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Abstract

Mathematical modeling has always been one of the most potent tools in predicting

the behavior of dynamic systems in biology. In this regard, we aim to study a

three-species prey–predator model in the context of fractional operator. The model

includes two competing species with logistic growing. It is considered that one of the

competitors is being predated by the third group with Holling type II functional

response. Moreover, one another competitor is in a commensal relationship with the

third category acting as its host. In this model, the Atangana–Baleanu fractional

derivative is used to describe the rate of evolution of functions in the model. Using a

creative numerical trick, an iterative method for determining the numerical solution

of fractional systems has been developed. This method provides an implicit form for

determining solution approximations that can be solved by standard methods in

solving nonlinear systems such as Newton’s method. Using this numerical technique,

approximate answers for this system are provided, assuming several categories of

possible choices for the model parameters. In the continuation of the simulations, the

sensitivity analysis of the solutions to some parameters is examined. Some other

theoretical features related to the model, such as expressing the necessary conditions

on the stability of equilibrium points as well as the existence and uniqueness of

solutions, are also examined in this article. It is found that utilizing the concept of

fractional derivative order the flexibility of the model in justifying different situations

for the system has increased. The use of fractional operators in the study of other

models in computational biology is recommended.

Keywords: Fractional operators; Predator and prey model;

Atangana–Baleanu–Caputo fractional derivative; Computational and approximation;

Existence and uniqueness of solutions

1 Introduction

The study of the ecosystem using mathematical models has been one of the most crucial

joint research fields between applied mathematicians, engineers, economists, ecologists,

biologists, and epidemiologists for decades. It should be noted that differential equations

have always been used in modeling and studying phenomena. The reason for this effi-

ciency is that the future of systems is influenced by the past and present situations of
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understudied phenomena. In recent years there has been a strong tendency to use differ-

ential equations to model real-world problems. Mathematical biology is one of the most

important and growing branches whose studies rely more on the use of differential equa-

tions than other fields [1–12]. One of the widespread applications of dynamic systems in

ecology is to model the growth of monogamous and multicultural populations. The sys-

tems proposed in ecology determine the interaction of species with each other and with

their environment, as well as the distribution and structure of populations. Such interac-

tions may take place over a wider range of spatial and temporal scales. One of the most

important types of interactions that affect the qualitative behavior of all species is hunting.

For this reason, predator and prey models have been the focus of all ecological studies. In

any ecosystem, different species of animals are usually in constant interaction with each

other. In this case, the population dynamics of each species is affected by other species. In

fact, there is a general set of interacting species called the food web [13–16]. One of the

most important models in these prey and predator species is Lotka–Volterra systems [17].

In conventional models, in order to simplify the surveys, the interaction between a lim-

ited number of populations is usually examined. In any ecosystem, there are usually many

species of animals in constant interaction with each other. In this case, the population dy-

namics of each species is affected by other species. The diversity of animals in the area in

question always complicates the dynamic systems. Therefore, in conventional models, in

order to simplify the analysis, the interaction between a limited number of populations is

usually considered.

As we know, fractional calculus can be considered as an advanced generalization for

classic differential calculus of integer order [18–31]. Nowadays, fractional differential cal-

culus is one of the most widely used aspects of differential calculus, which is less used

in practical aspects of real-life problems compared to the classical concepts. Perhaps the

most important reason for this shortcoming can be considered the lack of objective back-

ground to describe practical phenomena, as well as the lack of tools and definitions needed

in this area. However, this trend has accelerated in recent years [32–37]. And these days, its

use in various branches of science, including mathematics, physics, and engineering has

been highlighted [29, 38, 39]. One of the most important factors in the efficiency of such

derivatives concerning derivatives is the correct equipping of these definitions with the

concept of memory, which causes the basic information related to the phenomenon to be

preserved and used during the study time. This fundamental advantage is very important

when applying them to the structure of dynamic systems.

A review of the literature reveals that the dynamic models in biology are one of the

most fundamental applications of fractional differential calculus with a wide range of po-

tential theoretical and practical aspects. For instance, in [40] the authors have employed

the Caputo fractional derivative to propose a new fractional-order predator–prey model

with group defense. In [41], the authors have proposed an efficient numerical method to

handle a predator–preymodel with Beddington–DeAngelis functional response and frac-

tional derivatives with Mittag-Leffler kernel. In [42] one of the Kolmogorov model vari-

ants called a Gauss-type predator–preymodel involving the Allee effect and Holling type-

III functional response in a fractional perspective has been studied. The authors of [43]

have utilized a novel discretization based on the numerical discretization of the Riemann–

Liouville integral tomanipulate a fractional predator–preymodel with the harvesting rate.

