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ABSTRACT A new treatment of the boundary conditions of diffusion approximations for intercon- 
nected queuemg systems is presented The results have applications to the study of the performance 
of multiple-resource computer systems In this approximation method additional equations to repre- 
sent the behawor of the queues when they are empty are introduced. This reduces the dependence 
of the model on heavy traffic assumptions and yields certain results which would be expected from 
queuemg or renewal theory The accuracy of the approach is evaluated by comparmon with certain 
known exact or numerical results. 
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1. Introduction 

Recently, considerable interest has been shown for obtaining approximate solutions to 
queueing models using diffusion processes [5, 12]. The interest of these approximations 
lies essentially in the  fact t ha t  explicit though approximate results are obtainable for 
relatively complex situations where the only possible al ternat ive lies in numerical methods 
or simulation experiments. I t  is not  surprising tha t  this approach has been applied to the 
mathematical  modeling of multiple-resource computer  systems [7, 8, 11], for which 
analyt ical  results are otherwise difficult to obtain. 

The basic argument used in these approximations (see, for instance, [7, p. 570]) is tha t  
the number of users N(t)  in queue a t  t ime t will tend to become normally dis t r ibuted for 
large t, with mean b(t) . t  and variance a(t).$ if "boundary  conditions" (such as the  case 
where the queue is empty)  are neglected, thus one argues tha t  the  process N(t )  can be 
approximated by a diffusion process. Reflecting boundaries (for instance, a t  the  origin 
for a single-server queue) are imposed in order to keep the process in the  desired region 
(for instance, on the positive real line) but  also to insure tha t  no probabil i ty  mass collects 
a t  the  boundaries. These models are then only useful in heavy traffic conditions (for a 
single-server queue when the traffic intensity is close to or greater than  one).  

The interest  for such models as vehicles for representing the  behavior of mult iple inter- 
connected resource computer  systems stems from the need to predict  performance with a 
reasonable degree of accuracy for design and evaluation. Explicit  results yielding perform- 
ance measures from mathematical  models are sought since they reduce the need for costly 
simulation experiments and yield a clearer insight into the basic assumptions and into 
the interaction of model parameters.  

The advantage of diffusion models over other techniques is tha t  they can yield explicit 
solutions with a high degree of accuracy for nonexponential service t ime assumptions 
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which often can only be treated numerically (if at all) by conventional queueing theory 
techniques or at high cost and lower precision using simulation runs. 

In this paper we introduce a new diffusion approximation for queueing systems and we 
apply it to a multiprogramming system consisting of a central processing unit (CPU) 
and a secondary memory (SM) or input-output device, assuming that  a fixed number of 
programs circulate in the system in alternate cycles of computation and input-output. 

The novelty of our approximation technique with respect to approaches derived from 
the work of Newell [12] or Gaver [5] is in the treatment of boundary conditions for the 
model equations. By assuming that the case when a queue is emptied is represented by 
letting the diffusion process approach a reflecting boundary (as is done in [5, 12]), the 
actual behavior of the queueing process, in which the number in queue remains zero for a 
nonzero amount of time, is not adequately represented. Known queueing theory results 
(such as the stationary probability of an empty queue) have then to be introduced as 
initial conditions, and fairly arbitrary modifications [11] are made to the stationary solu- 
tions in order to conform to reality. In our approach, however, equations are introduced 
describing the dynamics of the system when a queue is empty. The fact that the number 
in queue remains zero for a random but nonzero period of time, and that  after an arrival 
occurs it increases instantaneously to a new level, is properly taken into account. This 
leads to a self-contained model yielding some known queueing theory results exactly, and 
more accurate approximations for light traffic conditions when the queues are more 
frequently empty. 

