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1. I have felt for a long time that in discussing the perennial topic of the role of
applied mathematics one is inclined to overlook that at the heart of the matter is the
subtle and fundamental question of the relation of mathematics to non-mathematical
disciplines.

We tend to think of "applied" as being roughly synonymous with "useful" or "prac-
tical", but I should like to argue that applying mathematics is an activity which often
transcends pragmatic considerations and that we should also be concerned with a deeper
exploration of what this activity is or ought to be.

As usual, it is easier to say what it ought not to be, and here I cannot resist referring
once more to a wartime cartoon depicting two chemists surveying ruefully a little pile
of sand amidst complex and impressive-looking apparatus. The caption read: "Nobody
really wanted a dehydrated elephant but it is nice to see what can be done". I am sure
that we can all agree that applying mathematics should not result in creation of
"dehydrated elephants".

2. But how can one tell?
A necessary (though by no means sufficient) prerequisite is to know the subject or

discipline to which we apply mathematics and to know it with such intimacy as to
understand its spirit and to appreciate its lore.

When we propose to apply mathematics we are stepping outside our own realm, and
such a venture is not without dangers. For having stepped out, we must be prepared
to be judged by standards not of our own making and to play games whose rules have
been laid down with little or no consultation with us.

Of course, we don't have to play, but if we do we have to abide by the rules and above
all not try to change them merely because we find them uncomfortable or restrictive.

3. From now on let me stick to physics, not only because it is the only non-mathe-
matical discipline with which I am reasonably familiar but also because physics and
mathematics have had close ties in the past and because after a period of alienation
there are signs of a rapprochement. My joy at the prospect of the two great disciplines
coming together again is somewhat mitigated by the fear of "dehydrated elephants"
on one side facing a rigid and even hostile pragmatism on the other.

Since there is nothing I can do about pragmatism of physics (and some physicists!)
let me limit my discussion to exploring some of the ways in which mathematics can be
significantly applied to certain problems of physics. Let me also state that I speak only
for myself and that I do not expect my views to be universally accepted. Quite to the
contrary, I expect opposition, and would welcome a debate or even a confrontation.
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4. First, it seems self-evident that mathematics is not likely to be much help in
discovering laws of nature. If a mathematician wants to make a contribution on this
(and I admit it is the highest) level, he will have to master so much experimental material
and train himself to think in a way so different from the one he has been accustomed
to that he will, in effect, cease to be a mathematician.1 Perhaps it is well to be reminded
by the way of analogy that while in recent years a number of physicists have made
significant contributions to biology they accomplished this not because they were phys-
icists but because they became biologists. I cannot, of course, claim that their training
in physics had nothing to do with their successes in biology. More likely it has a great
deal to do with it, and by the same token a mathematician who becomes a physicist
(or a biologist, or an economist) may benefit greatly from his training as a mathematician,
but this is not what I am concerned with today.

As mathematicians we come in when this or that law of nature has been discovered,
and our role is usually twofold: (a) to help find ways in which the law can "best" be
formulated and (b) to help in drawing conclusions, which hopefully will be significant
to the further development of the subject. Of the two, the first role is fraught with
more danger, since it tends to provide fertile ground for breeding "dehydrated elephants".
This is especially true today because contemporary mathematics is geared to playing
with "formulations" and physics, so full of vague, unprecise and unrigorous statements,
seems to cry out for being better "formulated" and fitted into familiar structures.

In a recent article "Hamiltonian mechanics and geometry" [1], Professor Saunders
MacLane, a leader of and an eloquent spokesman for the strongly abstract trend in
mathematics, says: "Just as each generation of historians must analyse the past again,
so in the exact sciences we must in each period take up the renewed struggle to present
as clearly as we can the underlying ideas of mathematics". A little farther he continues:
"Many cumbersome developments in the standard treatments of mechanics can be
simplified and better understood when formulated with modern conceptual tools, as in
the well-known case of the use of the 'universal' definition of tensor products of vector
spaces to simplify some of the notational excesses of tensor analysis as traditionally
used in relativity theory".

