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On approximate solutions of a system
of functional equations
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Abstract. Assume that S is a set, (X, g) is a metric space and (Y, || ||;), 1 <i<m, are
normed spaces, where m is a positive integer. Given a function f mapping S x X into X and
functions h;, 1 <i< m, mapping subsets of the set X x Y x...x Y3 into Y, respectively, the
problem is considered, under what conditions, for every ¢ > 0, there exist Lipschitz continuous
functions ¢, from X into Y, 1 <i<m, such that

¥ "‘pi(x)—hi(x: ‘rol Of(', x)n ey (pmof(‘a x))”i $ &

for all ie{l,..., m} and xeX.

Here we shall continue a study, initiated by R. C. Buck, of approximate
solutions of functional equations (cf. [1], Chapter VI of [2], [4] and [5]).

In the whole paper we shall denote the set of all functions mapping a set
X into a set Y by #(X, Y) and by ¥(X, Y) we shall denote the set of all
continuous functions mapping a topological space X into a topological space
Y. The set of all positive integers will be denoted by N, whereas m will stand
for the set Nn[1, m], where m is a fixed positive integer. Moreover, the
components of vectors will be indicated by lower indices and we shall write
@ to denote the set &, x...x®P,, whenever a suitable m-tuple of sets
(®y, ..., @,) will be given.

Assume that

(i) (X, o) is a compact metric space, whereas (Y, || ||;), ie m, are finite
dimensional Banach spaces.

(i) @;, iem, is a subset of Z# (X, Y) closed under uniform convergence,
containing the zero function and such that (0, 1)- &, < &,.

(i) S is a non-void set and f: SxX — X is a function fuliilling the
condition

ANV V (f61,)0...0f(sn Hx)eU)

xeX neN sy,...,5,€S

for every neighbourhood U of a point ée X (%).
(") It follows from Theorems 3.2 and 3.3 of [2] (cf. also {3]) that under hypotheses
() we have (iij) whenever the family {f(s,?): seS} is locally equicontinuous and

"sup{o(f (s, x), €): seS} < a(x, & holds for all xeX \{¢} with a e X.
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(iv) There exists a function M: S — [0, + o) such that

(1) A [e(r€. 0.1, 9) < Me(x, 9]
and
(2) NG, 8 =2)

seS

(v) For every iem, h; is a funcltion defined on a set containing the set

(3) Q:= {(x’ Yiseoos y,,,)eXx-?/'"(S, Yl)x"'Xf(Sa Ym):

AV i=e0f(, %))

iem @;e®;

and taking values in Y; in such a manner that for every ¢ € @ the function ¥
given by y(x) = hy(x, o f(, x)), xe X, belongs to ¥, and

g4) h(¢, 0)=0.

(vi) For every iem there exists an L;e[0, + o) and an extended-real-
valued function B, defined on a subset B; of # (S, [0, +)™) such that

5) A (Ihi(x, y)—h (%, 9

(x,9).(x, e

g L,-g(x, f)"'ﬂl("yl _}_"1”1’ ey ”ym_'.)_’m”m))

(vii) There exists a positive matrix (a;;); jemxm Such that for every
cef0, +0)" and ueZ(S, [0, +00)"), if u(s)=c for all seS or u

=(c;M, ..., cu M) (cf. (1), then ueB; and Bi(u) < Y a;c; for every iem.
i=1

Moreover, for every iem, B;(u) < B;(i) whenever u, #eB; and u; < @; for all
jem.

(viii) The characteristic roots of the matrix (a;;);, jcu«w are less than or
equal one in absolute value.

