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Abstract.  For a partition of am-point setX ¢ RYintok subsets (cluster§), S, ..., S,
we consider the cost functioEik:1 ers Ix — c(S)]I?, wherec(S) denotes the center of
gravity of §. Fork = 2 and for any fixedl ande > 0, we present a deterministic algorithm
that finds a 2-clustering with cost no worse thant- ¢)-times the minimum cost in time
O(nlogn); the constant of proportionality depends polynomially sorFor an arbitrary
fixedk, we get arO(n log* n) algorithm for a fixed:, again with a polynomial dependence
one.

1. Introduction

We consider a geometricclustering problem: given ampoint setX ¢ RY and a natural
numberk > 2, find a partition (clustering)l = (S, S, ..., &) of X into k disjoint
nonempty subsets that minimizes a suitable cost function amokerhlsterings ofX.

The cost function should show how tightly eaghis “packed together” and how well
the differentS are separated from each other. We consider the following cost function,
based on intracluster variances:

k
costIT) = ) costS), where cotS) = ) [Ix — ()%
i=1 XeS
Here||-|| denotes the Euclidean norm ao®) = (1/|S]) ), s X is the centroid (center
of gravity) of the seSS.
We say that &-clusteringIl of X is (1 + ¢)-approximately optimaif cost(IT) <
(1 + &) cos(IT’) for anyk-clusteringI1’ of X.

* Part of this research was done during a visit to the Imai Laboratory at the University of Tokyo, whose
support and hospitality is gratefully acknowledged. This research was supported by Charles University Grants
Nos. 158/99 and 159/99.
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Inthis paper we investigate approximhtelustering algorithms. The space dimension
d and the number of clusteksare always regarded as (small) constants, and the constants
of proportionality hidden in th®©(-) notation usually depend on them.

For 2-clustering (which can be used as a basis of a heuristic clustering algorithm by
recursive splitting), we give a near-linear approximate algorithm for any ixed:

Theorem 1.1. Let X ¢ RY be an n-point setand lete > 0 be given A (1 + ¢)-
approximately optima2-clustering of X can be found in time

1 1
o} (n logn - ¢ 2 log = + ne~“4-2 |og —> .
& &

In particular, the running time is @nlogn) for a fixeds > O.
If f (s) denotes the smallest cost o2alustering of X whose clusters both have size
atleast s> 1, then a2-clustering with cost at mosfL + ¢) f (s) can be computed in time

1 1
0 (n logn + g(log n)2elog = + 2 logn - e~“4=2 |og —) )
& &

We remark that in the second part of the theorem, itasguaranteed that the 2-
clustering found by the algorithm has clusters of sizes. On the other hand, if we
know a priori that al(1 + ¢)-approximate clusterings have clusters of sizs, then the
algorithm can, of course, be used to find one.

As was noted by Varadarajan [12], a result better than the first part of Theorem 1.1
can be obtained in a quite simple way, using an observation in this paper. His approach,
leading toO(nlogn - ¢~@=D) running time, is outlined in the Appendix. On the other
hand, it is not known how to extend his method to the cask-dfistering or to the
situation in the second part of Theorem 1.1. We still include the original proof of the
first part of Theorem 1.1, since the tools developed there are used in the other results.

For an arbitrary fixek > 2, we get a somewhat worse, although still near-linear,
algorithm.

Theorem 1.2. Let X ¢ RY be an n-point setetk > 3 be fixedand lets > 0be given
A (1 + ¢)-approximately optimal k-clustering of X can be found in time
O(n(lognyke =2y

If we consider only clusters of size at leasan improvement similar to Theorem 1.1
is possible as well, but we do not elaborate on this in this paper.

Geometric Facts about k-ClusteringBefore reviewing previous work about
k-clustering, we introduce some notation and simple geometric facts.
For a pointp € RY and a finite seS ¢ RY, we put

costS, p) =Y lIx - pl*

XeS
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As is well known, and easy to check, we have ¢85t = cos(S c(S) =
MiNnyera COS(S, p). Further, ifcy, ..., ¢ € RY are given points, theE!‘=1 cos(S, )

is minimized, over all choices of l-partition (S}, S, ..., &) of X, by letting S be
the set of points oKX for which ¢; is the nearest point amorg, . .., ¢ (ties are bro-
ken arbitrarily). Geometrically speakin@ are the points oiX lying in the Voronoi
region ofc; in the Voronoi diagram of the séty, Cy, .. ., ¢}. We call such a partition
(S, S, ..., &) theVoronoi partitionof X according tacy, Cy, . . ., G, and we denote it
by IMyer(Cy, . . ., C). Thus, an optimak-clustering is a Voronoi partition, and, in partic-
ular, an optimal 2-clustering is linearly separable.

Previous Work Clustering by the above cost function is frequently used in the literature
and in practical applications. In practice, mostly heuristic methods have been used, such
as thek-means algorithr(local improvements of the current clustering by moving
individual points among the clusters).

Algorithms with performance guarantees foclustering inR? have recently been
considered by Hasegawa et al. [7] and by Inaba et al. [8] (where also some background
information and references to other papers can be found). Inaba et al. [8] observe that
the number of distinct Voronoi partitions of a giverpoint setX ¢ RY induced byk
pointscy, Gy, .. ., G is at mostO(nkY), and they can be enumerated@ink?+1) time.
Consequently, the optimut-clustering under the variance-based cost defined above
can be found in time polynomial in, for any fixedd andk.

Hasegawa et al. [7] noted thaflif,y: = (S, S, ..., &) is an optimal partition and if
¢ ischosen asthe point & nearestt@(S), then costlTvor(C1, - . . , C)) < 2 COStIgpy).

By testing all the Voronoi partitions witty, . . ., ¢ chosen among the points of X, in
O(n**1) time, one can thus find a 2-approximately optirkallustering.

Inaba et al. [8] presented a randomized algorithm for finding a near-optimal 2-
clustering among the 2-clusterings with no cluster too small. More precisely;létand
s € [1, n] be parameters. Their algorithm finds, with probability at IéﬁﬁtZ-clustering
for which the cost is no worse thah+ ¢)-times the cost of any 2-clustering with cluster
size atleast. The running time i© (nm?), wheremis of the orden/es+(n/s) log(n/s).

They remark that their method can also be generalized for findinglastering with
a fixedk (in that case, they need to consider all Vorokgdartitions of anm-point set
in RY).

Remarks and Further Work With the techniques of the present paper, it does not seem
easy to improve th@®(nlogn) running time for approximate 2-clustering witHixed,
but | do not know whethef2(nlogn) is a lower bound or not. Improving the running
time for approximaté-clustering, perhaps t0 (nlogn) for any fixedk ande, is another
interesting problem.

The work on this paper started by trying to find a deterministic counterpart of the
2-clustering algorithm of Inaba et al. [8]. They consider a random sammplem points
from X, and for all linearly separable 2-partitioi;, T,) of T, they use the centroids of
T1 andT; as candidates for centroids of an approximately optimal 2-clusteriXg ©he
usual derandomization techniques in computational geometry would suggest replacing
the random sampl@& by a suitable deterministically computed sample. However, in
this problem, it seems difficult to define suitable properties of such a good sample.
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If one takes the probably most natural such property, namely, that for each linearly
separable 2-clusterings;, $) of X there is a linearly separable 2-clusterifigy, T,)

of T such that the centroids df; and T, approximate the centroids @& and S,
respectively, then a single good small sampleeed not exist at all (in the randomized
algorithm, the sampl& is good in this sense, with probability close to 1, for dixed

(S, $), but it need not be good for all 2-partitions simultaneously). Thus, instead of
imitating the sampling of, we construct a suitable set of candidates for the centroids
directly.

