi) be an aperiodic series of dimension ni. Then

S1 + S2 = (λ, µ, γ) with λ = (λ1, λ2), γ =
(
γ1

γ2

)
, and µ =

(
µ1 0
0 µ2

)
. Now,

since µ is a block matrix, it is immediate to check that if µ1(M) and µ2(M)
are aperiodic with indexes m1 and m2 then µ(M) is also aperiodic with index
m = max(m1,m2).
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Now assume K is commutative and S1, S2 are aperiodic series as above. Let
n = n1n2. Using the Kronecker product of matrices we define S = (λ, µ, γ)
by λ = λ1 ⊗ λ2 ∈ K1×n, γ = γ1 ⊗ γ2 ∈ Kn×1 and µ : M → Kn×n by
µ(w) = µ1(w) ⊗ µ2(w). The intuition is that S is the synchronized product of
the two weighted automata S1 and S2. Identifying [n] with [n1] × [n2] we have
λ(i1,i2) = λ1

i1
λ2

i2
, γ(j1,j2) = γ1

j1
γ2

j2
, and µ(w)(i1,i2),(j1,j2) = µ1(w)i1,j1µ

2(w)i2,j2 .
Since K is commutative, µ is a morphism and S = S1 � S2 [25, Thm. II.4.4]

(this is easy to check using the property of the Kronecker product recalled in
the preliminaries). As above, if µ1(M) and µ2(M) are aperiodic with indexes
m1 and m2 then µ(M) is also aperiodic with index m = max(m1,m2). ut

It is well-known [25] that if a language L ⊆ M is recognizable then so is
its characteristic series 1L ∈ K〈〈M〉〉. The converse seems to be open for arbi-
trary semirings but it holds for a wide class of semirings such as commutative
semirings [31] or locally finite semirings (see next section). We show now that
assuming recognizability, the equivalence is true for aperiodic languages and
aperiodic characteristic series.

Proposition 3.3. Let K be an arbitrary semiring, let M be an arbitrary monoid
and let L ⊆ M be recognizable. Then L is aperiodic iff its characteristic series
1L ∈ K〈〈M〉〉 is aperiodic.

Proof. First, let N be a finite aperiodic monoid and let ϕ : M → N be a
morphism recognizing L, i.e. L = ϕ−1(ϕ(L)). Let n = |N |. We identify N with
[n] = {1, . . . , n}, 1 being indeed the neutral element of N . We define µ : M →
Kn×n, λ ∈ K1×n and γ ∈ Kn×1 by

µ(u)i,j =

{
1 if j = i · ϕ(u)
0 otherwise

λi =

{
1 if i = 1
0 otherwise

γj =

{
1 if j ∈ ϕ(L)
0 otherwise

It is easy to see that µ is a morphism and that 1L = (λ, µ, γ). Indeed,

(µ(u) · µ(v))i,j =
∑

k

µ(u)i,kµ(v)k,j = µ(u)i,i·ϕ(u)µ(v)i·ϕ(u),j = µ(v)i·ϕ(u),j

=

{
1 if j = i · ϕ(u) · ϕ(v)
0 otherwise

= µ(uv)i,j

and

λµ(w)γ =
∑
i,j

λiµ(w)i,jγj =
∑

j

µ(w)1,jγj = µ(w)1,1·ϕ(w)γ1·ϕ(w) = γ1·ϕ(w)

=

{
1 if 1 · ϕ(w) ∈ ϕ(L)
0 otherwise

=

{
1 if w ∈ ϕ−1ϕ(L)
0 otherwise

= 1L(w)
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Finally, it remains to show that the morphism µ is aperiodic. Since N is ape-
riodic, there exists some integer m ≥ 0 such that xm = xm+1 for all x ∈ N .
Then,

µ(um+1)i,j =

{
1 if j = i · ϕ(u)m+1

0 otherwise
=

{
1 if j = i · ϕ(u)m

0 otherwise
= µ(um)i,j

Conversely, assume that 1L is aperiodic, then it is also weakly aperiodic which
implies the existence of an integer m ≥ 0 such that uvmw ∈ L iff uvm+1w ∈ L
for all u, v, w ∈ M . Therefore, the syntactic monoid of L is aperiodic. Since we
assumed L recognizable, the syntactic monoid of L is also finite and we obtain
that L is aperiodic. ut

From the above result, we deduce that a semiring for which L is recognizable
whenever 1L is recognizable satisfies also that L is aperiodic whenever 1L is
aperiodic. In the next section (Corollary 5.6) we will see semirings for which this
last statement is true.

Recall that polynomials are the series with finite supports and they corre-
spond to finite languages when the semiring is B. In arbitrary monoids, finite
languages are not always recognizable. But finite languages are aperiodic in
particular for trace monoids. We show that polynomials are aperiodic series
whenever finite languages are aperiodic.

Corollary 3.4. Let K be an arbitrary semiring and let M be a monoid such
that singletons are aperiodic languages. Then, all polynomials in K〈〈M〉〉 are
aperiodic.

Proof. Let S ∈ K〈〈M〉〉 be a polynomial and let L = {w ∈ M | (S,w) 6= 0}
be its finite support. We may write S =

∑
w∈L(S,w) · 1{w}. We can conclude

immediately using Propositions 3.3 and 3.2. ut

Our aim is now to show that aperiodic series over free monoids are closed
under Cauchy product when the semiring K is idempotent. For this, we will use
special representations whose existence are proved in the next two lemmas.

When (λ, µ, γ) is a representation of dimension n, we call each i ∈ [n] with
λi 6= 0 an initial state and each j ∈ [n] with γj 6= 0 a final state.

We say that M is a monoid without divisors of the identity, if x ·y = 1 implies
x = y = 1 for any x, y ∈M .

