
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 391901, 7 pages
http://dx.doi.org/10.1155/2013/391901

Research Article

On Approximate Solutions for Fractional Logistic
Differential Equation

M. M. Khader1,2 and Mohammed M. Babatin1

1 Department of Mathematics and Statistics, College of Science, Al-ImamMohammed Ibn Saud Islamic University (IMSIU),
P.O. Box 65892, Riyadh 11566, Saudi Arabia

2Department of Mathematics, Faculty of Science, Benha University, Benha, Egypt

Correspondence should be addressed to M. M. Khader; mohamedmbd@yahoo.com

Received 6 March 2013; Revised 1 April 2013; Accepted 2 April 2013

Academic Editor: Guo-Cheng Wu

Copyright © 2013 M. M. Khader and M. M. Babatin. 
is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

A new approximate formula of the fractional derivatives is derived. 
e proposed formula is based on the generalized Laguerre
polynomials. Global approximations to functions de�ned on a semi-in�nite interval are constructed.
e fractional derivatives are
presented in terms of Caputo sense. Special attention is given to study the convergence analysis and estimate an error upper bound
of the presented formula. 
e new spectral Laguerre collocation method is presented for solving fractional Logistic di�erential
equation (FLDE). 
e properties of Laguerre polynomials approximation are used to reduce FLDE to solve a system of algebraic
equations which is solved using a suitable numerical method. Numerical results are provided to con�rm the theoretical results and
the eciency of the proposed method.

1. Introduction

Ordinary and partial fractional di�erential equations (FDEs)
have been the focus of many studies due to their frequent
appearance in various applications in �uid mechanics, vis-
coelasticity, biology, physics, and engineering [1]. Fractional
calculus is a generalization of ordinary di�erentiation and
integration to an arbitrary noninteger order. Many physical
processes appear to exhibit fractional order behavior that
may vary with time or space. Most FDEs do not have exact
solutions, so approximate and numerical techniques [2–8]
must be used. Several numerical and approximate methods
to solve FDEs have been given such as variational itera-
tion method [9–12], homotopy perturbation method [13],
Adomian’s decomposition method [14, 15], and collocation
method [16, 17].


e fractional Logisticmodel can be obtained by applying
the fractional derivative operator on the Logistic equation.

e model is initially published by Pierre Verhulst in 1838
[18, 19]. 
e continuous Logistic model is described by �rst-
order ordinary di�erential equation. 
e discrete Logistic
model is simple iterative equation that reveals the chaotic

property in certain regions [20]. 
ere are many variations
of the population modeling [19, 21]. 
e Verhulst model is
the classic example to illustrate the periodic doubling and
chaotic behavior in dynamical system [20].
emodel which
is described the population growth may be limited by certain
factors like population density [18, 19, 21].

Applications of Logistic Equation. A typical application of the
Logistic equation is a common model of population growth.
Another application of Logistic curve is in medicine, where
the Logistic di�erential equation is used to model the growth
of tumors. 
is application can be considered an extension
of the above-mentioned use in the framework of ecology.
Denoting by �(�) the size of the tumor at time �.


e solution of Logistic equation is explained the constant
population growth rate which not includes the limitation on
food supply or spread of diseases [19]. 
e solution curve of
themodel is increasing exponentially from themultiplication
factor up to saturation limit which is maximum carrying
capacity [19], ��/�� = ��(1 − (�/�)) where � is the
population size with respect to time, � is the rate of max-
imum population growth, and � is the carrying capacity.
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e solution of continuous Logistic equation is in the form
of constant growth rate as in formula�(�) = �0��� where�0
is the initial population [22].

In this paper, we consider FLDE of the form

	]� (�) = �� (�) (1 − � (�)) , � > 0, � > 0, (1)

here, the parameter ] refers to the fractional order of time
derivative with 0 < ] ≤ 1.