(ix) For every iem we have

6 A /\ (SueB; implies 98;(u) < B;(Su))
ueB; 3«0,1)
and lim inf B;(u,) < B,(u) for every uniformly convergent sequence (u,: ne N)
of mappings from B, such that its limit 4 belongs to B; and fulfilling the
inequalities u,; < cM, with a certain ce[0, + o), for all neN and jem.
Let us start with the following
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THEOREM 1. If hypotheses (i}ix) are satisfied, then for every ¢ > O there
exists a @eP such that

)] @; fulfils a Lipschitz condition,
@) (8 =

and i

9 /} ["‘Pi (x)—=hi(x, po f(, x))"‘ < 8]

hold for every iem.

We first prove two lemmas. The first one concerns the system .of
functional inequalities

(10) L)< B(dofC,x), iem.

We assume additionally that

(x) For every iem the extended-real-valued function §; is defined on a
subset B, of .#(S, [0, +0)™). Moreover, there exists a positive matrix
(@) jemxm fulfilling (viii) and such that for every iem, ueB; and

ce(0, + o)™, if u; < ¢, for all jem, then B(w) < Y ayc;.
i=1

LEMMA 1. Let X be a :opological space and suppose that hypotheses (iii)
and (x) are satisfied. If A: X - [0, +o0)™ is a solution of the system (10)
continuous at the point ¢ such that

(11) /\ (4:(5) =0),

then A = 0.

Proof. Fix arbitrarily an ¢ > 0. By (viii) and by the Perron Theorem
([6], p. 354) there exists an ne(0, + o)™ such that

(12) A Z aty < ).

iem j=)

We may assume that
(13) Ai<e

It follows from the continuity of A at the point { and from (11) that there
exists a neighbourhood U, of ¢ such that

(14) /\ (g < m).
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Put U, :=N1{f(s, )" 1(U,): se8S] for every ne Nu [0}. Hence and from
(iii) we have

(15 1(\(0| (fSxU,,)=U,)
and
(16) x={ U,

n=0

We shall show that

{17 N\ Gilu, <)

holds for every ne N U {0}. In fact, assume (17) for an ne N U {0} and fix
arbitrarily iem and xeU,,,. Making use of (15) and (17) we obtain
A0f(,x)<n for all jem. This together with (10), (x) and (12) gives

Ai(x) < Z am; < n;.
j=1
Hence and from (14) we have (17) for all ne Nu {0}, which jointly with
(16) allows us to state that 4; <#; for every iem. Taking (13) and the un-
restricted choice of a positive real number ¢ into account we end the
proof of Lemma 1.

LemMma 2. Under hypotheses (i)-(vii) (?), if the characteristic roots of
(@), pemxm are less than one in absolute value, then the system of equations

(18) @i (x) = hi(xs pof(, x)), iem,

has exactly one solution ¢ € ® continuous at the point £ such that ¢;(&) =0 for
every ie m. This solution fulfils a Lipschitz condition. More exactly, if E is the

(}) It is enough to assume, instead of (i), that (X, @) is a compact metric space and (¥, a)),
iem, are complete metric spaces. As regards hypotheses (ii), it suffices to assume that for every
iem, @, is a subset of # (X, Y) closed under uniform convergence and such that O @;. Finally,
instead of (vii) it is enough to assume:

(vii’) There exist positive matrices (a;;);, pem »m With all characteristic roots less than one in
absolute value and (b;)); jem x m With all characteristic roots not greater that one such that for
every ce[0, + )" and ue Z (S, [0, + co)"):

if u(s) =c for all seS, then ueB, and B (W) < Y by, for all iem,

j=l
if u=(c;M,...,cqaM), then ueB, and B;(1) < Z gc) for uil iem.

Moreover, for every iem, we have f,{u) < ﬂ,(a) whenever u, Ge B, and u; < 4, for all jem.
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set of all characteristic roots of (a;}); jemxm> @:= max|E| and if ce(0, + o0)”
satisfies the condition

ien

(19) /\ ( Z aijCj = @C.- and L.- S Cl-),
j=1

then the function <¢; fulfils the Lipschitz condition with the constant
¢/(1—-0), iem.

