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Abstract. Estimating the probability of failure due to a rare and abnormal situation may face the need to deal with 
information which is incomplete and involves uncertainties. Two sources of information are applied to this estimating: 
a small-size statistical sample and a fragility function. This function is used to express aleatory and epistemic uncer-
tainties related to the potential failure. The failure probability is estimated by carrying out Bayesian inference. Baye-
sian prior and posterior distributions are applied to express the epistemic uncertainty in the failure probability. The 
central problem of probability estimating is formulated as Bayesian updating with imprecise data. Such data are 
represented by a set of continuous epistemic probability distributions of fragility function values related to elements of 
the small-size sample. The Bayesian updating with the set of continuous distributions is carried out by discretising 
these distributions. The discretisation yields a new sample used for updating. This sample consists of fragility function 
values which have equal epistemic weights. Several aspects of numerical implementation of the discretisation and 
subsequent updating are discussed and illustrated by two examples. 
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1. Introduction 

Abnormal situations occurring during exploitation 
of technical objects are among the main reasons for 
failures of these objects. As a rule, an abnormal situa-
tion is a highly random event of short duration which 
can be caused (triggered off) by component failure, 
human error, man-made accident, extreme natural 
phenomenon. Abnormal situations are a natural sub-
ject of the quantitative risk assessment (QRA) [1-5]. 
QRA applies Bayesian reasoning to a systematic quan-
tification of risk posed by these situations [6, 7]. A 
probability of failure of a technical object subjected to 
an abnormal situation can be component of such risk 
[8-10]. 

One of the main approaches to estimating the 
probability of failure due to an abnormal situation is a 
decomposition of the problem into two subproblems: 
(i) predicting characteristics of abnormal situation and 
(ii) modelling the fragility of object subjected to this 
situation. The fragility is quantified in terms of condi-
tional failure probabilities expressed as a fragility 
function. Such a decomposition is widely used, for 
instance, in the earthquake risk assessment [11-15] 
and extreme wind risk assessment [16, 17]. A solution 
of the subproblems (i) and (ii) may face the need to 

deal with sparse and uncertain information related to 
both abnormal situation and potential failure due to 
this situation. 

Methods proposed for estimating probabilities 
using sparse and uncertain information are numerous. 
These methods are based either on fuzzy logic, prob-
ability theory, possibility theory, or evidence theory 
and their general purpose is modelling uncertainties 
[11, 13, 18-23]. In line with QRA, these uncertainties 
are divided into aleatory (irreducible) one and episte-
mic (reducible) one (e.g. [6, 7]). Although a compara-
tive state-of-art review of the aforementioned methods 
is not available, one can state that some of them can 
be used for modelling uncertainty in the fragility to an 
abnormal situation. In case where this modelling is 
done in the Bayesian format, the failure probability 
can be estimated by carrying out Bayesian inference 
which takes the mathematical form of Bayesian up-
dating with imprecise (fuzzy) data [5, 8, 9, 24]. Such 
data is generated in the course of estimation and repre-
sented by continuous epistemic probability distribu-
tions of fragility function values. These distributions 
express the epistemic uncertainty inherent in the fragi-
lity function. 

A relatively small number of approaches were pro-
posed to solve the problem of Bayesian updating with 
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imprecise data [25-28]. In the case where the data 
uncertainty are expressed by epistemic probability 
distributions, the only practicable approaches seem to 
be either averaging out data uncertainties (“data ave-
raging approach”) or averaging conventional Bayesian 
posterior distributions (“posterior averaging ap-
proach”) (see articles [25] and [28] and the references 
therein). By their nature, both approaches are heuristic 
ad hoc procedures. 

The data averaging is a trivial procedure which 
replaces the epistemic distributions of data uncertainty 
by mean values of these distributions. Unfortunately, 
most of the information expressed by the epistemic 
distributions is lost due to such averaging (can not be 
further propagated). The posterior averaging is a more 
sophisticated approach. It is based on the use of 
discrete distributions quantifying epistemic uncertain-
ty in individual data points. This data must have a re-
latively simple form of a single uncertain datum, for 
instance, number of failures [25, 28]. The latter ap-
proach is not directly applicable to the case where the 
data uncertainty is modelled by continuous distribu-
tions. Such a case is considered in the present paper. 

A discretisation of continuous distributions of data 
uncertainty could be a help in applying the posterior 
averaging approach. This paper shows that a special 
kind of discretisation allows to dispense with the 
posterior averaging and to create a set of data which 
can directly enter into Bayes theorem through a 
likelihood function. This discretisation is applicable to 
the aforementioned epistemic distributions of fragility 
function values. A Bayesian updating with the data 
generated by discretising these distributions will yield 
a posterior distribution expressing the epistemic 
uncertainty in the failure probability under estimation. 

2. Problem and background information 

Let the random event  F denote a potential failure 
of a technical object due to an abnormal situation 
which is represented by the random event AS. The 
conditional probability of F can be expressed in the 
form of a mean value [5, 8, 9, 24]: 

))|(()(d)|()|(
all

Yyy Y
y

Y FFASF PEFPP ==≡ ∫μ , (1) 

where Y is the random vector of the characteristics 
which represent the abnormal situation; y and FY(y) 
are the value of Y and its joint distribution function 
(d.f.), respectively; )|( yFP  is the conditional prob-
ability of F given y; )(⋅YE  denotes the mean value 
with respect to Y; and )|( YFP  denotes a function of 
the random vector Y. )|( yFP  relates the particular 
value y to the probability of F and is called the 
fragility function (f.f.). Its arguments y are called the 
demand variables (e.g. [11, 13]). 