To see more models, please refer to [44–49].
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These research activities give us the idea of using the tools in fractional differential calcu-

lus in computational biologicalmodels. In this paper, we aim to incorporate theAtangana–

Baleanu fractional derivative [50] in the structure of a prey and predatormodel. One of the

key reasons for this choice is that this fractional order derivative has the ability to store and

use the necessary system information from the beginning to the desired time [29, 38, 39].

This useful feature can play a key role in the study of dynamic systems related to com-

putational biology. The paper is structured as follows. Some mathematical background,

mainly about recent definitions on fractional calculus model, is formulated in Sect. 2. The

proposed system is analyzed in Sect. 3. In Sect. 4, we investigate somemathematical anal-

ysis aspects of the model, including the calculation of equilibrium points of the system,

the existence and uniqueness of the solution for the model different equilibrium points,

and their stability. Then, we present the corresponding numerical simulations in Sect. 5.

Finally, some concluding remarks are stated in the last section of the paper.

2 Mathematical backgrounds

In this section, we have an overview of some definitions and basic features of fractional

differential calculus.

Definition 1 The Caputo (C) fractional operators of order ν for n ∈ N are respectively

defined as [19]

D
ν
Cp(t) =

1

Ŵ(n – ν)

∫ t

0

(t – θ )m–ν–1p(k)(θ )dθ , n – 1 < ν ≤ n, (1)

I
ν
Cp(t) =

1

Ŵ(ν)

∫ t

0

(t – θ )ν–1p(θ )dθ . (2)

By taking the Laplace transform from Eq. (1), one achieves

L
[

D
ν
Cp(t)

]

= sνP(s) –

k–1
∑

j=0

s(ν–j–1)p(j)(0). (3)

Definition 2 The Caputo–Fabrizio (CF) fractional operators of order ν are respectively

defined as [51]

D
ν
CFp(t) =

M(ν)

n – ν

∫ t

0

dn

dtn
p(θ )exp

[

–
ν

n – ν
(t – θ )

]

dθ , n – 1 < ν ≤ n, (4)

I
ν
CFp(t) =

2(1 – ν)

(2 – ν)M(ν)
p(t) +

2ν

(2 – ν)M(ν)

∫ t

0

p(θ )dθ , (5)

where M(ν) = 2
2–ν

.

By taking the Laplace transform from Eq. (4), the following result is obtained:

L
[

D
ν
CFp(t)

]

=
sn+1P(s) – snp(0) – sk–1p′(0) – · · · – p(n)(0)

s + ν(1 – s)
. (6)
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Definition 3 Taking advantage of the concept, the Mittag-Leffler function MLν(θ ) [52]

MLν(θ ) =

∞
∑

j=0

θ j

Ŵ(1 + νj)
. (7)

The Atangana–Baleanu (AB) fractional derivative and integral of order ν are respectively

characterized as [50]

D
ν
ABp(t) =

β(ν)

1 – ν

∫ t

0

ML

[

–
ν

1 – ν
(t – θ )

]

ṗ(θ )dθ , ν ∈ (0, 1), (8)

I
ν
ABp(t) =

1 – ν

β(ν)
p(t) +

ν

β(ν)Ŵ(ν)

∫ t

t0

(t – θ )ν–1p(θ )dθ , (9)

where β(ν) = 1 – ν + ν
Ŵ(ν)

.

The following are some of the basic and widely used features of AB fractional operators:

• Both AB derivative and integral operators have linear properties as follows:

D
ν
AB

(

ǫ1p1(t) + ǫ2p2(t)
)

= ǫ1D
ν
ABp1(t) + ǫ2D

ν
ABp2(t), (10)

I
ν
AB

(

ǫ1p1(t) + ǫ2p2(t)
)

= ǫ1I
ν
ABp1(t) + ǫ2I

ν
ABp2(t). (11)

• The fractional AB derivative operator satisfies the Lipschitz condition

∥

∥D
ν
ABp1(t) –D

ν
ABp2(t)

∥

∥ ≤ N
∥

∥p1(t) – p2(t)
∥

∥, (12)

where ‖p(t)‖ = max0≤t≤tf |p(t)|.