Proof. Making use of Perron’s Theorem once more, we fix a
ce(0, + o)™ satisfying (19) and we define ¥;, iem, to be the set of all
functions from &; which fulfil the Lipschitz condition with the constant

¢,/(1—6©) and have value zero at £. For every iem the set %, is non-void,
since 0 ;. Put ¥:= %, x...x¥,, and fix a

(20) pe,
x, e X and iem. Recalling (20), (5), (1), (vii) and (19) we get
Iri(x. @0 f ¢, x)=hi(%, @0 £, D),
< Lio(x, D+B:(loy 0 f €, ) =01 0 /€, DMlys -, [@mO S (2 X)= @m0 [, Dlim)

< Lie(xs i)"'ﬁl(li_la MQ(x, f)’“w I_C_% MQ(xs x))

e C; v 1 d
< Lo(x, )+ Y a; I J@ o(x, X) < (C.-+——§ Y auCJ)Q(X, X)
Jj=1 - - Jj=1

=| ¢+ ® (x, X) = ! co(x, X)
=1 4G I—OC‘)QX’ “1-0 21X, X).

Moreover, if we have (20), then in view of (2) and (4) we obtain

h(¢, pof(, &) =0 for every iem. Hence and from (v) for every iem we
may define a function T;: ¥ — %; by

(21) T(9)(x) = hi(x, 9o f(, X)), @€, xeX.
Now, fix ¢, pc £ and iem. If xe X, then, referring to (21), (5), (i) and
(vii), we get
1T (@) (%) — T (@) (X,
<Bill@rof (. %)= 0fC, Dy, -, om0 £, X = Fmo0 £, XIm)
< Bi(sup {ll@y ()= B, (ON;: xeX}, ..., SUp {|@p(X)— B (X)lm: xEX})

< z a,sup {ll@;(x)—@;(xl;: xe X}.
=1
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By this inequality, (i) and (ii), endowing %; with the supremum metric d;, we

have 4,(T(¢), T(®) < Y. ayd;(9;, ) and (&, d;) is a complete metric
j=1

space. By Theorem 1.4 and Lemma 1.2 from [7] the function (T}, ..., T,) has

(exactly one) fixed point.

It remains to show that the system (18) has at most one solution ¢e®
continuous at the point ¢ and vanishing at {. Suppose that ¢ and @ are two
such solutions and put A;:= ||¢;— @,|l;, ie m. Then (4,, ..., 4,,) is a solution of
the system (10) continuous at ¢ and condition (11) is satisfied. Applying
Lemma 1 we see that ¢ = ¢. Thus Lemma 2 is proved.

Proof of Theorem 1. By Lemma 2 and the Perron Theorem we may
assume that 1 is a characteristic root of (a;)q. jyen xm-

Fix a ce(0, +o0)" such that
(22) A(Y ay;=¢ and L, <¢)
iem j=1
and put h*(x, y):=h(x, (1-9)y), (x, y)eQ, for every iem and for an
arbitrarily fixed 9€(0, 1) (cf. (i))). Applying Lemma 2 to the system
(23) @:i(x) = h¥(x, 9o f(, x)), iem,

and taking (22) into account, we get the existence of a solution ¢ e of (23)
such that ¢;(£) =0 and ¢, fulfils the Lipschitz condition with the constant
¢/(1—(1—9)) for every iem. Therefore, fixing a sequence (39,: neN) of
numbers from the interval (0, 1) such that

(24) lim 8, =0,

n—7

we have also a sequence (¢,: neN) of functions from @ such that

(25) /;\X [‘prd(x) = hi(x! (1—9,,) (P,,Of(', X))],
(26) 0u(l)=0

and

(27) /:\x (190 (x) = @i (D)Il; < (c:/95) @(x, %))

for every ne N and ie m. Moreover, recalling the Arzela—Ascoli Theorem, we

may assume that the sequences (3,¢p,: neN), iem, converge uniformly.
We shall show that