Lemma 3.5. Let K be an arbitrary semiring, M be an arbitrary monoid without
divisors of the identity and S ∈ K〈〈M〉〉 be a recognizable series. Then there
exists a representation S = (λ, µ, γ) of dimension n such that there is exactly
one final state, say j, and moreover, γj = 1 and µ(w)ji = 0 for any i ∈ [n]
and w ∈ M \ {1}. Moreover, we may also require that µ is aperiodic if S is an
aperiodic series.
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Proof. Let (λ, µ, γ) be a representation of S of dimension n. We define a repre-
sentation (λ′, µ′, γ′) of dimension n+ 1 by the block matrices and vectors

λ′ =
(

λ λγ
)
, µ′(w) =

 µ(w) µ(w)γ

0 0

 γ′ =

0

1


where w ∈M \ {1} and we let µ′(1) be the unit matrix.

We first show that µ′ is indeed a morphism so that (λ′, µ′, γ′) is a well-defined
representation. Let u, v ∈ M \ {1}. Then uv 6= 1 by the assumption on M , and
we have

µ′(u) · µ′(v) =

µ(u)µ(v) µ(u)µ(v)γ

0 0

 = µ′(uv).

Clearly, the representation (λ′, µ′, γ′) fulfills the requirements of the lemma and
we have λ′γ′ = λγ = (S, 1) and for all w ∈M \{1}, λ′µ′(w)γ′ = λµ(w)γ = (S,w)
which proves that S = (λ′, µ′, γ′).

Finally, if S is aperiodic then we may assume that there exists m ≥ 0 such
that µ(wm) = µ(wm+1) for all w ∈M . From the definition of µ′ above, it is clear
that µ′(wm) = µ′(wm+1) for all w ∈M showing that µ′ is also aperiodic. ut

Using a similar proof, we also obtain

Lemma 3.6. Let K be an arbitrary semiring, M be an arbitrary monoid without
divisors of the identity and S ∈ K〈〈M〉〉 be a recognizable series. Then there
exists a representation S = (λ, µ, γ) of dimension n such that there is exactly
one initial state, say i, and moreover, λi = 1 and µ(w)ji = 0 for any j ∈ [n]
and w ∈ M \ {1}. Moreover, we may also require that µ is aperiodic if S is an
aperiodic series.

Note that it is also possible to find a representation which satisfies both
requirements of Lemmas 3.5 and 3.6 if the series S is proper, i.e., if (S, 1) = 0.

We are now ready to prove that aperiodic series over the free monoid Σ∗ are
closed under Cauchy product when the semiring K is idempotent.

Theorem 3.7. Assume that the semiring K is idempotent. Let S1, S2 ∈ K〈〈Σ∗〉〉
be aperiodic series, then their product S = S1 · S2 is also aperiodic.

Proof. Let (λ1, µ1, γ1) be an aperiodic representation of S1 of dimension n1 + 1
which satisfies the requirements of Lemma 3.5 with n1 + 1 as unique final state
so that we have the following block matrix representation (for u ∈ Σ+):

λ1 =
(

α β
)

µ1(u) =

 A(u) B(u)

0 0

 γ1 =

0

1

 .
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Let (λ2, µ2, γ2) be an aperiodic representation of S2 of dimension 1 + n2 which
satisfies the requirements of Lemma 3.6 with 1 as unique initial state so that we
have the following block matrix representation (for u ∈ Σ+):

λ2 =
(
1 0

)
µ2(u) =


0 C(u)

0 D(u)

 γ2 =


ϕ

δ

 .

Now we follow the classical construction of a weighted automaton recognizing
S1 · S2 as indicated in [10, proof of Proposition VI.7.8]. For this, we take a
disjoint union of the two weighted automata merging the final state of S1 with
the initial state of S2. Formally, let n = n1 +1+n2 and define the block matrices
(for a ∈ Σ)

λ =
(

α β 0
)

µ(a) =


A(a) B(a) 0

0 0 C(a)

0 0 D(a)


γ =


0

ϕ

δ


.

We can check by induction on the length of a word w ∈ Σ+ that

µ(w) =


A(w) B(w) E(w)

0 0 C(w)

0 0 D(w)


where E(w) =

∑
u,v∈Σ+|w=uv

B(u)C(v).

An easy computation yields for w ∈ Σ+

λµ(w)γ = αB(w)ϕ+ αE(w)δ + βC(w)δ

= (S1, w)(S2, 1) +
∑

u,v∈Σ+|w=uv

(S1, u)(S2, v) + (S1, 1)(S2, w)

= (S1 · S2, w).

Since λγ = βϕ = (S1, 1)(S2, 1), we deduce that (λ, µ, γ) is a representation of
the Cauchy product S1 · S2.

Finally, we show that if µ1(Σ∗) and µ2(Σ∗) are aperiodic with indexes m1

and m2 and K is idempotent, then µ(Σ∗) is aperiodic with index m = m1 +m2.
Clearly, we have X(wm+1) = X(wm) for all X ∈ {A,B,C,D} and w ∈ Σ∗ and
it remains to show the same equality for X = E. We introduce the set

E(w) = {B(u)C(v) | u, v ∈ Σ+ and w = uv}
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and we show that E(wm+1) = E(wm). Note that, if wm = uv then either wm1

is a prefix of u or wm2 is a suffix of v. In the first case, let u = wm1u′. Since
µ is a morphism, for any u′′ ∈ Σ+ we have B(u′′u′) = A(u′′)B(u′). Hence we
have B(u) = A(wm1)B(u′) = A(w1+m1)B(u′) = B(wu) Hence, B(u)C(v) =
B(wu)C(v) ∈ E(wm+1). Similarly, in the second case, we have B(u)C(v) =
B(u)C(vw) ∈ E(wm+1). Therefore, E(wm) ⊆ E(wm+1) and we can show the
converse inclusion similarly. Using the fact that sum is idempotent, we deduce
E(wm+1) = E(wm). ut

The idempotence of sum is needed to obtain this result, even for the free
monoid. Indeed, let K = (N,+, ·) and Σ = {a}. The language Σ∗ is clearly
aperiodic and therefore its characteristic series S = 1Σ∗ is aperiodic as well
(Proposition 3.3). Now, for all m ≥ 0, (S ·S, am) =

∑
am=uv(S, u)(S, v) = m+1.

Therefore, the series S2 is not weakly aperiodic, whence is not aperiodic.
We aim now at establishing a similar result for arbitrary trace monoids.