In terms of QRA, the function )|( yFP  expresses 
the aleatory uncertainty in occurrence of F given an 

abnormal situation with characteristics y. However, 
values of )|( yFP  can be uncertain in the epistemic 
sense. Several different approaches were proposed to 
model the epistemic uncertainty in )|( yFP  [11-13, 
16, 29]. A systematic review of these approaches is 
not available at present. However, the most consistent 
approach seems to be developing )|( yFP  by means 
of Bayesian parameter estimation [11, 13]. The 
epistemic uncertainty in )|( yFP  is expressed by 
means of the Bayesian limit state function g(z, y | θ). In 
this function, z is the vector describing the technical 
object exposed to an abnormal situation and θ denotes 
the vector of model parameters. With a fixed (crisp) θ, 

)|( yFP  expresses aleatory uncertainty only and is 
defined as 

F(y) ≡ )|( yFP  = P(g(Z, y | θ) ≤ 0), (2) 

where Z is the random vector quantifying the aleatory 
uncertainty in z. 

A possible epistemic uncertainty in θ is modelled 
by a random vector Θ with a joint probability density 
function (p.d.f.) π(θ) and joint d.f. FΘ(θ). In the 
Bayesian framework, the p.d.f. π(θ) is treated as a 
prior distribution which can be updated by means of 
the standard Bayesian procedure [11, 13]. With the 
random Θ, the f.f. )|( yFP  for a given y becomes an 
epistemic random variable (r.v.). Such an f.f. will 
quantify both aleatory and epistemic uncertainty: 

F(y | Θ) ≡ P(F | y,Θ) = P(g(Z, y | Θ) ≤ 0). (3) 

For brevity sake, the functions F(y) and F(y | Θ) 
will be called the aleatory f.f. and the epistemic f.f., 
respectively. The following consideration seeks to 
answer the question, how to estimate )|( ASFP  by ap-
plying two sources of information about the abnormal 
situation under analysis: (a) the aleatory and epistemic 
f.f.s F(y) and F(y | Θ); (b) a small-size statistical 
sample y consisting of experimental observations of y: 

y  = }, ...,, ...,,{ 21 nj yyyy , (4) 

where yj is the value of y recorded in the jth 
experiment. The case is considered where the size n of 
y is too small to fit the d.f. FY(y) in the standard 
statistical way. The case of the small n is considered to 
be realistic one because experiments imitating an 
abnormal situation can be too expensive to obtain a 
large-size y. 

3. Estimating the failure probability with the 
aleatory fragility function 

3.1. Developing the prior density 

The mean value  μ defined by Eq (1) is amenable 
to Bayesian inference. The prior π(μ) of μ can be 
specified by utilizing knowledge about the abnormal 
situation under study [9, 24]. Such knowledge, more 
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or less relevant to the situation, can often be represen-
ted by the mathematical model 

y = ν(x | ξ), (5) 
where x is the vector which represents information 
allowing to predict the characteristics y; ξ is the vector 
of parameters of the vector function ν(⋅) which are 
uncertain in the epistemic sense. Information repre-
sented by x may be uncertain in the aleatory sense and 
this uncertainty can be modelled by a random vector X 
with an aleatory d.f. FX(x). Epistemic uncertainties 
related to ξ can be expressed by introducing a random 
vector Ξ with a d.f. FΞ(ξ). 

Replacing Y in the function )|( YFP  by the ran-
dom function ν(X | Ξ) and averaging out the aleatory 
uncertainty expressed by X yield the epistemic r.v. 

∫==
x

XX xXX
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A value of M is the failure probability at given ξ. A 
density of M can be used as the prior π(μ) quantifying 
the epistemic uncertainty in )|( ASFP  [9, 24]. 

3.2. New data 

The potential abnormal situation may be unique by 
a large margin and so may not fit fully in the prior 
knowledge expressed by the model ν(⋅). The source of 
the partial irrelevance may lie in structure of ν(⋅) 
and/or data used to fit the d.f. FX(x) and estimate the 
parameters ξ. 

The new data necessary for estimating μ can be 
derived from the sample y. This sample can be used 
for estimating μ if it possesses the property of statis-
tical representativeness and is relevant to the abnormal 
situation under analysis. 

Given the sample y and the aleatory f.f. F(y), one 
can simplify estimating μ by introducing a fictitious 
sample 

p = {p1, p2, … , pj, …, pn}. (7) 

The element pj of p is equal to F(yj). The intro-
duction of p allows to simplify the estimation problem 
by switching from a multi-dimensional analysis to a 
one-dimensional case. 

3.3. Updating procedure 

The usual Bayesian posterior π(μ | data) is propor-
tional to the product π(μ)×L(data | μ), where 
L(data | μ) is the likelihood function and “data” is 
represented by the sample p. The posterior π(μ | data) 
can be replaced by an estimated one [8, 9, 24]: 

data)|(μπ̂  ∝ )|(data)( μμπ BL̂ , (8) 

where )|(data μBL̂  is an estimate of L(data | μ) based 
on bootstrap estimation of the density of the pivotal 

quantity Mn
~ˆ −μ , where nμ̂  is the mean value of the 

sample p. 
The estimate )|(data μBL̂  is calculated by the fol-

lowing expression [30]: 
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where B is the number of random bootstrap samples of 
the size n generated from the empirical d.f. nF̂  of p; 

bnμ′ˆ  is the mean value of the bth bootstrap sample; 

κ(⋅) is the kernel function (e.g., density of standard 
normal distribution); w is a bandwidth (window width, 
smoothing parameter). 

The resulting data)|(μπ̂  is obtained by 

)|()()()|( μμμπμμμπ nBnn LC ˆˆˆˆˆ = , (10) 

where )( nC μ̂  is the normalizing constant. 
Computational implementation of the bootstrap-

based updating procedure is relatively simple. The 
estimates )|( μμnBL ˆˆ  and )|( nμμπ ˆˆ  can be computed 
almost automatically (see, e.g., the book [31] for 
details). 