In this paper we concentrate on asymptotic results. We do not make any attempt to
optimize the various constants appearing in the proofs and algorithms, preferring con-
ceptual simplicity and simplicity of exposition instead. It is possible that some of the
ideas in the paper can be applied in practically efficient computations, but a signifi-
cant amount of work seems to be needed for developing such practical versions of the
algorithms.

The costfunction considered in this paperis only one of many possibilities investigated
in the literature. In particular, the following family of cost functions, parameterized by a
real number € [0, 2], has geometric properties somewhat similar to those of Gost
Namely, the cost of a clust&is given by

cost(S) =[S IIx — c(S)II?

xXeS

and the total cost of a partition is again the sum of costs of its clusters. The case inves-
tigated in this paper i& = 1; other interesting cases are= 0 (the cost of a cluster

is its variance anda = 2 (the cost is the sum of squared distances of all pairs in the
cluster). Fora < [1, 2], the optimum clustering can be characterized byeaghted
Voronoi diagram(generally with both additive and multiplicative weights); see Inaba et
al. [8] for the cases = 1, 2. The methods of the present paper might be applicable to
k-clustering with the cost function cqswith o € [1, 2], although further work seems to

be needed to give efficient approximation algorithms. Another interesting class of cost
functions arises, for example, by taking the same costs for the clusters but combining
them in a different manner, say by taking the maximum over all clusters. Also, cluster-
ings where the cost of a cluster is its diameter or the radius of its smallest containing
ball have been investigated intensively in computational geometry (see, e.g., [6]). The
geometry of such clusterings is quite different, but some of our techniques might still be
useful.

A very important stream of results on geometric approximation algorithms was
initiated mainly by the paper of Arora [1], which gave a polynomial-titdet ¢)-
approximation algorithm for the Traveling Salesman Problem in a Euclidean space of
fixed dimension, for any fixed > 0. Numerous other problems were attacked success-
fully by a similar approach. Results somewhat related to our clustering problem were
obtained by Arora et al. [2], who consider tkemedianproblem. Here, for am-point
setX c RY, ak-point setM € RY, thek mediansshould be found minimizing the
sum, overx € X, of the distance ox to its nearest neighbor ikl. In other words, this
is ak-clustering problem where the cost of a clusgeis minyere Y, 5 lIX — pll, and
the total cost is the sum of the costs of the clusters.drer 2, Arora el al. [2] obtain
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a polynomial-time randomized algorithm for any fixed> O (while k is regarded as

a variable parameter). Very recently, Kolliopoulos and Rao [11] obtained the expected
running timeO(2Y"n lognlogk), for any fixed dimensiom (also, in their formula-

tion of the problem, the medians can only be selected among the poiX$. dthe
k-median problem looks very similar to tikeclustering with the cost function consid-

ered here, but the cost function is a sum of distances rather than of squared distances.
While the geometry of the clustering problem with squared distances is simpler in some
respects, the squared distances seem to make the problem rather different from those
where Arora’s approach has been applied so far. We also remark that the dependence on
¢ and ond in the Kolliopoulos and Rao result is exponential and doubly exponential,
respectively. Nevertheless, it might be worth trying to use some of the ideas of Arora and
others for getting a better dependencekpsay, in thek-clustering algorithm. A further
challenge would be to get a better dependence on the dimension. Here perhaps some of
the randomized techniques from Indyk and Motwani [10], Indyk [9], and other recent
papers dealing with high-dimensional metric problems might help, but, again, handling
sums of squared distances instead of distances seems to gk«elostering problem a
somewhat different flavor.

2. Preliminaries

Let diam(X) denote the diameter of a s¥tc RY.

Let AandM be sets in a metric space. We say thlis n-densdor A if each point of
Alis at a distance at mostfrom some point oM. We will sometimes neeghdense sets
for simple convex seté in RY, such as cubes, under the Euclidean metric. An example
of any-dense set foA is the intersection of the grigd—/2Z¢ with then-neighborhood
of A. In the simple cases we deal with, this set is easily constructed in time proportional
to its size.

Well-Separated Pairs For a real number > 0, we define a relation-, on (ordered)
pairs of points irR%: we let(x, y) ~, (X, ) if [x=X|| <e-|x—y[land|ly — Y| <

e - |Ix — y|l (Fig. 1). We say thatx, y) and (x', y’) areg-nearif (xX,y) ~. X,V
and (X', y) ~. (X,y) (note that~, is not “quite” symmetric). We say that a sBEt

of ordered pairs of points dR¢ is e-separatedf no two pairs inP aree-near. Ane-
complete set of pairfor a setX is a setP of ordered pairs such that any ordered pair
of points of X is e-near to some pair if?. (Note that we do not insist that points in the
pairs in P be from X, although it will often be the case—for example in the following
theorem.)

Fig. 1. The relation~,.
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We use a result of Callahan and Kosaraju [5], which for our purposes can be phrased
as follows:

Theorem 2.1. Let X be an n-point setiRY, and lete € (0, 1). Then any-separated
set PC X x X of pairs has size at most@s~9). Ans-complete set P of pairs for X
with |P| = O(ne~%) and P < X x X, can be computed in @logn + ne~9) time

Approximate Range Searchingln a range searching problem, we considengoint
setP ¢ RY and a clas$R of admissible ranges (such dsdimensional axis-parallel
boxes, spheres, simplices, etc.). Each ppirt P is equipped by a weight(p) € S,
where (S, +) is a commutative semigroup (this means that the weights can be added
together; computationally, one assumes that a weight can be stored in a single word of
memory and that the semigroup operation can be performed in unit time). The goal is
to preprocess the s& with the weights and store the results in a data structure so that,
given a query rang® € R, the total weight of points iR, i.e., > ,.p~g w(pP), can be
calculated efficiently.

We need a result of Arya and Mount [4] on approximate range searching. Given a
rangeR € R and a number > 0, let R™ be the set of all points of distance at most
¢ - diam(R) from R, and letR~ be all points of distance at maost diam(R) from the
complement ofR; see Fig. 2. Are-approximate intersectionf P with a rangeR is
any subseP; € P with PN R~ € P, € PN R*. An ¢-approximate answeto the
guery with rangeR is any weight of the fornZpe p, W(P), wherePy is ane-approximate
intersection ofP with R. Arya and Mount assume that for a givérdimensional axis-
parallel cubeQ, it can be decided in unit time wheth€ < R* and also whether
Q N R~ = @. They show that afte©(nlogn) preprocessing time, a data structure of
size O(n) can be built, such that arrapproximate answer to any quelR/e R can be
computed in timeD (logn+&~9). The query time bound improves @(logn+¢~@-1)
if all R € R are convex. A reporting version of the query is also possible; namely, the
list of points of a seP; as above can be computed@logn + ¢4 + | Py|) time (or in
O(logn 4 ¢~@=D 4 | Py|) time for convex ranges).

