
DOI: 10.1007/s004540010019

Discrete Comput Geom 24:61–84 (2000) Discrete & Computational

Geometry
© 2000 Springer-Verlag New York Inc.

On Approximate Geometric k-Clustering∗

J. Matoušek

Department of Applied Mathematics, Charles University,
Malostransk´e nám. 25, 118 00 Praha 1, Czech Republic
matousek@kam.mff.cuni.cz

Abstract. For a partition of ann-point setX ⊂ Rd intok subsets (clusters)S1, S2, . . . , Sk,
we consider the cost function

∑k
i=1

∑
x∈Si
‖x− c(Si)‖2, wherec(Si) denotes the center of

gravity of Si . Fork = 2 and for any fixedd andε > 0, we present a deterministic algorithm
that finds a 2-clustering with cost no worse than(1+ ε)-times the minimum cost in time
O(n logn); the constant of proportionality depends polynomially onε. For an arbitrary
fixedk, we get anO(n logk n) algorithm for a fixedε, again with a polynomial dependence
on ε.

1. Introduction

We consider a geometrick-clustering problem: given ann-point setX ⊂ Rd and a natural
numberk ≥ 2, find a partition (clustering)5 = (S1, S2, . . . , Sk) of X into k disjoint
nonempty subsets that minimizes a suitable cost function among allk-clusterings ofX.
The cost function should show how tightly eachSi is “packed together” and how well
the differentSi are separated from each other. We consider the following cost function,
based on intracluster variances:

cost(5) =
k∑

i=1

cost(Si), where cost(S) =
∑
x∈S

‖x − c(S)‖2.

Here‖·‖ denotes the Euclidean norm andc(S) = (1/|S|)∑x∈S x is the centroid (center
of gravity) of the setS.

We say that ak-clustering5 of X is (1+ ε)-approximately optimalif cost(5) ≤
(1+ ε) cost(5′) for anyk-clustering5′ of X.

∗ Part of this research was done during a visit to the Imai Laboratory at the University of Tokyo, whose
support and hospitality is gratefully acknowledged. This research was supported by Charles University Grants
Nos. 158/99 and 159/99.

62 J. Matoušek

In this paper we investigate approximatek-clustering algorithms. The space dimension
d and the number of clustersk are always regarded as (small) constants, and the constants
of proportionality hidden in theO(·) notation usually depend on them.

For 2-clustering (which can be used as a basis of a heuristic clustering algorithm by
recursive splitting), we give a near-linear approximate algorithm for any fixedε > 0:

Theorem 1.1. Let X ⊂ Rd be an n-point set, and let ε > 0 be given. A (1 + ε)-
approximately optimal2-clustering of X can be found in time

O

(
n logn · ε−2d log

1

ε
+ nε−(4d−2) log

1

ε

)
.

In particular, the running time is O(n logn) for a fixedε > 0.
If f (s) denotes the smallest cost of a2-clustering of X whose clusters both have size

at least s≥ 1, then a2-clustering with cost at most(1+ ε) f (s) can be computed in time

O

(
n logn+ n

s
(logn)2ε−2d log

1

ε
+ n

s
logn · ε−(4d−2) log

1

ε

)
.

We remark that in the second part of the theorem, it isnot guaranteed that the 2-
clustering found by the algorithm has clusters of size≥ s. On the other hand, if we
know a priori that all(1+ ε)-approximate clusterings have clusters of size≥ s, then the
algorithm can, of course, be used to find one.

As was noted by Varadarajan [12], a result better than the first part of Theorem 1.1
can be obtained in a quite simple way, using an observation in this paper. His approach,
leading toO(n logn · ε−(d−1)) running time, is outlined in the Appendix. On the other
hand, it is not known how to extend his method to the case ofk-clustering or to the
situation in the second part of Theorem 1.1. We still include the original proof of the
first part of Theorem 1.1, since the tools developed there are used in the other results.

For an arbitrary fixedk > 2, we get a somewhat worse, although still near-linear,
algorithm.

Theorem 1.2. Let X⊂ Rd be an n-point set, let k≥ 3 be fixed, and letε > 0 be given.
A (1+ ε)-approximately optimal k-clustering of X can be found in time

O(n(logn)kε−2k2d).

If we consider only clusters of size at leasts, an improvement similar to Theorem 1.1
is possible as well, but we do not elaborate on this in this paper.

Geometric Facts about k-Clustering. Before reviewing previous work about
k-clustering, we introduce some notation and simple geometric facts.

For a pointp ∈ Rd and a finite setS⊂ Rd, we put

cost(S, p) =
∑
x∈S

‖x − p‖2.

On Approximate Geometrick-Clustering 63

As is well known, and easy to check, we have cost(S) = cost(S, c(S)) =
minp∈Rd cost(S, p). Further, ifc1, . . . , ck ∈ Rd are given points, then

∑k
i=1 cost(Si , ci)

is minimized, over all choices of ak-partition (S1, S2, . . . , Sk) of X, by letting Si be
the set of points ofX for which ci is the nearest point amongc1, . . . , ck (ties are bro-
ken arbitrarily). Geometrically speaking,Si are the points ofX lying in the Voronoi
region ofci in the Voronoi diagram of the set{c1, c2, . . . , ck}. We call such a partition
(S1, S2, . . . , Sk) theVoronoi partitionof X according toc1, c2, . . . , ck, and we denote it
by5Vor(c1, . . . , ck). Thus, an optimalk-clustering is a Voronoi partition, and, in partic-
ular, an optimal 2-clustering is linearly separable.

Previous Work. Clustering by the above cost function is frequently used in the literature
and in practical applications. In practice, mostly heuristic methods have been used, such
as thek-means algorithm(local improvements of the current clustering by moving
individual points among the clusters).

Algorithms with performance guarantees fork-clustering inRd have recently been
considered by Hasegawa et al. [7] and by Inaba et al. [8] (where also some background
information and references to other papers can be found). Inaba et al. [8] observe that
the number of distinct Voronoi partitions of a givenn-point setX ⊂ Rd induced byk
pointsc1, c2, . . . , ck is at mostO(nkd), and they can be enumerated inO(nkd+1) time.
Consequently, the optimumk-clustering under the variance-based cost defined above
can be found in time polynomial inn, for any fixedd andk.

Hasegawa et al. [7] noted that if5opt = (S1, S2, . . . , Sk) is an optimal partition and if
ci is chosen as the point ofSi nearest toc(Si), then cost(5Vor(c1, . . . , ck)) ≤ 2 cost(5opt).
By testing all the Voronoi partitions withc1, . . . , ck chosen among then points ofX, in
O(nk+1) time, one can thus find a 2-approximately optimalk-clustering.

Inaba et al. [8] presented a randomized algorithm for finding a near-optimal 2-
clustering among the 2-clusterings with no cluster too small. More precisely, letε > 0 and
s ∈ [1,n] be parameters. Their algorithm finds, with probability at least1

2, a 2-clustering
for which the cost is no worse than(1+ε)-times the cost of any 2-clustering with cluster
size at leasts. The running time isO(nmd), wherem is of the ordern/εs+(n/s) log(n/s).
They remark that their method can also be generalized for finding ak-clustering with
a fixedk (in that case, they need to consider all Voronoik-partitions of anm-point set
in Rd).

Remarks and Further Work. With the techniques of the present paper, it does not seem
easy to improve theO(n logn) running time for approximate 2-clustering withε fixed,
but I do not know whetherÄ(n logn) is a lower bound or not. Improving the running
time for approximatek-clustering, perhaps toO(n logn) for any fixedk andε, is another
interesting problem.

The work on this paper started by trying to find a deterministic counterpart of the
2-clustering algorithm of Inaba et al. [8]. They consider a random sampleT of m points
from X, and for all linearly separable 2-partitions(T1, T2) of T , they use the centroids of
T1 andT2 as candidates for centroids of an approximately optimal 2-clustering ofX. The
usual derandomization techniques in computational geometry would suggest replacing
the random sampleT by a suitable deterministically computed sample. However, in
this problem, it seems difficult to define suitable properties of such a good sample.

64 J. Matoušek

If one takes the probably most natural such property, namely, that for each linearly
separable 2-clustering(S1, S2) of X there is a linearly separable 2-clustering(T1, T2)

of T such that the centroids ofT1 and T2 approximate the centroids ofS1 and S2,
respectively, then a single good small sampleT need not exist at all (in the randomized
algorithm, the sampleT is good in this sense, with probability close to 1, for anyfixed
(S1, S2), but it need not be good for all 2-partitions simultaneously). Thus, instead of
imitating the sampling ofT , we construct a suitable set of candidates for the centroids
directly.