• For a given function p(t) and the corresponding norm ‖p(t)‖ = maxt0≤t≤tf |p(t)|, one

achieves

∥

∥D
ν
ABp(t)

∥

∥ ≤
β(ν)

1 – ν

∥

∥p(t)
∥

∥. (13)

• The combination of the integral and derivative of AB-type operators yields

I
ν
AB

(

D
ν
ABp(t)

)

= p(t) – p(0). (14)

• Utilizing the Laplace transform on fractional definition stated in Eq. (8) yields

L
[

D
ν
ABp(t)

]

=
β(ν)

1 – ν

sP(s) – sν–1p(0)

s + ν
1–ν

. (15)

3 Structural expression of the system

To describe the model, let us assume a three-species food-web system of X1(t), X2(t),

and X3(t) species. In this model, X1(t) and X2(t) are the two competing species bearing

intrinsic growth rates. Also, it is assumed that their intrinsic growth rates and carrying

capacities are ri and Ki (i = 1, 2), respectively. Another symbol used in this model is X3(t)

which preserves the predating over X2(t) with Holling type II response. The species X1(t)

is assumed to benefit from the presence ofX3(t), as suchX1(t) is commensal ofX3(t). The
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proportion p of speciesX2(t) is refuged from predation. The coefficients αj (i, j = 1, 2; i �= j)

stand for the inter-species competition coefficients. Finally, the commensal coefficient is

denoted by δ13.

The following nonlinear differential equation system can be defined to express the in-

teractions and features of this described ecological model:

dX1(t)

dT
= r1X1(t)

[

1 –
X1(t)

K1

–
α12X2(t)

K1

]

+ δ13X1(t)X3(t),

dX2(t)

dT
= r2X2(t)

[

1 –
X2(t)

K2

–
α21X1(t)

K2

]

–
a(1 – p)X2(t)X3(t)

b + (1 – p)X2(t)
,

dX3(t)

dT
=X3(t)

[

–e +
ac(1 – p)X2(t)

b + (1 – p)X2(t)

]

,

(16)

subject to the following nonnegative initial conditions X1(0),X2(0),X3(0) > 0.

Now, in order to make system (16) dimensionless, we consider the following new vari-

ables in the system:

t = r1T , X1(t) =
X1(t)

K1

, X2(t) =
X2(t)

K2

, X3(t) =
aX3(t)

r1K2

,

m1 =
b

K2

, m2 =
e

r1
, m3 =

ac

r1
, r =

r2

r1
,

β12 =
α12K2

K1

, β21 =
α21K1

K2

, δ12 =
δ13K2

a
.

(17)

Taking variables (17) and system (16) into account, the following dimensionless form of

the problem is obtained [53]:

dX1(t)

dt
= X1(t)

[

1 –X1(t) – β12X2(t)
]

+ δX1(t)X3(t),

dX2(t)

dt
= rX2(t)

[

1 –X2(t) – β21X1(t)
]

–
(1 – p)X2(t)X3(t)

m1 + (1 – p)X2(t)
,

dX3(t)

dt
= X3(t)

[

–m2 +
m3(1 – p)X2(t)

m1 + (1 – p)X2(t)

]

.

(18)

Replacing the standard derivative with the AB fractional derivative D
ν
AB, we modify model

(18) as the following fractional-order version:

D
ν
ABX1(t) = X1(t)

[

1 –X1(t) – β12X2(t)
]

+ δX1(t)X3(t),

D
ν
ABX2(t) = rX2(t)

[

1 –X2(t) – β21X1(t)
]

–
(1 – p)X2(t)X3(t)

m1 + (1 – p)X2(t)
,

D
ν
ABX3(t) = X3(t)

[

–m2 +
m3(1 – p)X2(t)

m1 + (1 – p)X2(t)

]

.

(19)

4 Some theoretical features of model (19)

Some theoretical features of the fractional model are explored in this section.
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4.1 The equilibrium points of the model

Determining the equilibrium points of a dynamic system is of great importance in bet-

ter analyzing and understanding the behavior of the model. Finding equilibrium points is

equivalent to finding positions for which all derivatives in model (19) are equal to zero. By

following this procedure, the corresponding equilibrium points of the system are deter-

mined as follows:

• B1 = (0, 0, 0).

• B2 = (1, 0, 0).

• B3 = (0, 1, 0).

•

B4 =

(

0,
m1m2

(–1 + p)(m2 –m3)
, –

rm3m1((p –m1 – 1)m2 –m3(–1 + p))

(–1 + p)2(m2 –m3)2

)

.

•

B5 =

(

β12 – 1

β12β21 – 1
,

β21 – 1

β12β21 – 1
, 0

)

.