Spanners Let X be a set oh points inRY. A graphG = (X, E) is called a (Eu-
clidean)t-spannerof X if, for any two pointsx, y € X, there is a path from to y in
G of length at most||x — y||, where the length of a path is the sum of the Euclidean

o P\ P,
e P

Fig. 2. Approximate range searching.
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lengths of its edges. Point sets in low-dimensional spaces admit sparse spanners. A
recent strong result, subsuming most of the previous work, is due to Arya et al. [3]:
for any fixede > 0 andd > 0 and for anyn-point set inRY, a (1 + ¢)-spanner

of maximum degreeD(1) can be computed ifO(nlogn) time. We only need the
much weaker result that a 2-spanner wdlin) edges can be computed @(nlogn)

time. (Actually, spanners are not crucial in our applications; they are used mainly for
convenience.)

3. Putting the Points on a Polynomial-Size Grid

Here we describe a reduction showing that, forkkeustering problem with a fixel,
it is sufficient to deal with points with polynomially large integer coordinates, after a
suitable preprocessing.

Our model of computation is thReal RAM we assume that the point coordinates
are arbitrarily real numbers. This means that ratios of the interpoint distances can be
arbitrarily large, say exponential im (although this is rather unrealistic for practical
inputs). A suitable preprocessing allows us to eliminate these extremely large distance
ratios.

Proposition 3.1. Let d and lg be fixed Suppose that there is an algorithm A thiatr
agivens > 0,k < ko, and an n-point multiset Xc R® with points lying on an integer
grid of size Qn%/e), finds a(1 + ¢)-approximately optimal k-clustering of XThen a
(1+ ¢)-approximately optimalkclustering for an arbitrary n-point set X- RY can be
computed with @nlogn) preprocessing and with at most C calls to algorithmwith
various at most n-point sets’ Xvith k < kg, and withae instead of, wherea > 0 and
C = C(kp) are constants

Proof. We describe a recursive algorithiafor the task as in the proposition. The input
is a point setX and an integek < ko. The depth of the recursion is at mést

First we compute a 2-spann@rof the given seX. Let G, denoteG minus all edges
of (Euclidean) length at leagt. We putA = diam(X)/n, and we observe th#&t, is
necessarily disconnected.

Let X’ be a (multi)set arising by moving each point ¥fby no more thar§ =
aeA/(5n%). By such a movement (and appropriate rescaling), it can be guaranteed
that the points ofX’ lie on an integer grid of siz®(n%/¢). (Note that a multiset may
result.)

We call the algorithm A on thi’, obtaining a(1 + a¢)-approximately optimak-
clusteringIT’ of X'. If cost(IT) is larger than a suitable threshold, equalz%oﬁz, we
show that the correspondirkgclusteringll of X is (1 + ¢)-approximately optimal for
X. Otherwise, if costlT’) is below this threshold, we infer that each cluster in an optimal
k-clustering ofX is completely contained in a connected compone@ of This implies
thatG, has at mosk connected components. If there are exaktbonnected compo-
nents, then the components necessarily determine the optimum clustering. Otherwise,
if there arem < k components, wé-cluster each of the components by calling the
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algorithmB recursively, for 2< k < k —m+ 1. We combine an approximately optimal
k-clustering from these data (in time bounded by a functiok)of

It remains to establish the above claims. By moving the points by at sqadke
centroids are moved by no more théras well. By passing fronK to X’ or back,
the square of the largest possible distance of a point from a centroid(X)ajris
changed by no more thadiam(X)? — (diam(X) + 28)?| < 56 diam(X). It follows
that for anyk-clusteringIl of X, if 1" is the corresponding-clustering of X’, then
|cos(IT) — cos(IT")| < n - 56 diam(X) < agAZ.

Supposing that codil’) > %AZ, and knowing thafl’ is the(1+ ae)-approximately
optimalk-clustering ofX’, itis easy to check thdl is the(1+¢)-approximately optimal
clustering ofX, provided thatr was chosen sufficiently small.

Next, suppose that casl’) < 2—10A2. We infer that, fora sufficiently small, any
optimal k-clusteringITy of X must satisfy coglly) < 1—16A2. This implies that the
distance of any two points in the same cluster must be smaIIer%harHowever, by
the properties of the 2-spann&, any two points from distinct components G,
have distance at IeaétA. Therefore, any optimai-clustering has clusters completely
contained in the components @fy, and we can apply the recursion as described above.
This finishes the proof of Proposition 3.1. O

4. Approximate Centroid Sets

Let Sbe a finite set irRY. We let

1/2
1 cos(S)
S=(=D Ix—coI?| =,/
p(S <|S| XES|| S ) B

be thequadratic-mean radiusf S. For a real number > 0, thee-tolerance ballof Sis
the ball centered at(S) of radius(s/3)p(9).

Let X ¢ RYandC c RY be finite point sets. We call ans-approximate centroid
set for Xif C intersects the-tolerance ball of each nonempg/ C X. We callC an
g-approximate centroid set for X for cluster sizes if it intersects thes-tolerance ball
of each cluster of size or larger.

The following lemma uses the ideas of Inaba et al. [8]:

Lemma4.1. Let X c RY be afinite point setetk > 2,and let C be ar-approximate
centroid set for X for cluster size s. Then there areg c,, ..., ¢ € C such that

CcoS(ITyor(Cq, Cp, ..., Ck)) < (1 + ¢) cos(I)

for any k-clusterind of X with all clusters of size at least s

Proof. Let(S, S, ..., &) be an optimak-clustering ofX with all clusters of size at
leasts. Fori =1, 2, ..., k, choose; € C lying in thee-tolerance ball of the clustes.
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For each, we have

costS,c) = Y Ix—cl®>< > (x-Sl + lIcS) -l

xe§ Xe§
= cos(§) + 2|l — ()]l - Z IX = (I + 1S lIci — (I
Xe§
2
< costS) +22p(S)V/IS |- VeostS) + 151 (30(S)
2
< cos(§) + 3scos(S) + %COS(S)
< (1+e¢&)cos(S).

Let(S,, S, ..., S) = Mvur(Ca, . . ., C). By the optimality of the Voronoi partition with
respect to given centroids, we have

K K K K
> “costS) <) “costS.c) < Y costS.c) < (1+¢) ) costS). O
i=1 i=1 i=1 i=1

A Simple Construction for Well-Separated Point Setdere we give a very simple con-
struction of are-approximate centroid set. This construction is suitable for a (multi)set
X whose ratio of maximum and minimum interpoint distances is not extremely large. In
particular, according to Proposition 3.1, for an approximkatdustering algorithm, we
may assume that lies on an integer grid of siz&(n*); then the ratio of the maximum
and minimum distances of (distinct) pointsXfis O(n%).

The parameters of the construction are theXsethe minimum cluster sizs, the
numbers > 0, and a numbet > 0 which is a lower bound for the minimum distance of
two distinct points oiX. (As we will see, the dependence of the quality of the construction
on § is only logarithmic, and so we can take a generous lower bound.) The set being
constructed is calle@.

We setr = §/n. (If X is a set, with no multiple points, it is sufficient to get=
(1/+/2)8.) This choice guarantees that, for any cluser X with at least two distinct
points, we have(S) > r. This follows from the equality

1
Yolx—cSIP=5= Y Ix—yl? 6

XeS 2|S| X,yeS

(which can be verified by substituting fa(S) from its definition and by a simple
algebraic manipulation).

In what follows, by a cube, we always mean an axis-parallel cubBR{)n The K -
enlargement of a cub® is the cube concentric witQ and with the sid&K -times larger
than the side of).

Let Qg be the 3-enlargement of the smallest cube enclosing the givet, setd let
R be the side 0fo.

We call a cubeQ alignedif it arises from Qg by a repeated subdivision, where in
each subdivision the current cube is partitioned iriteQual-size cubes.