In this paper we concentrate on asymptotic results. We do not make any attempt to
optimize the various constants appearing in the proofs and algorithms, preferring con-
ceptual simplicity and simplicity of exposition instead. It is possible that some of the
ideas in the paper can be applied in practically efficient computations, but a signifi-
cant amount of work seems to be needed for developing such practical versions of the
algorithms.

The cost function considered in this paper is only one of many possibilities investigated
in the literature. In particular, the following family of cost functions, parameterized by a
real numberα ∈ [0,2], has geometric properties somewhat similar to those of cost(5).
Namely, the cost of a clusterS is given by

costα(S) = |S|α−1
∑
x∈S

‖x − c(S)‖2

and the total cost of a partition is again the sum of costs of its clusters. The case inves-
tigated in this paper isα = 1; other interesting cases areα = 0 (the cost of a cluster
is its variance) andα = 2 (the cost is the sum of squared distances of all pairs in the
cluster). Forα ∈ [1,2], the optimum clustering can be characterized by aweighted
Voronoi diagram(generally with both additive and multiplicative weights); see Inaba et
al. [8] for the casesα = 1,2. The methods of the present paper might be applicable to
k-clustering with the cost function costα with α ∈ [1,2], although further work seems to
be needed to give efficient approximation algorithms. Another interesting class of cost
functions arises, for example, by taking the same costs for the clusters but combining
them in a different manner, say by taking the maximum over all clusters. Also, cluster-
ings where the cost of a cluster is its diameter or the radius of its smallest containing
ball have been investigated intensively in computational geometry (see, e.g., [6]). The
geometry of such clusterings is quite different, but some of our techniques might still be
useful.

A very important stream of results on geometric approximation algorithms was
initiated mainly by the paper of Arora [1], which gave a polynomial-time(1 + ε)-
approximation algorithm for the Traveling Salesman Problem in a Euclidean space of
fixed dimension, for any fixedε > 0. Numerous other problems were attacked success-
fully by a similar approach. Results somewhat related to our clustering problem were
obtained by Arora et al. [2], who consider thek-medianproblem. Here, for ann-point
set X ⊂ Rd, a k-point setM ⊆ Rd, thek medians, should be found minimizing the
sum, overx ∈ X, of the distance ofx to its nearest neighbor inM . In other words, this
is ak-clustering problem where the cost of a clusterS is minp∈Rd

∑
x∈S‖x − p‖, and

the total cost is the sum of the costs of the clusters. Ford = 2, Arora el al. [2] obtain

On Approximate Geometrick-Clustering 65

a polynomial-time randomized algorithm for any fixedε > 0 (while k is regarded as
a variable parameter). Very recently, Kolliopoulos and Rao [11] obtained the expected
running timeO(21/εd

n logn logk), for any fixed dimensiond (also, in their formula-
tion of the problem, the medians can only be selected among the points ofX). The
k-median problem looks very similar to thek-clustering with the cost function consid-
ered here, but the cost function is a sum of distances rather than of squared distances.
While the geometry of the clustering problem with squared distances is simpler in some
respects, the squared distances seem to make the problem rather different from those
where Arora’s approach has been applied so far. We also remark that the dependence on
ε and ond in the Kolliopoulos and Rao result is exponential and doubly exponential,
respectively. Nevertheless, it might be worth trying to use some of the ideas of Arora and
others for getting a better dependence onk, say, in thek-clustering algorithm. A further
challenge would be to get a better dependence on the dimension. Here perhaps some of
the randomized techniques from Indyk and Motwani [10], Indyk [9], and other recent
papers dealing with high-dimensional metric problems might help, but, again, handling
sums of squared distances instead of distances seems to give ourk-clustering problem a
somewhat different flavor.

2. Preliminaries

Let diam(X) denote the diameter of a setX ⊂ Rd.
Let A andM be sets in a metric space. We say thatM isη-densefor A if each point of

A is at a distance at mostη from some point ofM . We will sometimes needη-dense sets
for simple convex setsA in Rd, such as cubes, under the Euclidean metric. An example
of anη-dense set forA is the intersection of the gridηd−1/2Zd with theη-neighborhood
of A. In the simple cases we deal with, this set is easily constructed in time proportional
to its size.

Well-Separated Pairs. For a real numberε ≥ 0, we define a relation∼ε on (ordered)
pairs of points inRd: we let(x, y) ∼ε (x′, y′) if ‖x− x′‖ ≤ ε · ‖x− y‖ and‖y− y′‖ ≤
ε · ‖x − y‖ (Fig. 1). We say that(x, y) and (x′, y′) are ε-near if (x, y) ∼ε (x′, y′)
and (x′, y′) ∼ε (x, y) (note that∼ε is not “quite” symmetric). We say that a setP
of ordered pairs of points ofRd is ε-separatedif no two pairs inP areε-near. Anε-
complete set of pairsfor a setX is a setP of ordered pairs such that any ordered pair
of points ofX is ε-near to some pair inP. (Note that we do not insist that points in the
pairs in P be fromX, although it will often be the case—for example in the following
theorem.)

Fig. 1. The relation∼ε .

66 J. Matoušek

We use a result of Callahan and Kosaraju [5], which for our purposes can be phrased
as follows:

Theorem 2.1. Let X be an n-point set inRd, and letε ∈ (0,1). Then anyε-separated
set P⊆ X × X of pairs has size at most O(nε−d). An ε-complete set P of pairs for X,
with |P| = O(nε−d) and P⊆ X × X, can be computed in O(n logn+ nε−d) time.

Approximate Range Searching. In a range searching problem, we consider ann-point
set P ⊂ Rd and a classR of admissible ranges (such asd-dimensional axis-parallel
boxes, spheres, simplices, etc.). Each pointp ∈ P is equipped by a weightw(p) ∈ S,
where(S,+) is a commutative semigroup (this means that the weights can be added
together; computationally, one assumes that a weight can be stored in a single word of
memory and that the semigroup operation can be performed in unit time). The goal is
to preprocess the setP with the weights and store the results in a data structure so that,
given a query rangeR ∈ R, the total weight of points inR, i.e.,

∑
p∈P∩Rw(p), can be

calculated efficiently.
We need a result of Arya and Mount [4] on approximate range searching. Given a

rangeR ∈ R and a numberε > 0, let R+ be the set of all points of distance at most
ε · diam(R) from R, and letR− be all points of distance at mostε · diam(R) from the
complement ofR; see Fig. 2. Anε-approximate intersectionof P with a rangeR is
any subsetP1 ⊆ P with P ∩ R− ⊆ P1 ⊆ P ∩ R+. An ε-approximate answerto the
query with rangeR is any weight of the form

∑
p∈P1

w(p), whereP1 is anε-approximate
intersection ofP with R. Arya and Mount assume that for a givend-dimensional axis-
parallel cubeQ, it can be decided in unit time whetherQ ⊆ R+ and also whether
Q ∩ R− = ∅. They show that afterO(n logn) preprocessing time, a data structure of
sizeO(n) can be built, such that anε-approximate answer to any queryR ∈ R can be
computed in timeO(logn+ε−d). The query time bound improves toO(logn+ε−(d−1))

if all R ∈ R are convex. A reporting version of the query is also possible; namely, the
list of points of a setP1 as above can be computed inO(logn+ ε−d + |P1|) time (or in
O(logn+ ε−(d−1) + |P1|) time for convex ranges).

Spanners. Let X be a set ofn points inRd. A graphG = (X, E) is called a (Eu-
clidean)t-spannerof X if, for any two pointsx, y ∈ X, there is a path fromx to y in
G of length at mostt‖x − y‖, where the length of a path is the sum of the Euclidean

Fig. 2. Approximate range searching.

On Approximate Geometrick-Clustering 67

lengths of its edges. Point sets in low-dimensional spaces admit sparse spanners. A
recent strong result, subsuming most of the previous work, is due to Arya et al. [3]:
for any fixedε > 0 andd > 0 and for anyn-point set inRd, a (1 + ε)-spanner
of maximum degreeO(1) can be computed inO(n logn) time. We only need the
much weaker result that a 2-spanner withO(n) edges can be computed inO(n logn)
time. (Actually, spanners are not crucial in our applications; they are used mainly for
convenience.)

3. Putting the Points on a Polynomial-Size Grid

Here we describe a reduction showing that, for thek-clustering problem with a fixedk,
it is sufficient to deal with points with polynomially large integer coordinates, after a
suitable preprocessing.

Our model of computation is theReal RAM; we assume that the point coordinates
are arbitrarily real numbers. This means that ratios of the interpoint distances can be
arbitrarily large, say exponential inn (although this is rather unrealistic for practical
inputs). A suitable preprocessing allows us to eliminate these extremely large distance
ratios.