In Section 2 we present the equations of the approximate model that we propose 
without particular reference to a queueing system. Our objective is to interpret these equa- 
tions in terms of the flow of probability masses. In Section 3 the modeling method is ap- 
plied to the M/G/1  queue in order to illustrate its use. Section 4 is devoted to an ap- 
proximate model of a multiprogramming system; the stationary queue length distribu- 
tions and the CPU utilization are computed. Numerical examples are then presented in 
order to evaluate the accuracy of our approach. 

2. The Instantaneous Return Process 

Let us briefly and informally present the basic equations for the model, which we call the 
instantaneous return process, and for which an informal presentation can be found in [1] 
and a rigorous treatment in [2, 3]. 

Consider the stochastic process {X(t), t > 0} on the closed interval [0, M] of the posi- 
tive real fine. On the open interval ]0,M[ the process behaves as a diffusion (Wiener) 
process. However, when the process reaches one of the boundaries (0 or M) it remains 
there for an exponentially distributed time, after which it jumps instantaneously back into 
]0,M[, distributing itself with some probability density function over the open interval, 
reinitializing the diffusion process. Since the holding times on the boundaries are expo- 
nentially distributed, the instantaneous return process {X(t), t >_ 0} retains the Markov 
property. Though it is easy to imagine a semi-Markov version of this process with arbi- 
trarily distributed holding times at the boundaries, we do not know of mathematical 
resu|ts covering this case. 

Let rnl(t), m2(t) be the probability masses concentrated at the lower and upper bound- 
ary and 1/hi ,  1/X~ the expected holding times at 0 and M, respectively. 

The probability density function of the point from which the diffusion process starts 
once; again immediately after a jump is f~(x) if the jump originated at 0 and f2(x) if it 
originated at M. Denote also by Ax.t the forward operator, 

A ~ , t ]  = - ( O / o t ) l ( x ,  t) - (o/ot)[b(x, t)I(x,  t)] + ½(o~/Ox~)[a(x, t) f(x,  t)] (1) 
and by Bx., the operator 

B,.tf = -b ( z ,  t)f(x, t) .% ½(O/O~)[a(x, Of(z, t)l, (2) 
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where f = f(x,  t) is the probability density function of the process at time t, and 

b(x, t) = lira E{X( t  + At) -- X( t ) IX( t )  = x} (3) 
area A t  

v~(x, t) = at~olim [E{[X(t. + At) -AtX(t)]2lX(t) = x} 

_ [E{X(t ÷ At) -AtX(t) lX(t) = x}]~ 1 (4) 

are the instantaneous rate of change of the mean and variance of X( t )  given 
that  X( t )  = x. 

The equations for the instantaneous return process are [1-3]: 

A~.J + hlml(t).fi(x) + h2ms(t)f2(x) = O, (5) 

(d/dt)ml(t) = Bo,tf - hlm~(t), (6) 

( d/dt)m~( t) = --B M,tf -- ~,~m2(t). (7) 

These equations have a simple interpretation. The term 

Bo.J = lim [ -b(x ,  t)f(x, t) + ½(O/Ox)(c~(x, Of(x, t))] 
ZoO 

represents the rate of flow of the probability mass from the region ]0, M[ to the lower 
boundary, while - -BM.J is the flow to the upper boundary. Xlrn~(t) is the rate of flow of 
mass from the lower boundary into ]0, M[ and k2m2(t) is the corresponding quantity from 
the upper boundary. The conservation of mass should be satisfied; that  is, we must have 

(O/Ot)[ f ~ f ( x ,  t)dx + ml(t) -4- m2(t)] = 0. (8) 

From (5) and (1) and since f ~  fl(X)dx = 1, f ~  f2(x)dx = 1, 

(O/Ot) f~  f(z, t)dx = [-b(z,  t)f(x, t) + ½(O/Ox)[a(z, t)f(x, t)]]o M 
+ Xlm~(t) + X~m~(t) 

= Bu,tf  - Bo ,,f + Xxm~(t) + X2m2(t). (9) 