The construction begins witf, as a single active cube and with= ¢.
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(a) (b)

Fig. 3. (a) The seCq and (b) the subdivision d.

At each step of the construction, we consider one of the currently active cubes, denoted
by Q. Let o be the side length o). We choose a s&lq that is((¢/18) o)-dense for
the 2-enlargement d (Fig. 3(a)); we may assum€q| = O(¢~%). We addCq to the
constructed set.

After this, the cubeQ ceases to be active. > 2r, we subdivide the cub€&
into 2¢ cubes of sider/2 (formally, we consider the cubes to be products of semiopen
intervals, so that the cubes in the subdivision are disjoint and d@yeA cube Q' in
this subdivision becomes active if and only if it contains at Isa8tt! points ofX. The
construction ends if there are no active cubes left.

As a final step, we add t6 all the points ofX of multiplicity s or larger. This takes
care of all clusterss consisting of (copies of) a single point.

Lemma4.2. WehaveC| = O((n/s) e %log(nR/$)), and the construction can be per-
formedintime Q(n+(n/s) e~9) log(nR/$8)). The constructed set C is arapproximate
centroid set for X for cluster size s.

Proof. During the construction, we encounter active cubes with at @¢stg(R/r))
distinct side lengths. Since each active cqbeontains at least/29+* points of X, and
the cubes with the same side length are disjoint, the total number of active cubes in the
whole construction i©((n/s) log(R/r)), and the bound on the size Gffollows. The
time bound is straightforward.

Let S C X be acluster of size at leastith at least two distinct points. By Markov’s
inequality, the ballB of radiusv/2 - p(S) centered at(S) contains at least/2 points
of S. Letj > 0 be the integer such that= R/2] € [3p(S), 6p(9)). Since the diameter
of B is smaller than, the ball B intersects at most®aligned cubes of side, and
hence one of these cubes, calQt contains at least/29* points of X. Thus,Q was
an active cube sometime during the construction. The poBjtis at a distance at most
V2-p(S < %o from Q, and so it lies in the 2-enlargement@f(Fig. 4). Consequently,
the setCq C C contains a point at a distance at m@stl8) o < (¢/3)p(S) from c(S).
HenceC intersects the-tolerance ball ofS. O

A Construction for Arbitrary Sets The following construction yields anapproximate
centroid seC for an arbitraryn-point set (or multiset)X. It also gives a slightly bet-
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: ¢(5) ~ Q
B :
V()

2-enlargement of ¢

Fig. 4. lllustration to the proof of Lemma 4.2.

ter asymptotic bound on the size Gf but it is more complicated than the previous
construction. Mainly for the sake of simplicity, we only present this construction for
s = 1 (obtaining are-approximate centroid set for all clusters). A generalization to an
arbitrary s appears possible too, with the resulting size bo@1dn/s) =% log(1/¢)),

but the proof becomes somewhat complicated.

The construction again proceeds by recursively subdividing the Qgbas in the
previous construction. It is convenient to imagine that the constructed cubes are the
nodes of a rooted tree (such trees are knowquaslitreesn the literature). The cube
Qo is the root. When a cub® is subdivided into 2 cubes of the same size, the cubes
Q' obtained by the subdivision witl)’ N X # @ become the sons d) in the tree.
Moreover, in order to avoid possibly infinite branches in the tree, a Quisenot further
subdivided if it contains exactly one point ¥f Let Q denote the set of all nodes of the
constructed tree.

In the previous construction we have automatically included @tbe setLq for
all the constructed cubes; this time we are more selective.

We putl¢ = [log,(A/e)], whereA is a sufficiently large constant (a suitable value
can be calculated from the proof below). For a cabe O of side lengthyr, define the
peripheryof Q as the sePy(Q)\ Pn(Q), whereP,,(Q) is the 3-enlargement & and
Pout(Q) is the Z‘-enlargement oR (Fig. 5). We call a cub& e Q significantif its
periphery contains at least one pointXfotherwise,Q is insignificant

Now we can state the rule for constructing theGeBYy saying thatQ € Q is filled
we mean that the s€lq is added tcC. EachQ € Q is filled unlessthere is aQeQ
that is insignificant and lies exactlylevels belowQ in the tree (this means thg c Q

Pom,(Q)

P,
22y do:| o (Q)

periphery

Fig. 5. The periphery of a cub®.
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and the side of) is 2-times shorter than the side ). Finally, we add taC all points
of X.

Lemma 4.3. The constructed set C has size(m®9log(1/¢)), and it is an
g-approximate centroid set for ¥or all clusterg.

Proof.  First we estimate the size 6f. Since the leaf cubes @ are disjoint and each

of them contains a point of, there aren leaves. Ifa cub& € Q isfilled, thenitis fewer
than¢ levels from a leaf or it contains a significant cu@e= Q lying ¢ levels below it.

The number of the filled cubes of the former type is at nmds& O(nlog(1/¢)). The
number of the filled cubes of the latter type is no more than the number of significant
cubesQ € Q, which we estimate next.

First, since the number of leaf cubes is at mmyghere are no more thancubes in
the tree with at least two successors (tinanching cubes Moreover, any cube lying
at most 3 levels below a branching cube can be charged to that branching cube; at
mostO(n¢) cubes are charged in this way. L@p be the remaining significant cubes.
For Q € Qp, we can thus assume thQ)t lies in an aligned cub&® with side 2«
whereo is the side of®, such thatQ contains no other points of besides those
in Q.

We classify the cubes i@ into 293¢ types, as follows. A cub® € Qp lies in one
of the 2! subcubes of the correspondif)y and the cubes i, are classified according
to the subcube; for example, in the plane, the four possibilities are lower left, upper left,
lower right, and upper right. Next, eap € Qp has a level in the tree (distance from
the root), and we classify it by the remainder of the level modéldt3emains to show
that the number of cubes i@ of any given type (given subcube and level moduld 3
is O(n). This can be easily derived from Theorem 2.1 on well-separated pairs (although
a more complicated direct proof is possible t00).

Let Q; € Qo be the significant cubes of the considered fixed type. For €aehQ;,
choose a paitx, y) € X x X, wherex € Q andy lies in the periphery of. We will
show that the pairs for different cubesdn cannot be, say, 1-near, and then Theorem 2.1
will imply the claimed bound.

Let Q, Q' € Q; be cubes with sides ando’, respectively. Ifo = o, then the
distance of® and Q' is at least ¥~ (because their big cub&d and Q' are disjoint),
while the diameter of their peripheries is much smalléf&l). Therefore, their pairs
cannot be 1-near. ¥ > ¢, theno > 236, and the pair assigned @' must be much
closer than the pair assigned@ This shows that the total number of significant cubes
is O(ne).

It remains to prove that the constructed €eintersects the-tolerance balls of all
clustersS. Consider a cluste® € X. We may assume that(S) > 0, for otherwise
S consists of (several copies of) a single point and this point is includ€zl iy the
construction. As in the proof of Lemma 4.2, IBt be the ball of radius/2 - p(S)
centered at(S), and letQ € Q be a cube with side length= R/21 € [3p(S), 6p(S))
containing some point o8N B. If Q was filled, the se€q intersects the-tolerance
ball of S (as in the proof of Lemma 4.3). It remains to consider the case Whamas
not filled, which means that there is an insignificeht Q lying ¢ levels belowQ. We
fix such aQ.
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We want to show that the-tolerance ball of the cluste® completely containg).
SinceC must contain a point lying i), this will prove thaiC intersects the-tolerance
ball of S.