We also assume an initial condition

� (0) = �0, �0 > 0. (2)

For ] = 1, (1) is the standard Logistic di�erential equation

�� (�)�� = �� (�) (1 − � (�)) . (3)


e exact solution to this problem is �(�) = �0/((1−�0)�−�� +�0).

e existence and the uniqueness of the proposed prob-

lem (1) are introduced in details in [23, 24].

e main aim of the presented paper is concerned with

an extension of the previous work on FDEs and derive
an approximate formula of the fractional derivative of the
Laguerre polynomials and then we apply this approach to
obtain the numerical solution of FLDE. Also, we present
study of the convergence analysis and estimate an error upper
bound of the proposed formula.


e structure of this paper is arranged in the following
way: in Section 2, we introduce some basic de�nitions about
Caputo fractional derivatives and properties of the Laguerre
polynomials. In Section 3, we give an approximate formula
of the fractional derivative of Laguerre polynomials and
its convergence analysis. In Section 4, we implement the
proposed method for solving FLDE to show the accuracy of
the presented method. Finally, in Section 5, the paper ends
with a brief conclusion and some remarks.

2. Preliminaries and Notations

In this section, we present some necessary de�nitions and
mathematical preliminaries of the fractional calculus theory
that will be required in the present paper.

2.1. �e Caputo Fractional Derivative

De	nition 1. 
e Caputo fractional derivative operator	] of
order ] is de�ned in the following form:

	]� (�) = 1Γ (� − ]) ∫�
0

�(�) (�)
(� − �)]−�+1 ��, ] > 0, � > 0,

(4)

where� − 1 < ] ≤ �,� ∈ N.
Similar to integer-order di�erentiation, Caputo fractional

derivative operator is linear

	] (�� (�) + �� (�)) = �	]� (�) + �	]� (�) , (5)

where � and � are constants. For the Caputo’s derivative we
have

	]� = 0, � is a constant, (6)

	]�� = {{{
0, for � ∈ N0, � < ⌈]⌉ ;Γ (� + 1)Γ (� + 1 − ])��−], for � ∈ N0, � ≥ ⌈]⌉ . (7)

We use the ceiling function ⌈]⌉ to denote the smallest integer
greater than or equal to ], and N0 = {0, 1, 2, . . .}. Recall that
for ] ∈ N, the Caputo di�erential operator coincides with the
usual di�erential operator of integer order.

For more details on fractional derivatives de�nitions and
their properties see [1, 25–28].

2.2. �e De	nition and Properties of the Generalized Laguerre
Polynomials. Spectral collocation methods are ecient and
highly accurate techniques for numerical solution of non-
linear di�erential equations. 
e basic idea of the spectral
collocation method is to assume that the unknown solution�(�) can be approximated by a linear combination of some
basis functions, called the trial functions, such as orthogonal
polynomials. 
e orthogonal polynomials can be chosen
according to their special properties, which make them par-
ticularly suitable for a problem under consideration. In [16],
Khader introduced an ecient numerical method for solving
the fractional di�usion equation using the shi�ed Chebyshev
polynomials. In [29] the generalized Laguerre polynomials
were used to compute a spectral solution of a nonlinear
boundary value problems. 
e generalized Laguerre poly-
nomials constitute a complete orthogonal sets of functions
on the semi-in�nite interval [0,∞). Convolution structures
of Laguerre polynomials were presented in [30]. Also, other
spectral methods based on other orthogonal polynomials are
used to obtain spectral solutions on unbounded intervals [31].


e generalized Laguerre polynomials [�(�)� (�)]∞�=0,  >−1 are de�ned on the unbounded interval (0,∞) and can be
determined with the aid of the following recurrence formula:

(� + 1) �(�)�+1 (�) + (� − 2� −  − 1) �(�)� (�)
+ (� +  ) �(�)�−1 (�) = 0, � = 1, 2, . . . , (8)

where �(�)0 (�) = 1 and �(�)1 (�) =  + 1 − �.

e analytic form of these polynomials of degree � is

given by

�(�)� (�) = �∑
	 = 0

(−1)	"! (� +  � − ")�	

= (� +  � ) �∑
	 = 0

(−�)	( + 1)	
�	"! ,

(9)
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�(�)� (0) = ( �+�� ). 
ese polynomials are orthogonal on the
interval [0,∞) with respect to the weight function &(�) =(1/Γ(1 +  ))���−�. 
e orthogonality relation is

1Γ (1 +  ) ∫
∞

0
���−��(�)� (�) �(�)� (�) �� = (� +  � ) '��.