Alphabetic representations have been introduced in [7] in order to study the
closure of recognizable series over trace monoids under product and star. We
will use a simpler form of alphabetic representations which is sufficient to show
that aperiodic series are also closed under product.

We say that a representation (λ, µ, γ) of dimension n is (past-)alphabetic, if
there exists a function

←
α : [n] → P(Σ) such that for all u ∈ M, the following

two conditions are satisfied:
(1) Whenever µ(u)ij 6= 0, then

←
α(j) =

←
α(i) ∪ α(u)

(2) whenever λi 6= 0, then
←
α(i) = ∅.

We call (λ, µ, γ;
←
α) an alphabetic representation of S.

Proposition 3.8. Let K be an arbitrary semiring and S ∈ K〈〈M〉〉 be an ape-
riodic series over traces. Then there exists an alphabetic representation S =
(λ, µ, γ;

←
α) with µ aperiodic.

Proof. The construction of the representation follows the same line as in [7,
Proposition 6]. Assume that S = (λ′, µ′, γ′) with µ′ : M → Kn′×n′ an aperiodic
morphism. Let n = n′ · 2|Σ|. Subsequently, we identify [n] with [n′]×P(Σ). We
define µ : M → Kn×n and λ ∈ K1×n, γ ∈ Kn×1 by

µ(u)(i,X)(j,Y ) =

{
µ′(u)ij if Y = X ∪ α(u)
0 otherwise

λ(i,X) =

{
λ′i if X = ∅
0 otherwise

γ(i,X) = γ′i

Also, we put
←
α(i,X) = X.

It can be shown as in [7, Proposition 6] that (λ, µ, γ;
←
α) is an alphabetic

representation of S. Here, we only have to show that µ is aperiodic. Indeed, let
m > 0 be such that µ′(um) = µ′(um+1) for all u ∈ M. Note that since we have
taken m > 0, we have α(um+1) = α(u) = α(um) for all u ∈ M. It follows directly
from the definition of µ that µ(um) = µ(um+1) for all u ∈ M. ut
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We will now prove that aperiodic series over trace monoids are closed under
Cauchy product when the semiring K is idempotent and commutative.

Theorem 3.9. Assume that the semiring K is idempotent and commutative.
Let S1, S2 ∈ K〈〈M〉〉 be aperiodic series, then their product S = S1 · S2 is also
aperiodic.

Proof. Again, we use the construction of [7, Theorem 7]. Let (λ1, µ1, γ1) be an
aperiodic representation of S1 of dimension n1 and let (λ2, µ2, γ2;

←
α) be an alpha-

betic representation of S2 of dimension n2 with µ2 aperiodic (Proposition 3.8).
Let n = n1 · n2. For each u ∈ Σ∗ we define the diagonal matrix

I(u) =

I(u, 1) 0
. . .

0 I(u, n2)

 ∈ Kn2×n2

by letting

I(u, i) =

{
1 if u I

←
α(i)

0 otherwise.

Now define µ : M → Kn×n by putting

µ(w) =
∑

w=uv

µ1(u)⊗
(
I(u) · µ2(v)

)
In other words, if we identify [n] with [n1]× [n2], we have

µ(w)(i1,i2)(j1,j2) =
∑

w=uv

I(u, i2)µ1(u)i1,j1µ
2(v)i2,j2

It was shown in [7, Theorem 7] that µ is a morphism and S = (λ, µ, γ) where
λ ∈ K1×n and γ ∈ Kn×1 are defined by λ = λ1 ⊗ λ2 and γ = γ1 ⊗ γ2.

We have assumed µ1 and µ2 aperiodic so let q > 1 be such that µ1(wq) =
µ1(wq−1) and µ2(wq) = µ2(wq−1) for all w ∈ M. We will show that µ is aperiodic.
For w ∈ M and m ≥ 0, we define

Xm(w) = {(u1, . . . , um, v1, . . . , vm) ∈ M2m | ∀i ∈ [m], w = uivi

and ∀1 ≤ i < j ≤ m, vi I uj}.

Also, for x = (u1, . . . , um, v1, . . . , vm), we set ϕ(x) = µ1(u) ⊗ (I(u) · µ2(v))
where u = u1 · · ·um and v = v1 · · · vm. Using the generalized Levi’s factorization
(Lemma 2.1) and the definition of µ we deduce immediately that

µ(wm) =
∑

x∈Xm(w)

ϕ(x).

Note that, thanks to the unicity of the factorization in Levi’s Lemma, we do not
use that sum is idempotent for this result.
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Claim. If m > q(|Σ|+1) then ϕ(Xm(w)) = ϕ(Xm+1(w)). Actually, we will prove
that for all x ∈ Xm(w), there exist y ∈ Xm−1(w) and z ∈ Xm+1(w) such that
ϕ(x) = ϕ(y) = ϕ(z).

Let x = (u1, . . . , um, v1, . . . , vm) ∈ Xm(w). For 1 ≤ i < j ≤ m we have vi I uj ,
which implies that α(vi) ⊆ α(w) \ α(uj) ⊆ α(vj). Therefore we have α(v1) ⊆
· · · ⊆ α(vm) and from the hypothesis on m we deduce that there exists 1 ≤ p ≤
m− q such that α(vp) = · · · = α(vp+q).

Let p < k ≤ p + q, we have α(w) = α(uk) ∪ α(vk) and α(uk) I α(vk−1) =
α(vk). Hence we obtain α(uk) = α(w) \ α(vk). Since there is at most one way
to split the trace w into two independent traces whose alphabet are fixed, we
deduce that up+1 = · · · = up+q = ū and vp+1 = · · · = vp+q = v̄.