3.4.  First example: the use of aleatory fragility 
function 

3.4.1. Prior knowledge 
The failure probability )|( ASFP  is to be estimated 

for an abnormal situation which can be caused by an 
accidental explosion within a 150×200 m2 zone of a 
plant processing industrial explosives (Figure 1). The 
failure F consists in a loss of containment of a steel 
tank built outside the zone due to action of the blast 
wave generated by the explosion [32-34]. The prior 
knowledge is expressed by the model 
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where y is the peak positive overpressure of the blast 
wave reflected by the tank; r(x1, x2) is the standoff of 
the explosion (Figure 1); )(⋅′ν  is the deterministic 
function used to transform the incident peak overpres-
sure into the reflected one [35]; ξ is the dimensionless 
factor used to adjust the standard trinitrotoluol model 

),( 21 xxψ  to the explosive under analysis. 
The aleatory uncertainty is related to arguments of 

ν(x | ξ) and expressed by the random vector 
X = (X1, X2, X3)T. Its components are the normally 
distributed mass of explosive, X1~N(30 kg,  3 kg), and 
the uniformly distributed coordinates of explosion 
centre, X2~U(0 m,  150 m) and X3~U(0 m, 200 m). The 
epistemic uncertainty is introduced into the prior 
knowledge by assuming that the adjustment factor ξ is 
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uncertain in the epistemic sense. This uncertainty is 
modelled by a lognormal r.v. Ξ ~ L(0.17975, 0.11957) 
(with the mode of 1.17 and the coefficient of variation 
equal to 0.15). 

x2∈[0 m, 200 m]

x 3∈
[0

 m
, 1

50
 m

]

r(x2, x3)

x1

40 m

H
H/3

100 m
r(x2, x3)

 

Figure 1. The site on which the abnormal situation  
may occur 

The vulnerability of the tank to the explosion is ex-
pressed by the aleatory f.f. F(y | θ) represented by the 
normal d.f. with fixed parameters θ = (θ1, θ2)T = 
(7 kPa, 0.7875 (kPa)2)T. 

3.4.2. Prior density of the failure probability 
The prior density π(μ) can be specified by fitting it 

to the sample {μ1, μ2, … , μl, … , 
lnμ }. The sample 

element μl is an estimate of the mean value 
))|)|((( θν lFE ξXX  at the given value ξl of the 

epistemic r.v. Ξ (see Eq (6)). To generate the sample of 
μls, the values ξl were sampled by means of a sto-
chastic (Monte Carlo) simulation from 
L(0.17975, 0.11957). 

The sample size nl was chosen to be 1000. A log-
normal p.d.f. π(μ | –2.71691, 0.519298) was fitted to 
the sample of μls as the prior density expressing the 
epistemic uncertainty in )|( ASFP  (Figure 2). The 
goodness of fit of the density π(μ) shown in Figure 2 
is, strictly speaking, low. However, the ideal fit is not 
an end in itself. The density π(μ) merely quantifies the 
initial guess at )|( ASFP . Therefore π(μ) can be sub-
jective to some extent (not fit ideally the simulated 
sample of μls). 
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Figure 2. Histogram of the sample {μ1, μ2, … , μ1000}  

and the modified lognormal prior π(μ | –
2.71691, 0.519298)×20% fitted to this sample 

3.4.3. New information used for updating 
The model ν(x | ξ) is only partially relevant to the 

situation shown in Figure 1. It is valid for a distant 
free-field explosion on the ground which forms a 
horizontal plane. However, the tank is surrounded by a 
circular protective soil embankment. This will signifi-
cantly influence the blast wave and reduce the ref-
lected overpressure y. Thus the model ν(x | ξ) is suffi-
cient only to specify the prior density π(μ). This 
should be updated using new data y. 

The new data y were obtained from a series of nine 
experiments which investigated the interaction of blast 
wave and circular embankment (n = 9). Elements of 
the sample y are given in Table 1. This sample was 
transformed into the sample of f.f. values, p, by 
applying the aleatory f.f. F(y | θ). 

Table 1. New data y (experimental records of the overpres-
sure yj) and corresponding sample of f.f. values, p 

j Charge 
(kg) 

Standoff 
(m) yj (kPa)  )|( θjj yFp =  

Samples obtained in experiment* Fictitious sample 
1 27.0 117 3.767 1.3450089×10–4 
2 26.9 142 4.276 1.0697380×10–3 
3 28.2 132 4.160 6.8615251×10–4 
4 31.5 125 3.944 2.8665579×10–4 
5 29.3 92 4.916 9.4388105×10–3 
6 33.3 50 2.920 2.1316347×10–6 
7 30.0 119 4.791 6.4023419×10–3 
8 34.6 86 4.032 4.1149950×10–4 
9 33.0 39 2.294 5.6915293×10–8 
* Data obtained by the author of this paper 

3.4.4. Posterior of failure probability 
The number of bootstrap replications, B, necessary 

to generate the sample { 1nμ′ˆ , 2nμ′ˆ , … , Bnμ′ˆ } was 
taken to be equal to 1000. The choice of B was based 
on the rules of thumb suggested in the books [36, 
p. 52] and [37, p. 21]. The estimate of the likelihood 
function, )|( 91000 μμ̂L̂ , was obtained by applying the 
Gaussian kernel function κ(.) (e.g. [37, p. 168]). 
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Figure 3. Prior density π(μ) and the likelihood function 
estimate )|( 91000 μμ̂L̂  and posterior density estimate 

)|( 9μμπ ˆˆ  
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The approximation of the posterior density 
)|( 9μμπ ˆˆ  was computed at the bandwidth w = 0.1. 

This value was chosen using the rule w  ∝ B–1/3 pro-
posed by Davison and Henley [37, p. 227]. The 
approximation )|( 9μμπ ˆˆ  was obtained by a numerical 
calculation. The normalizing constant )( 9μ̂C  found 
by a numerical integration is equal to 2.99. The den-
sities π(μ) and )|( 9μμπ ˆˆ  as well as the estimate 

)|( 91000 μμ̂L̂  are shown in Figure 3. 

4. Estimating the failure probability with the 
fragility function involving epistemic 
uncertainty 

4.1. Prior density 

The estimation of μ can be extended for the case of 
the epistemic f.f. F(y | Θ). As in the case of the 
aleatory f.f. F(y), one can introduce the epistemic r.v. 
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Figure 4. An approach to a discretisation of the continuous distribution of the epistemic random variable Pj 

A value of 'M  is the failure probability correspon-
ding to given values ξ and θ of Ξ and Θ. A density of 

'M  can be applied as a natural prior π(μ) of μ [24]. 