(28) A (lim 8,0, = 0).

lem n—
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To this end observe that in view of (vi) we have

(29) /\ /\ [(“(plof('9 x)_(pl Of(" 6)“1’ [ERE “‘pmof(" X)—

pe® xeX

~pa0f(, Bll)e () B,
put

(30) @;:= lim 9,0,, iem,

and fix neN, iem and xe X. In view of (25), (4), (i)} and (5) we get
lom (i < Lig(x, &)+ Bi((1 =) l@ny 0 f ¢, il -, (1= 8) l|@m O S (-, X)llm)s
which jointly with (i), (26), (29) and (6) shows that

G 1190w (Xll;

< snLiQ(xs E)+ﬂt ((1 - .9'.) ||9n(pnl Of(.a x)“h reey (1 —‘gn)”‘gn(pnm Of(.’ x)”m)
Moreover, it follows from (26), (2), (27) and (1) that

(1=9)119,@n;0 f (-, X|; < 1ISan; 0 f (5 Xl
= % ll@aj0 f(, X)— @01, Ell; < c;Ma(x, &)

for all jem. Hence and from (30), (24), (i1), (26), (29) and from the second
condition in (ix), passing to the limit in (31) we obtain

”(pl(x)"l S- ﬂl("q—,l of('s x)"la (RS ] "(pmof('s x)"m)

In other words, (||@4ll;,---, |@mll.) is @ solution of (10). In view of (26), (27)
and (30) this solution is continuous at the point ¢ and vanishes at £.
Applying Lemma 1 we have (28).

Now, fix arbitrarily ¢ > 0 and ne€(0, +o0)™ such that (12) and (13) are
satisfied. It follows from (28) that there exists an ne N such that

(32) /§( (% ll@m (Ol < m)
holds for all iem. We put

(33) @i (x) :=h(x, ,0f(, x)), xeX, iem.

It follows from (v) that ¢:=(¢,,..., ¢, belongs to &. Fix iem and
pass to the proof of (7}—(9). Making use of (33), (5), (27), (1) and (vii) we obtain

s (x)— s (s <(Li+ z a;(c;/9))e(x, ) for all x, Te X, whereas (33), (2),
(26) and (4) gives (8). Therefore it remains to prove (9) only.
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Fix an xe X. Taking (33), (v) and (5) into account we see that
B4 |loi()y=hi(x, 9o £, ),
< Billlem oS, )=@30f(, D15 1@wm O f (, X)= 90 S, Xllm)-
Moreover, applying (25), (33), (5), (32), (vi1) and (12) we get
low Lf (s, x)]— @i Lf (s, %)]ll;
< Bi[Sallom oS (S (s, s - Sull@wmo S (£ (5, 2),]

< By, ..., 1w S _Zl a;n; S m;
i=

for all seS. This together with (34), (vii) and (12) allows us to state that
l|@:(x)—hi(x, @0 f (-, ¥))||. < m;, which jointly with (13) ends the proof of (9)
and of Theorem 1.

In the next theorem condition (5) will be weakened at the cost of (ii).
Namely, we assume the following:

(xt) For every iem there exists an F;€ ¢(X, Y), and L,e[0, +00) and
an extended-real-valued function pB;, defined on a subset B; of # (S, [0,
+ 00)™), such that

(35)  |l(hs Cx, )+ Fi ()= (h (%, 7+ F: (D),

< Lig(x, )+ Bi(lys = Villts -5 [1[Ym— Ponllm)
holds for all (x, y), (X, y)e and conditions (vii}{ix) are satisfied.
THEOREM 2. Under hypotheses (1)}H{v) and (xi), if

(36) A @+ 6(X, ¥) < ), \
then for every ¢ > O there exists a @ €® such that (7)+9) hold for all iem.