Let u′ = u1 · · ·up, u′′ = up+q+1 · · ·um, v′ = v1 · · · vp and v′′ = vp+q+1 · · · vm.
Then we have

µ1(u) = µ1(u′ūqu′′) = µ1(u′ūq+1u′′) = µ1(u′ūq−1u′′)

µ2(v) = µ2(v′v̄qv′′) = µ2(v′v̄q+1v′′) = µ2(v′v̄q−1v′′)

α(u) = α(u′ūqu′′) = α(u′ūq+1u′′) = α(u′ūq−1u′′)

The claim follows since this implies that ϕ(x) = ϕ(y) = ϕ(z) for

y = (u1, . . . , up+q−1, up+q+1, . . . , um, v1, . . . , vp+q−1, vp+q+1, . . . , vm) ∈ Xm−1(w)
z = (u1, . . . , up+q, up+q, . . . , um, v1, . . . , vp+q, vp+q, . . . , vm) ∈ Xm+1(w).

Using the claim, we deduce immediately that for m > q(|Σ|+ 1) it holds

µ(wm) =
∑

x∈Xm(w)

ϕ(x) =
∑

x∈Xm+1(w)

ϕ(x) = µ(wm+1).

Here we have used that sum is idempotent in K since |Xm(w)| < |Xm+1(w)| as
soon as w 6= 1. ut

Commutativity is needed because we are dealing with trace monoids. An
example was given in [7, Section 5] showing that recognizable series over trace
monoids are not closed under product in general.

As usual, in the special case of the boolean semiring we obtain the result on
trace languages as a corollary.

Corollary 3.10 ([13]). The product of two aperiodic trace languages is again
aperiodic.

Proof. Let L1, L2 ⊆ M be two aperiodic trace languages. By Proposition 3.3
the characteristic series 1L1 , 1L2 ∈ B〈〈M〉〉 are aperiodic. Then by Theorem 3.9
we deduce that 1L1 · 1L2 = 1L1·L2 ∈ B〈〈M〉〉 is also aperiodic. Since we are in
the boolean semiring this implies that L1 · L2 is recognizable. Applying again
Proposition 3.3 we deduce that L1 · L2 is aperiodic. ut
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4 Weakly aperiodic series

In this section, we will investigate weakly aperiodic series and their relationship
with aperiodic series. As noted before, any aperiodic series is weakly aperiodic.
The converse does not hold, even for idempotent semirings, as shown by the
following example due to an anonymous referee.

Example 4.1. We will define an idempotent semiring K and a series S ∈ K〈〈Σ∗〉〉
with Σ = {a, b} which is weakly aperiodic but not aperiodic. We start with the
definition of the semiring. Let M ′ = {a, b,#}∗ ] {0} be the free monoid over
the alphabet {a, b,#} equipped with a zero. Let M = M ′/≈ be the quotient
of M ′ by the congruence generated by #uv3w# ≈ 0 for u, v, w ∈ Σ∗ with v
nonempty. Let K be the set of finite subsets of M . Using union as addition and
concatenation as multiplication we obtain a semiring with ∅ as zero and {[1]≈}
as unity.

The series S ∈ K〈〈Σ∗〉〉 is defined by (S,w) = {[#w#]≈}. It is recognizable
by the following representation of dimension 1: ({[#]≈}, µ, {[#]≈}) where µ(x) =
{[x]≈} for all x ∈ Σ. Clearly, S is weakly aperiodic.

We show now that the series S is not aperiodic. Let (λ, µ, γ) be a represen-
tation of S with dimension n. By a result of Morse and Hedlund from 1944,
infinitely many cube-free words exist in Σ∗. Hence, we can choose a cube-free
word w ∈ Σ∗ of length N > 3n. By definition of S, we have (S,w) = {[#w#]≈}
hence we can find a path P in the automaton with weight(P ) = {[#w#]≈}.
Since N > 3n we find a state q occurring at least 4 times in the path P so that
we can write

P = q0
v0−→ q

v1−→ q
v2−→ q

v3−→ q
v4−→ qN

with v1, v2, v3 ∈ Σ+. Now, let [u0]≈ ∈ λq0µ(v0)q0,q, [u1]≈ ∈ µ(v1)q,q, [u2]≈ ∈
µ(v2)q,q, [u3]≈ ∈ µ(v3)q,q and [u4]≈ ∈ µ(v4)q,qN

γqN
. We have [u0u1u2u3u4]≈ =

[#w#]≈ 6= [0]≈, hence #w# = u0u1u2u3u4. None of u1, u2, u3 may be empty
since otherwise, iterating 3 times the corresponding loop we would get a path P ′

with [u0u1u2u3u4]≈ ∈ weight(P ′), a contradiction with the fact that the label of
P ′ contains a cube. Therefore, u2 ∈ Σ+ and the classes ([uk

2 ]≈)k>0 are pairwise
different. Since [uk

2 ]≈ ∈ µ(vk
2 )q,q for all k > 0, we deduce that µ(Σ∗) is not

aperiodic. ut

On the other hand, if the semiring is a field we show the following.

Theorem 4.2. Let K be a field and M be any monoid. Then, Kwap〈〈M〉〉 =
Kap〈〈M〉〉.

Proof. Let S ∈ Kwap〈〈M〉〉. We will show that the standard construction of a
minimal automaton for S yields an aperiodic representation. Note that K〈〈M〉〉
with addition and multiplication with scalars from K as usual is vector space.
Let Z = 〈u−1S : u ∈M〉, the subspace of K〈〈M〉〉 generated by the rows of H(S).
Since S is recognizable, by [25, Ch.II.3], Z is finitely generated and thus Z has
a finite basis B = {F1, . . . , Fn}, say. Now define a mapping µ : M → Kn×n
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such that for each v ∈ M and i ∈ {1, . . . , n}, we have v−1Fi =
∑n

j=1 µ(v)ij · Fj

with uniquely determined scalars µ(v)ij ∈ K. Furthermore, S =
∑n

i=1 λiFi with
λi ∈ K, and let γj = Fj(1). Put λ = (λ1, . . . , λn) and γ = (γ1, . . . , γn)′. Then µ
is a morphism, and (λ, µ, γ) is a representation of S [25, Ch.II.3].

Let ui ∈M such that Fi = u−1
i S (i = 1, . . . , n). Since S is weakly aperiodic,

there is m ∈ N such that for all v ∈ M and i = 1, . . . , n we have v−m(u−1
i S) =

v−(m+1)(u−1
i S). Hence

n∑
j=1

(µvm)ij · Fj = v−mFi = v−(m+1)Fi =
n∑

j=1

(µvm+1)ij · Fj .