4.2.Sample of new data 

In case of the epistemic f.f. F(y | Θ), an incorpora-
tion of the new data y into updating π(μ) becomes 
non-trivial. The element yj of y generates an epistemic 
r.v. 

)|( Θjj FP y= , (13) 

which can be treated as imprecise observation with its 
own p.d.f. fj(p) and d.f. Fj(p) (Figure 4a,b). 
Consequently, the epistemic f.f. F(y | Θ) requires to 
update π(μ) using a set of n imprecise “observations” 

} ,... , ,...,,{ 21 nj PPPP . 

An updating of the prior π(μ) with the information 
expressed by the r.v.s Pj is a nontrivial problem. The 
posterior averaging approach mentioned in Introduc-
tion is not directly applicable to the present case. This 
approach was developed for a discrete distribution of a 
single uncertain datum [25, 28]. In principle, the 
posterior averaging could be applied by discretising 
the distributions of Pj in the traditional way. However, 
these distributions can be discretised and the prior 
π(μ) updated without using the posterior averaging. 
The heuristic principle of this discretisation is that it 
should yield m values pjk of Pj and these values should 
have equal epistemic weights wk = 1/m (k = 1, 2, …, 
m). The equal weights wk assure that none of pjks will 

be preferred to others. The equal wks is an analogy 
with the equal attitude towards elements of a sample 
collected by following a standard probability sampling 
scheme (e.g. [38, p. 106]). 

The suggested principle of the discretisation is 
illustrated in Figure 4b,c. The values pjk can be calcu-
lated by 

1))/((1 += − mkFp jjk  (k = 1, 2, … , m),  (14) 

where )(1 ⋅−
jF  is the inverse d.f. of Pj. The non-unifor-

mly arranged values pjk can be interpreted as ones of a 
r.v. with the probability masses wk equal to 1/(m+1) 
(Figure 4c). The discretisation leads to a loss of the 
upper tail area 1 – Fj(pjm) (Figure 4a), and so wks do 
not strictly satisfy the condition ∑ =k kw 1 . However, 
this discrepancy will decrease when the number m 
increases. 

After the transformation (14) is applied to all n 
elements of the sample y, a new sample consisting of 
n × m elements is obtained: 

p = {(pjk, k = 1, 2, … , m), j = 1, 2, … , n}. (15) 

When the same number m is applied to discretise 
each Pj, all elements of p will have equal epistemic 
weights approximately equal to 1/m. Then the sample 
p defined by Eq (15) can be applied in place of the 
sample (7) to updating the prior π(μ). 
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4.3. Numerical implementation and recipes 

The discretisation of the continuous probability 
distribution of Pj distorts to a degree the information 
expressed by this distribution. In addition, the discreti-
sation raises the question about the number m of the 
discrete values pjk related to a specific yj. One can 
expect that the larger is m the closer is the distribution 
of the probabilities pjk (k = 1, 2, … , m) to the dis-
tribution of Pj (e. g., the closer is the mean jkp  of the 
values pjk to the mean of Pj). However, the excessively 
large m will lead to an excessively large size n × m of 
the sample p. This in turn can influence the results of 
the Bayesian updating of the prior density π(μ). 

At present, one can say that the number m can be 
chosen adaptively. Criteria for the choice of m can be 
based on an interpretation of the quantities pjk (k = 1, 
2, …, m) as a statistical sample which can be denoted 
by 

pj = {pjk, k = 1, 2, … , m}. (16) 

These criteria can be derived by comparing the 
empirical distribution of pj to the distribution of Pj. As 
an illustration, let us assume three distributions of Pj 
having the same mean and different degrees of 
skewness (Table 2). Each of them was discretised and 
four samples pj were created using the values of m = 
10, 20, 50, and 100. Descriptive measures of pj are 
given in Cols. 2 to 4 of Table 3. It follows from this 
table that the difference between the mean values jp  
of pj and the distribution mean EPj = 0.05 increases 
with the increase of the distribution skewness  αPj. 
The standard deviation spj and skewness apj of pj is 
smaller than the corresponding values of the probabi-
lity distributions σPj and αPj (Tables 2 and 3). This, 
probably, is due to the loss of the upper tail area of the 
distribution of Pj (Figure 4a). 

Table 2. Three examples of the continuous probability distribution of the epistemic random variable Pj 

Distribution type Mean EPj St. dev.  σPj Parameter μ Parameter σ Skewness   αPj 
Normal 0.05 0.03 0.05 0.03 0 
Lognormal 0.05 0.03 –3.149475 0.554513 2.02* 
Lognormal 0.05 0.05 –3.342306 0.8325546 4.0* 
**Calculated by the formula αPj = (exp{σ2}+2)( exp{σ2}–1)–1/2 

Table 3. Descriptive measures of the initial sample pj and the adjusted sample jp′  resulting from the discretisation of three prob-
ability of the epistemic random variable Pj at different values of m 

 Characteristics of the initial sample pj Characteristics of the initial sample  jp′  

m Mean jp  St. dv. jsp  Skew. jap  1jp′  Mean jp′  St. dv. jsp′  Skew. jap′  
1 2 3 4 5 6 7 8 

Case 1: Pj ~N(0.05, 0.032),  jp′  obtained by means of the transformation (17) 

10 0.05 0.02493 —(1) 0.001804 0.05 0.03 —(1) 
20 0.05 0.02674 — -0.006160 0.05 0.03 — 
50 0.05 0.02827 — -0.015642 0.05 0.03 — 
100 0.05 0.02896 — -0.022404 0.05 0.03 — 

Case 2: Pj ~L(–3.149475, 0.554513), jp′  obtained by means of the transformation (17) 

10 0.04711 0.02162 0.814 0.013005 0.05 0.03 0.814 
20 0.04807 0.02395 0.986 0.011080 0.05 0.03 0.986 
50 0.04894 0.02625 1.211 0.009687 0.05 0.03 1.211 
100 0.04935 0.02747 1.369 0.008960 0.05 0.03 1.369 

Case 3: Pj ~L(–3.342306, 0.8325546), jp′  obtained by means of the transformation (17) 