•

B6 =

⎛

⎜

⎜

⎜

⎜

⎝

(–1+p)(–δm1r+p–1)m
2
3–2(p

2+(–2+(–1/2rδ–β12/2)m1)p+1+1/2rδm
2
1+(1/2rδ+β12/2)m1)m2m3+m

2
2(–1+p)(–β12m1+p–1)

(–1+p)(m2–m3)((β21δm1r–p+1)m3+(–1+p)m2)
m1m2

(–1+p)(m2–m3)

–
(((β21–1)p–β12β21m1+m1–β21+1)m2–m3(β21–1)(–1+p))rm3m1

(–1+p)(m2–m3)((–1+p)m2–m3(–β21δm1r+p–1))

⎞

⎟

⎟

⎟

⎟

⎠

.

In order to analyze the local stability of the possible biological equilibrium points, the

Jacobianmatrix corresponding tomodel (19) at the equilibriumpointBi = (X∗
1,i,X

∗
2,i,X

∗
3,i)

is calculated as follows:

J
(

X
∗
1 ,X

∗
2 ,X

∗
3

)

=

⎛

⎜

⎜

⎜

⎝

–β12X
∗
2 + δX∗

3 – 2X∗
1 + 1 –X

∗
1β12 δX∗

1

–rβ21X
∗
2

–(β21X
∗
1+2X

∗
2–1)((–1+p)X

∗
2–m1)

2r+X
∗
3m1(–1+p)

((–1+p)X∗
2–m1)

2

(–1+p)X∗
2

–X
∗
2p+m1+X

∗
2

0 –
X

∗
3m3(–1+p)m1

(–X
∗
2p+m1+X

∗
2)
2 –m2 +

m3(1–p)X
∗
2

m1+(1–p)X
∗
2

⎞

⎟

⎟

⎟

⎠

.

(20)

Necessary and sufficient conditions for the existence and stability of all the equilibrium

points of B1 –B6 have been discussed in reference [53].

4.2 Existence of the solution

In this section, we aim to prove that the understudied fractional model in the paper pos-

sesses at least one solution. To this end, we first apply the β integral operator defined in

Eq. (9) on system (19) and get

X1(t) –X1(0) =
1 – ν

β(ν)
K1(	) +

ν

β(ν)Ŵ(ν)

∫ t

0

(t – θ )ν–1K1

(

	(θ )
)

dθ ,

X2(t) –X2(0) =
1 – ν

β(ν)
K2(	) +

ν

β(ν)Ŵ(ν)

∫ t

0

(t – θ )ν–1K2

(

	(θ )
)

dθ ,

X3(t) –X3(0) =
1 – ν

β(ν)
K3(	) +

ν

β(ν)Ŵ(ν)

∫ t

0

(t – θ )ν–1Q3

(

	(θ )
)

dθ ,

(21)
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where 
(t) = [X1(t),X2(t),X3(t)]. Now, let us define the operator 	(t) = [Q1(
(t)),

Q2(
(t)),Q3(
(t))], where

Q1

(


(t)
)

= sX1(t)
[

1 –X1(t) – β12X2(t)
]

+ δX1(t)X3(t),

Q2

(


(t)
)

= rX2(t)
[

1 –X2(t) – β21X1(t)
]

–
(1 – p)X2(t)X3(t)

m1 + (1 – p)X2(t)
,

Q3

(


(t)
)

= X3(t)

[

–m2 +
m3(1 – p)X2(t)

m1 + (1 – p)X2(t)

]

.

(22)

Moreover, 	0 = [X1(0),X2(0),X3(0)] is assumed. Using the above notations, Eq. (21) is

reformulated as follows:

	(t) –	(0) =
1 – ν

β(ν)
K

(

	(t)
)

+
ν

β(ν)Ŵ(ν)

∫ t

0

(t – θ )ν–1K
(

	(θ )
)

dθ . (23)

Now, inspired by (23) and starting from 	0(t) = 	(0), we define the following iterative

scheme:

	n(t) –	(0) =
1 – ν

β(ν)
K

(

	n–1(t)
)

+
ν

β(ν)Ŵ(ν)

∫ t

0

(t – θ )ν–1K
(

	n–1(θ )
)

dθ . (24)

Subtracting two consecutive terms gives

	n(t) –	n–1(t) =
1 – ν

β(ν)

[

K
(

	n–1(t)
)

–K
(

	n–2(t)
)]

+
ν

β(ν)Ŵ(ν)

∫ t

0

(t – θ )ν–1
[

K
(

	n–1(θ )
)

–K
(

	n–2(θ )
)]

dθ . (25)

Now, let us define ςn(t) = 	n(t) –	n–1(t). So, one gets

	n(t) =

n
∑

i=0

ςi(t). (26)

As a consequence, one obtains

∥

∥ςn(t)
∥

∥ =
∥

∥	n(t) –	n–1(t)
∥

∥,

∥

∥ςn(t)
∥

∥ =

∥

∥

∥

∥

1 – ν

β(ν)

[

K
(

	n–1(t)
)

–K
(

	n–2(t)
)]

+
ν

β(ν)Ŵ(ν)

∫ t

0

(t – θ )ν–1
[

K
(

	n–1(θ )
)

–K
(

	n–2(θ )
)]

dθ

∥

∥

∥

∥

.