Let Sn = SN Pn(Q) and St = S\ Pow(Q). Note thatS = S, U Sy, sinceQ is
insignificant and thus it has no points in its periphery. We now prove that

1e(S) — c(Sn)l < %p(S). @

Choosec(S;) as the origin of coordinates, so th@xesn X = 0. The distance of the
points of S from ¢c(S) is at Ieast% 2o > (A/3e)o > (A/18)p(S), and by Markov's
inequality, we obtainSu| < 36 2|9 (if Ais sufficiently large). We calculate, using the
Cauchy-Schwarz inequality,

2

IS ()% = ZX Yox+ Y x| =] «x
xeS X€Sn XE%xz X€ Sext
< 1S - Y IXIP < o267 1S%0(S)%.
X€ESext

This proves (2). Since(S,) € Pm(Q) the distance o&(S) from P, (Q) is at most
(¢/6)p(S). The diameter 0P, (Q) is 3/d 02 ¢ < (¢/6)p(S), and so the ball of radius
(¢/3)p(S) centered at(S) coversQ as claimed. O

An Efficient Algorithmic Version of the ConstructionWe modify the previous con-
struction so that it can be performed in near-linear time.

Theorem 4.4. Given an n-point set X2 RY and ans > 0, an s-approximate centroid
set for X of size Qne~%log(1/¢)), can be computed intime@logn+ns~% log(1/e)).

Proof. The algorithmic version of the construction has two quite independent parts. In
the first part we find all the leaf cubes @ and we fill the corresponding cubes at most
¢ levels above them. In the second part we detect a superset of the significant cubes and
we fill the cubed levels above them.

To find the leaf cubes, we simulate the subdivision construction, with a suitable
provision for cubes with a single successor. We start with the root @¢b&or each of
the currently active cubed, we first find the smallest aligned cul@ containing all the
points of QN X (such ashrinkingoperation is used in several papers concerning efficient
guadtree constructions; see [4]). Then we subdid@rovided that it has more than
one point. In this way, all the leaves are discovered and we only ger@(ajecubes in
the process.

If we know the minimum and maximum coordinates of the point®jrhe shrinking
operation can be implemented @(1) time (if the floor operation is allowed; see [4]
for a discussion). For an efficient implementation of the subdivision operation, we can
proceed as in [5]. We storg doubly linked lists withQ, theith list containing the
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points of Q N X sorted by theth coordinate (initially, such lists foQ, are obtained in
O(nlogn) time). In order to splitQ into halves in thex;-direction, say, we first search

the list sorted by the&;-coordinate from both ends, until we find the point of splitting. If

a is the size of the smaller part, this is doneOria) time. Then we delete the points

of the smaller portion from the other— 1 lists, also inO(a) time. Such a splitting is
done for each of the coordinates in turn. A simple analysis, which we omit, shows that
the total time for finding all leaf cubes i@ is O(nlogn).

In the second part we compute a superset of the significant cubes. From the previous
step we know the branching cubes, and we can thus generate all the cubes &t most
levels below them.

Next, we generate a 1-complete Baif pairs forX of sizeO(n) asin Theorem 2.1. Let
(X, y) € P. For each of the®3¢ possible types of significant cubes, we find all aligned
cubesQ of that type such that a paix’, y') that is 1-near tax, y) could possibly be
assigned t@Q.

From the distancéx — y|| and from the type, we can read off the side@tiniquely.

The possible location of’ is a ball B aroundx, whose diameter is smaller than the
side of the big cub&) corresponding t&. Hence, at most®aligned cube®) can be
considered. If such @ contains no point oiX it can be disregarded. If it contains a
pointx € X, we can output the aligned culigwith the appropriate side containing

(of course, thi<Q need not be a significant cube in our tree, but all significant cubes are
certainly included).

Thus, the following problem remains to be solved: we are given a €@tof aligned
cubes and a set afpoints, and we need to detect the cubes containing at least one point.
This can be done easily @(nlogn) time. For example, we can first organize the cubes
into a quadtree (some nodes may be missing in the regular quadtree structure but these
can be added if needed). Then we traverse the quadtree with points and the quadtree with
cubes simultaneously. O

5. Approximate 2-Clustering

Here is an obvious algorithm for finding(a + ¢)-approximately optimal 2-clustering
for X using thes-approximate centroid sets constructed in Section 4.

1. Compute am-approximate centroid s€ for X.

2. Form the seP of all pairs(cy, ¢;) of distinct points ofC.

3. For each paitcy, ¢2) € P, compute the Voronoi diagram, i.e., the hyperplane
bisecting the segmenic,. Compute the cost of the 2-clustering giveniyyand
select the 2-clustering with the smallest cost.

In a directimplementation of this algorithm, we thus consider af@jdtpairs(cy, C),
and for each pair, we negd(n) time for computing the cost of the corresponding 2-
clustering. This can be improved in two respects. First, as shown by Lemma 5.1 below,
instead of all pairgcy, ¢), it is sufficient to consider an-complete set of pairs fa€
as in Theorem 2.1 (making the approximation factor somewhat worse). Second, it is
possible to use approximate range searching to approximate the cost of the 2-clustering
for each pair.
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Fig. 6. lllustration to the proof of Lemma 5.1.

Lemma5.1. Letg, ¢, € RY be pointsand let G, C, be such that the pair&;, c;) and
(cy, C,) aree-near & < %_ LetIT = Iy (C1, C2) be the clustering of X by the bisecting
hyperplane of cand ¢, and letIT’ = Iy (Cy, C5). Thencos(IT’) < (14 16¢)cos(I).

Proof. LetIl = (S, &) andIT’ = (S, S)). By the optimality of the Voronoi clus-
terings for given centroids, it suffices to show that ¢8stc;) + cos(S,, c) < (1+
16¢)[cost(S;, c1)+cos(S, ¢p)]. Tothisend, itis enough to show that, foreach S|\ S,
we have|x — ¢yl < (1+ 6¢)||x — cz|| (& symmetric argument applies fere S\ S).
Sincex € S|, we know thatx is closer toc; than toc, i.e., [x — ¢ill < [IX — Gl
(Fig. 6). Puts = ||c; — c,||. We have||x — c1|| < [[X — Cj|| + &8 < X — Cy|| + &8 <
IX — C2|| +2¢8. Now we need to bouniiix — c;,|| from below by a multiple o8. We have
X = Call = [IX — Chll — &8 > 18 — 8, and 508 < (2/(1 — 2¢))[|IX — C2|| < 3||X — Ca|.
Thus,||x — c1|| < (1+ 6¢)||x — 2| as required. O

In step 2 of the algorithm at the beginning of this section, we can thuB let an
e-complete set of pairs faC (instead of taking all pairs). It remains to implement step 3
efficiently.

Each pair(cy, co) € P defines a 2-clusteringS,, $) by its bisector. If we want
to approximate cos§;) + cos(S) within the factor of(1 + 3¢), say, we can afford
to “misclassify” any pointx whose distances to, andc, differ at most by the factor
(1 + ¢). Therefore, if

Bi = {xeR%: (1+e)x—cill < x—cll} and
B, = {x e R (14 8)|Ix — coll < [Ix — I},

we can use the value cé8{) + cost(S,) for any 2-clusteringS;, S,) suchthaB;N X €
S andB;N X C S,.