Proposition 3.1. Let d and k0 be fixed. Suppose that there is an algorithm A that, for
a givenε > 0, k ≤ k0, and an n-point multiset X′ ⊂ Rd with points lying on an integer
grid of size O(n3/ε), finds a(1+ ε)-approximately optimal k-clustering of X′. Then a
(1+ ε)-approximately optimal k0-clustering for an arbitrary n-point set X⊂ Rd can be
computed with O(n logn) preprocessing and with at most C calls to algorithm A, with
various at most n-point sets X′, with k ≤ k0, and withαε instead ofε, whereα > 0 and
C = C(k0) are constants.

Proof. We describe a recursive algorithmB for the task as in the proposition. The input
is a point setX and an integer̄k ≤ k0. The depth of the recursion is at mostk0.

First we compute a 2-spannerG of the given setX. Let G1 denoteG minus all edges
of (Euclidean) length at least1. We put1 = diam(X)/n, and we observe thatG1 is
necessarily disconnected.

Let X′ be a (multi)set arising by moving each point ofX by no more thanδ =
αε1/(5n2). By such a movement (and appropriate rescaling), it can be guaranteed
that the points ofX′ lie on an integer grid of sizeO(n3/ε). (Note that a multiset may
result.)

We call the algorithm A on thisX′, obtaining a(1+ αε)-approximately optimal̄k-
clustering5′ of X′. If cost(5′) is larger than a suitable threshold, equal to1

201
2, we

show that the correspondinḡk-clustering5 of X is (1+ ε)-approximately optimal for
X. Otherwise, if cost(5′) is below this threshold, we infer that each cluster in an optimal
k̄-clustering ofX is completely contained in a connected component ofG1. This implies
thatG1 has at most̄k connected components. If there are exactlyk̄ connected compo-
nents, then the components necessarily determine the optimum clustering. Otherwise,
if there arem < k̄ components, wek-cluster each of the components by calling the

68 J. Matoušek

algorithmB recursively, for 2≤ k ≤ k̄−m+1. We combine an approximately optimal
k̄-clustering from these data (in time bounded by a function ofk̄).

It remains to establish the above claims. By moving the points by at mostδ, the
centroids are moved by no more thanδ as well. By passing fromX to X′ or back,
the square of the largest possible distance of a point from a centroid, diam(X)2, is
changed by no more than|diam(X)2 − (diam(X) + 2δ)2| ≤ 5δ diam(X). It follows
that for anyk-clustering5 of X, if 5′ is the correspondingk-clustering ofX′, then
|cost(5)− cost(5′)| ≤ n · 5δ diam(X) ≤ αε12.

Supposing that cost(5′) ≥ 1
201

2, and knowing that5′ is the(1+αε)-approximately
optimalk-clustering ofX′, it is easy to check that5 is the(1+ε)-approximately optimal
clustering ofX, provided thatα was chosen sufficiently small.

Next, suppose that cost(5′) < 1
201

2. We infer that, forα sufficiently small, any
optimal k̄-clustering50 of X must satisfy cost(50) <

1
161

2. This implies that the
distance of any two points in the same cluster must be smaller than1

21. However, by
the properties of the 2-spannerG, any two points from distinct components ofG1

have distance at least1
21. Therefore, any optimal̄k-clustering has clusters completely

contained in the components ofG1, and we can apply the recursion as described above.
This finishes the proof of Proposition 3.1.

4. Approximate Centroid Sets

Let Sbe a finite set inRd. We let

ρ(S) =
(

1

|S|
∑
x∈S

‖x − c(S)‖2
)1/2

=
√

cost(S)

|S|

be thequadratic-mean radiusof S. For a real numberε ≥ 0, theε-tolerance ballof S is
the ball centered atc(S) of radius(ε/3)ρ(S).

Let X ⊂ Rd andC ⊂ Rd be finite point sets. We callC anε-approximate centroid
set for X if C intersects theε-tolerance ball of each nonemptyS ⊆ X. We callC an
ε-approximate centroid set for X for cluster size≥ s if it intersects theε-tolerance ball
of each cluster of sizes or larger.

The following lemma uses the ideas of Inaba et al. [8]:

Lemma 4.1. Let X⊂ Rd be a finite point set, let k≥ 2,and let C be anε-approximate
centroid set for X for cluster size≥ s. Then there are c1, c2, . . . , ck ∈ C such that

cost(5Vor(c1, c2, . . . , ck)) ≤ (1+ ε) cost(5)

for any k-clustering5 of X with all clusters of size at least s.

Proof. Let (S1, S2, . . . , Sk) be an optimalk-clustering ofX with all clusters of size at
leasts. For i = 1,2, . . . , k, chooseci ∈ C lying in theε-tolerance ball of the clusterSi .

On Approximate Geometrick-Clustering 69

For eachi , we have

cost(Si , ci) =
∑
x∈Si

‖x − ci ‖2 ≤
∑
x∈Si

(‖x − c(Si)‖ + ‖c(Si)− ci ‖)2

= cost(Si)+ 2‖ci − c(Si)‖ ·
∑
x∈Si

‖x − c(Si)‖ + |Si | · ‖ci − c(Si)‖2

≤ cost(Si)+ 2
ε

3
ρ(Si)

√
|Si | ·

√
cost(Si)+ |Si |

(ε
3
ρ(Si)

)2

≤ cost(Si)+ 2
3ε cost(Si)+ ε

2

9
cost(Si)

≤ (1+ ε) cost(Si).

Let (S′1, S′2, . . . , S′k) = 5Vor(c1, . . . , ck). By the optimality of the Voronoi partition with
respect to given centroids, we have

k∑
i=1

cost(S′i) ≤
k∑

i=1

cost(S′i , ci) ≤
k∑

i=1

cost(Si , ci) ≤ (1+ ε)
k∑

i=1

cost(Si).

A Simple Construction for Well-Separated Point Sets. Here we give a very simple con-
struction of anε-approximate centroid set. This construction is suitable for a (multi)set
X whose ratio of maximum and minimum interpoint distances is not extremely large. In
particular, according to Proposition 3.1, for an approximatek-clustering algorithm, we
may assume thatX lies on an integer grid of sizeO(n4); then the ratio of the maximum
and minimum distances of (distinct) points ofX is O(n4).

The parameters of the construction are the setX, the minimum cluster sizes, the
numberε > 0, and a numberδ > 0 which is a lower bound for the minimum distance of
two distinct points ofX. (As we will see, the dependence of the quality of the construction
on δ is only logarithmic, and so we can take a generous lower bound.) The set being
constructed is calledC.

We setr = δ/n. (If X is a set, with no multiple points, it is sufficient to setr =
(1/
√

2)δ.) This choice guarantees that, for any clusterS⊆ X with at least two distinct
points, we haveρ(S) ≥ r . This follows from the equality∑

x∈S

‖x − c(S)‖2 = 1

2|S|
∑

x,y∈S

‖x − y‖2 (1)

(which can be verified by substituting forc(S) from its definition and by a simple
algebraic manipulation).

In what follows, by a cube, we always mean an axis-parallel cube (inRd). The K -
enlargement of a cubeQ is the cube concentric withQ and with the sideK -times larger
than the side ofQ.

Let Q0 be the 3-enlargement of the smallest cube enclosing the given setX, and let
R be the side ofQ0.

We call a cubeQ alignedif it arises fromQ0 by a repeated subdivision, where in
each subdivision the current cube is partitioned into 2d equal-size cubes.

The construction begins withQ0 as a single active cube and withC = ∅.

70 J. Matoušek

Fig. 3. (a) The setCQ and (b) the subdivision ofQ.

At each step of the construction, we consider one of the currently active cubes, denoted
by Q. Let σ be the side length ofQ. We choose a setCQ that is((ε/18) σ)-dense for
the 2-enlargement ofQ (Fig. 3(a)); we may assume|CQ| = O(ε−d). We addCQ to the
constructed setC.

After this, the cubeQ ceases to be active. Ifσ ≥ 2r , we subdivide the cubeQ
into 2d cubes of sideσ/2 (formally, we consider the cubes to be products of semiopen
intervals, so that the cubes in the subdivision are disjoint and coverQ). A cubeQ′ in
this subdivision becomes active if and only if it contains at leasts/2d+1 points ofX. The
construction ends if there are no active cubes left.

As a final step, we add toC all the points ofX of multiplicity s or larger. This takes
care of all clustersSconsisting of (copies of) a single point.

Lemma 4.2. We have|C| = O((n/s) ε−d log(nR/δ)),and the construction can be per-
formed in time O((n+(n/s) ε−d) log(nR/δ)).The constructed set C is anε-approximate
centroid set for X for cluster size≥ s.

