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PREFACE 

The study reported in this Merr.orandu.~ is a product of RAND's 

continuing interest in electronically scanned radars. It is a 

contribution to the theoretical understandins of certain problems in 

the design of such radars. 
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This Memorandum considers 1east-mean-square comparison of 

directivity patterns of 1ine sources having different i11umination 

distributions. In particu1ar, it considers approximation of a given 

directive pattern by means of discrete arrays of equa11y excited, 

unequally spaced elements. T'ne given array factor may come fro;a 

an ideal array that is continuous, discrete or ndxed. The conunon 

equal-area approximation to the illumination distribution is shown 

to be equivalent to least-mean-square approximation with weiG}ltinc 

proportional to the inverse square of the usual normalized pattern 

areurnent. An illustrative example is worked and the ideal and 

approximate array factors are shown. It is suggeGted that iterative 

solutions for other weight functions of low-pass type could start 

from the equal-area re~u1t. 
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I. LEAf.T t-f8AE SQUAR1Z APPROXD,'l,TIOI: OF DffiECTIVITY FACTOES 

Let -as z s a be the aperture of a linear array, as sketched 

below. Let I(:=:) be th~ (cur.,ulative) dfotribution function and 

dI'z)/ciz;;.: G 

-a 0 a 

the density function, which corresponds to the r.iagnitude of the al)<"=rtur0 

t:xcitation. ',!€: allo .. , I(z) to con:.;ist of a finite nu:::ber of st~ps plus 

an absolutely continuous coi:iponent. In aa.dition, the aperture excitu­

tio:::: r:;ay have a phase proportional to z, so that the 1:.ain lobe: pointc 

i!i the direction e . Then the array factor produced has voltage 
0 

pattern(l) 

= I
a 

p(8) 
-o 

2niz(cos o - cos I)/\ 
e O uI(z) (1) 

where the direction 8 is measured fror .• the line alo:1c wl1ich the 

excitation is produced. We shall suppof;e I(z) so scaled tho.t p(O) = 1. 
0 

Putting z = at and x = 20. (cos A - cos A )/'A, we may write !:'q. (1) in 
0 

the nornalized form 

p(x) - t 
- -1 

dxt 
e dI(t) (~) 
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A particular case of ~q. (2) which will interest uc occurs when the 

distribution I(t) is o sum of the sort given by 

N 

IiJ ( t) = > G ( t - \:) 

k=l 

where S(t) is the ur.it step and -1 s: t
1 

< t 2 < 

array factor correspondins to Eq. (5) is 

N 
i1!t,_x 

q(x) 1 l J-. 

= N e 

k=l 

(3) 

(u) 

Rece~tly there h::i.s been consiciero.ble int<:rest in the subject of 

discrete linear arrays of equally excited, unequo.lly spaced radiator)2 -5) 

with patterns and illur.1inations Given by Eqc. ( 4) and (;,) recpccti \'ely. 

One p.robler. receiving attentio~ r.iny be forr.ru.lated a::. follo·.:c. ·.:e 

are given a r.;o,lel distribution, I(t), which ic o.ften contir.uou:.;, has 

a known array factor, p(x), and has sor:ie useful shape (for e;mwple, 

all of the visible sidelobes of' p(x) may have the sc.::ie conveniently low 

ar,plitude). :·!e wish to approximate this p(x) as well as poszible by 

a su: .. a"' given by Eq. (4). The correspondinG approximate aperture 

distribution is given by Eq. (3), and our proble:.1 is to locate the 

jur.ps, \:, optimally. 

Since one is usually interested in power, it seen::. reasonable to 

choose as a neasure of pattern agreement a weighted nean square 

difference such as 
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lp(x) - q(x)! w(x) dx 

where the sidelobe weight function w(x) ~ 0 represents our opinion 

about the relative importance of agreement at various distances off 

(5) 

the main bea~ (x = o). The range of x over which w(x) is appreciable 

will generally depend on the range of scanning, the range of wavelength 

and the actual aperture. For example, if agreement is equally 

important at all points of the interval -x ~ x s x and of no interect 
0 0 

outside, then we would take w(x) = S(x + x) - S(x - x ). Another w(x) 
0 0 

we shall consider is w(x) = l/x2, which indicates steadily waning 

interest in agreement the farther we move off the main bea~. It is 

easy to check that p(x) - q(x) = O(x2 ) for !xi near O; hence 

fp(x) - q(x)J
2
/x2 

= O(x2) also, and the contribution to Eq. (5) from 

the region near the main lobe will be sr.ia.11 despite the behavior of 

l/x2 near the origin. 
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II. MIND,~ZATION OF ERROn EXPRESSION 

One can go through the motions of setting the N partials of e 
w 

with respect to the parameters tk equal to zero, obtaining the N 

simultaneous transcendental equations 

fa:, .. ( ) ( ) ] ( ) -i,tt,. X Ir.i ~p x - q x w x xe s. dx = 0 
• -CD 

(6) 

If the integrals can be evaluated, the resulting simultaneous equations 

for the tk will still defy closed form solution for almost any w(x). 