(10)

Also, they satisfy the di�erentiation formula

		�(�)� (�) = (−1)	�(�+	)�−	 (�) , " = 0, 1, . . . , �. (11)

Any function �(�) belongs to the space �2
[0,∞) of all square
integrable functions on [0,∞)with weight function&(�) can
be expanded in the following Laguerre series:

� (�) = ∞∑
� = 0

*��(�)� (�) , (12)

where the coecients *� are given by

*� = Γ (- + 1)Γ (- +  + 1) ∫
∞

0
���−��(�)� (�) � (�) ��, - = 0, 1, . . . .

(13)

Consider only the �rst (� + 1) terms of generalized Laguerre
polynomials, so we can write

�� (�) = �∑
� = 0

*��(�)� (�) . (14)

Formore details on Laguerre polynomials, its de�nitions, and
properties, see [29, 31, 32].

3. An Approximate Fractional Derivative of�(�)� (�) and Its Convergence Analysis


e main goal of this section is to introduce the following
theorems to derive an approximate formula of the fractional
derivatives of the generalized Laguerre polynomials and
study the truncating error and its convergence analysis.

Lemma 2. Let �(�)� (�) be a generalized Laguerre polynomial
then

	]�(�)� (�) = 0, � = 0, 1, . . . , ⌈]⌉ − 1, ] > 0. (15)

Proof. 
is lemma can be proved directly by applying (6)-(7)
on (9).


e main approximate formula of the fractional deriva-
tive of �(�) is given in the following theorem.

�eorem 3. Let �(�) be approximated by the generalized
Laguerre polynomials as (14) and also suppose ] > 0; then
its approximated fractional derivative can be written in the
following form:

	] (�� (�)) ≅ �∑
� =⌈]⌉

�∑
	 =⌈]⌉

*�&(])�, 	 �	−], (16)

where &(])�, 	 is given by

&(])�, 	 = (−1)	Γ (" + 1 − ]) (- +  - − ") . (17)

Proof. Since the Caputo’s fractional di�erentiation is a linear
operation, we obtain

	] (�� (�)) = �∑
� = 0

*�	] (�(�)� (�)) . (18)

Also, from (9) we can get

	]�(�)� (�) = 0, - = 0, 1, . . . , ⌈]⌉ − 1, ] > 0. (19)


erefore, for - = ⌈]⌉, ⌈]⌉ + 1, . . . , �, and by using (6)-(7) in
(9), we get

	]�(�)� (�) = �∑
	 = 0

(−1)	"! (- +  - − ")	]�	

= �∑
	 = ⌈]⌉

(−1)	Γ (" + 1 − ]) (- +  - − ")�	−].
(20)

A combination of (18)–(20) leads to the desired result (16)
and ends the proof of the theorem.

Test Example. Consider the function �(�) = �3 with � = 3,
] = 1.5, and  = −0.5, the generalized Laguerre series of �3 is
�3 = 1.875�(�)0 (�) − 11.25�(�)1 (�) + 15�(�)2 (�) − 6�(�)3 (�) .

(21)

Now, by using formula (16), we obtain

	1.5�3 = 3∑
� = 2

�∑
	 = 2

*�&(1.5)�,	 �	 −1.5, (22)

where &(1.5)2,2 = 1.12838, &(1.5)3,2 = 2.82095, &(1.5)3,3 = −0.752253,
therefore,

	1.5�3 = *2&(1.5)2,2 �0.5 + *3&(1.5)3,2 �0.5 + *3&(1.5)3,3 �1.5
= Γ (4)Γ (2.5)�1.5,

(23)

which agrees with the exact derivative (7).