I was groping for a suitable rebuttal to these views when help can from an unexpected
source. In a review of a book On dynamical systems in biology [2], a biologist, Joel E. Cohen
wrote:

When somebody else has done the dirty tedious work of showing that a mathematically
formulated physical principle leads to predictions correct to a specified number of decimal

1 To gain an insight into the kind of thinking that often goes into making a physical discovery,
I strongly recommend Chapter 10 ("The Essential Nature of the Quantum Hypothesis") of M. J.
Klein's superb biography of Paul Ehrenfest (Paul Ehrenfest, North Holland Publishing Co.-—American
Elsevier Publishing Co., 1970). It concerns the discovery by Planck of his famous radiation law and
the reverberations it produced in the foundations of statistical physics. It is instructive to recall that it
was not any kind of logical necessity that was the motivating force behind the development of the
new ideas. In fact, to use a modern expression, logic was not in it. What kept the thing going, in spite
of it being a veritable morass of contradictions and obscurities, was a profound respect for experiment
and an infinite faith in the second law. Only after predictions of the new theory had been spectacularly
confirmed and verified did Poincarfe (and Ehrenfest independently and somewhat earlier) attempt
(in 1911 and 1912) a systematic and logical analysis of the foundations of the new theory. In vain,
as it turned out, for twenty-five years later quantum mechanics rendered most (though by no means
all!) of it obsolete.
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places in the boring world of Euclidean 3-space with Cartesian coordinates, theoreticians and
textbook writers can axiomatize, generalize and dazzle your eyes with the most coordinate-free
cosmically invariant representations you please.

This brief (and somewhat angry) paragraph contains the pragmatist's case against
some of the "games mathematicians like to play". In cruder language it amounts to
saying: don't dazzle me with this elegant stuff—tell me something I didn't know.

5. Still, it would be narrow-minded and unjust to discourage searches for new
formulations. No one could deny that Minkowski's formulation of the special theory
of relativity has been decisive in the development of this theory, and although most
of us (including myself) would not take "notational excesses of tensor analysis" as
seriously as Professor MacLane seems to take them, it is beyond dispute that Riemannian
geometry is the proper setting for Einstein's general theory. But one would find much
less agreement as to the value of the subtle and elegant axiomatization of thermodynamics
by Caratheodory, and one could cite examples of reformulations whose pertinence and
value is even more in doubt.

It is not quite easy to explain why "geometrization" of relativity theory (both special
and general) is among the most glorious applications of mathematics while Caratheodory's
reformulation is a bit of a "dehydrated elephant", but it must have something to do with
the distinction between facing up to problems which are, so to speak, God-given and
those which are only man-made.

If I understand Professor MacLane correctly, he would like us to keep reexamining
physics in the light of conceptual advances in mathematics. Without proper checks,
this would, in my opinion, constitute the broadest license for creation of "dehydrated
elephants". It would also add to a kind of self-delusion that one is contributing to a
subject while in reality all one is accomplishing is discovering that all the time one has
been speaking prose.

As a reliable check, I would propose testing formulations against some of the ques-
tions (preferably hitherto unanswered) which this or that field evolved over a period
of time. If a dent (even a small one!) can be made, the formulation has shown viability
and should be pursued. If, however, all that comes out is the same old stuff in a different
guise—-well, write it off as self-education, put it in a notebook and above all don't feel
compelled to publish it.

6. So much for the reflections. In my title I also promised examples, and I shall now
present one which will illustrate what I have in mind. It is taken from the field of statis-
tical mechanics which in recent years has been attracting quite a bit of attention from
mathematicians. Although I shall stick mainly to classical theory, let me begin by giving
the quantum-mechanical background of the problems to be discussed.

To explain the phenomenon of ferromagnetism Heisenberg proposed the following
model. Consider a three-dimensional lattice (crystal) and assume that the atom on each
site R acts as a little magnet. Let the Hamiltonian of the interaction between these
magnets be assumed to be of the form

Hint = - Z J(R - R')d(R)-d(R'),
R,R'

where

d(R) • c5(R') = *,(R)a,(R') + (R) <rv (R') + <rI(R)o-l(R/)
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and u, , cr„ , a, are the Pauli matrices. When associated with different sites, they are
assumed to commute, e.g. <ra.(R)o-„(R') = <r„(R')a-x (R), R 5^ R', while, of course, on the
same site they obey the familiar commutation relations.

If placed in a magnetic field in the z-direction, say, one has to add an external Hamil-
tonian of the form Hext = — a °"«(R)> where a measures the strength of the external
field.

The Hamiltonian is thus

H = Hint + H„t = - E ^(R - R')«J(R)-<i(R') - a £ <72(R)
R.R' R

and to have any hope of ferromagnetic behavior, one must assume that J(R) > 0.
The simplest non-trivial case is when J(R) = 0, except when R is one of the "unit"
vectors which generate the lattice (the case of nearest-neighbor interaction).