Using (6), (7), and (9) we have 

(O/Ot) f ~  f (x ,  t)dx ÷ (dml(t)/dt) ÷ (dm2(t)/dt) = BM.J -- Bo,,f  + k~m~(t) 
+ X2m2(t) ÷ Bo,J - Xlml(t) 
- - B ~ . t f -  k~m~(t) 

which verifies (8). The sum of the probability mass is one: 

f~f(x, t)dx + m~(t) + mE(t) = 1. (10) 

Equation (5) also can be interpreted in terms of the flow of probability masses. Let  ft 
be a subinterval of ]0, M[. Then we write 

fa A~.tfdx + Xxrm(t) faf ,(x)clx + X2m2(t) fof2(x)dx = 0 

or from (1), 

(o/ot) fay(x, t)dx = fa [-(O/Ox)(b(x, Of(z, t) ) + ½( O~/Ox~)(a(x, Of(z, t))]dx 
+ X~m~(t) fa.fi(x)dx + X2mz(t) faA(t)dx, (11) 

which states that  the rate of change of the probability mass in ~2 is equal to the flow of 
mass from the boundaries 0 and M (the last two terms on the right-hand side of (11)) 
plus the flow out of the region ft, yielding (5).  

Although a more general case may be considered, we shall assume that  the boundaries 
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act as absorbing boundaries for the diffusion process untzl the jump occurs which corre- 
sponds to the queueing problems of interest. Thus we take for all t >_ 0, 

lim f(x ,  t) = lira f (x ,  t) = 0 (12) 

as with absorbing boundaries. Of course, initial conditions for mi(t),  ms(t), and f (x ,  t) 
will also have to be given. 

Let us note that  X~, X2 may be functions of time, and that  f l (x) ,  f2(x) could be taken to 
be fimctions of the instant of time at which the jump occurs. 

3. Approximation to the M/G/1  Queue 

We shall apply the instantaneous return model to the M / G / 1  queueing system. The 
process {X(t), t >_ 0}, taken on the interval [0, oo ] (the nonnegative real line), approxi- 
mates the number of requests in queue including the one in service. 

In  the M / G / 1  queue the interarrival and service times are independent of each other 
and of the number in queue. The interarrival process is Poisson of parameter X, and the 
service times are independent identically distributed random variables with common dis- 
tribution function of mean 1/# and variance V, .  The variance of the time between suc- 
cessive arrivals is of course V~ = (1/~) 2. 

Via an extension of arguments based on the central limit theorem [4], it can be shown 
that, the parameters b and ol defined in (3) and (4) are given asymptotically (as t -+ o o  ) 
by (see also [7, 12]), b = X - ~, o~ = X3V, -b/~3V,, provided the queue never becomes 
empty. The diffusion approximation is based on assuming that  this asymptotic behavior 
describes the number in queue as soon as a busy period begins, that  is, as soon as the 
number in queue moves from zero to one. Let f (x ,  t)dx denote the probability that  X(t) ,  
the approximate representation of the number of customers in queue, lies in [x, x -b dx]; 
also let re(t) be the approximated probability that  the queue is empty at time t. Since 
X( t )  takes values in the nonnegative real line, there is no upper boundary to be con- 
sidered. 

After an arrival to the empty queue, the number in queue jumps instantaneously to 
-+l;  therefore we must let f l (x)  be the Dirac delta function. We shall only consider the 
stationary state defined by ((Of/or) = O, (din~dr) = 0) so that  (5) and (6) become 

-b(Of/Ox) -b ½o~(O~f/Ox 2) = -Xm~(x  - 1), (13) 

lim [--bf + ½a(Of/Ox)] = Xm, (14) 
x ~ 0  

where ~i(x - 1) is a Dirac density function concentrated at x = 1, m is the stationary 
probability mass at x = 0, and o~, b are independent of x, t. Since the arrival process is 
Poisson, we have o~ = X + ~3V,. 