10 0.04356 0.02984 1.185 -0.003506 0.05 0.05 1.185 
20 0.04557 0.03435 1.451 -0.003497 0.05 0.05 1.451 
50 0.04746 0.03930 1.824 -0.002294 0.05 0.05 1.824 
100 0.04839 0.04220 2.109 -0.001304 0.05 0.05 2.109 

Case 4: Pj ~L(–3.342306, 0.8325546),  jp′  obtained by means of the transformation (19)(2 … 5) 

10 0.04356 0.02984 1.185 0.011633 0.05019(2) 0.03929 1.431 
20 0.04557 0.03435 1.451 0.008815 0.05019(3) 0.04164 1.675 
50 0.04746 0.03930 1.824 0.006352 0.05000(4) 0.04388 2.005 
100 0.04839 0.04220 2.109 0.005081 0.05015(5) 0.04567 2.275 
(1) Negligibly small value not exceeding 1×10–15 
(2) Δj = 0.29, (3) Δj = 0.22, (4) Δj = 0.14, (5) Δj = 0.11 
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Table 4. Results of the application of the goodness-of-fit tests to the sample jp′  obtained by discretising the lognormal distribu-
tion L(– 3.149475, 0.554513) 
m K-S dmax p-value of dmax Chi-square p-value of chi-square 
10 0.0826 1.0 too few values too few values 
20 0.0498 1.0 ″ ″ 
50 0.0259 1.0 0.0867 0.958 
100 0.0158 1.0 0.1649 0.921 

 
The deviation of the descriptive measures of pj 

from the corresponding theoretical values can be eli-
minated or decreased by transforming pj. For instance, 
a simple linear transformation of the sample pj will not 
change the type of distribution of pj, namely, 

jjjkjjjk EPpsPp +−=′ ))(/( ppσ . (17) 

Eq (17) yields an adjusted sample 

},...1,2, ,{ kkp jkj =′=′p , (18) 

with the mean value and standard deviation precisely 
equal to the corresponding characteristics of Pj (Cols. 
6 and 7, Table 3). At the same time, the transformation 
(17) leaves the skewness of pj unchanged (Cols. 4 and 
7, Table 3). 

The transformation (17) is applicable to both 
symmetrical and skewed distributions. However, it can 
produce negative values of jkp′ , especially, in case of 
small probabilities (e.g., Cases 1 and 3, Table 3). As 
probability is limited by the interval [0, 1], Eq (17) is 
applicable only to the case where 01 >′jp  (Case 2, 
Table 3). 

The sample pj can be adjusted to the distribution of 
Pj by applying the transformation 

))/(1( 11 jjjkjjkjk ppppp −+=′ Δ , (19) 

where Δj is the adjustment factor, the value of which 
can be chosen adaptively. The transformation (19), 
strictly speaking, is non-linear; however, the departure 
from linearity is not large at small values of Δj. The 
transformation (19) makes the mean value jp′  of the 

adjusted sample jp′  virtually equal to the distribution 
mean EPj (Case 4, Col. 6, Table 3). At the same time, 
it makes standard jsp′  and skewness jap′  of jp′  

closer to the respective values σPj and αPj, especially 
in case of small values of m (Case 4, Cols. 7 and 8 in 
Table 3). 

The minimum value of m can be chosen by 
applying goodness-of-fit tests to the samples jp′ . For 
instance, Table 4 shows results of applying two stan-
dard tests to the sample jp′  obtained by discretising 
one of the lognormal distributions. One can conclude 
that jp′  fits the lognormal distribution quite well even 
at m = 10. 

Further implementation problem is that the type of 
the probability distribution of Pj will in most cases be 

unknown. However, the probability pjk following from 
Eq (14) is the quantile of the r.v. Pj with the level of 
k/(m+1). In such a case the value pjk can be estimated 
by the empirical quantile 1)/(, +mkjp̂  computed for the 
sample 

jp ′′  = {pj1, pj2, … , pjs, … , 
sjnp }, (20) 

where the sample element pjs is obtained by sampling 
the value θs of the parameter vector Θ from FΘ(θ) and 
evaluating the f.f. F(y | Θ) for the pair yj and θs: 

)|( sjjs Fp θy= . (21) 

With the sample jp ′′ , the empirical quantile 

1)/(, +mkjp̂  is obtained in the standard way, namely, by 
ordering elements of jp ′′  and choosing the element 

with the number [ns×k/(m+1)]+1. 
Two sets of the samples jp′  and jp ′′  can be com-

bined into two samples 
},...2, 1, ,{ njj =′=′ pp , (22) 

},...2, 1, ,{ njj =′′=′′ pp . (23) 

The fist sample p′  can be applied to updating the 
prior p.d.f. π(μ) instead of the initial sample p defined 
by Eq (15). The simulated sample p″ can be used to 
control the quality of information represented by the 
sample p′ obtained by means of discretisation. It is 
natural to expect that descriptive measures of p′ and p″ 
will be relatively close to each other. 

4.4. Second example: the use of epistemic fragility 
function 

4.4.1. Prior density of failure probability 

The first example described in Sec 3.4 will now be 
expanded by introducing an epistemic f.f. F(y | Θ) . 
This is expressed by a d.f. of a normal distribution, 
F(y | Θ1, Θ2), with uncertain mean Θ1 and uncertain 
variance Θ2. They are assumed to be independent and 
distributed as indicated in Table 5. The gamma prior 
G(18, 14.962) of the precision 1

2
−Θ  is equivalent to an 

inverted gamma prior IG(18, 14.962) of the variance 
Θ2 [39, p.20]. The unique mode of IG(18, 14.962) is 
0.7875 (kPa)2 (e.g. [40, p.119]). This value is equal to 
the “crisp” value of the corresponding f.f. parameter 
θ2 (Sec 3.4.1). 

As in the previous example (Sec 3.4.2), the prior 
density π(μ) was fitted using a nested loop simulation 
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procedure. This generated the sample {μ1, μ2, … , μl, 
… , 

lnμ }, the lth element of which, μl , is an estimate 

of the mean value ))|)|((( llipE θξXX ν  at the given 
values ξl and θl = (θ1l, θ2l)T (see Eq (7)). The latter 
value was sampled from the distributions given in 
Table 5. The sample size nl was assumed to be equal 
to 1000. 