If the system as described above is in equilibrium with a heat bath of absolute
temperature T, then according to the rules of quantum statistical mechanics (which I
shall accept without question) the magnetization m is given by the formula

m -
Trace (£ <r,(R)) exp (-/3ff)j

Trace {exp (—/3H)}

where /3 = 1/kT, and k is the Boltzmann constant.
As defined, m still depends on the size of the lattice and one must first take the so-

called thermodynamic limit, i.e. the limit as the size of the lattice becomes infinite.
Assuming a cubic lattice of \/N X \/N X \/N = N points, the thermodynamic limit
amounts to letting N —» ®.

Set

m*(u3; 0) = lim m

where u = a$ = a/kT and it is m* that is of interest.
The problem is to prove that there exists a critical temperature Tc (or equivalently

a critical /3C) such that

lim m*(«; 0) = 0 /3 < /3C
co—0

and

lim m*(w; /3) 5^ 0 /S > /3C .
u—>0 +

In other words, we must prove that for sufficiently low temperatures there will be
(residual) magnetization even when the external field is removed (u —* 0).

7. Although the problem is roughly forty-five years old and has attracted a great
deal of attention it remains unsolved. Even to prove that m* is well-defined (i.e. that the
thermodynamic limit exists) is not easy, although it is also the least exciting part.

Physicists too sometimes trade realism for solubility, and the Heisenberg model has
been subjected to various simplifications. The most celebrated consists in replacing
d(R)-d(R') by <r2(R)o-l(R'), which removes all the difficulties connected with non-
commutativity. The resulting model is known as the Ising model, though it was ap-
parently first suggested by Lenz. The formula for m is now quite elementary (owing to
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the fact that cra(R) is a 2 X 2 matrix with eigenvalues +1 and —1), namely

E £ (£ m(R)) exp {/3 E ^(R - R')m(R)m(R') + E m(R)}
m = E exp {/3 ̂  J(R - R')m(R)m(R') + *> z. m(R)} ' '

where each ju(R) can assume the value ±1 and the summations on the farthest left are
over all the 2N assignments of plus ones and minus ones to different sites of the lattice.

Again m*(co; (i) is defined as the thermodynamic limit of m and the question is again
whether for sufficiently low temperatures one has residual magnetization. This time
the answer is in the affirmative even if the lattice is two-dimensional!

On the other hand, it was recently proved by Mermin and Wagner [3] that the
Heisenberg model for a two-dimensional lattice has no residual magnetization at any
temperature provided J(R) is sufficiently short-ranged, e.g. nearest-neighbor.

The proper understanding of the role of dimensionality of the lattice is clearly not
only of physical importance but also of considerable mathematical interest.

8. The question of the role of dimensionality appears also in a somewhat different
setting.

There is a classical version of the Heisenberg model in which at each lattice site we
have again a little magnet represented by an ordinary three-dimensional vector of unit
length. The interaction Hamiltonian is assumed to be of the form

Hint = - Z J(R - R')d(R)-d(R')
and the effect of the external magnetic field (again in the z-direction) is represented by
the Hamiltonian

t a ^ 1 (r,(R),

where a, (R) is simply the z-component of the vector <)(R). It should also be noted that
now the scalar product d(R) • d(R') is given by the standard formula

d(R)-d(R') = «ti(R)<ti(R') + <r,(R)<r,(R') + c, (R)o-, (R')

with <rx , <rv as well as <r, being ordinary (as opposed to Pauli matrices) numerical vector
components.

Magnetization is now defined (in accordance with the prescription from classical
statistical mechanics) as a ratio of multiple integrals:

/ • • • fjjCL <r«(R)) exp {p E R - R')<KR)-<s(R'J + co E °-,(R) 1 dO, ■ ■ ■ dO„
m =  

/ • • • / exp {/3 E J(R - R')<J(R) • <KR') + « E ^(R)} do. • • ■ dON

where each "single" integral is over the surface of a three-dimensional unit sphere,
dOi , dO2 , ■ ■ ■ being the surface elements of integration.

Again, as N —* <» we obtain m*(co; 0) (although I am not aware of anyone having
explicitly proved the existence of the limit) and the problem of residual magnetization
can again be posed.

For a two-dimensional lattice and for sufficiently short-ranged interactions, as
expressed by the convergence of the series E -^(R) |R|2 taken over the infinite lattice,
Mermin [4] showed that again there is no residual magnetization at any temperature.
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It is generally believed that for three-dimensional lattices residual magnetization is
present for sufficiently low temperatures, but nobody knows how to prove it.