Let us note 

7 = 2blot = --2(1 -- p)(p q- K,)  -1, (15) 

where p = X/~ and K, = ~2V,. The solution to (13) with boundary conditions (14) 
and f im~of(x)  = 0 from (12) is 

J(mX/b)[e ~ -  1], • 0 <  x <  1, 
f = ( ( r e X ~ b ) [ 1  - d - ' l e  ~ , x > 1. ( 1 6 )  

To compute m we use 

m q- f ~ f d x  = 1, 

which yields after some computation, and on condition that  7 < 0 (i.e. p < 1), 

(17) 

m = 1 - o ( 1 8 )  



On Approximate Computer System Models 265 

for the probabihty of an empty queue, which one would expect to obtain. Finally let us 
compute n, the average number of customers in the system, at  steady state. Let us dis- 
cretize the density by setting 

Iro = m; ~'" = f : - t  fdx, i > O, 

where the v , ,  i ~ 0, denote the stationary probabilities for the number of customers in 
queue. We can then compute 

n = , - l i~r~  = p [ 1  - ~-1] = p  1 + 2(1 - p).J" 

This differs from the Pollaczek-Khintchine formula which yields 

[ J=p_1+ 2(I-p).l" (20) 

Other approaches to diffusion approximations [5, 12] do not yield (18) or (20). Though 
we are able to obtain the probability of an empty queue correctly with our approach, we 
have been unable to obtain (20) exactly. Notice that  the exact result would have been 
obtained if ,y were 

q = --(2/,o) (1 - -  p)(K. + g,)-' 
instead of (15). The error in the average queue length is given by n - ~ -- pK~/2. 

4. Approximation of a Closed Two-Server System 

Consider the closed two-server system shown in Figure 1. The system contains a fixed 
number M of customers, which we shall call programs, and we shall call the two servers 
the central processing unit (CPU) and the secondary memory (SM), respectively. This 
model has been analyzed by Gaver and Shedler [7] using a diffusion approximation with 
reflecting boundaries. In order to choose appropriate boundary conditions to the diffu- 
sion equation, they suggest one of three approaches: the use of renewal theory to obtain 
an exact fit for (1) the case M = 1, or (2) the case M = 2, or (3) the use of the basic 
queueing theory result ~'0 = 1 - p to obtain an exact fit for M -- ~ .  The results ob- 
tained in [7] yield very good fits to an exact solution; conceptually, however, one is not 
fully satisfied since the boundary conditions have to be introduced from queueing or 
renewal theory. 

In  this section we analyze the same model as in [7] (shown in Figure 1), making use of 
the instantaneous return process. Except for the specification of the constants o6 b of the 
diffusion equation, no results from queueing or renewal theory need be used to solve for 
the probability distribution function F(x)  of the number of programs in the C P U  queue 
at steady state. We shall also obtain the probability of an empty CPU queue which will 
satisfy the queueing theory result for M = ~ mentioned above. I t  will also be shown 
that  our result satisfies another familiar queueing theory result: for each server the sta- 
tionary arrival rate is equal to the stationary departure rate for any value of M. 

CPU 

SH 

Fio. 1 
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As previously, let f ( x )  be the stationary probability density function for the diffusion 
process in ]0, M[, where x is the value approximating the number of programs in the 
CPU queue; M - x will correspond to the number in the SM queue, ml ,  the stationary 
probability mass at the origin, represents the probability that  the CPU queue is empty at 
steady state, and m2 is the steady-state probability tha t  it contains M programs. The in- 
stantaneous return model allows us to approximate the system under the following 
conditions. 

(a) When the number of programs in the CPU queue is neither 0 nor M, the distribu- 
tion of service time at both CPU and SM is arbitrary with mean 1/~u and l /h ,  respec- 
tively, and variance V, and V~, respectively. 

(b) When the number of programs in the CPU queue is 0, the service time at the SM 
is exponentially distributed with parameter >,; if it is M, the CPU service time is expo- 
nentially distributed with parameter ~. 