Table 5. Prior distributions of the f.f. parameters Θ1 and Θ2
* 

Parameter 
of f.f. 

Type of 
prior Parameters of prior distribution 

Θ1 Normal 7 kPa (mean), 0.77 kPa (sd. dev.) 
1

2
−Θ  Gamma 18 (shape), 14.962 (kPa)–2 (scale), 

1.1362 (kPa)–2 (mode) 
* According to recommendations of Congdon [39, p. 19] 
 

It was problematic to fit a widely known univariate 
probability distribution to the sample {μ1, μ2, … , μl, 
… , μ1000}. Therefore this was transformed into the 

sample {–lnμ1, –lnμ2, … , –lnμ1000} and a gamma dis-
tribution Ga(0.1557, 17.4929) was fitted to the latter 
sample (Figure 5). The transformation ψ = –lnμ was 
chosen intuitively. It implies that the prior π(μ) can be 
obtained from the p.d.f. fΨ(ψ) of the r.v. 
Ψ~Ga(α = 0.1557, β = 17.4929) using the following 
density transformation [41, p. 26]: 

),|(ln1),( βαμ
μ

βαμπ Ψ −−=−| f , (24) 

where α and β are the scale and shape parameters of 
the gamma distribution, respectively. The prior density 
π(μ) obtained using the transformation (24) is shown 
in Figure 6. It has a somewhat higher coefficient of 
variation that the prior density specified with the 
aleatory f.f. F(y | θ) (Sec 3.4.2). 

Table 6. Descriptive measures of the samples p, p′ , and p ′′  used in the first and second examples 

Sample size Mean Std.dev. Skewness Kurtosis Minimum Maximum 10th prc. 90th prc. 
The sample p obtained by applying the crisp fragility function (Table 1) 

9 0.02048 5.692⋅10–8 1.78 2.02 5.692⋅10–8 6.402⋅10–3 —* — 
The sample p′  obtained using the discretisation with m = 50 (Eq (22)) 

450 0.013234 0.038145 5.2357 34.331 5.60⋅10–14 0.3724 2.27⋅10–7 0.03406 
The sample p′  obtained using the discretisation with m = 100 (Eq (22)) 

900 0.013261 0.039008 5.5544 39.680 3.89⋅10–15 0.4356 1.94⋅10–7 0.03414 
The sample p ′′  obtained using the simulation (Eq (23)) 

900 000 0.013197 0.040145 6.3105 55.820 0.0 0.9590 — — 
* Not calculated 

Table 7. Descriptive measures of the simulated samples jp ′′  obtained with ns = 100 000 and computed for the elements yj of the 
initial sample y 

j yj (kPa) Mean St.dev. Skew. Kurt. Minimum Maximum 10th prc. 90th prc 
1 3.767 4.112⋅10–3 1.394⋅10–2 9.16 136 2.220⋅10-16 4.167⋅10–1 1.058⋅10–6 9.661⋅10–3 
2 4.276 1.289⋅10–2 3.215⋅10–2 5.58 45.56 8.882⋅10-16 5.976⋅10–1 1.609⋅10–5 3.528⋅10–2 
3 4.160 9.742⋅10–3 2.569⋅10–2 6.00 53.49 5.440⋅10-15 6.284⋅10–1 8.701⋅10–6 2.591⋅10–2 
4 3.944 6.149⋅10–3 1.858⋅10–2 7.61 94.53 2.887⋅10-14 6.185⋅10–1 2.784⋅10–6 1.519⋅10–2 
5 4.916 4.305⋅10–2 7.558⋅10–2 3.39 15.37 1.664⋅10-11 9.590⋅10–1 3.108⋅10–4 1.240⋅10–1 
6 2.920 4.660⋅10–4 2.650⋅10–3 19.82 767 0.0 2.038⋅10–1 4.286⋅10–9 6.625⋅10–4 
7 4.791 3.472⋅10–2 6.487⋅10–2 3.64 17.73 2.542⋅10-12 8.604⋅10–1 1.793⋅10–4 9.938⋅10–2 
8 4.032 7.570⋅10–3 2.191⋅10–2 6.90 70.77 1.104⋅10-13 4.581⋅10–1 4.384⋅10–6 1.925⋅10–2 
9 2.294 8.094⋅10–5 7.008⋅10–4 29.7 1371 0.0 5.130⋅10–2 4.418⋅10-11 6.435⋅10–5 
 
4.4.2. New information used for updating 

The new information was represented by the 
sample p′ obtained by clustering the nine samples jp′  
(j = 1, 2, … , 9; see Eqs (18) and (22)). The sample 

jp′  was computed by transforming the corresponding 
sample pj by means of Eq (19). The linear trans-
formation (17) was not applied because it produced 
negative elements jkp′  of jp′  in all nine cases. The 
sample pj is a result of discretising the r.v. Pj with the 

d.f. Fj(p) into a set of m quantiles pjk defined by 
Eq (14). As the d.f. Fj(p) is not known in the present 
case, the values pjk were estimated by the empirical 
quantiles 1)/(, +mkjp̂  computed for the samples jp ′′ , 
each consisting of 100 000 simulated values pjs of the 
r.v. F(y | Θ) (i.e., ns = 100 000, see Eq (20)). The 
discretisation of Pj was carried out using two sets of 
the quantiles 1)/(, +mkjp̂ , namely, m = 50 and m = 100. 
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Figure 5. Histogram of the sample {–lnμ1, –lnμ2, … , –

lnμ1000} and density of the gamma distribution  
Ga(0.1557, 17.4929) fitted to this sample 
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Figure 6. Lognormal prior density  

π(μ | –2.71691, 0.519298) (dashed line) and  
transformed gamma prior density  

π(μ | –0.1557, 17.4929) (solid line) 

The simulated samples jp ′′  were combined into the 

sample p″ consisting of 900 000 elements (Eq (23)). 
Descriptive measures of p″ and jp ′′  are given in Tables 
6 and 7, respectively. 