It is this problem that I would like to offer as a test of whether a proposed reformula-
tion of classical statistical mechanics has been more than an exercise. If it throws some
non-trivial light on this problem I'll buy it and so will many others who have given
serious thought to this problem. If not—no sale; for the reformulation is but another
way to express one's ignorance.

9. Let me now suggest how some enlightenment may perhaps come.
In 1952 the late T. H. Berlin and I introduced a model which has become known as

the spherical model. It is a mutilation of the Ising-Lenz model which consists in replacing
the n(R)'s which can assume only values ±1 by continuous variables x(R) subject to
a global constraint

E *2(R) = N (9.1)
R

and replacing the sums by integrals over the sphere (9.1) (hence the "spherical" in the
name of the model) with uniform density.

It is an artificial model but it has two great virtues: it is exactly soluble, and for
short-ranged J(R) (e.g. nearest-neighbor) it behaves with respect to dimensionality
as do the Heisenberg models (classical and quantum-mechanical); i.e., it has no residual
magnetization at any temperature for two-dimensional lattices and it is residually
magnetized for sufficiently low temperatures for three-dimensional lattices.

The model proved to be a little more realistic than it had perhaps any right to be,
and there is a huge literature dealing with it. But it was a rather recent discovery of
Stanley [5] that may give the model a more fundamental status. What Stanley2 observed
was that if the classical three-dimensional "spins" d(R) which are unit three-dimensional
vectors are replaced by d-dimensional vectors of length d, then in the limit as N —> °°
(thermodynamic limit) and then d —» °°, one obtains the spherical model.

To be more precise, here is what one can actually prove. Let

Qjf'fa 0) = / ■ • • / exp {/3d £ J(R - R')d(R)-d(R') + wd £ <j(R)-k} dO, • • • dON

where each "single" integral is over the surface of a d-dimensional unit sphere and k is a
fixed unit vector; then

,iT.S5logei" *i™FlogC"'

with Q'x) denoting the partition function of the spherical model, i.e.

= L exp {p £ J(R - R')®(R)s(R') + a, £ x(R)} dO„ .

(dO„ is the surface element of the iV-dimensional sphere of radius \/N.)
It is very likely that also

lim co) = m%(/3;<o),

! Stanley's proof contained a doubtful point. A proof based on a different principle was recently-
supplied by Kae and Thompson (to appear).
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'i™ J™ h hlog- i™ h £log Q""'
but I have no proof and it will probably be rather delicate.

What is however much more important (and without doubt much more difficult)
is to prove that

is, for fixed u > 0, monotomically decreasing in d, or that at least

ai™s£iog«"''
indicating that the spherical model is the most reluctant to exhibit residual magneti-
zation.3

10. I would like to discuss briefly one more example which is meant to illustrate a
different point. It concerns the old problem of the distribution of the eigenvalues of the
Laplacian, and I thought that except for a number of interesting unsolved purely
mathematical problems, there was not much new that was likely to come out.

That I was mistaken in this view became evident only a few weeks ago when, with
Drs. Uhlenbeck and Putterman, I became involved in a discussion of an ideal Bose-
Einstein gas in a rotating bucket. Usually one simplifies one's life by taking a cylindrical
bucket which requires here and there the use of rather special properties of Bessel
functions. Well, Dr. Uhlenbeck proved to be more of a "pure" mathematician than I
because he rightly felt that the use of special properties of Bessel functions should not be
required, and he therefore suggested that we consider a general solid of revolution rather
than just a cylinder. He then proposed that one should try to generalize the classical
theorem of Weyl by considering not just the distribution of energies but, in a sense,
the joint distribution of energies and angular momenta. Once the problem is posed,
the solution becomes almost immediate.

Let the solid of revolution be obtained by revolving the curve r = j(z) > 0, 0 < z < L,
about the 2-axis, and consider the eigenvalue problem

V2C/ + EU = 0,

with U = 0 on the boundary of the solid of revolution.
The normalized eigenfunctions are of the form

= (exp (ild)/(2ir)1/2)ui ,„(r, z), I = 0, ±1, ±2, ■ • •

3 However, one must be warned that this statement can only be true if the interaction J(R, It')
is not too anisotropic. As observed by Lieb and Thompson [6], a one-dimensional spherical model
with Jn = J, J a = 0, (», k) ^ (1, 2), will exhibit residual magnetization at sufficiently low temper-
atures, while for no d (including d = 1, in which case the model is to be interpreted as the Ising-Lenz
model) will this phenomenon occur. On the other hand, for such a pathological interaction, Stanley's
theorem is not valid, and there are no grounds for comparing the d-dimensional models with the spherical
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(there is a trivial degeneracy) where
r>L r*f(z)

dz r «?lP(r, z) dr = 1.
J 0 ^0

We now consider the diffusion equation

dP/dt = V2P

with the surface of the solid of revolution an absorbing barrier, and we have for the
Green's function P(r | r'; t) the familiar formula