Proof. Take an ¢ > 0 and, making use of Lemma 6.2 of [2], a function
G: X- Y, x...xY, such that

37) G; fulfils a Lipschitz condition
and
(38) IFi—Gill; < &/4

for every iem. Put

(39) K (x, y):=hi(x, ) +H(F: ()= F:(9)—(G:(0)—Gi (), (x,»)eQ,
for each iem.

We shall show that (v) and (vi) with h replaced by h* are fulfilled. To
this end fix an iem. If pe® and Y*(x):= h¥(x, ¢o f (-, x)), xe X, then by
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(39) we have ¥* =y +(F;— F;())—(G;— G;(¢)), where ¢ is defined as in (v).
Hence and from (v), (xi) and (37) we get y*e®;+ € (X, Y;), which jointly with
(36) shows that y*c®,, as required. Moreover, it follows from (39) and (4)
that h¥(&, 0) =0.

In order to get (vi), take (37) into account and denote by C; a Lipschitz
constant for G;. Then, in view of (39) and (35), we have

B¢ (x, y)— k¥ (%, Pl
< (re(x, M+ Fi ()= (i (%, 7+ F(D), +11G, (%) — G, (],
S (Li+ Ci)g(xs f)+ﬁ|(”y1 _}71“17 CERX} ”ym_}_"m”m)

for all (x, y), (%, y)e Q. Therefore, making use of Theorem 1, there exists a
@€ ® such that (7), (8) and

(40) A o=kt (x, 90 f ¢, D), < 4e]

holds for every iem. This ends the proof of Theorem 2, because (39), (40)
and (38) give (9).

The above theorems in many instances afford approximate solutions of
(18) of higher regularity, as Theorem 3 below shows. Assume that:

(xit) X is a compact subset of a k-dimensional Euclidean space, ¢ is a
fixed element of X and Y, iem, are Euclidean spaces.

(xiii) &;, iem, is a subset of # (X, Y)) containing the set of all functions
from X into Y; whose all components are restrictions to X of polynomials in
k variables.

(xiv) The function f maps § x X into X, where § is a non-void set.

(xv) For every iem, h; is a function defined on a set containing the set
Q given by (3) and taking values in Y; in such a manner that

/\_ (”hi(xa Y =hi(x, i < Billlys=Fillis - o> 1Ym— Trmllm))

(x,Y)(x,y)eR

and (x) hold.

THEOREM 3. Let hypotheses (xii)}(xv) be fulfilled. If for every € > O there
exists a continuous function ¢ € ® satisfying (8) and (9) for every ie m, then for
every ¢ > 0 there exists a @€ ® such that for every iem we have (8) and (9)
and all components of @; are restrictions to X of polynomials in k variables.

Proof. Fix a positive real number ¢, suppose that (0, +00)™ is
chosen in such a manner that (12) and

(41) A <o)
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hold and let pe@ be a continuous function fulfilling (8) and
@2 A 180~ hi(x. 507 ¢, ), < 4]

for every iem. Finally, take a ¢ e® such that for every i m all components
of ¢; are restrictions to X of polynomials in k variables and fulfilling
conditions (8) and

43) @: — @illi < m;iv
Then, taking (xiii}«(xv), (41)+43) and (12) into account, we get
ll: ()= ki (x, @0 £, 2},

< s () — &; ()l +
+”(T);(x)-—h,-(x, q_)of('a x))”,+||h| (xs (T)Of(‘, X))"h,- (xa (Pof(', x))”|

<3e+3e+B:(16:0C, )= 0o Xys ooy 1BmO S ¢y )= @m0 £y X)lIm)
Ste+ ) agmy<te+n <e
i=1

for every xe X, and that is all we had to prove.

The next two theorems show a type of application of the theorems
proved above. '

THEOREM 4. Suppose that X is a topological space and let (Y, || ||;), iem,
be normed spaces. Moreover, assume (i) and (xv), where &;, ie m, is a subet of
F(X, Y). If ¢ is a positive real number and if pe® fulfils (8), (9) and is
continuous at the point &, then for every iem there exists a function h¥
mapping the domain of h; into Y; in such a manner that

(44) Iy — Bl < e

and ¢ is the only solution of (23) in the class of all functions in ® which are
continuous at & and vanish at &.