Proof. During the construction, we encounter active cubes with at mostO(log(R/r))
distinct side lengths. Since each active cubeQ contains at leasts/2d+1 points ofX, and
the cubes with the same side length are disjoint, the total number of active cubes in the
whole construction isO((n/s) log(R/r)), and the bound on the size ofC follows. The
time bound is straightforward.

Let S⊆ X be a cluster of size at leasts with at least two distinct points. By Markov’s
inequality, the ballB of radius

√
2 · ρ(S) centered atc(S) contains at leasts/2 points

of S. Let j ≥ 0 be the integer such thatσ = R/2 j ∈ [3ρ(S),6ρ(S)). Since the diameter
of B is smaller thanσ , the ball B intersects at most 2d aligned cubes of sideσ , and
hence one of these cubes, call itQ, contains at leasts/2d+1 points of X. Thus,Q was
an active cube sometime during the construction. The pointc(S) is at a distance at most√

2·ρ(S) ≤ 1
2σ from Q, and so it lies in the 2-enlargement ofQ (Fig. 4). Consequently,

the setCQ ⊆ C contains a point at a distance at most(ε/18) σ ≤ (ε/3)ρ(S) from c(S).
HenceC intersects theε-tolerance ball ofS.

A Construction for Arbitrary Sets. The following construction yields anε-approximate
centroid setC for an arbitraryn-point set (or multiset)X. It also gives a slightly bet-

On Approximate Geometrick-Clustering 71

Fig. 4. Illustration to the proof of Lemma 4.2.

ter asymptotic bound on the size ofC, but it is more complicated than the previous
construction. Mainly for the sake of simplicity, we only present this construction for
s = 1 (obtaining anε-approximate centroid set for all clusters). A generalization to an
arbitrarys appears possible too, with the resulting size boundO((n/s) ε−d log(1/ε)),
but the proof becomes somewhat complicated.

The construction again proceeds by recursively subdividing the cubeQ0 as in the
previous construction. It is convenient to imagine that the constructed cubes are the
nodes of a rooted tree (such trees are known asquadtreesin the literature). The cube
Q0 is the root. When a cubeQ is subdivided into 2d cubes of the same size, the cubes
Q′ obtained by the subdivision withQ′ ∩ X 6= ∅ become the sons ofQ in the tree.
Moreover, in order to avoid possibly infinite branches in the tree, a cubeQ is not further
subdivided if it contains exactly one point ofX. LetQ denote the set of all nodes of the
constructed tree.

In the previous construction we have automatically included intoC the setsCQ for
all the constructed cubes; this time we are more selective.

We put` = dlog2(A/ε)e, whereA is a sufficiently large constant (a suitable value
can be calculated from the proof below). For a cubeQ ∈ Q of side lengthσ , define the
peripheryof Q as the setPout(Q)\Pin(Q), wherePin(Q) is the 3-enlargement ofQ and
Pout(Q) is the 22`-enlargement ofQ (Fig. 5). We call a cubeQ ∈ Q significantif its
periphery contains at least one point ofX; otherwise,Q is insignificant.

Now we can state the rule for constructing the setC. By saying thatQ ∈ Q is filled
we mean that the setCQ is added toC. EachQ ∈ Q is filled unlessthere is aQ̃ ∈ Q
that is insignificant and lies exactlỳlevels belowQ in the tree (this means that̃Q ⊂ Q

Fig. 5. The periphery of a cubeQ.

72 J. Matoušek

and the side ofQ̃ is 2`-times shorter than the side ofQ). Finally, we add toC all points
of X.

Lemma 4.3. The constructed set C has size O(nε−d log(1/ε)), and it is an
ε-approximate centroid set for X(for all clusters).

Proof. First we estimate the size ofC. Since the leaf cubes ofQ are disjoint and each
of them contains a point ofX, there aren leaves. If a cubeQ ∈ Q is filled, then it is fewer
than` levels from a leaf or it contains a significant cubeQ̃ ∈ Q lying ` levels below it.
The number of the filled cubes of the former type is at mostn` = O(n log(1/ε)). The
number of the filled cubes of the latter type is no more than the number of significant
cubesQ̃ ∈ Q, which we estimate next.

First, since the number of leaf cubes is at mostn, there are no more thann cubes in
the tree with at least two successors (thebranching cubes). Moreover, any cube lying
at most 3̀ levels below a branching cube can be charged to that branching cube; at
mostO(n`) cubes are charged in this way. LetQ0 be the remaining significant cubes.
For Q̃ ∈ Q0, we can thus assume thatQ̃ lies in an aligned cubêQ with side 23`σ ,
whereσ is the side ofQ̃, such thatQ̂ contains no other points ofX besides those
in Q̃.

We classify the cubes inQ0 into 2d3` types, as follows. A cubẽQ ∈ Q0 lies in one
of the 2d subcubes of the correspondingQ̂, and the cubes inQ0 are classified according
to the subcube; for example, in the plane, the four possibilities are lower left, upper left,
lower right, and upper right. Next, each̃Q ∈ Q0 has a level in the tree (distance from
the root), and we classify it by the remainder of the level modulo 3`. It remains to show
that the number of cubes inQ0 of any given type (given subcube and level modulo 3`)
is O(n). This can be easily derived from Theorem 2.1 on well-separated pairs (although
a more complicated direct proof is possible too).

LetQ1 ⊆ Q0 be the significant cubes of the considered fixed type. For eachQ̃ ∈ Q1,
choose a pair(x, y) ∈ X × X, wherex ∈ Q̃ andy lies in the periphery ofQ̃. We will
show that the pairs for different cubes inQ1 cannot be, say, 1-near, and then Theorem 2.1
will imply the claimed bound.

Let Q̃, Q̃′ ∈ Q1 be cubes with sidesσ andσ ′, respectively. Ifσ = σ ′, then the
distance ofQ̃ and Q̃′ is at least 23`−1 (because their big cubeŝQ and Q̂′ are disjoint),
while the diameter of their peripheries is much smaller (22`

√
d). Therefore, their pairs

cannot be 1-near. Ifσ > σ ′, thenσ ≥ 23`σ ′, and the pair assigned tõQ′ must be much
closer than the pair assigned toQ̃. This shows that the total number of significant cubes
is O(n`).

It remains to prove that the constructed setC intersects theε-tolerance balls of all
clustersS. Consider a clusterS ⊆ X. We may assume thatρ(S) > 0, for otherwise
S consists of (several copies of) a single point and this point is included inC by the
construction. As in the proof of Lemma 4.2, letB be the ball of radius

√
2 · ρ(S)

centered atc(S), and letQ ∈ Q be a cube with side lengthσ = R/2 j ∈ [3ρ(S),6ρ(S))
containing some point ofS∩ B. If Q was filled, the setCQ intersects theε-tolerance
ball of S (as in the proof of Lemma 4.3). It remains to consider the case whenQ was
not filled, which means that there is an insignificantQ̃ ∈ Q lying ` levels belowQ. We
fix such aQ̃.

On Approximate Geometrick-Clustering 73

We want to show that theε-tolerance ball of the clusterS completely containsQ̃.
SinceC must contain a point lying iñQ, this will prove thatC intersects theε-tolerance
ball of S.

Let Sin = S∩ Pin(Q̃) and Sext = S\Pout(Q̃). Note thatS = Sin ∪ Sext, sinceQ̃ is
insignificant and thus it has no points in its periphery. We now prove that

‖c(S)− c(Sin)‖ ≤ ε

6
ρ(S). (2)

Choosec(Sin) as the origin of coordinates, so that
∑

x∈Sin
x = 0. The distance of the

points ofSext from c(S) is at least13 2`σ ≥ (A/3ε)σ ≥ (A/18ε)ρ(S), and by Markov’s
inequality, we obtain|Sext| ≤ 1

36ε
2|S| (if A is sufficiently large). We calculate, using the

Cauchy–Schwarz inequality,

|S|2 · ‖c(S)‖2 =
∥∥∥∥∥∑

x∈S

x

∥∥∥∥∥
2

=
∥∥∥∥∥∑

x∈Sin

x +
∑

x∈Sext

x

∥∥∥∥∥
2

=
∥∥∥∥∥∑

x∈Sext

x

∥∥∥∥∥
2

≤ |Sext| ·
∑

x∈Sext

‖x‖2 ≤ 1

36
ε2 · |S|2ρ(S)2.