�eorem4. �eCaputo fractional derivative of order ] for the
generalized Laguerre polynomials can be expressed in terms
of the generalized Laguerre polynomials themselves in the
following form:

	]�(�)� (�) = �∑
	 = ⌈]⌉

	 −⌈]⌉∑
� = 0

Ω��	 �(�)� (�) ,
- = ⌈]⌉ , ⌈]⌉ + 1, . . . , �,

(24)

where

Ω��	 =
�∑
� = 0

(−1)�+	 ( + -)! (B)! (" +  − ] + C)!
(" − ])! (- − ")! ( + ")!C! (B − C)! ( + C)! .

(25)
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Proof. From the properties of the generalized Laguerre poly-

nomials [33] and expanding �	−] in (20) in the following
form:

�	−] = 	 − ⌈]⌉∑
� = 0

*	��(�)� (�) , (26)

where *	� can be obtained using (13), where �(�) = �	−], then
*	� = Γ (B + 1)

Γ (B + 1 +  ) ∫
∞

0
�	+�−]�−��(�)� (�) ��

= �∑
� = 0

(−1)� (B)! (" − ] +  + C)!
C! (B − C)! ( + C)! ,

B = 0, 1, . . . ,

(27)

this by substituting from (9) and using the de�nition of
Gamma function. Now, we can write (26) in the following
form:

�	−] = 	 − ⌈]⌉∑
� = 0

�∑
� = 0

(−1)� (B)! (" − ] +  + C)!
C! (B − C)! ( + C)! �(�)� (�) . (28)


erefore, the Caputo fractional derivative 	]�(�)� (�) in (20)
can be rewritten in the following form:

	]�(�)� (�)
= �∑
	 = ⌈]⌉

	 − ⌈]⌉∑
� = 0

�∑
� = 0

((−1)�+	 ( + -)! (B)! (" − ] +  + C)!
× ((" − ])! (- − ")! ( + ")!C! (B − C)!

× ( + C)!)−1) �(�)� (�) ,
(29)

for - = ⌈]⌉, ⌈]⌉ + 1, . . . , �. Equation (29) leads to the desired
result (24) and this completes the proof of the theorem.

�eorem 5. For the Laguerre polynomials �(�)� (�), one has the
following global uniform bounds estimates:

DDDDD�(�)� (�)DDDDD ≤
{{{{{{{{{{{{{{{

( + 1)��! ��/2, for  ≥ 0, � ≥ 0,
� = 0, 1, . . . ;

(2 − ( + 1)��! ) ��/2, for − 1 <  ≤ 0,
� ≥ 0, � = 0, 1, . . . .

(30)

Proof. 
ese estimates were presented in [33–35].

�eorem 6. �e error in approximating 	]�(�) by 	]��(�)
is bounded by

DDDDF� (�)DDDD ≤
∞∑
� =�+1

*�Π]
(-, B) ( + 1)�B! ��/2,

 ≥ 0, � ≥ 0, B = 0, 1, . . . ,

DDDDF� (�)DDDD ≤
∞∑
� =�+1

*�Π]
(-, B) (2 − ( + 1)�B! ) ��/2,

− 1 <  ≤ 0, � ≥ 0, B = 0, 1, . . . ,
(31)

where |F�(�)| = |	]�(�) − 	]��(�)| and Π
]
(-, B) =∑�	 = ⌈]⌉∑	−⌈]⌉� = 0 Ω��	.

Proof. A combination of (12), (14), and (24) leads to

DDDDF� (�)DDDD = DDDD	]� (�) − 	]�� (�)DDDD
≤ ∞∑
� =�+1

*�Π]
(-, B) DDDDD�(�)� (�)DDDDD ,

(32)

using (30) and subtracting the truncated series from the in�-
nite series, bounding each term in the di�erence, and sum-
ming the bounds completes the proof of the theorem.