Since B is a basis, comparison of coefficients implies µ(vm) = µ(vm+1). Thus S
is aperiodic. ut

Next we wish to show that the collection of all weakly aperiodic series has
similar closure properties with respect to the operations inverse morphims, left
and right quotients, sum, external product, Hadamard and Cauchy product as
established above for the aperiodic series. The proofs are slightly easier than for
aperiodic series.

Theorem 4.3.

(a) Let K be any semiring and M any monoid. Then, Kwap〈〈M〉〉 is closed under
left and right quotients, sum and external product. Inverse homomorphic
images of weakly aperiodic series of K〈〈M〉〉 are again weakly aperiodic. If K
is commutative, then Kwap〈〈M〉〉 is also closed under the Hadamard product.

(b) Let K be an idempotent semiring. If S1, S2 ∈ K〈〈Σ∗〉〉 are weakly aperiodic,
then so is the product S1 · S2.

(c) Let K be idempotent and commutative. If S1, S2 ∈ K〈〈M〉〉 are weakly aperi-
odic, then so is the product S1 · S2.

Proof. (a) Observe that Krec〈〈M〉〉 is closed under these operations. The rest is
straightforward from the definitions.

(b) and (c). By [26], Krec〈〈Σ∗〉〉 is closed under the Cauchy product. By
[7], if K is commutative, Krec〈〈M〉〉 is also closed under the Cauchy product.
Therefore, it remains to show that if K is idempotent and S1, S2 are weakly
aperiodic, there is some m ≥ 0 such that (S1 · S2, uv

mw) = (S1 · S2, uv
m+1w)

for all words u, v, w ∈ M.
We proceed as in the proof of Theorem 3.9. So let q > 1 be such that

(Si, uw
qv) = (Si, uv

q+1w) for all u, v, w ∈ M and i = 1, 2. For m ≥ 0 consider
the set

Xm = {(u0, . . . , um+1, v0, . . . , vm+1) ∈ M2m+4 |
u = u0v0, w = um+1vm+1, v = uivi for all i ∈ [m],
and viIuj for all 0 ≤ i < j ≤ m+ 1}
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Also, for x = (u0, . . . , um+1, v0, . . . , vm+1), we put

ψ(x) = (S1, u0 . . . um+1)(S2, v0 . . . vm+1).

Using the generalized Levi’s factorization (Lemma 2.1), we obtain that

(S1 · S2, uv
mw) =

∑
y,z∈Σ∗

uvmw=yz

(S1, y)(S2, z) =
∑

x∈Xm

ψ(x)

It follows that if m > q · (|Σ| + 1), then ψ(Xm) = ψ(Xm+1). Since K is
idempotent, we obtain (S1 · S2, uv

mw) =
∑

x∈Xm
ψ(x) =

∑
x∈Xm+1

ψ(x) =
(S1 · S2, uv

m+1w) for such m, and the result follows. ut

In spite of these similarities, it will turn out that the class of star-free series
introduced in section 6 for many natural semirings better compares to the class
of aperiodic series than to weakly aperiodic series, see Theorem 6.7.

5 Aperiodic and recognizable step functions

In this section we will investigate series which take on only finitely many values.
For this, we will introduce semirings with local finiteness conditions which will
be crucial later on.

Let K be any semiring and M any monoid. We will call a series S : M →
K a recognizable (respectively, aperiodic) step function, if S =

∑n
i=1 ki1Li for

some n ≥ 1, ki ∈ K and recognizable (resp., aperiodic) languages Li ⊆ M for
i = 1, . . . , n. That is, S is a finite linear combination of characteristic series
of recognizable (resp., aperiodic) languages. Since the classes of recognizable
(resp. aperiodic) languages of M form a Boolean algebra, an equivalent condition
is that Im(S) is finite and each language S−1(k) = {m ∈ M | (S,m) = k}
(k ∈ K) is recognizable (resp., aperiodic). The collection of all recognizable
(resp., aperiodic) step functions in K〈〈M〉〉 is denoted by Krec−step〈〈M〉〉 (resp.,
Kap−step〈〈M〉〉). First we have:

Proposition 5.1. Let K be any semiring and M be any monoid. Then,
Krec−step〈〈M〉〉 ⊆ Krec〈〈M〉〉 and Kap−step〈〈M〉〉 ⊆ Kap〈〈M〉〉.

Proof. For aperiodic step functions, apply Propositions 3.3 and 3.2, and for
recognizable step functions apply the corresponding closure properties which
are well known. ut

Note that we can represent any recognizable step function S by a classical
deterministic complete M -automaton with weights attached only to the final
states. That is, there is a representation (λ, µ, γ) of S with a unique initial state
(which has weight 1) such that for each w ∈ M and each i there is a unique j
with µ(w)ij 6= 0, and then µ(w)ij = 1.

Next we wish to derive under suitable hypothesis on K a converse of Propo-
sition 5.1. In group theory, a group is said to be locally finite, if each finitely
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generated subgroup is finite. A monoid is called locally finite, if each finitely
generated submonoid is finite. Clearly, any commutative idempotent monoid is
locally finite. Here, we will call a semiring K locally finite, if each finitely gener-
ated subsemiring is finite. We note that, a semiring (K,+, ·, 0, 1) is locally finite
iff both monoids (K,+, 0) and (K, ·, 1) are locally finite. Indeed, if X is a finite
subset of K then the submonoid Y of (K, ·, 1) generated by X is finite and the
submonoid Z of (K,+, 0) generated by Y is also finite. Now, it is easy to check
that Z · Z ⊆ Z and we deduce that the subsemiring of (K,+, ·, 0, 1) generated
by X is the finite set Z.