Write § = ||c; — ¢z||. Calculation shows thd; is the ball of radius = (§/¢)v/1+ ¢
as in Fig 7. Moreover, the distance of the badlsand B, is (slightly) smaller thar%ss.
Let B; be the ball concentric wit; and of radiug + %58. If we usen-approximate
range searching (see Section 2) withas the query, wheris such thaB,; C B{ and
B, N B] = ¢, then the answer gives us the weight of someSsedatisfying the above
requirements. It turns out thashould be chosen of the orde; which leads to the query
time O(logn + ¢~2@-Y). (By considering the approximate range-searching algorithm
in detail, one might perhaps get this down to something@kgn + ¢~@-9) )
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Fig. 7. The ballsB; andBs,.

The function cost) itself is not directly amenable to range searching (it is not addi-
tive). However, it can be evaluated using range searching with several auxiliary types of
weights. The first weighiv; of a point is 1, andv1(S) = |S|. Further,w,(x) = |x||?
andwy(S) = Y, s lIX[1?, and finallyws(x) = x € RY, w3(S) = 3, .5 X. By perform-
ing approximate range searching with the composed weight (w1, w2, w3), we can
calculate all ofwy, w, w3 for the same se§;. The weights of the complementary set
S, = X\ §, can be computed from the weights ¥fandS;. Finally, costS) for a setS
can be computed from (S) using the equality (1):

1 1
costS) = 5o ) Ix—yIP= 5 <2|S| D IxIE-2 ) (x, y>>

X,yeS XeS X,yeS

1 1
> IxIP - g <Zx, Zx> = w9 — = lws(S)I*

XeS XeS XeS

Summarizing, it is possible to preprocess theXeah O(nlogn) time in such a way
that, for a given paitcy, C;), cos{ITyy(Cy, C2)) can be approximated within a factor of
(14 ¢) intime O(logn 4 ¢~2@-1),

By using this in the implementation of step 3 of the algorithm at the beginning of this
section, and employing the bounds for the construction of-approximate centroid
set from Theorem 4.4 and Lemma 4.2, we arrive at the total running time bounds for
2-clustering as claimed in Theorem 1.1.

6. Approximate k-Clustering

In order to extend the method of the previous sectidkétustering with a fixek > 2,
it is natural to define that two orderddtuples(cy, Cy, ..., ¢) and(c;, C,, ..., G) are
e-nearif for any two indices, j, 1 <i < j <k, the pairgc, ¢;) and(c, c¢;) ares-near
(as in Section 2). We have the following analogue of Lemma 5.1:

Lemma6.1. Let(cy,Cy, ..., Ck) and(cy, G, ..., C,) be two k-tuples of points iRd
that aree-near ¢ < . LetIT = Iy (C1, Cp, . .., C) @and T = Myor(Cy, G5, ..., G ) be

the respective Voronoi clusterings of a setThencos{(I1’) < (1 + 16¢) costII).
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Fig. 8. Obtaining many well-separated 4-tuples.

Sketch of Proof As in the proof of Lemma 5.1, we estima‘iej!‘zl cos(§, ¢), where
§ are the clusters dfl’. Considering a poink lying in § and inq, the calculation in

the proof of Lemma 5.1 shows thig — ¢; [|> < (1 + 16¢)[|x — Gi||2. O

Well-Spread k-Tuples We can proceed to define arcomplete set ok-tuples for a set
C in an obvious manner. However, heading for a near-linear approximation algorithm,
we cannot afford to compute ddituples in such an-complete set, because their number
can be too large. The simplest example occurskfer 4, with 4-tuples(cy, ¢y, C3, Cs)
wherec;, is very close taz, andcs is very close tacy, but these two pairs lie relatively
far apart (Fig. 8). One can construct an example af-goint setC and$2(n?) 4-tuples
of its points such that no two of them are 1-near, say. On the other hand, the “fine
structure” of the two subsets;, ¢} and{cs, ¢4} as in Fig. 8 does not matter for their
mutual interaction; we can use any of the p&is cs3), (C1, C4), (C2, C3), and(cy, ¢4) for
defining a bisector that separates the clusters ahd ofc, from the clusters of; and
of c4. This motivates the following definition.

For a real numbeM > 0 and sety € X c RY, we say thaly is M-isolatedin X
if any point of X\ Y has distance at leaM - diam(Y) from Y. We note that ifY c X is
(1/¢)-isolated inX, andx € X\Y, then all the pairgy, X) with y € Y ares-near.

We say thatX c RY is e-well-spreadif there is no proper subsat c X, |Y| > 2,
that is(1/¢)-isolated inX.

Lemma6.2. Let X be a k-point-well-spread sets < % and lets be the minimum
distance of twddistinct points of X Thendiam(X) < ((2/g))*~25.

Proof. Consider a Euclidean minimum spanning ffeef X. Lete; be the shortest of its
edges, and, far> 1, lete ,; be the shortest edge connecting the subgfaphT induced
by the edges;, ..., e totherestofl . Since, foii =2,3,...,k—1,V(T)isnot(1/¢)-
isolated inX, we get thatje 1] < (1/¢) diam(Ti) < (I/e)(llew]l + &l + -+ & lD.
The lemma now follows by induction an O

Lemma 6.3. Let C c RY be an m-point selets < %, and let k> 2 be fixed Then
one can compute a sétof ordered k-tuples with the following properties

(i) Foranye-well-spread k-tuple of points of @Ghere is a k-tuple i€ that ise-near
to it.
(i) |C| = O(me—Kd),
(i) Each k-tuple irC is (¢/2)-well-spread
(iv) Atleast one pointin each k-tuple ¢hbelongs to C
(v) For any given k-tuple of points iRY, there are no more than Q) k-tuples of
C lying e-near to it
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(vi) The minimum and maximum distance of points in each k-tuglane bounded
by constant multiples of the minimum and maximum distance, ire§pec-
tively.

The running time is @nlogm + me~d).

Proof. We use an algorithm for generating @n'2)-complete seP C C x C of pairs
for C, asin Theorem 2.1. For each pé;, y) € P, we further comput&-tuples having
x andy as points with the smallest (or almost the smallest) distance. Wepuitx — y||
andR = 25((2/¢))*~2 and we choose }ggé-dense seb for the ball of radiusk centered
at x. We output alk-tuples that consist af, of y, and of some& — 2 points ofD (in
some arbitrary order), such that: every two points oflkiteple have distance at least
%8, thek-tuple is(¢/2)-well-spread, and it has diameter at most 2 di@m

The number of generatddtuples is

R (k—2)d
0] mgid <_> — O(mgfdf(kfl)(kfz)d) — O(mSikZd)-
£d

Given are-well-spreadk-tuple(cy, Cy, . . ., C),C1, . . ., & € C,withd = ||c;—c;|| being
the shortest distance, we know that there is a(@irc;) € P (¢/2)-near to(cy, Cp), with

8 =|lc; —cyll € [6 — 268,68 + 288] C [%8, 24]. In the corresponding sé, there are
pointsc, ¢, ..., G, ¢ at a distance of at mogts’ < 2¢8 from¢; (using Lemma 6.2).
Itis routine to check that thie-tuple (¢, C,, . . ., ¢) has all interpoint distances at least
%8 > %8/, a diameter no larger than 2 di&@), and that it is(¢/2)-well-spread, and so
it was output by the algorithm.