4. Implementation of Laguerre Spectral
Method for Solving FLDE

In this section, we introduce a numerical algorithm using
Laguerre spectral method for solving the fractional Logistic
di�erential equation of the form (1).


e procedure of the implementation is given by the
following steps.

(1) Approximate the function �(�) using the formula (14)
and its Caputo fractional derivative 	]�(�) using the
presented formula (16) with � = 5, then FLDE (1) is
transformed to the following approximated form:

5∑
� = 1

�∑
	 = 1

*�&(])�,	 �	−] − �(
5∑
� = 0

*��(�)� (�))

× (1 − 5∑
� = 0

*��(�)� (�)) = 0,
(33)

where &(])�, 	 is de�ned in (17).

We now collocate (33) at (� + 1 − ⌈]⌉) points ��, M =0, 1, . . . , � − ⌈]⌉ as
5∑
� = 1

�∑
	 = 1

*�&(])�,	 �	−]� − �( 5∑
� = 0

*��(�)� (��))

× (1 − 5∑
� = 0

*��(�)� (��)) = 0.
(34)

(2) From the initial condition (2) we obtain the following
equation:

5∑
� = 0

*��(�)� (0) = �0. (35)
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Figure 1: A comparison between the approximate solution and the exact solution at ] = 1 (a).
e behavior of the approximate solution using
the proposed method at ] = 0.85 (b).

0.38

0.36

0.34

0.32

0.3

0.28

0.26

0.24
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

�

�
(�
)

(a)

0.38

0.36

0.34

0.32

0.3

0.28

0.26

0.24
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

�

�
(�
)

(b)

Figure 2: 
e behavior of the approximate solution using the proposed method at ] = 0.65 (a) and at ] = 0.45 (b).

Equations (34)-(35) represent a system of nonlinear
algebraic equations which contains six equations for
the unknowns *�, - = 0, 1, . . . , 5.

(3) Solve the resulting system using the Newton iteration
method to obtain the unknowns *�, - = 0, 1, . . . , 5.

erefore, the approximate solutionwill take the form

� (�) = *0�(�)0 (�) + *1�(�)1 (�) + *2�(�)2 (�)
+ *3�(�)3 (�) + *4�(�)4 (�) + *5�(�)5 (�) . (36)


e numerical results of the proposed problem (1) are given
in Figures 1 and 2 with di�erent values of ] in the interval

[0, 1] with � = 0.5 and �0 = 0.25. Where in Figure 1, we
presented a comparison between the behavior of the exact
solution and the approximate solution using the introduced
technique at ] = 1 (Figure 1(a)), and the behavior of the
approximate solution using the proposed method at ] = 0.85
(Figure 1(b)). But, in Figure 2, we presented the behavior of
the approximate solution with di�erent values of ] (] = 0.65
(Figure 2(a)) and ] = 0.45 (Figure 2(b))).

5. Conclusion and Remarks

In this paper, we introduced a new spectral collocation
method based on Laguerre polynomials for solving FLDE.
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We have introduced an approximate formula for the Caputo
fractional derivative of the generalized Laguerre polynomials
in terms of generalized Laguerre polynomials themselves. In
the proposed method we used the properties of the Laguerre
polynomials to reduce FLDE to solve a system of algebraic
equations. 
e error upper bound of the proposed approxi-
mate formula is stated and proved. 
e obtained numerical
results show that the proposed algorithm converges as the
number of� terms is increased. 
e solution is expressed as
a truncated Laguerre series and so it can be easily evaluated
for arbitrary values of time using any computer program
without any computational e�ort. From illustrative examples,
we can conclude that this approach can obtain very accurate
and satisfactory results. Comparisons are made between the
approximate solution and the exact solution to illustrate
the validity and the great potential of the technique. All
computations are done using Matlab.
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