For instance, if both sum and product are commutative and idempotent then
the semiring is locally finite. For example, the max-min semiring Rmax,min =
(R+ ∪ {∞},max,min, 0,∞) of positive reals, used in operations research for
maximum capacity problems of networks, is locally finite. An isomorphic semi-
ring, namely F = ([0, 1],max,min, 0, 1) sometimes called the fuzzy semiring, is
also used in the theory of fuzzy languages (see e.g. [22]). Also, semirings which
are boolean algebras like (P(Σ∗),∪,∩, ∅, {1}) are locally finite. In fact, any dis-
tributive lattice (L,∨,∧, 0, 1) with smallest element 0 and largest element 1 is a
locally finite semiring.

Note that if K is a locally finite semiring, then the matrix monoids Kn×n are
locally finite for all n. Indeed, let Y ⊆ Kn×n be a finite set of matrices and let
X be the subsemiring of K generated by the finite set {Aij | A ∈ Y, i, j ∈ [n]}.
Then the submonoid of Kn×n generated by Y is contained in Xn×n which is a
finite submonoid of Kn×n.

Conversely, if K2×2 is a locally finite monoid then K is a locally finite semi-
ring. Indeed, let X ⊆ K be a finite set. By considering the submonoid generated
by the matrices {(

a 0
0 0

)
| a ∈ X

}
we obtain that (K, ·, 1) is locally finite. Now, by considering the submonoid
generated by the matrices {(

1 a
0 1

)
| a ∈ X

}
we obtain that (K,+, 0) is locally finite. For this, note that(

1 a
0 1

)
·
(

1 b
0 1

)
=

(
1 a+ b
0 1

)
.

Proposition 5.2. Let K be a locally finite semiring and M be a finitely gener-
ated monoid. Then, Krec〈〈M〉〉 = Krec−step〈〈M〉〉.

Proof. Let S = (λ, µ, γ) ∈ Krec〈〈M〉〉 with µ : M → Kn×n. Let Σ be a finite set
of generators of M . Then, µ(M) is the submonoid of Kn×n generated by the
finite set µ(Σ). Since K is locally finite we deduce that µ(M) is finite. Therefore,
Im(S) = {λ ·A · γ | A ∈ µ(M)} is also finite.
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It remains to show for each k ∈ K that S−1(k) is recognizable. We show
that µ : M → µ(M) recognizes S−1(k). Indeed, if u, v ∈ M with µ(u) = µ(v)
and u ∈ S−1(k), then (S, v) = λ · µ(v) · γ = λ · µ(u) · γ = (S, u) = k. Therefore,
S−1(k) is recognizable in M . ut

For applications on aperiodic series, we use weaker assumptions on K. A
monoid N is called torsion (or periodic), if each of its cyclic submonoids {xn |
n ≥ 0} (x ∈ N) is finite. Each locally finite monoid is torsion. The converse,
which was posed as a problem for groups by Burnside in 1902 (and answered
negatively by Golod in 1964), leads to deep problems in semigroup theory, see
the surveys by Simon [29] and Pin [23] for its relevance to automata theory.
We will say that a semiring K has Burnside matrix monoids, if in the monoids
Kn×n(n ∈ N) each torsion submonoid is locally finite.

Clearly, if K is locally finite then K has Burnside matrix monoids. But also
all of the following important (not locally finite) semirings have been shown to
have Burnside matrix monoids:

Theorem 5.3. Each of the following semirings has Burnside matrix monoids:

– N = (N,+, ·, 0, 1) and its completion N = (N ∪ {∞},+, ·, 0, 1) (Mandel and
Simon [17]),

– M = (N ∪ {∞},min,+,∞, 0) (Simon [28]),
– P = (N ∪ {−∞,∞},max,+,−∞, 0) (Mascle [18]),
– Rat = (Rat(a∗),∪, ·, ∅, a∗) (Mascle [18]).
– any commutative ring or PI-ring (a ring satisfying a polynomial identity),

cf. [23] and [30]

Semirings with Burnside matrix monoids will be important for us because of
the following easy but crucial observation.

Proposition 5.4. Let K be a semiring with Burnside matrix monoids and M
be a finitely generated monoid. Then, Kap〈〈M〉〉 = Kap−step〈〈M〉〉.

Proof. Let S = (λ, µ, γ) ∈ K〈〈M〉〉 with µ : M → Kn×n aperiodic. Since M is
finitely generated, µ(M) is a finitely generated torsion submonoid of Kn×n and
hence finite by assumption on K. Then, Im(S) = {λ · A · γ | A ∈ µ(M)} is also
finite.

It remains to show that for each k ∈ K that S−1(k) is aperiodic. As shown
in the proof of Proposition 5.2, µ : M → µ(M) recognizes S−1(k), and by
assumption µ(M) is an aperiodic monoid. Hence S−1(k) is aperiodic. ut

Moreover, if the monoid M , the semiring K and a representation of S are
given in an effective way, all the constituents of the description of S in the proof
of Proposition 5.2 or 5.4 can be effectively computed. Thus we obtain:

Corollary 5.5. Let K be a computable semiring, M be a computable finitely
generated monoid, and S, T ∈ K〈〈M〉〉. Assume that either K is locally finite and
S, T have effectively given representations, or K has Burnside matrix monoids
and S, T have effectively given aperiodic representations. Then from this, the
following are decidable:
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1. S = T

2. supp(S) = ∅
3. supp(S) = M .

Proof. Compute the descriptions of S and T given in Propositions 5.2 and 5.4
and compare the arising languages and the coefficients of their characteristic
series. ut

The following is a further immediate consequence of Propositions 5.2 and 5.4.

Corollary 5.6. Let K be a semiring, M be a finitely generated monoid, and
L ⊆M .

(a) If 1L is recognizable and K is locally finite, then L is recognizable.
(b) If 1L is aperiodic and K has Burnside matrix monoids, then L is aperiodic.

Corollary 5.7. Let K be a field and M a finitely generated monoid. Then,
Kap−step〈〈M〉〉 = Kap〈〈M〉〉 = Kwap〈〈M〉〉.

Proof. The first equality follows from Theorem 5.3 and Proposition 5.4 and the
second one from Theorem 4.2. ut

Now we wish to investigate recognizable and aperiodic step functions. First
we note:

Proposition 5.8. Let K be any semiring and M be any monoid. The classes
Krec−step〈〈M〉〉 and Kap−step〈〈M〉〉 are each closed under left and right quotients
and the Hadamard product. Inverse homomorphic images of recognizable (resp.
aperiodic) step functions of K〈〈M〉〉 are again recognizable (resp. aperiodic) step
functions.