Hence

∥

∥ςn(t)
∥

∥ ≤
1 – ν

β(ν)

∥

∥

∥

∥

K
(

	n–1(t)
)

–K
(

	n–2(t)
)

∥

∥

∥

∥

+
ν

β(ν)Ŵ(ν)

∫ t

0

(t – θ )ν–1
∥

∥

∥

∥

K
(

	n–1(θ )
)

–K
(

	n–2(θ )
)

∥

∥

∥

∥

dθ .
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Assuming that operator K satisfies the Lipschitz condition, it reads

∥

∥ςn(t)
∥

∥ ≤
1 – ν

β(ν)
L
∥

∥	n–1(t) –	n–2(t)
∥

∥ +
νL

β(ν)Ŵ(ν)

∫ t

0

(t – θ )ν–1
∥

∥	n–1(t) –	n–2(t)
∥

∥dθ .

Finally, we have the following inequality:

∥

∥ςn(t)
∥

∥ ≤
1 – ν

β(ν)
L
∥

∥ςn–1(t)
∥

∥ +
νL

β(ν)Ŵ(ν)

∫ t

0

(t – θ )ν–1
∥

∥ςn–1(t)
∥

∥dθ .

Now, replacing ‖ςn–1(t)‖ by its value, we get

∥

∥ςn(t)
∥

∥ ≤

(

1 – ν

β(ν)
L +

νLtν

β(ν)Ŵ(ν + 1)

)2
∥

∥ςn–2(t)
∥

∥.

Also, we have

∥

∥ςn(t)
∥

∥ ≤

(

1 – ν

β(ν)
L +

νLtν

β(ν)Ŵ(ν + 1)

)3
∥

∥ςn–3(t)
∥

∥.

And finally the following result is derived:

∥

∥ςn(t)
∥

∥ ≤

(

1 – ν

β(ν)
L +

νLtν

β(ν)Ŵ(ν + 1)

)n
∥

∥ς0(t)
∥

∥,

≤

(

1 – ν

β(ν)
+

νtν

β(ν)Ŵ(ν + 1)

)n

Ln
max

t∈[0,T]
	(0)(t). (27)

By choosing

	(t) =

n
∑

i=0

ςi(t), (28)

the general structure for 	(t) is suggested:

	(t) = 	n(t) +μn(t), (29)

where μn(t) → 0 when n(t) → ∞. Thus,

	(t) –	n(t) =
1 – ν

β(ν)
K

(

	(t) –μn(t)
)

+
ν

β(ν)Ŵ(ν)

∫ t

0

(t – θ )ν–1K
(

	(θ ) –μn(θ )
)

dθ . (30)

Now, we can write

	(t) –	(0) –
1 – ν

β(ν)
K

(

	(t) –μn(t)
)

–
ν

β(ν)Ŵ(ν)

∫ t

0

(t – θ )ν–1K
(

	(θ ) –μn(θ )
)

dθ

= μn(t) +
1 – ν

β(ν)

[

K
(

	(t) –μn(t)
)

–K
(

	(t)
)]

–
ν

β(ν)Ŵ(ν)

∫ t

0

(t – θ )ν–1
[

K
(

	(θ ) –μn(θ )
)

–K
(

	(θ )
)]

dθ .
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Utilizing the norm on both sides of the above equation, we obtain

∥

∥

∥

∥

	(t) –	(0)(t) –
1 – ν

β(ν)
K

(

	(t)
)

+
ν

β(ν)Ŵ(ν)

∫ t

0

(t – θ )ν–1K(	(θ )dθ

∥

∥

∥

∥

≤
∥

∥μn(t)
∥

∥ +
1 – ν

β(ν)

∥

∥

∥

∥

K
(

	(θ ) –μn(θ )
)

–K
(

	(θ )
)

∥

∥

∥

∥

+
ν

β(ν)Ŵ(ν)

∫ t

0

(t – θ )ν–1
∥

∥

∥

∥

K
(

	(θ ) –μn(θ )
)

–K
(

	(θ )
)

∥

∥

∥

∥

dθ

≤
∥

∥μn(t)
∥

∥ +
1 – ν

β(ν)
L
∥

∥μn–1(t)
∥

∥ +
νtν

β(ν)Ŵ(ν + 1)
L
∥

∥μn–1(t)
∥

∥.