The samples jp ′′  can be used to control the results 
of the discretisation expressed by the samples of quan-
tiles, pj and jp′ . For instance, descriptive measures of 
the latter samples computed for the case m = 100 are 
given in Tables 8 and 9. Descriptive measures of pj 
differ from the ones of jp ′′  to a relatively large extend 
(compare Tables 7 and 8). The transformation (19) 
produced the samples jp′  which are closer to jp ′′  in 
terms of their mean values, standard deviations, and 
skewnesses (compare Tables 7 and 9). Larger diffe-
rences in the descriptive measures were obtained only 
in the cases of j = 6 and j = 9, namely, in cases of a 
relatively large skweness of the samples 6p ′′  and 9p ′′  
(lines 6 and 9, Table 7). One can conclude that in case 
of highly skewed samples jp ′′  the transformation (19) 
should be replaced by a more sophisticated one which 
will yield better adjustment of the samples pj to the 
simulated samples jp ′′ . 

Table 8. Descriptive measures of the samples pj obtained using the transformation (14) with m = 100 

j yj (kPa) Mean St.dev. Skew. Kurt. Minimum Maximum 10th prc. 90th prc 
1 3.767 3.415⋅10–3 9.041⋅10–3 4.51 23.90 2.210⋅10–9 6.396⋅10–2 1.026⋅10–6 8.622⋅10–3 
2 4.276 1.153⋅10–2 2.505⋅10–2 3.73 16.43 7.397⋅10–8 1.624⋅10–1 1.568⋅10–5 3.203⋅10–2 
3 4.160 8.606⋅10–3 1.948⋅10–2 3.89 17.79 3.195⋅10–8 1.285⋅10–1 8.488⋅10–6 2.366⋅10–2 
4 3.944 5.273⋅10–3 1.309⋅10–2 4.28 21.57 7.107⋅10–9 9.057⋅10–2 2.711⋅10–6 1.365⋅10–2 
5 4.916 4.069⋅10–2 6.671⋅10–2 2.73 8.51 3.934⋅10–6 3.755⋅10–1 3.054⋅10–4 1.157⋅10–1 
6 2.920 3.219⋅10–4 1.165⋅10–3 5.95 40.74 1.638⋅10-12 9.409⋅10–3 4.141⋅10–9 5.742⋅10–4 
7 4.791 3.258⋅10–2 5.651⋅10–2 2.92 9.87 1.935⋅10–6 3.274⋅10–1 1.752⋅10–4 9.242⋅10–2 
8 4.032 6.544⋅10–3 1.572⋅10–2 4.11 19.85 1.347⋅10–8 1.064⋅10–1 4.247⋅10–6 1.750⋅10–2 
9 2.294 4.403⋅10–5 1.929⋅10–4 6.86 52.74 3.886⋅10-15 1.659⋅10–3 4.219⋅10-11 5.402⋅10–5 

Table 9. Descriptive measures of the samples jp′  obtained by transforming the samples pj by means of Eq (19) (the latter 
samples result from the discretisation of continuous distributions of r.v.s Pj  at m = 100) 
j yj (kPa) Δj Mean St.dev. Skew. Kurt. Minimum Maximum 10th prc. 90th prc 
1 3.767 0.51 4.153⋅10–3 1.250⋅10–2 5.33 33.4 2.210⋅10–9 9.658⋅10–2 1.026⋅10–6 9.215⋅10–3 
2 4.276 0.28 1.283⋅10–2 3.008⋅10–2 4.19 21.0 7.397⋅10–8 2.079⋅10–1 1.568⋅10–5 3.380⋅10–2 
3 4.160 0.35 9.830⋅10–3 2.442⋅10–2 4.45 23.6 3.195⋅10–8 1.735⋅10–1 8.488⋅10–6 2.519⋅10–2 
4 3.944 0.43 6.211⋅10–3 1.725⋅10–2 4.99 29.5 7.107⋅10–9 1.295⋅10–1 2.712⋅10–6 1.453⋅10–2 
5 4.916 0.16 4.327⋅10–2 7.416⋅10–2 2.95 10.2 3.934⋅10–6 4.356⋅10–1 3.054⋅10–4 1.214⋅10–1 
6 2.920 0.95 4.680⋅10–4 2.068⋅10–3 7.26 58.9 1.638⋅10-12 1.835⋅10–2 4.141⋅10–9 6.075⋅10–4 
7 4.791 0.18 3.490⋅10–2 6.363⋅10–2 3.18 12.0 1.935⋅10–6 3.864⋅10–1 1.752⋅10–4 9.712⋅10–2 
8 4.032 0.39 7.598⋅10–3 2.021⋅10–2 4.75 26.7 1.347⋅10–8 1.479⋅10–1 4.247⋅10–6 1.863⋅10–2 
9 2.294 1.60 8.142⋅10–5 4.595⋅10–4 8.35 75.0 3.886⋅10-15 4.313⋅10–3 4.219⋅10-11 5.683⋅10–5 
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For the case m = 100, clustering the nine samples 
jp′  resulted in a sample p′ containing 900 elements 

and having descriptive measures presented in Table 6. 
This table contains also descriptive measures of the 
sample p′ obtained with m = 50 and consisting of 450 
elements. Results presented in Table 6 indicate that the 
samples p′ are relatively close to the sample p″ as 
regards their mean values, standard deviations and 
measures of skewness. Consequently, the samples p′ 
can be used for updating the prior p.d.f. π(μ). 