Proof. First we deal with Krec−step〈〈M〉〉. Let S ∈ Krec−step〈〈M〉〉, h : N → M
a mapping and p ∈ M . Clearly, the image of the series h−1(S) = S ◦ h is
finite and (h−1(S))−1(k) = h−1(S−1(k)) for any k ∈ K. Since recognizable
languages are preserved under inverse homomorphic images, we deduce that if h
is a morphism then h−1(S) is a recognizable step function. Using the fact that
the left quotient p−1S is the inverse image of S by the mapping hp : M → M
defined by hp(x) = px and that recognizable languages are closed under left
quotients, we deduce that p−1S is also a recognizable step function. We proceed
similarly for right quotients.

Now let S =
∑m

i=1 ki · 1Li and T =
∑n

j=1 k
′
j · 1L′

j
with ki, k

′
j ∈ K and

recognizable languages Li, L
′
j ⊆M . Then each Li∩L′j is recognizable in M , and

1Li � 1L′
j

= 1Li∩L′
j
, so S � T =

∑
i,j kik

′
j · 1Li∩L′

j
∈ Krec−step〈〈M〉〉.

For the class Kap−step〈〈M〉〉 we argue as above, using the closure of aperiodic
languages under the operations inverse morphism, left and right quotients, and
intersection. ut

19



Now we will derive another version of Theorems 3.7 and 3.9 for step functions
which holds also if K is non-commutative. Note that its proof does not require
the (relatively complicated) arguments used for Theorems 3.7 and 3.9. Note
that the Cauchy product is well-defined since the semiring is idempotent and
the series considered have finite images.

Proposition 5.9. Let M be any monoid in which the product of two aperiodic
languages is again aperiodic, and let K be an idempotent semiring. Let S1, S2 ∈
Kap−step〈〈M〉〉. Then, S1 · S2 ∈ Kap−step〈〈M〉〉.

Proof. Let S1 =
∑

k1∈I1
k1 · 1S−1

1 (k1)
and S2 =

∑
k2∈I2

k2 · 1S−1
2 (k2)

with Ii =
Im(Si) finite (i = 1, 2) and each S−1

1 (k1), S−1
2 (k2) aperiodic inM . For all a, b ∈ K

and A,B ⊆M we have (a ·1A) ·(b ·1B) = ab ·(1A ·1B) and since K is idempotent
we also have 1A · 1B = 1A·B . Hence,

S1 · S2 =
∑

k1∈I1,k2∈I2

k1 · k2 · 1S−1
1 (k1)

· 1S−1
2 (k2)

=
∑

k1∈I1,k2∈I2

k1 · k2 · 1S−1
1 (k1)·S−1

2 (k2)
,

and each S−1
1 (k1) · S−1

2 (k2) is aperiodic in M . ut

With an analogous proof we also obtain:

Proposition 5.10. Let M be any monoid in which the product of two recog-
nizable languages is again recognizable, and let K be a locally finite idempotent
semiring. Let S1, S2 ∈ Krec−step〈〈M〉〉. Then, S1 · S2 ∈ Krec−step〈〈M〉〉.

Next we show for recognizable step functions the equivalence of aperiodicity
and weak aperiodicity.

Proposition 5.11. Let K be any semiring and M be any monoid. Then,
Krec−step〈〈M〉〉 ∩Kwap〈〈M〉〉 = Kap−step〈〈M〉〉.

Proof. One inclusion is clear. Conversely, let S ∈ Krec−step〈〈M〉〉 ∩ Kwap〈〈M〉〉.
We have S =

∑
k∈Im(S) k · 1S−1(k) with Im(S) finite and each S−1(k) ⊆ M

recognizable. We show that the languages S−1(k) are also aperiodic. Let m ≥ 0
be such that (S, uvmw) = (S, uvm+1w) for all u, v, w ∈ M . Then, for all k ∈ K
we have uvmw ∈ S−1(k) if and only if uvm+1w ∈ S−1(k) and we deduce that
the syntactic monoid of S−1(k) is aperiodic. Therefore, the languages S−1(k)
are all aperiodic. ut

As an immediate consequence of Proposition 5.2 and Proposition 5.11, if K
is a locally finite semiring, any weakly aperiodic series S is aperiodic.

6 Star-free series

In a monoid M , the collection SF(M) of star-free languages is defined as the
smallest system of languages in M containing all finite languages and being
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closed under the operations union, complement and product. We define a cor-
responding notion for formal power series as follows. Let K be a semiring and

: K → K be any mapping such that 0 = 1 and 1 = 0. Then, we call a com-
plement function on K and (K, ) a semiring with complement function. For
S ∈ K〈〈M〉〉, we define S ∈ K〈〈M〉〉, the complement of S, by (S,w) = (S,w) for
w ∈M . Oberve that for characteristic series, we have 1L = 1L where L denotes
the complement of L in M .

Definition 6.1. Let M be a monoid and K a semiring with complement. As-
sume either that each element of M has only finitely many factorizations or that
K is idempotent. The collection Ksf〈〈M〉〉 of all star-free series in K〈〈M〉〉 is the
smallest collection of formal power series containing all polynomials and being
closed under the operations sum, product and complement.

In [8] we have defined star-free series using a complement restricted to charac-
teristic series. All the results presented in this section also hold for this alternative
definition.

Note that if K is idempotent, by structural induction all star-free series in
K〈〈M〉〉 have finite image and the product operation is well-defined on Ksf〈〈M〉〉.
Note that if S is star-free and k ∈ K, then the series k · S is star-free, since k is
a polynomial.

Proposition 6.2. Let M be any monoid, let K be an idempotent semiring with
complement and let L ⊆M be star-free. Then 1L is a star-free series.