Let Cy denote the resulting set &ftuples. This set satisfies all the conditions in the
lemma except possibly for (v): tHetuples can sometimes be cluttered together. We
run a pruning algorithm off. Let (¢, C, ..., c) € Cop. To each point;, we assign
an aligned cubé&); containingc;. The side ofQ; is determined as follows: i#f; is the
distance tac; of the nearest neighbor af among thec;, j # i, then the diameter of
Qi should be betwee%'nssi and%eéi (we can think ofQ; as being a suitable cube from
the quadtree, but we do not build any tree structure from these cubes here). We call two
k-tuples inCy equivalent if their correspondirigtuples of aligned cubes are identical.
From each equivalence class, we discarddiiples but one (computationally, this can
be done inO(nlogn) time). It can be checked that the resulting&ef k-tuples satisfies
both (i) and (v). O

The Algorithm Now we can formulate a high-level description of a recursive algo-
rithm for k-clustering. The parameters of the recursive procedure are: 4 setR®

(the points), a se€ ¢ RY (candidates for centroids), and the number of cluskers
(¢ is regarded as a global parameter). The result kschustering of X and its cost.
Initially, the algorithm is called with the given s&t, ans-approximate centroid s&

for X, and with the giverk. We need to assume that the ratio of the maximum and
minimum distances X is polynomially bounded (see Section 3); in such a case, the
construction ofC (Theorem 4.4) can be implemented in such a way @hatso has this

property.
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Fig. 9. The recursion in th&-clustering algorithm.

The procedure operates as follows:

1. If k = 1, then returnX (as the single cluster) and c¢Xp. Otherwise continue
with the next step.

2. Fork* = 2,3, ..., k, generate a sé€t* of ordered<*-tuples forC asin Lemma 6.3.

3. For each(cy, G, ..., C) € C*, let (Xq, Xo, ..., Xk:) = ITyor(Cy, Co, ..., Cir)
be the Voronoi partition ofX, and letC; be the points ofC lying in the &35-
neighborhood ofc;, where§ is the distance of the two closest points among
Ci1, C2, ..., Ck+ (See the schematic illustration in Fig. 9)Gf = ¢ for somei, we
disregard the curreht-tuple (cy, C,, . . ., C), Otherwise we process it according
to the next step.

4. Fori =1,2,...,k* callthe procedure recursively o andC;, with the number
of clustersk; running from 1 tck — k* + 1. This yields &; -clustering ofX; for alll
the considered; . Find the combinationiky, ko, . .., Kie), kKt + ko + - - - + ke =K,
for which thek-clustering ofX obtained by combining the computkdclusterings
of the X;’s has the smallest cost.

5. For eaclk*-tuple inC* with all theC; nonempty, we thus obtain ofkeclustering.
Among these, return the one with the smallest cost (minimum ovés* dliples
and overalk* = 2,3,...,k).

Using Lemmas 6.1 and 6.3, one can check thats foelow a suitable constant, the
algorithm computes &l + O(e))-approximately optimak-clustering ofX. It remains
to specify the implementation of the various steps in more detail and bound the running
time.

Implementation and Running Time Analy$gmoring Cost Computations In the first
part of the running time analysis, we ignore the cost of step 1 (computing>©)st
and the cost of computing the Voronoi partitidhyr(Cy, Cy, . . ., Ck+) in step 3; in the
final version of the algorithm, the sét will be passed only implicitly to the recursive
procedure and the cluster cost will be approximated using range searching.

The set<C; in step 3 are computed using approximate range searching (the reporting
version), say withe = %1 (the algorithm still works correctly if we tak€; as a%l—
approximate intersection @ with the 24§-ball aroundc;). The setC at the top level
of the algorithm is preprocessed, and the queries are always made with respect to this
original set; this is not exactly as specified in the algorithm, but it works just as well.
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Also, we do not generatg; if k; = 1. Thus, computing th€; for onek*-tuple inC*
needsO(logn) overhead, plus time proportional to the combined size ofdhéf the
gueries are processed simultaneously for,alle can make sure that whenever sabne

is empty, the total time for the queries is or®ylogn). If we charge time proportional
to |Cj| to the recursive call witl€;, we get that the overhead for the computation of the
Ci is O(logn) perk*-tuple inC*.

Thus, the running time in a recursive call, excluding the time for the embedded
recursive calls (and, as stated above, ignoring the computations invo{yjig at most
O(|C|(logn + e‘kzd) + |C*| logn). In order to bound the total running time, we need to
consider the total size of the setsgenerated by the algorithm.

Charging Running Time to Tufts We look at how &*-tuple c in someC* can arise
in the algorithm. At the top level of the recursion, we choose séirtiple ¢ =

(c(l) (1)) and an index;. We consider a recursive call belonglngﬁf i.e., with

the sets)(.1 andC.l. In this second-level recursive call, we choodg duplec® (lying
in a small neighborhood of the poict”) and an index,, and we proceed with the

third-level recursive call, etc., until we finally reach ddrtuplec = c¢® at sometth
level of recursionf¢ < k. Schematically:

1
cg) i

/\

(’ki
(£—1) (1) (£=1)
S : “de_1 o e

/\

(5) (f) )

We haveki — D+ K —D+---+ Kk, —D+k <k
By Lemma 6.3, for each of the'-tuples generated in step 2, at least one of its points
lies inC. Leti, be an index of a point lying i€ in our k*-tuplec = ¢, i.e., such that
O]
¢, €C.

Forj =1,2....6letL; = Ljcc) = {c: i =1,2...,k 0 # i), and let
r=r() = ci(f). The total size of thé; is at mostk — 1, and eachij U {r} is (¢/3)-
well-spread.

For a pointx and finite setd 1, Lo, ..., Ly, call(r, Ly, ..., Ly) a(k, )-tuftif |L1|+
[Lo] +---+|L¢| < kandeach ; U{r}is e-well-spreadry is theroot of the tuft.
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In this way, eactk*-tuple c generated by the algorithm is assignetka(e /3))-tuft
whose root lies irC. One tuft is assigned to at maSt(1) k*-tuples (the sets in a tuft are
unordered, while the algorithm formally deals with ordekéetuples, and so each tuft
can be ordered in a number of ways). Zgtbe the set of all the tufts produced by the
algorithm in this manner.

The total size of the set¥' generated by the algorithm is at most proportionadfig.
We need to verify also that the total size of all the g@tentering the recursive calls
(only those withk > 1) is at most proportional ti@a| (note that, in some recursive calls,
it might happen thafC*| is much smaller thafC|). Suppose that has been passed to
some recursive call of the procedure, say to a call omthdevel of recursion. This call
is uniquely identified by thi"-tuplesc™, @, . .., ¢4~ and the corresponding indices
i1,i2,...,ig-10enerated at the previous levels of recursion. We may assun€ftat?
(otherwise the size & can be charged to the calling procedure rather than to the called
one). Thenit can be checked that, for each poiatC, there is a tuftir?a havingx as the
root and containing the points of eac# (excludingci(j”), j=212,...,9—1.Indeed,
apair(x, y), wherey lies close to some of the nearest neighbors,@$ generated at the
qth level of recursion (fok; = 2), andx andy together with the points af", . .., c@~?
form the desired tuft irfa. The total running time of th&-clustering algorithm (still
ignoring the operations witl) is thusO(|7a|(logn + £ ¥d)).