This proves (2). Sincec(Sin) ∈ Pin(Q̃), the distance ofc(S) from Pin(Q̃) is at most
(ε/6)ρ(S). The diameter ofPin(Q̃) is 3

√
d σ2−` < (ε/6)ρ(S), and so the ball of radius

(ε/3)ρ(S) centered atc(S) coversQ̃ as claimed.

An Efficient Algorithmic Version of the Construction. We modify the previous con-
struction so that it can be performed in near-linear time.

Theorem 4.4. Given an n-point set X⊂ Rd and anε > 0, anε-approximate centroid
set for X,of size O(nε−d log(1/ε)),can be computed in time O(n logn+nε−d log(1/ε)).

Proof. The algorithmic version of the construction has two quite independent parts. In
the first part we find all the leaf cubes inQ and we fill the corresponding cubes at most
` levels above them. In the second part we detect a superset of the significant cubes and
we fill the cubes̀ levels above them.

To find the leaf cubes, we simulate the subdivision construction, with a suitable
provision for cubes with a single successor. We start with the root cubeQ0. For each of
the currently active cubesQ, we first find the smallest aligned cubeQ′ containing all the
points ofQ∩X (such ashrinkingoperation is used in several papers concerning efficient
quadtree constructions; see [4]). Then we subdivideQ′ provided that it has more than
one point. In this way, all the leaves are discovered and we only generateO(n) cubes in
the process.

If we know the minimum and maximum coordinates of the points inQ, the shrinking
operation can be implemented inO(1) time (if the floor operation is allowed; see [4]
for a discussion). For an efficient implementation of the subdivision operation, we can
proceed as in [5]. We stored doubly linked lists withQ, the i th list containing the

74 J. Matoušek

points ofQ ∩ X sorted by thei th coordinate (initially, such lists forQ0 are obtained in
O(n logn) time). In order to splitQ into halves in thex1-direction, say, we first search
the list sorted by thex1-coordinate from both ends, until we find the point of splitting. If
a is the size of the smaller part, this is done inO(a) time. Then we delete thea points
of the smaller portion from the otherd − 1 lists, also inO(a) time. Such a splitting is
done for each of the coordinates in turn. A simple analysis, which we omit, shows that
the total time for finding all leaf cubes inQ is O(n logn).

In the second part we compute a superset of the significant cubes. From the previous
step we know the branching cubes, and we can thus generate all the cubes at most`

levels below them.
Next, we generate a 1-complete setP of pairs forX of sizeO(n)as in Theorem 2.1. Let

(x, y) ∈ P. For each of the 2d3` possible types of significant cubes, we find all aligned
cubesQ̃ of that type such that a pair(x′, y′) that is 1-near to(x, y) could possibly be
assigned toQ̃.

From the distance‖x− y‖ and from the type, we can read off the side ofQ̃ uniquely.
The possible location ofx′ is a ball B aroundx, whose diameter is smaller than the
side of the big cubêQ corresponding toQ̃. Hence, at most 2d aligned cubesQ̂ can be
considered. If such âQ contains no point ofX it can be disregarded. If it contains a
point x ∈ X, we can output the aligned cubẽQ with the appropriate side containingx
(of course, thisQ̃ need not be a significant cube in our tree, but all significant cubes are
certainly included).

Thus, the following problem remains to be solved: we are given a set ofO(n) aligned
cubes and a set ofn points, and we need to detect the cubes containing at least one point.
This can be done easily inO(n logn) time. For example, we can first organize the cubes
into a quadtree (some nodes may be missing in the regular quadtree structure but these
can be added if needed). Then we traverse the quadtree with points and the quadtree with
cubes simultaneously.

5. Approximate 2-Clustering

Here is an obvious algorithm for finding a(1+ ε)-approximately optimal 2-clustering
for X using theε-approximate centroid sets constructed in Section 4.

1. Compute anε-approximate centroid setC for X.
2. Form the setP of all pairs(c1, c2) of distinct points ofC.
3. For each pair(c1, c2) ∈ P, compute the Voronoi diagram, i.e., the hyperplaneh

bisecting the segmentc1c2. Compute the cost of the 2-clustering given byh, and
select the 2-clustering with the smallest cost.

In a direct implementation of this algorithm, we thus consider about|C|2 pairs(c1, c2),
and for each pair, we needO(n) time for computing the cost of the corresponding 2-
clustering. This can be improved in two respects. First, as shown by Lemma 5.1 below,
instead of all pairs(c1, c2), it is sufficient to consider anε-complete set of pairs forC
as in Theorem 2.1 (making the approximation factor somewhat worse). Second, it is
possible to use approximate range searching to approximate the cost of the 2-clustering
for each pair.

On Approximate Geometrick-Clustering 75

Fig. 6. Illustration to the proof of Lemma 5.1.

Lemma 5.1. Let c1, c2 ∈ Rd be points, and let c′1, c
′
2 be such that the pairs(c1, c2) and

(c′1, c
′
2) are ε-near, ε ≤ 1

9. Let5 = 5Vor(c1, c2) be the clustering of X by the bisecting
hyperplane of c1 and c2, and let5′ = 5Vor(c′1, c

′
2). Thencost(5′) ≤ (1+ 16ε)cost(5).

Proof. Let5 = (S1, S2) and5′ = (S′1, S′2). By the optimality of the Voronoi clus-
terings for given centroids, it suffices to show that cost(S′1, c1) + cost(S′2, c2) ≤ (1+
16ε)[cost(S1, c1)+cost(S2, c2)]. To this end, it is enough to show that, for eachx ∈ S′1\S1,
we have‖x − c1‖ ≤ (1+ 6ε)‖x − c2‖ (a symmetric argument applies forx ∈ S′2\S2).
Sincex ∈ S′1, we know thatx is closer toc′1 than toc′2, i.e., ‖x − c′1‖ ≤ ‖x − c′2‖
(Fig. 6). Putδ = ‖c′1 − c′2‖. We have‖x − c1‖ ≤ ‖x − c′1‖ + εδ ≤ ‖x − c′2‖ + εδ ≤
‖x−c2‖+2εδ. Now we need to bound‖x−c2‖ from below by a multiple ofδ. We have
‖x − c2‖ ≥ ‖x − c′2‖ − εδ ≥ 1

2δ − εδ, and soδ ≤ (2/(1− 2ε))‖x − c2‖ ≤ 3‖x − c2‖.
Thus,‖x − c1‖ ≤ (1+ 6ε)‖x − c2‖ as required.

In step 2 of the algorithm at the beginning of this section, we can thus letP be an
ε-complete set of pairs forC (instead of taking all pairs). It remains to implement step 3
efficiently.

Each pair(c1, c2) ∈ P defines a 2-clustering(S1, S2) by its bisector. If we want
to approximate cost(S1) + cost(S2) within the factor of(1+ 3ε), say, we can afford
to “misclassify” any pointx whose distances toc1 andc2 differ at most by the factor
(1+ ε). Therefore, if

B1 = {x ∈ Rd: (1+ ε)‖x − c1‖ ≤ ‖x − c2‖} and

B2 = {x ∈ Rd: (1+ ε)‖x − c2‖ ≤ ‖x − c1‖},

we can use the value cost(S′1)+cost(S′2) for any 2-clustering(S′1, S′2) such thatB1∩X ⊆
S′1 andB2 ∩ X ⊆ S′2.

Write δ = ‖c1−c2‖. Calculation shows thatB1 is the ball of radiusr = (δ/ε)√1+ ε
as in Fig 7. Moreover, the distance of the ballsB1 andB2 is (slightly) smaller than12εδ.
Let B̄1 be the ball concentric withB1 and of radiusr + 1

4δε. If we useη-approximate
range searching (see Section 2) withB̄1 as the query, whereη is such thatB1 ⊆ B̄−1 and
B2 ∩ B̄+1 = ∅, then the answer gives us the weight of some setS′1 satisfying the above
requirements. It turns out thatη should be chosen of the orderε2, which leads to the query
time O(logn + ε−2(d−1)). (By considering the approximate range-searching algorithm
in detail, one might perhaps get this down to something likeO(logn+ ε−(d−1)).)

76 J. Matoušek

Fig. 7. The ballsB1 andB2.

The function cost(·) itself is not directly amenable to range searching (it is not addi-
tive). However, it can be evaluated using range searching with several auxiliary types of
weights. The first weightw1 of a point is 1, andw1(S) = |S|. Further,w2(x) = ‖x‖2
andw2(S) =

∑
x∈S‖x‖2, and finallyw3(x) = x ∈ Rd, w3(S) =

∑
x∈S x. By perform-

ing approximate range searching with the composed weightw = (w1, w2, w3), we can
calculate all ofw1, w2, w3 for the same setS′1. The weights of the complementary set
S′2 = X\S′1 can be computed from the weights ofX andS′1. Finally, cost(S) for a setS
can be computed fromw(S) using the equality (1):

cost(S) = 1

2|S|
∑

x,y∈S

‖x − y‖2 = 1

2|S|

(
2|S| ·

∑
x∈S

‖x‖2− 2
∑

x,y∈S

〈x, y〉
)

=
∑
x∈S

‖x‖2− 1

|S|

〈∑
x∈S

x,
∑
x∈S

x

〉
= w2(S)− 1

w1(S)
‖w3(S)‖2.