Proof. By structural induction on L. If L is finite, 1L is a polynomial. If L =
L1∪L2, we have 1L = 1L1 +1L2 since (K,+) is idempotent. For the same reason,
L = L1 · L2 implies 1L = 1L1 · 1L2 . Finally, 1L = 1L by definition. ut

Schützenberger [27] showed that in the free monoid Σ∗, aperiodic languages
are star-free. This was generalized by Guaiana [12] to arbitrary finitely generated
monoids:

Lemma 6.3 ([12, Thm. 5.1.4]). Let M be any finitely generated monoid. Then
each aperiodic language L ⊆M is star-free.

As a consequence of Proposition 6.2 and Lemma 6.3 we obtain

Proposition 6.4. Let M be a finitely generated monoid, and let K be an idem-
potent semiring with complement. Then, Kap−step〈〈M〉〉 ⊆ Ksf〈〈M〉〉.

Proof. Let S ∈ K〈〈M〉〉 be an aperiodic step function. Then S =
∑

k∈Im(S) k ·
1S−1(k) with Im(S) finite and each S−1(k) aperiodic inM . By Lemma 6.3, S−1(k)
is star-free in M . Now apply Proposition 6.2 to obtain that S is star-free. ut

Now we can prove the main result of this section.

Theorem 6.5. Let M be a finitely generated monoid. The following are equiv-
alent:
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(1) SF(M) = AP(M)
(2) Ksf〈〈M〉〉 = Kap−step〈〈M〉〉 for some idempotent semiring K with complement.
(3) Ksf〈〈M〉〉 = Kap−step〈〈M〉〉 for any idempotent semiring K with complement.

Proof. (1) ⇒ (3) : Let K be an idempotent semiring with complement. By
Proposition 6.4 it remains to show that each star-free series in K〈〈M〉〉 is an ape-
riodic step function. We proceed by induction. Each singleton in M is star-free,
hence aperiodic by (1). Thus Kap−step〈〈M〉〉 contains all polynomials. Clearly,
Kap−step〈〈M〉〉 is closed under the sum operation and by Proposition 5.9 also
under Cauchy product. Now let S =

∑n
i=1 ki1Li be an aperiodic step function.

We may assume that the languages (Li)1≤i≤n form a partition of M . Then,
S =

∑n
i=1 ki1Li is also an aperiodic step function.

(3) ⇒ (2) : Trivial.
(2) ⇒ (1) : Choose K as in (2). Let L ⊆M be star-free. By Proposition 6.2,

1L is star-free and hence an aperiodic step function by (2). Thus, L is aperiodic.
The converse is just Lemma 6.3. ut

It follows directly from Theorem 6.5 that if M is a finitely generated monoid
with SF(M) = AP(M) and K is an idempotent semiring with complement then
Ksf〈〈M〉〉 = Kap−step〈〈M〉〉 does not depend on the complement function of K
and, by the proof of Propositions 6.4 and 6.2, it coincides with the alterna-
tive class of star-free series considered in [8] where complement is restricted to
characteristic series.

As a consequence of Theorem 6.5 and Proposition 5.8 we obtain an analogue
of Proposition 5.4 for star-free series, the converse of Proposition 6.2, and further
closure properties of star-free series.

Corollary 6.6. Let K be an idempotent semiring with complement. Let M be
any finitely generated monoid satisfying SF(M) = AP(M).

(a) If S ∈ K〈〈M〉〉 is star-free, then for any k ∈ K the set S−1(k) is star-free in
M . In particular, Supp(S) is star-free.

(b) If L ⊆ K, then L is star-free iff 1L is star-free.
(c) Ksf〈〈M〉〉 is closed under left and right quotients and the Hadamard product.
(d) Let N be a finitely generated monoid, h : N → M be a morphism and

S ∈ Ksf〈〈M〉〉. Then h−1(S) ∈ Ksf〈〈N〉〉.

The following theorem derives from Proposition 5.4 and Theorem 6.5. It holds
in particular for the semirings M, P, Rat (Theorem 5.3) and Rmax,min, or any
distributive lattice with 0 and 1.

Theorem 6.7. Let K be an idempotent semiring with complement and with
Burnside matrix monoids, and let M be any finitely generated monoid satisfying
SF(M) = AP(M). Then, Kap〈〈M〉〉 = Kap−step〈〈M〉〉 = Ksf〈〈M〉〉.

The condition SF(M) = AP(M) is satisfied for all trace monoids by Guaiana,
Restivo and Salemi [13]. It also holds, e.g., for a class of particular concurrency
monoids (intersecting with trace monoids only in the class of free monoids),
see [6].
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7 Conclusion

We have investigated three classes of recognizable series with aperiodicity prop-
erties: the class Kap−step〈〈M〉〉 of aperiodic step functions, the class Kap〈〈M〉〉
of aperiodic series, and the class Kwap〈〈M〉〉 of weakly aperiodic series. We have
shown that these three classes have similar closure properties under inverse ho-
momorphic images, left and right quotients, sum, Cauchy product and Hadamard
product. Clearly, Kap−step〈〈M〉〉 ⊆ Kap〈〈M〉〉 ⊆ Kwap〈〈M〉〉 and under suitable
hypotheses we have equalities which are summarized in the following table to-
gether with their relationships with the star free series (where BMM means
semiring with Burnside matrix monoids).

K \ M any finitely generated
fin. gen. and

AP(M) = SF(M)

BMM ap-step = ap
5.4

loc. finite ap-step = ap = wap
5.2 and 5.11

field
ap = wap

4.2
ap-step = ap = wap

5.7

idempotent ap-step ⊆ sf
6.4

ap-step = sf
6.5

idempotent
and BMM

ap-step = ap ⊆ sf
5.4 and 6.4

ap-step = ap = sf
6.7

idempotent
and loc. fin.

ap-step = ap = wap ⊆ sf
5.2, 5.11 and 6.4

ap-step = ap = wap = sf
5.2, 5.11 and 6.5

Recently, we obtained further relationships between aperiodic series and se-
ries definable in weighted first-order logic [9].

Acknowledgment. We thank the anonymous referees for their remarks that helped
improving the presentation of the paper and for the example of a weakly aperi-
odic series which is not aperiodic (Example 4.1).
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