P(r | rf) = X exp (~tE,JU t ,V(?)U t ,v{r')

= (1/2tt) X] exp (—tE,,v) exp {t'Z(0 — 6')}u,i,v(r, z)ui,v(r',z').

By the "principle of not feeling the boundary" [7] we have for small t

{l/2ir) Yj exp (— tEl-p) exp {il(6 - 6') K.ptf, z')

1 Ik - r-112'
((47rZ)1/2)3 exp I " 41

r2 + r'2\ j (z — z')2\ jrr'= (4 TTty3'2 exp ^ —£f-J exp exp ^ cos (0 - Of,

and now I take a leap by assuming that the above asymptotic relation holds even after
differentiating it any number of times with respect to (6 — 6'). In other words, I assume
that also

7T 2Z exp (— tEiiP)(il)m exp {il(d - 6')\u,,„(r, z)u,,r(r', z')2t

~ (4x0"3/2 exp exp d(g ~ ey exp {g- cos (0 - 0')}

for m — 1, 2, 3, • • • and that moreover I can put r = r' (i.e., d = d',r = r', z = z') and
integrate over the bucket.

Recalling that t is small, all this leads, for m = 2k (for odd m the answer is 0), to
the formula

,-(* + S/2)£ exp <-«,,)!" ~ jjJp <2„) [ to J"" r"" dr I

where on the left I runs from — °° to °o.
While I do not have a proof, I have also no doubt that the asymptotic formula is

correct, and I shall proceed on this assumption.
Let

Nw(\) = £ P;

then it follows by an application of a Tauberian theorem that

Nm(\) ~ (C(k)/v{k + |))xl+3/2, X - «,

where
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c®-f^.drrT-if.lf"""®d*-2 k\ (4tt)3/2 k +

Let now for a fixed I

tf.OO = Z 1,
Ep,i<\

so that

tf'(x) = E z2*#.(x) = 2 E z2'at,(x).
Z i>0

The asymptotic formula for Na)(X) is now rewritten in the equivalent form:

1^(1 VCi+1) 1 if C(fc)
!™ X3/2 £ Wxi f/X ^i(X) - 2 ik + I)

and the crux of the matter is to notice that

1
2

Fv + 2/
It now follows by a standard argument that

£? £ ~JL, m - i s Hit -*■ (W1)
where the double integral is over the region in the x, z-plane defined by the inequalities
0 < a < xj{z) < /S, 0 < X < 1, 0 < z < L.

This is one of the forms of the desired extension of Weyl's theorem, and it follows
from it that

lim r4 £ N,(\)
X—»co A O<a<l/V\<0 &/ A

determines uniquely not quite /(z) itself but the distribution of its values, i.e., the function

<r,(u) = n{f(z) < u, 0 < z < L},

where jt{ } denotes the Lebesgue measure of the set in braces.
However, as is well known, the eigenvalues allow one to determine the surface area

of the solid and, in particular, its lateral surface area*

21 />>(' + {%)')"'*■

It is clear now that if <£(z) is a piecewise-differentiable measure-preserving trans-
formation of the interval (0, L) onto itself, then the solids of revolution generated by /(z)
and by /(0(z)) will have different lateral surface areas unless 4>{z) = z. In other words,
if two solids of revolution have the same eigenvalues, they are congruent.

* Added in proof: This is unfortunately not so and I must assume that I also know the area of the
circular bases.
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Now, the result (10.1) and what it implies is without doubt of interest apart from
the particular application which led to it. It belongs to "pure" mathematics just as
much as it belongs to "applied". What struck me was that in the vast literature generated
by Weyl's theorem there seems to be no hint that anyone has ever considered the exten-
sion which I discussed.

Solids of revolution are, of course, rather special, and there would be no a priori
reason to expect that anything of "general" interest would be discovered by studying
their eigenvalues. It is only because the problem of rotating Bose-Einstein fluids is of
great physical interest (because of helium) that containers which are solids of revolution
become worthy of study. And, as happens over and over again when one applies mathe-
matics to genuine problems, one reaps unexpected harvests.