Before passing to the proof observe that it follows from the theorems
given above that in many instances of systems of equations which have no
continuous solutions there exist systems close to the ones under considera-
tion which possess solutions of higher regularity.

Proof of Theorem 4. Put
h¥ (x, ¥):= h(x, y)+@;(x)— h(x, o f(, X))

for all (x, y) from the domain of h and i e m. Then, directly from (9) and from
the definition of h;, we have (44) for every ie m and ¢ is a solution of (23). It
follows from Lemma 1 that ¢ is the only solution of (23) in the class
considered (cf. the end of the proof of Lemma 2).
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Finally, we assume

(xvi) (X, g) is a compact metric space and (Y, || ||) is a finite-dimensional
Banach space.
(xvii) The function g: X — X fulfils the Lipschitz condition with the
cunstant 1 and
4}';, [e(g(x), &) <elx, &)
holds for a certain (e X.

THEOREM 5. Assume (xvi) and (xvii). If A is a positive matrix with
characteristic roots less than or equal one in absolute value, then for every
continuous function F; X — Y™ vanishing at £ and for every & > 0 there exists
a function G: X - Y™ such that

(45) G; fulfils a Lipschitz condition,
(46) 1Fi—Gill <¢

Jor every iem, and the series

@7 io A"Gog"

converges uniformly to a function mapping X into Y™ and fulfilling a Lipschitz
condition.

Proof. Fix an € > 0 and a suitable function F: X — Y™ In order to
apply Theorem 2 we put Y;:=Y and &;:= #(X, Y) for all iem, S:= {1},

f(1, x):=g(x) for every xeX, M:=1, h(x,y):= Y a;y,(1)—F;(x) for
i=1
each (x, y)e X x# ({1}, Y™ and iem, where (a;); jem~xm = A4, and f;(u)
;= Y a;u;(1) for every ue # ({1}, [0, +0)") and iem. After this speci-
i=1 .
fication it is easy to see that all the assumptions of Theorem 2 are fulfilled
except, perhaps, conditions (iii) and (2). These, however, follow from Theorem
3.3 of [2] (cf. also [3]). In fact, it follows from this theorem that

(48) the sequence (g": ne N) tends to ¢ uniformly.

Hence, making use of Theorem 2, we see that there exists a function ¢:
X — Y™ such that (7), (8) and

(49) A\ Ulei)=( ¥ ayeilg]-Fix)] <]

hold for all iem.
Put

(50) G:= Apog—o
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and fix an iem. It follows from (50) and (7) that G; is a linear combination
of functions which fulfil a Lipschitz condition, and so we have (45).
Condition (46) follows from (50) and (49). We shall now show that the series
(47) converges uniformly to the function — .

Fix an ne(0, + o)™ satisfying (12) and (13) and 6 > 0 such that
(51) /; (e(x, &) < & implies |jo; (x)lf < n;)
is true for all iem (cf. (7) and (8)). Making use of (48), we find an N e N such
that g(g"(x), £) < 6 for all xe X and n > N, and recalling (51) we have

(52) A Ule;0 g™l < n;)

iem

for all n> N. Let A" = (a{P)¢ jyenxw fOr €ach ne N. Then, taking (12) into

account and using the induction principle, we obtain ) a{P'n; <#; for all
i=1
neN and iem. Hence and from (52) and (13) we get
Y. aff lejog"l <
Jj=1
for all iem and n > N, which shows that the sequence (A"pog": neN)
converges uniformly to zero. But, in view of (50),

N
Z A"GOg"=AN+1(pOgN+1—q)

a=0

for all Ne N u {0}, and so the series (47) converges uniformly to the function
—@. Thus the theorem is proved.
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