Summarizing, it is possible to preprocess the setX in O(n logn) time in such a way
that, for a given pair(c1, c2), cost(5Vor(c1, c2)) can be approximated within a factor of
(1+ ε) in time O(logn+ ε−2(d−1)).

By using this in the implementation of step 3 of the algorithm at the beginning of this
section, and employing the bounds for the construction of anε-approximate centroid
set from Theorem 4.4 and Lemma 4.2, we arrive at the total running time bounds for
2-clustering as claimed in Theorem 1.1.

6. Approximate k-Clustering

In order to extend the method of the previous section tok-clustering with a fixedk > 2,
it is natural to define that two orderedk-tuples(c1, c2, . . . , ck) and(c′1, c

′
2, . . . , c

′
k) are

ε-nearif for any two indicesi, j , 1≤ i < j ≤ k, the pairs(ci , cj) and(c′i , c
′
j) areε-near

(as in Section 2). We have the following analogue of Lemma 5.1:

Lemma 6.1. Let (c1, c2, . . . , ck) and (c′1, c
′
2, . . . , c

′
k) be two k-tuples of points inRd

that areε-near, ε ≤ 1
9. Let5 = 5Vor(c1, c2, . . . , ck) and5′ = 5Vor(c′1, c

′
2, . . . , c

′
k) be

the respective Voronoi clusterings of a set X. Thencost(5′) ≤ (1+ 16ε) cost(5).

On Approximate Geometrick-Clustering 77

Fig. 8. Obtaining many well-separated 4-tuples.

Sketch of Proof. As in the proof of Lemma 5.1, we estimate
∑k

i=1 cost(S′i , ci), where
S′i are the clusters of5′. Considering a pointx lying in Si and inS′j , the calculation in
the proof of Lemma 5.1 shows that‖x − cj ‖2 ≤ (1+ 16ε)‖x − ci ‖2.

Well-Spread k-Tuples. We can proceed to define anε-complete set ofk-tuples for a set
C in an obvious manner. However, heading for a near-linear approximation algorithm,
we cannot afford to compute allk-tuples in such anε-complete set, because their number
can be too large. The simplest example occurs fork = 4, with 4-tuples(c1, c2, c3, c4)

wherec1 is very close toc2 andc3 is very close toc4, but these two pairs lie relatively
far apart (Fig. 8). One can construct an example of ann-point setC andÄ(n2) 4-tuples
of its points such that no two of them are 1-near, say. On the other hand, the “fine
structure” of the two subsets{c1, c2} and{c3, c4} as in Fig. 8 does not matter for their
mutual interaction; we can use any of the pairs(c1, c3), (c1, c4), (c2, c3), and(c2, c4) for
defining a bisector that separates the clusters ofc1 and ofc2 from the clusters ofc3 and
of c4. This motivates the following definition.

For a real numberM > 0 and setsY ⊆ X ⊂ Rd, we say thatY is M-isolatedin X
if any point of X\Y has distance at leastM · diam(Y) from Y. We note that ifY ⊂ X is
(1/ε)-isolated inX, andx ∈ X\Y, then all the pairs(y, x) with y ∈ Y areε-near.

We say thatX ⊂ Rd is ε-well-spreadif there is no proper subsetY ⊂ X, |Y| ≥ 2,
that is(1/ε)-isolated inX.

Lemma 6.2. Let X be a k-pointε-well-spread set, ε ≤ 1
8, and letδ be the minimum

distance of two(distinct) points of X. Thendiam(X) ≤ ((2/ε))k−2δ.

Proof. Consider a Euclidean minimum spanning treeT of X. Lete1 be the shortest of its
edges, and, fori ≥ 1, letei+1 be the shortest edge connecting the subgraphTi of T induced
by the edgese1, . . . ,ei to the rest ofT . Since, fori = 2,3, . . . , k−1,V(Ti) is not(1/ε)-
isolated inX, we get that‖ei+1‖ ≤ (1/ε)diam(Ti) ≤ (1/ε)(‖e1‖ + ‖e2‖ + · · · + ‖ei ‖).
The lemma now follows by induction oni .

Lemma 6.3. Let C ⊂ Rd be an m-point set, let ε < 1
8, and let k≥ 2 be fixed. Then

one can compute a setC of ordered k-tuples with the following properties:

(i) For anyε-well-spread k-tuple of points of C, there is a k-tuple inC that isε-near
to it.

(ii) |C| = O(mε−k2d).
(iii) Each k-tuple inC is (ε/2)-well-spread.
(iv) At least one point in each k-tuple inC belongs to C.
(v) For any given k-tuple of points inRd, there are no more than O(1) k-tuples of
C lying ε-near to it.

78 J. Matoušek

(vi) The minimum and maximum distance of points in each k-tuple inC are bounded
by constant multiples of the minimum and maximum distance in C, respec-
tively.

The running time is O(m logm+mε−k2d).

Proof. We use an algorithm for generating an(ε/2)-complete setP ⊆ C×C of pairs
for C, as in Theorem 2.1. For each pair(x, y) ∈ P, we further computek-tuples having
x andy as points with the smallest (or almost the smallest) distance. We putδ = ‖x− y‖
andR= 2δ((2/ε))k−2 and we choose a14εδ-dense setD for the ball of radiusRcentered
at x. We output allk-tuples that consist ofx, of y, and of somek − 2 points ofD (in
some arbitrary order), such that: every two points of thek-tuple have distance at least
1
4δ, thek-tuple is(ε/2)-well-spread, and it has diameter at most 2 diam(C).

The number of generatedk-tuples is

O

(
mε−d

(
R

εδ

)(k−2)d
)
= O(mε−d−(k−1)(k−2)d) = O(mε−k2d).

Given anε-well-spreadk-tuple(c1, c2, . . . , ck),c1, . . . , ck ∈ C, withδ = ‖c1−c2‖being
the shortest distance, we know that there is a pair(c′1, c

′
2) ∈ P (ε/2)-near to(c1, c2), with

δ′ = ‖c′1 − c′2‖ ∈ [δ − 2εδ, δ + 2εδ] ⊆ [1
2δ,2δ]. In the corresponding setD, there are

pointsc′3, c
′
4, . . . , c

′
k, c′i at a distance of at most1

4εδ
′ ≤ 1

2εδ from ci (using Lemma 6.2).
It is routine to check that thek-tuple(c′1, c

′
2, . . . , c

′
k) has all interpoint distances at least

1
2δ ≥ 1

4δ
′, a diameter no larger than 2 diam(C), and that it is(ε/2)-well-spread, and so

it was output by the algorithm.
Let C0 denote the resulting set ofk-tuples. This set satisfies all the conditions in the

lemma except possibly for (v): thek-tuples can sometimes be cluttered together. We
run a pruning algorithm onC0. Let (c1, c2, . . . , ck) ∈ C0. To each pointci , we assign
an aligned cubeQi containingci . The side ofQi is determined as follows: ifδi is the
distance toci of the nearest neighbor ofci among thecj , j 6= i , then the diameter of
Qi should be between14εδi and 1

2εδi (we can think ofQi as being a suitable cube from
the quadtree, but we do not build any tree structure from these cubes here). We call two
k-tuples inC0 equivalent if their correspondingk-tuples of aligned cubes are identical.
From each equivalence class, we discard allk-tuples but one (computationally, this can
be done inO(n logn) time). It can be checked that the resulting setC of k-tuples satisfies
both (i) and (v).

The Algorithm. Now we can formulate a high-level description of a recursive algo-
rithm for k-clustering. The parameters of the recursive procedure are: a setX ⊂ Rd

(the points), a setC ⊂ Rd (candidates for centroids), and the number of clustersk
(ε is regarded as a global parameter). The result is ak-clustering ofX and its cost.
Initially, the algorithm is called with the given setX, anε-approximate centroid setC
for X, and with the givenk. We need to assume that the ratio of the maximum and
minimum distances inX is polynomially bounded (see Section 3); in such a case, the
construction ofC (Theorem 4.4) can be implemented in such a way thatC also has this
property.

On Approximate Geometrick-Clustering 79

Fig. 9. The recursion in thek-clustering algorithm.