11. A final reflection. The models with d-dimensional spins as well as the spherical
model have all the earmarks of being "dehydrated elephants", and it may turn out that
indeed they are. In inventing and discussing such models, we are applying mathematics
in a way quite different from the more traditional ones about which we heard so much
during this conference and which is also illustrated by the example of Sec. 10. But what
gives these models a hold on life—tenuous though this hold may be—-is that in spite
of admitted lack of realism, they are firmly rooted in reality, and they were conceived to
deal with real questions. Without such rooting and without real questions to guide us,
we may well find ourselves fighting windmills and triumphantly emerging with pyrrhic
victories.

Appendix. In this appendix I reproduce Mermin's proof [4] that m* — 0 for all
temperatures for a two-dimensional square lattice and planar "spins" (d = 2). I do it
to show that in the right hands, Schwarz's inequality and integration by parts are still
among the most powerful tools of analysis.

In the case under consideration we have

H = - £ J(|R - R'l) cos (0(R) - 0(R')) - a £ cos 6(.R), (A.tt
R.R' R

and we introduce two auxiliary expressions

A = exp ( —tk-R) sin 0(R) (A.2)
R

and

B = Z exp (-i\-R)(dH/dO(R)). (A.3)
R

We shall denote by ( ) averages with respect to the canonical weight exp (—/S#); i.e.,
for a function F of the angles 0(R) (0 < 0(R) < 2ir), we have

f f1 F exp {—PH] n <W(R)
<*> = V V 5  (A.4)

/ ••• / exp { —/Si/} II dd(R)
Jo Jo R

By Schwarz's inequality we have

{AA*) > \{AB*)\2/{BB*). (A.5)
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Now,
3 TT >\TT

BB-- 2exp|-,l..(R-R')|am^,

and since

^exp l-fl/fl - i-m,

we get, by integration by parts,

<B£*>" * (j.exp "MR - R,)l StPfj)

= £ E, /(|R - R'|)(l - exp {tk-(R - R')})(cos (fl(R) - 0(R'))> -1 £ (cos 6(R)>,

where we have used the obvious identity

£ J(|R - R'lXcos (0(R) - 0(R')> = 0.
R.R'

Since (BB*) is clearly real and since

E (cos 0(R)) = iVm,
R

where m is the magnetization, we have

(BB*) = J(|R - R'|)[l - cos k • (R - R')](cos (0(R) - 0(R'))> - aNm

and hence

^ |k|2 X J(|R - R'|) |R - R'|2 + |a| TV !to|
2$ R,R' ft

Since clearly

£ J(|R - R'|) |R - Rf < N £ ./(fl)#2,

we have finally

(BB*) < {a ]k|2 + |a| |w|}, (A.6)

where

« = i E JWR2- (A-7)

Furthermore,
317

A*B = E exp {tk-(R, R')} sin e(R) ,

and in integrating A *B exp { —$H] we see that only terms with R = R' survive. Inte-
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gration by parts finally gives

|(A*£)| = ^ N \m\ (A.8)

and, combining this with (A. 6) and (A. 5), we obtain

<^*> S « W + M W (A'9)
Since

(AA*) = X] (sin 0(R) s^11 0(R')) exP {tk-(R — R')},
R,R'

we write (A.9) in the equivalent form

12 (sin 0(R) sin 0(R')> exp {zk-(R - R')} > ~ |a| \m\ (A'10)

The inequality (A. 10) is valid for every two-dimensional vector k and the idea is to sum
both sides of (A. 10) over an appropriately chosen set of k's.

For the sake of simplicity and definiteness, let

R = ilx + ml3, Ri = I'li + m' 12

with li and 12 mutually orthogonal unit vectors and I, m, I', m' integers. Let also ./V be a
perfect square and set

k = (2,r/VA0(pli + qh), (A.ll)
where p, q are integers running from 0 to V7V — 1 (VN is assumed to be an integer).

With k running through the set (A.ll) we have

£ exp {tk-(R - R')| = N, R = R'
k

= 0, R ^ R'
and hence

X) (sin2 0(R)> > m2 — ce |k| + [aI \m\

Since (sin3 0(R)) < 1, we have

1 > m2 Yr ZN k a |k|2 + |a| \rn\

which in the limit N —> ® becomes
*2 »1

1

Since

>-§,HI. dx dy
+ if) + M M*

f f dx dy/{x2 + y2) = °° (A.12)
J 0 ^0

it follows at once that lima_0 m* = 0 and the proof is complete.
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