We call two(k, &)-tufts (r, L1,..., L¢) and(r’, L, ..., L}) n-near if, for eachj =
1L2,...,¢ L] = |LJf| and the(|L;j| + D-tuples{r} U L; and{r'} U LJf are n-near
(in some ordering of its points, such thais matched withr’). We note that by the
construction of the sets* in the algorithm, at mosD (1) tufts of 7, aree-near to any
given(k, (¢/3))-tuft (by Lemma 6.3(v)).

Lemma 6.4. Letr € RY be fixedLet7 be a set ofk, ¢)-tufts with root r such thafor
each(r,Ly,...,Ly) € 7, diam{r} UL, U---UL,) < R and any two points in each
L; U {r} have distance at least(R > 25). Suppose that no two tufts if are e-near
Then|T| = O((log(R/8))k~te—(k-17d)

Proof. Consider the tufts il with a given¢ < k — 1 and with given sizes of thk;.

For a given tuft(r, L4, ..., L,), leté; be the smallest distance fn} U L; and leti; be

the largest integer with'2< §;. By the assumption off, there are at most Igg2R/$)
possible values of eagh If ij is fixed, by Lemma 6.2 we know that the pointslgflie

in the ball around of radius(2/¢)!bi1-12ii+1 and it suffices to determine their position
with accuracy:2'. It follows that the number of choices far, is O(log(R/s) - e =411 1%).

The bound in the lemma follows (actually, it is an overestimate, since if, e.g., the power
of the logarithm ik — 1, then the power of /& is at most(k — 1)d). O

For the tufts in7, (generated by the algorithm), we know that{&y5) = O(logn).
It follows that|7a| = O(|C|(log|C|)k—1e—(k-Dd),

If the operations concerning, which have been ignored so far, are implemented in a
straightforward manner, i.e., d(n) time each, they add at maSt(n) as a multiplicative
factor, and so the total time is slightly superquadratic. To do better, we can again use
approximate range searching.
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Approximate Cost ComputationIn order to present this part of the algorithm, we
need to say a little more about the approximate range searching algorithm considered in
Section 2. For our purposes, we can regard its data structure as a roofEd¢edied a
partition treg, where each node is associated with a subset of the givéh $éie root is
associated with the whole. Each node has two sons; the subsets of the sons are disjoint
and together cover the subset of their parent node. Leaves of the tree are associated with
one-point subsets. When processing a query with a régble algorithm visits the
nodes of some rooted subtrégof T; for each visited node, either both sons are visited
or none of them. Each leaf dk (i.e., each visited node whose sons were not visited) is
labeled either IN or OUT. The approximate answer to the query is computed by summing
up the weights of all the visited nodes labeled IN. The total number of visited nodes, for
any convex query range, 8(logn + ¢~ @),

From this description, it is easy to see that this data structure allows us to process
gueries with intersections and complements of query ranges. For exanfpignfl R,
are convex ranges, we can computeP; N P,) in O(logn + ¢~@-) time, whereP,
is ane-approximate intersection d* with R; and P, is ane-approximate intersection
with R,. Namely, we compute the visited subtrdgs andTg,, and we look at the leaves
of their union. For the answer, we take all the leaves that are labeled IN according to
both Tg, andTg,; here a node of is considered to be labeled IN accordingTig if it
is a leaf of Tg, labeled IN or a descendant of such a lealgf.

In the recursivek-clustering algorithm, we first build the partition trdefor the
original (top-level) seX. The parameteK will be passed in an implicit representation
to the recursive calls: it is represented as a subtr@epfis a labeling (INOUT) of its
leaf nodes.

It remains to describe how the Voronoi partitibi (C1, Co, . . ., Ck) Of a current set
X is computed. We recall the ball; introduced at the end of Section 5 (Fig. 7) far
andc; and the slightly larger baB; used for the queries there. We Bt andB;; denote
the analogously defined balls farandc; (so By is the same aBy»).

In order to find suitable approximations to th, we first compute, for all, |,
1<i < j <k, asetA; thatis am-approximate intersection d}ij with X. (This Ajj
is represented implicitly, by a subtreeDfand an INOUT labeling of its leaves.) Here
n = ©(e?) is chosen so that if € Ajj, then||x —ci|| < [IX —¢; ||, while forx ¢ A;; we
have|x — ¢j|| < (14 ¢)|Ix — ¢i|l. Now we define

X| = ﬂAlj,

j>1
Xy = (X\XD N (ﬂAiJ) ,

j>2

X = X\(XyU---UX_))N (ﬂAij) )

j>i

Xt = X\OG U+ U Xjy).
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The X! form a partition ofX, and eachX! is represented b (logn + ¢~29-1) nodes
of the partition tree. It remains to show that if a paing X is “misclassified,” i.e., itis
nearest ta; but was placed to som)éjf, then||x —¢j|| < 14+ O(e)IIx —cill.

First suppose that € X{\Xi,i > j. Thisimmediately leads to a contradiction, since
X € Xj’ impliesx € A;i and so||x — Gj|| < [IX — G|l

Next, letx € Xj\Xj,i < j. There mustbe areason wkys not placed irX;, namely,
thatx ¢ A;j, for somej; > i, implying that||x — ¢, || < 1+ &)X —G|. If j = j1
we have what we wanted. ffy > j, then, sincex is placed toXJf, we getx € Ajj,,
and consequentlyx — ¢ || < IXx — ¢, Il < 1+ ¢)lIx — G| Finally, ifi < ji1 < j, we
can repeat the argument wifhinstead ofi. There is aj> > j; with x & A;,j,, and so
X —cj,ll < 1+ e)lIx — cj,|l, etc. After no more thak — 1 such steps, we reaghor
beyond it, and we thus haix — ¢;|| < (1 + ) x—c|| = @A+ O0@)|x—cl as
desired. Therefore, theclustering algorithm using the approximate partitions described
above instead of exact Voronoi partitions correctly computéds-O(¢))-approximately
optimalk-clustering.

Each operation withX (cost computation or partitioning) is performed in time
O(logn + ¢~29-1), using the implicit representations of th& and the weight com-
putations described at the end of Section 5. At the same time, each such operation can
be uniquely attributed to some tuft ifn. For the total running time of thle-clustering
algorithm we thus get the estimate

O(|C|(log|C]) e~ ¢V (logn 4 ¢ ')
O(ne~9(logn)ke~k-D7d-kd)
O(n(lognyke~2°d)

O(|7al(logn + e ~2@-D 4 8—k2d))

Theorem 1.2 is proved. O

Appendix. Approximate 2-Clustering according to K. Varadarajan

Here is an outline of Varadarajan’s argument, giving an improvement and simplification
of the first part of Theorem 1.1.

Consider the optimal two partitioll = (S, $) of the givenn-point setX. Leth be
the perpendicular bisector of the segmsmibnnecting the centroids(S;) andc(S),
and letm be the intersection . Let h’ be a hyperplane passing througih such that
the angle of the normal vectors bfandh’ is at mosts. Then, as can be easily derived
fom Lemma 5.1, the clustering induced byis (1 + O(g))-approximately optimal.

Here is an algorithm for computing an approximate 2-clustering. Choosela skt
O(e~@-D) direction vectors such that any direction vector has angle atawdgh some
of the chosen vectors. For eacle D, sweep a hyperplane perpendiculav tacross the
point set X, and compute the costs of each ofrthhesulting 2-clusterings ok, and take
the minimum. Costs of the 2-clusterings can be computed using a one-dimensional range
searching data structure (as described in the paper), or it can be updated incrementally as
points are moved across the hyperplane. The resulting running titn@ieg ns ~@-2),
plus time polynomial ire~* for constructingD.
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