We assume that  ~, ~,, V, ,  Vo are not functions of x. They may, however, be functions 
of M. The " jump" of the process from the lower boundary represents an arrival from the 
SM when the CPU queue is empty,  the jump from the upper boundary is a departure 
from the CPU queue when all programs are there. 

At  steady state we set the following equations (from (5), (6), (7))  for the process: 
1 t! 
~ a f  --  bf '  = - -hml~i(x  --  1) - ~m2~(x  - i + 1), (21) 

lim ~ f  -- bf  = ~ m l ,  (22) 

l im  ½ a f  --  b / =  Urn2, (23) 

where ~(.) is the Dirac density function, and 

b = ~ - -  ~, o~ : ~3V~ + ~3V,. (24) 

The boundary conditions o n f  are lim:~0 f = l im: .~  f = 0. We integrate (21) once to 
obtain 

½o~f' --  b f  = - k m l c h ( x  - 1) - ~m~.~(x - M + 1) -t- c, (25) 

where c is a constant, and 

Using (22) we see that  

t0 ,  for x <  0, 
~b(x) = 1, for x>_ 0. 

c -- ~ml (26) 

and also that  (26) satisfies (23). We then solve (25) in the three regions 0 _< x < 1, 
1 < x < M -- 1, and M - 1 < x < M. I t  can be shown that  the solution to (25) must 
be continuous so that  we may use the continuity of f at  x = 1 and x = M - 1. Soiving 
for f and using (12) we obtain 

{ - - ( k m l / b ) [ 1  --  eVX], ~ 0 _< x _< 1, 
f = ~ - ( X m l / b ) [ e  -~ --  1]e v , 1 _< x _< i -- 1, (27) 

( - - ( t~m2 /b ) [e  ~(~-~) - -  1], M -- 1 < x _< M, 

m2 = ( Xml/la )e ~( M-1), (28) 

where, as previously, 7 = ( 2b /  o~). A lso ,  using 

(29) 

we obtain 

f ~ f d x  + m x  -I- m2 = 1, 

M ~X = - -  e 7(M-1)] fof (Xmdb)[1- 
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so that  

m l  "Jr ( ~ k m l / D ) e  'y(M-1) - -  ( X m l / b ) [ 1  - -  e ~(M-1)] = 1.  

Then, setting p = X/~, 

ml = (1 + pe vCM-1) + p(1 - p)-l[1 - eVt~-l)]) -1, 

yielding the following proposition. 
PRoPosITIOI~ 1. The approximatzon by the instantaneous return process for the closed 

two-server system yields the stationary probability of an empty CPU queue as 

~nl -- (1 - p)(1 - p2eV(~-l))-l. (30) 

If  p < 1 and is independent of M, we have the familiar queueing theory result for M --~ 
o~: ml = 1 - p. Furthermore, when p = 1, by taking appropriate limits, we have 

ml = (½)(1 + (M - 1 ) ( g ,  + g~)- t )  -~, (31) 

where (31) is valid if the squared coefficients of variation Ka = k~Va ~, K, = /~2V,~ do not 
vary with p. Note also that  if M = 1, we obtain m~ = ~(X + ~ ) - '  = ( l /X) (1/X + 1 /~) - ' ,  
which is the result we would expect from renewal or queueing theory. 

Another result is that  (28) and (30) imply (1 - m~)X = (1 - m~)v, which states that  
the arrival rate to the CPU queue is equal to the departure rate, at steady state. 

The results which are summarized in Proposition 1, and in particular (30), are useful in 
predicting the performance of the multiprogramming system model of Figure 1 with 
arbitrary distribution functions of processing time at the CPU and SM. Defining the sta- 
tionary CPU ut, lization ~ as the stationary probability of having a nonempty CPU queue, 
we have ~ = 1 -- mx. This measure is of practical significance since it can be used as an 
indicator of the stationary system throughput (number of programs processed per unit 
time). 