If n→ ∞, then right-hand side vanishes, we reach the following conclusion:

	(t) –	(0) =
1 – ν

β(ν)
K

(

	(t)
)

+
ν

β(ν)Ŵ(ν)

∫ t

0

(t – θ )ν–1K
(

	(θ )
)

dθ . (31)

This result ensures the existence of solution 	(t) in the system.

4.3 The uniqueness of the solution

Now, let us assume that the system possesses two possible distinct solutions of 	(t) and

Y(t). Hence we must have

∥

∥	(t) –Y(t)
∥

∥ ≤
1 – ν

β(ν)
L
∥

∥	(t) –Y(t)
∥

∥ +
νLtν

β(ν)Ŵ(ν + 1)

∥

∥	(t) –Y(t)
∥

∥

≤

(

1 – ν

β(ν)
L +

νLtν

β(1 + ν)Ŵ(ν)

)

∥

∥	(t) –Y(t)
∥

∥ (32)

... (33)

≤

(

1 – ν

β(ν)
L +

νLtν

β(1 + ν)Ŵ(ν)

)n
∥

∥	(t) –Y(t)
∥

∥. (34)

If 1–ν
β(ν)

L + νLtν

β(1+ν)Ŵ(ν)
< 1 holds, then for n → ∞, we necessarily have 	(t) = Y(t). This con-

cludes the desired proof.

5 A numerical method

Designing numerical algorithms to solve problems is always one of our most urgent needs

in the face of presenting new concepts in differential calculus of fractional order. In ad-

dition, these methods can provide an accurate description of the theoretical behaviors of

problems, which is important from different aspects.

In this section, with an idea of what has been studied in article [54], an efficient numeri-

cal approximation form for solving fractional problems will be presented to the following

form:

D
ν
ABX(t) = W

(

t,X(t)
)

. (35)
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By applying the integral operator defined in Eq. (9), the Volterra integral equation is re-

sulted as follows:

X(t) –X(t0) =
1 – ν

β(ν)
W

(

t,X(t)
)

+
ν

β(ν)Ŵ(ν)

∫ t

t0

(t – θ )ν–1W
(

θ ,X(θ )
)

dθ . (36)

Setting t = tn = t0 + n�t in (36) yields

X(tn) = X(t0)+
1 – ν

β(ν)
W

(

tn,X(tn)
)

+
ν

β(ν)Ŵ(ν)

n–1
∑

i=0

∫ ti+1

ti

(tn–θ )ν–1W
(

θ ,X(θ )
)

dθ . (37)

In this step, it is necessary to approximate the integrand function W (θ ,X(θ )) using linear

interpolation to the following form:

W
(

θ ,X(θ )
)

≈ W (ti+1,Xi+1)+
θ – ti+1

�t

(

W (ti+1,Xi+1)–W (ti,X2,i)
)

, θ ∈ [ti, ti+1], (38)

where Xi = X(ti).

Furthermore, substituting this linear approximation forW (θ ,X(θ )) in integral (37) along

with performing symbolic calculations with the help of computational software, the fol-

lowing structure in calculating the approximate solution of the problem is introduced

[41, 55–57]:

Xn = X0 +
ν�t

β(ν)

(

ςnW (t0,X0) +

n
∑

i=1

ζn–iW (ti,Xi)

)

, n≥ 1, (39)

where

ςn =
(–1 + n)ν+1 – n(–1 + n – ν)

Ŵ(ν + 2)
,

ζi =

⎧

⎨

⎩

1
Ŵ(ν+2)

+ 1–ν
ν�t

, i = 0,

(i–1)ν+1–2iν+1+(i+1)ν+1

Ŵ(ν+2)
, i = 1, 2, . . . ,n – 1.

(40)

After determining the general structure for the approximate method in (39) and (40), the

method can be employed in solving problem (19). Hence the following iterative structures

will provide the desired numerical results for the problem:

X1,n = X1,0 +
ν�t

β(ν)

[

ςn

(

X1,0[1 –X1,0 – β12X2,0] + δX1,0X3,0

)

+

n
∑

i=0

ζn–i
(

X1,i[1 –X1,i – β12X2,i] + δX1,iX3,i

)

]

,

X2,n = X2,0 +
ν�t

β(ν)

[

ςn

(

rX2,0[1 –X2,0 – β21X1,0] –
(1 – p)X2,0X3,0

m1 + (1 – p)X2,0

)

+

n
∑

i=0

ζn–i

(

rX2,0[1 –X2,0 – β21X1,0] –
(1 – p)X2,0X3,0

m1 + (1 – p)X2,0

)

]

,

(41)
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X3,n = X3,0 +
ν�t

β(ν)

[

ςn

(

X3,0

[

–m2 +
m3(1 – p)X2,0

m1 + (1 – p)X2,0

])

+

n
∑

i=0

ζn–i

(

X3,i

[

–m2 +
m3(1 – p)X2,i

m1 + (1 – p)X2,i

])

]

.