The procedure operates as follows:

1. If k = 1, then returnX (as the single cluster) and cost(X). Otherwise continue
with the next step.

2. Fork∗ = 2,3, . . . , k, generate a setC∗ of orderedk∗-tuples forC as in Lemma 6.3.
3. For each(c1, c2, . . . , ck∗) ∈ C∗, let (X1, X2, . . . , Xk∗) = 5Vor(c1, c2, . . . , ck∗)

be the Voronoi partition ofX, and letCi be the points ofC lying in the εδ-
neighborhood ofci , whereδ is the distance of the two closest points among
c1, c2, . . . , ck∗ (see the schematic illustration in Fig. 9). IfCi = ∅ for somei , we
disregard the currentk∗-tuple(c1, c2, . . . , ck∗), otherwise we process it according
to the next step.

4. Fori = 1,2, . . . , k∗, call the procedure recursively onXi andCi , with the number
of clusterski running from 1 tok− k∗ +1. This yields aki -clustering ofXi for all
the consideredki . Find the combination(k1, k2, . . . , kk∗), k1+ k2+ · · ·+ kk∗ = k,
for which thek-clustering ofX obtained by combining the computedki -clusterings
of the Xi ’s has the smallest cost.

5. For eachk∗-tuple inC∗ with all theCi nonempty, we thus obtain onek-clustering.
Among these, return the one with the smallest cost (minimum over allk∗-tuples
and over allk∗ = 2,3, . . . , k).

Using Lemmas 6.1 and 6.3, one can check that, forε below a suitable constant, the
algorithm computes a(1+ O(ε))-approximately optimalk-clustering ofX. It remains
to specify the implementation of the various steps in more detail and bound the running
time.

Implementation and Running Time Analysis, Ignoring Cost Computations. In the first
part of the running time analysis, we ignore the cost of step 1 (computing cost(X))
and the cost of computing the Voronoi partition5Vor(c1, c2, . . . , ck∗) in step 3; in the
final version of the algorithm, the setX will be passed only implicitly to the recursive
procedure and the cluster cost will be approximated using range searching.

The setsCi in step 3 are computed using approximate range searching (the reporting
version), say withε = 1

4 (the algorithm still works correctly if we takeCi as a 1
4-

approximate intersection ofC with the 2εδ-ball aroundci). The setC at the top level
of the algorithm is preprocessed, and the queries are always made with respect to this
original set; this is not exactly as specified in the algorithm, but it works just as well.

80 J. Matoušek

Also, we do not generateCi if ki = 1. Thus, computing theCi for onek∗-tuple inC∗
needsO(logn) overhead, plus time proportional to the combined size of theCi . If the
queries are processed simultaneously for alli , we can make sure that whenever someCi

is empty, the total time for the queries is onlyO(logn). If we charge time proportional
to |Ci | to the recursive call withCi , we get that the overhead for the computation of the
Ci is O(logn) perk∗-tuple inC∗.

Thus, the running time in a recursive call, excluding the time for the embedded
recursive calls (and, as stated above, ignoring the computations involvingX), is at most
O(|C|(logn+ ε−k2d)+ |C∗| logn). In order to bound the total running time, we need to
consider the total size of the setsC∗ generated by the algorithm.

Charging Running Time to Tufts. We look at how ak∗-tuple c in someC∗ can arise
in the algorithm. At the top level of the recursion, we choose somek∗1-tuple c(1) =
(c(1)1 , . . . , c(1)k∗1

) and an indexi1. We consider a recursive call belonging toc(1)i1
, i.e., with

the setsXi1 andCi1. In this second-level recursive call, we choose ak∗2-tuplec(2) (lying
in a small neighborhood of the pointc(1)i1

) and an indexi2, and we proceed with the
third-level recursive call, etc., until we finally reach ourk∗-tuplec = c(`) at somè th
level of recursion,̀ ≤ k. Schematically:

We have(k∗1 − 1)+ (k∗2 − 1)+ · · · + (k∗`−1− 1)+ k∗` ≤ k.
By Lemma 6.3, for each of thek∗-tuples generated in step 2, at least one of its points

lies inC. Let i` be an index of a point lying inC in our k∗-tuplec= c(`), i.e., such that
c(`)i`
∈ C.

For j = 1,2, . . . , `, let L j = L j (c) = {c(j)
i : i = 1,2, . . . , k∗j , i 6= i j }, and let

r = r (c) = c(`)i`
. The total size of theL j is at mostk − 1, and eachL j ∪ {r } is (ε/3)-

well-spread.
For a pointx and finite setsL1, L2, . . . , L`, call (r, L1, . . . , L`) a(k, ε)-tuft if |L1|+

|L2| + · · · + |L`| < k and eachL j ∪ {r } is ε-well-spread;r is theroot of the tuft.

On Approximate Geometrick-Clustering 81

In this way, eachk∗-tuplec generated by the algorithm is assigned a(k, (ε/3))-tuft
whose root lies inC. One tuft is assigned to at mostO(1) k∗-tuples (the sets in a tuft are
unordered, while the algorithm formally deals with orderedk∗-tuples, and so each tuft
can be ordered in a number of ways). LetTA be the set of all the tufts produced by the
algorithm in this manner.

The total size of the setsC∗ generated by the algorithm is at most proportional to|TA|.
We need to verify also that the total size of all the setsC entering the recursive calls
(only those withk > 1) is at most proportional to|TA| (note that, in some recursive calls,
it might happen that|C∗| is much smaller than|C|). Suppose thatC has been passed to
some recursive call of the procedure, say to a call on theqth level of recursion. This call
is uniquely identified by thek∗j -tuplesc(1), c(2), . . . , c(q−1) and the corresponding indices
i1, i2, . . . , iq−1 generated at the previous levels of recursion. We may assume that|C| ≥ 2
(otherwise the size ofC can be charged to the calling procedure rather than to the called
one). Then it can be checked that, for each pointx ∈ C, there is a tuft inTA havingx as the
root and containing the points of eachc(j) (excludingc(j)

i j
), j = 1,2, . . . ,q−1. Indeed,

a pair(x, y), wherey lies close to some of the nearest neighbors ofx, is generated at the
qth level of recursion (fork∗q = 2), andx andy together with the points ofc(1), . . . , c(q−1)

form the desired tuft inTA. The total running time of thek-clustering algorithm (still
ignoring the operations withX) is thusO(|TA|(logn+ ε−k2d)).

We call two(k, ε)-tufts (r, L1, . . . , L`) and(r ′, L ′1, . . . , L ′`) η-near if, for eachj =
1,2, . . . , `, |L j | = |L ′j | and the(|L j | + 1)-tuples{r } ∪ L j and {r ′} ∪ L ′j areη-near
(in some ordering of its points, such thatr is matched withr ′). We note that by the
construction of the setsC∗ in the algorithm, at mostO(1) tufts of TA areε-near to any
given(k, (ε/3))-tuft (by Lemma 6.3(v)).

Lemma 6.4. Let r ∈ Rd be fixed. LetT be a set of(k, ε)-tufts with root r such that, for
each(r, L1, . . . , L`) ∈ T , diam({r } ∪ L1 ∪ · · · ∪ L`) ≤ R and any two points in each
L j ∪ {r } have distance at leastδ (R ≥ 2δ). Suppose that no two tufts inT are ε-near.
Then|T | = O((log(R/δ))k−1ε−(k−1)2d).

Proof. Consider the tufts inT with a given` ≤ k − 1 and with given sizes of theL j .
For a given tuft(r, L1, . . . , L`), let δj be the smallest distance in{r } ∪ L j and leti j be
the largest integer with 2i j ≤ δj . By the assumption onT , there are at most log2(2R/δ)
possible values of eachi j . If i j is fixed, by Lemma 6.2 we know that the points ofL j lie
in the ball aroundr of radius(2/ε)|L j |−12i j+1, and it suffices to determine their position
with accuracyε2i j . It follows that the number of choices forL j is O(log(R/δ) ·ε−d|L j |2).
The bound in the lemma follows (actually, it is an overestimate, since if, e.g., the power
of the logarithm isk− 1, then the power of 1/ε is at most(k− 1)d).

For the tufts inTA (generated by the algorithm), we know that log(R/δ) = O(logn).
It follows that|TA| = O(|C|(log |C|)k−1ε−(k−1)2d).

If the operations concerningX, which have been ignored so far, are implemented in a
straightforward manner, i.e., inO(n) time each, they add at mostO(n) as a multiplicative
factor, and so the total time is slightly superquadratic. To do better, we can again use
approximate range searching.