4.4.3.  Results of updating by means of Bayesian 
bootstrap 

The samples p′ containing 450 and 900 elements 
were used to calculate the respective likelihood 
function estimates )|( 450 μμ̂BL  and )|( 900 μμ̂BL  by 
means of Eq (9). Then Eq (10) was used to obtain the 
approximations of posterior density, )|( 450μμπ ˆˆ  and 

)|( 900μμπ ˆˆ . The normalizing constants )( 450μ̂C  and 
)( 900μ̂C  found by a numerical integration are equal to 

3.08868 and 3.089694, respectively. As in the previous 
example, the number of bootstrap replications, B, 
necessary to generate the sample { 1nμ′ˆ , 2nμ′ˆ , … , 

Bnμ′ˆ } was taken to be equal to 1000 and the band-
width w was chosen to be 0.1. Figure 7 shows the 
graphs of the functions π(μ), )|( 450 μμ̂BL , and 

)|( 450μμπ ˆˆ . 
The difference between the likelihood function 

estimates )|( 450 μμ̂BL  and )|( 900 μμ̂BL  is slight 
(Figure 8). This results in a slight difference between 
the posterior densities, )|( 450μμπ ˆˆ  and )|( 900μμπ ˆˆ  
(Figure 9). The random fluctuation of differences 
shown in Figures 8 and 9 is due to the application of 
the stochastic simulation to the sampling of bootstrap 
samples. The small difference between )|( 450 μμ̂BL  
and )|( 900 μμ̂BL  can be explained by looking at the 
terms in the sum of Eq (9). The means values of the 
samples p′ consisting of 450 and 900 elements are 
approximately equal, namely, 450μ̂  = 0.013234 and 

900μ̂  = 0.013261 (Table 6). The mean values of the 
bootstrap samples b,450μ′ˆ  and b,900μ′ˆ  seem to be relati-
vely close, no matter what is the size of p′. An indirect 
confirmation of this are the virtually equal mean 
values of the samples consisting of b,450μ′ˆ  and b,900μ′ˆ : 

0.0132398
1

,450
1 =′∑

=

−
B

b
bB μ̂ (st.dev. of b,450μ′ˆ = 

0.00182),  

0.0132397
1

,900
1 =′∑

=

−
B

b
bB μ̂ (st.dev. of b,900μ′ˆ = 

0.00128).  
The results just mentioned allow us to conclude 

that doubling the discretisation number m from 50 to 

100 and so the size n × m of the sample p′ does not 
tangibly influence the posterior density )|( mn×μμπ ˆˆ . 
Thus the number m should be chosen mainly for 
reasons of the best approximation of the continuous 
epistemic probability distribution by the sample p′. 
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Figure 7. Likelihood function estimate )|( 450 μμ̂L   

(solid line), prior density π(μ) (dash and line)  
and estimate of posterior density )|( 450μμπ ˆˆ   

(dotted line) obtained with the bandwidth w = 0.1 
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Figure 8. Values of the difference |ˆˆ| )|()|( 900450 μμμμ LL −  
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Figure 9. Values of the difference |ˆˆˆˆ| )|()|( 900450 μμπμμπ −   

The approximation of the posterior density, 
)|( 450μμπ ˆˆ , expresses the updated epistemic 

uncertainty in the failure probability )|( ASFP . Figu-
re 7 indicates that )|( 450μμπ ˆˆ  is more accurate that 
the prior density π(μ). The degree of “accuracy” can 
be expressed by the ranges of non-conservative and 
conservative percentiles given in Table 10. The new 
nine experimental records of the blast wave 
represented by the sample y decreased the uncertainty 
expressed by the prior density π(μ). One can 
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anticipate that the conservative percentiles derived 
from )|( 450μμπ ˆˆ will be better understandable for the 
decision maker that the densities themselves. Thus the 

decision concerning the potential failure event F can 
be made by applying these percentiles. 

Table 10. Pairs of approximate percentiles derived from the prior densities π(μ) and the approximation of the posterior densities, 
)|( 9μμπ ˆˆ  and )|( 450μμπ ˆˆ , obtained using the crisp fragility function F(y| θ) and uncertain fragility function F(y | Θ) 

Densities obtained with F(y| θ) Densities obtained with F(y| Θ) 
Density characteristic Prior π(μ) Posterior estimate )|( 9μμπ ˆˆ  Prior π(μ) Posterior estimate )|( 450μμπ ˆˆ  
5th percentile 0.02813 0.0263 0.0205 0.0185 
95th percentile 0.1553 0.1218 0.174 0.134 
Range 0.1272 0.0955 0.1535 0.1155 
1st percentile 0.0197 0.0186 0.0115 0.0105 
99th percentile 0.2012 0.1593 0.236 0.175 
Range 0.2015 0.1407 0.2245 0.1645 

 

5. Conclusions 

Estimating an imprecise failure probability by ap-
plying scarce and uncertain information related to a 
potential failure in an abnormal situation has been 
considered. Two sources of information were applied 
to this estimating: (i) a small-size statistical sample 
consisting of experimental observations of characte-
ristics of abnormal situation and (ii) fragility function 
used to express aleatory and epistemic uncertainty re-
lated to the potential failure. Estimating the failure 
probability was formulated as a problem of Bayesian 
inference. Epistemic uncertainty in the failure prob-
ability was expressed by means of Bayesian prior and 
posterior distributions. The central problem of estima-
ting was Bayesian updating with imprecise data. Such 
data were an intermediate result of probability estima-
ting. The imprecise data were represented by a set of 
continuous epistemic probability distributions of the 
fragility function values related to elements of the 
small-size sample. 

The Bayesian updating with the set of continuous 
epistemic distributions is possible by discretising these 
distributions. The discretisation yields a new sample 
which can be used for updating. This sample consists 
of fragility function values, each of which has equal 
epistemic weight. Such a discretisation can be ob-
tained by dividing the range of the inverse distribution 
function of each epistemic distribution into equal 
intervals. In case where the continuous epistemic 
distributions are highly skewed, an additional 
transformation of the discrete distribution can improve 
the discretisation. 

The proposed approach is also applicable to the 
case where the continuous epistemic distributions are 
not available in the explicit form and must be re-
presented by simulated samples of fragility functions 
values. In this case, the discretisation can be obtained 
using percentiles of the simulated samples. Such a 
simulation will be possible for the fragility function, 
the values of which can be evaluated with a relatively 
small computational effort. 

Estimating the failure probability using the sample 
resulting from the discretisation was illustrated by two 

examples. The probability of failure due to an acciden-
tal explosion was considered in these examples. The 
probability was estimated using a fragility function 
which expresses the aleatory uncertainty only and a 
fragility function which quantifies both aleatory and 
epistemic uncertainty. 
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