In  order to evaluate the accuracy of our approximation method we have compared it 
numerically in Figure 2 with results obtained by the diffusion approximation of Gaver and 
Shedler [7] and with the exact semi-Markov analysis of Shedler [14]. The quantity being 
tabulated isthe stationary CPU utilization, and for each case the SM service time is expo- 
nential of mean one (X = 1). The CPU service time is Erlang (1, 2, 3, 4, 5, ao ), and 1/# 
is varied between 0.25 and 0.9. The number of programs sharing the multiprogramming 
system varies between one and ten. Columns marked S-M refer to results of exact semi- 
Markov analysis while Diff. refers to the approach in [14]; I -R refers to our approach. The 
relative error in ~ obtained from the instantaneous return approximation, defined as the 
absolute difference between that  value of y and the exact value (from semi-Markov analy- 
sis) divided by the latter, is at  most roughly 3 percent. Maximum error seems to be at- 
tained for M = 2 and a co::~tant (Erlang-~o) service time at the CPU. This relative error 
is comparable to the best error margin one might be able to achieve via careful and 
lengthy simulation experiments or using measurements on a real system. Our results seem 
generally somewhat more accurate than those in [14], but  it is difficult to make meaningful 
comparative comments when the level of error in both is so low. For M = 1 the factor 
is obtained exactly by our analysis and the same is true for M = ~ .  For larger values of 
M, say M above 6, the utilization factor tends rapidly towards the asymptotic value. 

In  [13] detailed comparisons are given of significant measures obtained by diffusion ap- 
proximations with other modeling techniques, and in particular with simulation results, 
although unfortunately confidence intervals for the latter are not provided. 

5. Conclusions 

Diffusion approximations appear to be attractive means of approximating queueing net- 
works as models of systems of interconnected resources since they allow a more detailed 
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0.762 0.70~i 0.728 0.751 0.752 0.75Ei 0.745 O 742 0.743 0.749 0.7471 0.746 0.752 0.750 0.759 0.767 0.762 
0.729 0.72c 0.751 0.754 0.753 0.75c~i 0.765 G.76~ 0.763 0 768 0.764 0 766 0.770 0.767 0 776 0 781 0.776 
0,747 0.741 0.766 0.769 O 766 0.773 0.775 0 773 0 7~6 I 0.779 0.77( 0.778 0.781 0.778 0 786 0 789 0.784 
6.759 6.777 0.783 0.786 I 6.788 0.795 
0.769 0 784 0 789 0 791 0.792 0.796 
C.776 i 0.788 0.792 0.794 0. T95 0.798 
0 781 0.792 0.794 0.796 ! C.796 0.799 

O 748 
0 8~3 
0.832 
0 851 
0 863 

FtG. 2 

characterization of service and interarrival time statistics with a greater economy of 
representation. 

The basic problems raised by these approximations are (1) the choice of the diffusion 
parameters ~ (x, l) and o~(x, t ), (2) the choice of the pro p er boundary conditions, and (3) 
the selection of the discretization of the probability density function f(x, t) in the neigh- 
borhood of integer valued points x = i in order to approximate the probability of finding 
customers in queue at time I. In this paper we have suggested a solution to the issue raised 
in (2) using the instantaneous return process. This is distinct from previous approaches 
and seems to yield good approximations in the cases which have been discussed. Problem 
(1) can be treated either using asymptotic renewal theory [7, 12] or as in [6] using Wald's 
identity and the results of Haji and Newell [9]. Problem (3) does not seem to have been 
adequately treated as yet. 

Our approach to (2) has the advantage that we do not have to call upon queueing 
theory results in order to obtain the integration constants of the diffusion equation; in 
fact some familiar queueing theory results are directly obtained from the instantaneous 
return model. Also our results are less dependent on heavy traffic assumptions. The ap- 
proach, which appears to be a useful tool for the computation of performance measures for 
multiprogramming computer systems, is being extended to general queueing networks. 
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