By running these iterative schemes, approximate solutions to the main fractional prob-

lem of the paper are obtained. By observing the obtained relations, it can be seen that

these relations are implicit formulas in determining approximate solutions to the prob-

lem. Therefore, it seems necessary to use an additional method in solving these nonlinear

algebraic systems during calculations. One of the main suggestions in this regard is to use

Newton’s method [54].

Figure 1 Dynamics for system (19) for different parameters in Set 1
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Figure 2 Dynamics for system (19) for different parameters in Set 1

6 Simulation results and discussion

The fractional-order system (19) is solved using the proposed iterative scheme outlined

in (41). The model has been solved for different values of ν , which are 0.88, 0.878, 0.906,

0.934, 0.962, and 0.99.

Now, let us consider some different groups for the parameters in the model.

Set 1. If we set

r = 0.5, m1 = 0.14, m2 = 0.32009, m3 = 0.5,

δ = 0.04, β12 = 0.4, β21 = 0.1, p = 0.4.
(42)

Figures 1 and 2 show the numerical approximate solution of system (19) using the initial

condition (X1(0),X2(0),X3) = (0.75, 0.5, 0.25). It is seen that the system is locally asymp-

totically stable around the interior equilibrium point

B6 = (0.8404396992, 0.4151390510, 0.1623829903).

At this point we have

J(B6) =

⎡

⎢

⎣

–0.8404396988 –0.3361758797 0.03361758797

–0.02075695255 –0.0472630187 –0.6401800000

0 0.04505099138 0.0

⎤

⎥

⎦
. (43)
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Figure 3 Dynamics for system (19) for different parameters in Set 2

Also, the eigenvalues of the Jacobian matrix at the interior equilibrium point are

⎡

⎢

⎣

–0.01943365870 + 0.1679727718i

–0.8488354001

–0.01943365870 – 0.1679727718i

⎤

⎥

⎦
,

which all have a negative real part. So, the necessary conditions of local stability are veri-

fied.
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Figure 4 Dynamics for system (19) for different parameters in Set 2

Set 2. If we set

p = 0.33856, m1 = 0.1815, m2 = 0.30678, m3 = 0.5228,

δ = 0.04, r = 0.5, β12 = 1.5, β21 = 0.49.
(44)

Figures 3 and 4 show the numerical approximate solution of system (19) using the ini-

tial condition (X1(0),X2(0),X3) = (0.75, 0.5, 0.25). The existence of oscillatory behavior

of the system for this set of parametric values is observed in these figures. It can be easily

investigated that none of the equilibrium points can establish the condition of stability.

For example, in the case of the internal equilibrium point

B6 = (0.3904532309, 0.4097689817, 0.1276676154),

we have

J(B6) =

⎡

⎢

⎣

–0.3904532298 –0.5856798464 0.01561812924

–0.1003934005 –0.0771977296 –0.6401800000

0 0.03588385326 0.0

⎤

⎥

⎦
. (45)
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Figure 5 Dynamics for system (19) for different parameters in Set 3

This matrix has the following eigenvalues:

⎡

⎢

⎣

0.02268655650 + 0.1306853321i

–0.5130240724

0.02268655650 – 0.1306853321i

⎤

⎥

⎦
.

So, the results observed in the relevant figures are quite reasonable. A similar situation is

observed for other equilibrium points.
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Figure 6 Dynamics for system (19) for different parameters in Set 3

Set 3. To investigate the effect of commensalism on the coexistence of three species, let

us take

p = 0, m1 = 0.4, m2 = 0.32009, m3 = 0.5,

δ = 0, r = 0.5, β12 = 1.5, β21 = 0.4.
(46)

Figures 5 and 6 present the numerical simulations of system (19) with the initial condi-

tion (X1(0),X2(0),X3) = (0.75, 0.5, 0.25). It is seen that the system is locally asymptotically

stable around the X1-free equilibrium point

B4 = (0, 0.7116669446, 0.1602651634).