82 J. Matoušek

Approximate Cost Computation. In order to present this part of the algorithm, we
need to say a little more about the approximate range searching algorithm considered in
Section 2. For our purposes, we can regard its data structure as a rooted treeT (called a
partition tree), where each node is associated with a subset of the given setP. The root is
associated with the wholeP. Each node has two sons; the subsets of the sons are disjoint
and together cover the subset of their parent node. Leaves of the tree are associated with
one-point subsets. When processing a query with a rangeR, the algorithm visits the
nodes of some rooted subtreeTR of T ; for each visited node, either both sons are visited
or none of them. Each leaf ofTR (i.e., each visited node whose sons were not visited) is
labeled either IN or OUT. The approximate answer to the query is computed by summing
up the weights of all the visited nodes labeled IN. The total number of visited nodes, for
any convex query range, isO(logn+ ε−(d−1)).

From this description, it is easy to see that this data structure allows us to process
queries with intersections and complements of query ranges. For example, ifR1 andR2

are convex ranges, we can computew(P1 ∩ P2) in O(logn+ ε−(d−1)) time, whereP1

is anε-approximate intersection ofP with R1 and P2 is anε-approximate intersection
with R2. Namely, we compute the visited subtreesTR1 andTR2, and we look at the leaves
of their union. For the answer, we take all the leaves that are labeled IN according to
bothTR1 andTR2; here a node ofT is considered to be labeled IN according toTR1 if it
is a leaf ofTR1 labeled IN or a descendant of such a leaf ofTR1.

In the recursivek-clustering algorithm, we first build the partition treeT for the
original (top-level) setX. The parameterX will be passed in an implicit representation
to the recursive calls: it is represented as a subtree ofT plus a labeling (IN/OUT) of its
leaf nodes.

It remains to describe how the Voronoi partition5Vor(c1, c2, . . . , ck) of a current set
X is computed. We recall the ballB1 introduced at the end of Section 5 (Fig. 7) forc1

andc2 and the slightly larger ball̄B1 used for the queries there. We letBi j andB̄i j denote
the analogously defined balls forci andcj (so B1 is the same asB12).

In order to find suitable approximations to theXi , we first compute, for alli, j ,
1 ≤ i < j ≤ k, a setAi j that is anη-approximate intersection of̄Bi j with X. (This Ai j

is represented implicitly, by a subtree ofT and an IN/OUT labeling of its leaves.) Here
η = 2(ε2) is chosen so that ifx ∈ Ai j , then‖x− ci ‖ < ‖x− cj ‖, while for x 6∈ Ai j we
have‖x − cj ‖ ≤ (1+ ε)‖x − ci ‖. Now we define

X′1 =
⋂
j>1

A1 j ,

X′2 = (X\X′1) ∩
(⋂

j>2

Ai j

)
,

...

X′i = (X\(X′1 ∪ · · · ∪ X′i−1)) ∩
(⋂

j>i

Ai j

)
,

...

X′k = X\(X′1 ∪ · · · ∪ X′k−1).

On Approximate Geometrick-Clustering 83

The X′i form a partition ofX, and eachX′i is represented byO(logn+ ε−2(d−1)) nodes
of the partition tree. It remains to show that if a pointx ∈ X is “misclassified,” i.e., it is
nearest toci but was placed to someX′j , then‖x − cj ‖ ≤ (1+ O(ε))‖x − ci ‖.

First suppose thatx ∈ X′j \Xi , i > j . This immediately leads to a contradiction, since
x ∈ X′j impliesx ∈ Aji and so‖x − cj ‖ < ‖x − ci ‖.

Next, letx ∈ X′j \Xi , i < j . There must be a reason whyx is not placed inX′i , namely,
that x 6∈ Ai j1 for some j1 > i , implying that‖x − cj1‖ ≤ (1+ ε)‖x − ci ‖. If j = j1
we have what we wanted. Ifj1 > j , then, sincex is placed toX′j , we getx ∈ Aj j1,
and consequently‖x − cj ‖ ≤ ‖x − cj1‖ ≤ (1+ ε)‖x − ci ‖. Finally, if i < j1 < j , we
can repeat the argument withj1 instead ofi . There is aj2 > j1 with x 6∈ Aj1 j2, and so
‖x − cj2‖ ≤ (1+ ε)‖x − cj1‖, etc. After no more thank − 1 such steps, we reachj or
beyond it, and we thus have‖x − cj ‖ ≤ (1+ ε)k−1‖x − ci ‖ = (1+ O(ε))‖x − ci ‖ as
desired. Therefore, thek-clustering algorithm using the approximate partitions described
above instead of exact Voronoi partitions correctly computes a(1+O(ε))-approximately
optimalk-clustering.

Each operation withX (cost computation or partitioning) is performed in time
O(logn + ε−2(d−1)), using the implicit representations of theX′i and the weight com-
putations described at the end of Section 5. At the same time, each such operation can
be uniquely attributed to some tuft inTA. For the total running time of thek-clustering
algorithm we thus get the estimate

O(|TA|(logn+ ε−2(d−1) + ε−k2d)) = O(|C|(log|C|)k−1ε−(k−1)2d(logn+ ε−k2d))

= O(nε−d(logn)kε−(k−1)2d−k2d)

= O(n(logn)kε−2k2d).

Theorem 1.2 is proved.

Appendix. Approximate 2-Clustering according to K. Varadarajan

Here is an outline of Varadarajan’s argument, giving an improvement and simplification
of the first part of Theorem 1.1.

Consider the optimal two partition5 = (S1, S2) of the givenn-point setX. Let h be
the perpendicular bisector of the segments connecting the centroidsc(S1) andc(S2),
and letm be the intersection ofs. Let h′ be a hyperplane passing throughm, such that
the angle of the normal vectors ofh andh′ is at mostε. Then, as can be easily derived
fom Lemma 5.1, the clustering induced byh′ is (1+ O(ε))-approximately optimal.

Here is an algorithm for computing an approximate 2-clustering. Choose a setD of
O(ε−(d−1)) direction vectors such that any direction vector has angle at mostεwith some
of the chosen vectors. For eachv ∈ D, sweep a hyperplane perpendicular tov across the
point set X, and compute the costs of each of then resulting 2-clusterings ofX, and take
the minimum. Costs of the 2-clusterings can be computed using a one-dimensional range
searching data structure (as described in the paper), or it can be updated incrementally as
points are moved across the hyperplane. The resulting running time isO(n lognε−(d−1)),
plus time polynomial inε−1 for constructingD.

84 J. Matoušek

References

1. S. Arora. Polynomial time approximation schemes for Euclidean TSP and other geometric problems. In
Proc. 37th Annu. IEEE Sympos. Found. Comput. Sci., pages 2–11, 1996.

2. S. Arora, P. Raghavan, and S. Rao. Polynomial time approximation schemes for the Euclideank-medians
problem. InProc. 30th Annu. ACM Sympos. Theory Comput., pages 106–113, 1998.

3. S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid. Euclidean spanners: Short, thin, and lanky. In
Proc. 27th Annu. ACM Sympos. Theory Comput., pages 489–498, 1995.

4. S. Arya and D. Mount. Approximate range searching. InProc. 11th Annu. ACM Sympos. Comput. Geom.,
pages 172–181, 1995.

5. P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets with applications to
k-nearest-neighbors andn-body potential fields.J. Assoc. Comput. Mach., 42:67–90, 1995.

6. V. Capoyleas, G. Rote, and G. Woeginger. Geometric clusterings.J. Algorithms, 12:341–356, 1991.
7. S. Hasegawa, H. Imai, M. Inaba, N. Katoh, and J. Nakano. Efficient algorithms for variance-basedk-

clustering. InProc. First Pacific Conf. Comput. Graphics Appl., Seoul, Korea, vol. 1, pages 75–89. World
Scientific, Singapore, 1993.

8. M. Inaba, N. Katoh, and H. Imai. Applications of weighted Voronoi diagrams and randomization to
variance-basedk-clustering. InProc. 10th Annu. ACM Sympos. Comput. Geom., pages 332–339, 1994.

9. P. Indyk. A sublinear-time approximation scheme for clustering in metric spaces. InProc. 40th IEEE
Sympos. Found. Comput. Sci., 1999.

10. P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of dimensionality.
In Proc. 30th Annu. ACM Sympos. Theory Comput., pages 604–613, 1998.

11. S. Kolliopoulos and S. Rao. A nearly linear-time approximation scheme for the Euclideank-median
problem. InProc. 7th Annu. Europ. Sympos. Algorithms, pages 378–387. Lecture Notes in Computer
Science 1643, Springer-Verlag, Berlin, 1999.

12. K. Varadarajan. Private communication, May 1999.

Received October19, 1999,and in revised form January19, 2000.Online publication May3, 2000.