The Jacobi matrix at this point becomes

J(B4) =

⎡

⎢

⎣

–0.067500417 –0.0 0

–0.1423333889 –0.2635409446 –0.6401799998

0 0.02593700002 –0.0000000001

⎤

⎥

⎦
. (47)

In this case, the eigenvalues for the matrix are

⎡

⎢

⎣

–0.06750041700

–0.1042185452

–0.1593223995

⎤

⎥

⎦
,
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Figure 7 Dynamics for system (19) for different parameters in Set 4

which all have a negative real part. So, the necessary conditions of local stability are veri-

fied.

Set 4. To investigate the effect of commensalism on the coexistence of three species, we

set

m1 = 0.28455632, m2 = 0.32009, m3 = 0.5,

p = 0, r = 0.5, δ = 0, β12 = 1.5, β21 = 0.4.
(48)

Figures 7 and 8 show the numerical approximate solution of system (19) using the initial

condition (X1(0),X2(0),X3) = (0.75, 0.5, 0.25). It is seen that the system is locally asymp-
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Figure 8 Dynamics for system (19) for different parameters in Set 4

totically stable around the interior equilibrium point

B6 = (0.3134174655, 0.5062733170, 0.1456548826).

At this point we have

⎡

⎢

⎣

–0.3134174652 –0.4701261982 0.1567087328

–0.1012546634 –0.1352284031 –0.6401800000

0 0.03313579652 0.0

⎤

⎥

⎦
. (49)

Also, the eigenvalues of this matrix are evaluated

⎡

⎢

⎣

–0.000002490262368 + 0.1264559730i

–0.4486408878

–0.000002490262368 – 0.1264559730i

⎤

⎥

⎦
,

which all have a negative real part. So, the necessary conditions of local stability are veri-

fied.

In this part, we seek to study the sensitivity analysis of some parameters in the model.

In this case, we fix all the other parameters, and we examine the effects of changing a

parameter on the system behavior.
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Figure 9 Dynamics for system (19) by taking different values of parameterm1

First, consider the parameters in Set 1, along with ν = 0.95. We are looking at the role of

m1 on results. For this purpose, we consider the set of values 0.08, 0.13, 0.18, 0.23, 0.28, and

0.3300. Numerical simulations corresponding to these assumptions are shown in Figs. 9

and 10.

The results show that for smaller values ofm1, the system solution shows more oscillat-

ing behaviors and the point equilibrium will be unstable. But as the parameter increases,

the system solution quickly converges to its equilibrium point.

Further, let us examine the effect of different values for parameter p on the solution.

In this case, we take the parameters in Set 3, along with ν = 0.95. We consider the set of

values 0.15, 0.2, 0.25, 0.30, 0.35, and 0.4. Numerical simulations corresponding to these
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Figure 10 Dynamics for system (19) by taking different values of parameterm1

assumptions are shown in Figs. 11 and 12. The results show that, for smaller values of p, the

system solution shows more oscillating behaviors and the point equilibrium is unstable.

But as the parameter increases, the system solution quickly converges to its corresponding

interior equilibrium point.

7 Conclusion

Employing mathematical modeling using differential equations helps us better under-

stand the behavior of dynamic biological systems. In addition, the use of fractional order

differential equations can address some of the shortcomings observed in the modeling

of biological systems related to the concept of memory. This has made the importance

of using this tool even more obvious for researchers. From a numerical point of view,

the use of fast supercomputers with high processing speeds allows us to provide more

advanced numerical methods in solving various types of differential equations, includ-

ing equations of fractional order. In this paper, the AB fractional derivative is employed

to study some computational aspects of a three-species prey–predator model in math-

ematical biology. One of the most prominent features of taking this fractional deriva-

tive operator is using a nonsingular kernel in the structure of the operator. Some the-

oretical requirements for the model, such as the existence and uniqueness of the solu-

tions, are also discussed in this paper. Preservation of basic information in biological sys-

tems is one of the most important features necessary for modeling these phenomena.

Since the concept of memory in fractional derivatives can provide us with such facili-
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Figure 11 Dynamics for system (19) by taking different values of parameterm1

ties, the use of this important tool in biological modeling will be of great importance.

In addition to the constant coefficients in the model, the fractional-order parameter ν

is a useful tool for calibrating the results with real problem data. As we observe in the

numerical simulations, the employed fractional operator provides all the expected the-

oretical aspects of the studied model. From obtained theoretical and numerical investi-

gations one concludes that the inter-species competition coefficients, prey refuge rate,

half saturation constant, the death rate of predator species, and conservation rate of prey

species have a significant role in the stability of the bio-diversity of an ecological sys-

tem.
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Figure 12 Dynamics for system (19) by taking different values of parameter p
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