However, particular nurnerical cases can be solved iteratively by the 

Newton-Raphson methoa of replacing each transcendental equation by an 

approximate linear equation in the differentials of the unknowns. If' 

a good enough first approximation is available so that only one or two 

iterations are necessary, then this process may be practical even 

though it is as difficult as invertine Nth order matrices. We shall 

have a few more remarks about this after exa.r:iinine the special weight 

w(x) = l/x2 more closely. 
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III. MINllHZATION FOR WEIGffi' x-
2 

We consider a q(x) which is a least mean square approximation to 

a model pattern p(x), with sidelobe weighting function w(x) = l/x2
• 

We have, after integrating by parts 

p ( x) - q( x) = J,, erci>..-t d[I( t )-J( t )1 = . Jco rcixt -ire xe [I(t)-J(t)J dt 
-co -co 

Dividing by x and applying Parseval's theore~, we get 

1
2 co 

lp(x)-q(x) dx = rc2 J f.I(t)-J(t)J 2 dt 
X
2 

-co 
(7) 

Thus, a least mean square approximation to the array factor p(x), 

with weight function w(x) = l/x2, is equivalent to rnal:ing J(t) a least 

mean square approximation to I(t). 

Now let us restrict attention to the case when J(t) has the form 

of a sum of steps of equal height, Eq. (3). It is obvious that an 

optimum choice of J(t), in the sense of mini~izir.g Eq. (7), will be 

one for which I(t) passes through each step. In other words, if a 

step of the optimum J(t) occurs at tk, then we have 

k;l = J(t~) s I(tk) s J(t;) = ~. If we let I(a) = k;l and I(b) = ~' 

we now know that the optinru.:m tk is in the interval a s tk s b I!\ 
as sketched on the following page: 
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I 
I 
I 
I 

k-1 ______ ........ ~ ___ J __ 
N I 

I 

tk b 

Thus, to make a least mean square fit of the step function, J(t), to 

the model distribution, I(t), we need only locate each tk within its 

o~n interval so that the contribution 

b \. b 
Ja [I(t)-J(t)J2 dt = .ra· [I(t) - k;lf dt + J [; - I(t)1

2 
dt 

\~ 

is minir.n.u:i for each interval separately. Differentiating with respect 

to tk and solving 

give:; 

2!::-1 
2N 

This says to choose each step of J(t) so that I(t) crosses the middle 

of the step. Notice that this analysis also applies to the case when 
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I(t) itself contains a finite number of stepa. 

In terms of the illumination density function, dI(t)/dt, this 

solution amounts to dividinc the total "area" of the illumination 

density into 21~ equal sub-areas and then placing an element at every 

other division point. This scheme has been used before, (2,3) with 

good results. However, although it has seemed obvious to many people 

that this equal-area approximation (as we shall call it) should give 

good recults, it has not up to nm: been clear in precisely what sense, 

if any, this approximation was optir.1al. OUr result suppliei:. an answer 

to this question. 

It also suggests that the equal area approximation should be a 

good first trial in any iterative scher.ie, based on Eq. (6), for 

obtaining optimur.J mean square approximations for other weie}it functions 

of "low pass" type. In particular, it should be a good :first approxi­

mation when the weight function is S(x + x) - S(x - x ). 
0 0 



8 

rv. AN APPLICATION 

We give an example which may be of interest in its own right. 

Suppose we would like to produce an array of equally excited, unequally 

spaced radiators whose array factor has uniform sidelobes (in the 

visible region) with so~e convenient level. An array factor that 

behaves in this way is Taylor's "ideal space factor." For the side­

lobe voltage ratio Tl= cosh b, the basic relations are(4) 

and 

Tl dI(t) 
dt = 

b 
2 

0 

I
1

(b,J;:;!} 

:J1-t2 
1 1 + 2 o(t-1) + 2 o(t+l) 

for ltl > 1 
I 

The distribution function, I(t), looks l.ike the sketch below. 

2n 

I ( t} 

1.0 
t 1- -

2n 

---t--------t--------+--~t 
-1 0 
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We have taken TI= 10 (20 db design sidelobe level) and calculated 

(equal area) approximate step distributions for several values of N 

(number of elements). We expect, because of the tapered weightinG, 

2 1/x, that the agreement will deteriorate steadily as we move towaru 

the farther out sidelobes. 

The ideal illumination density itself' appears in Fig. 1, along 

with the boundaries for equal areas and the resulting element location~ 

when this illt2r.1ination is approximated by an array of 20 equally 

exciten radiators. 

Table 1 li3t~ the ele~ent locations for six different approxirnationG 

to this illu.'nination distributior.. Ti:1e: locations may be off about 

two in the last decimal place. 

Table 1 

ELF.HENT LOCATION'S, TAYLOR IDEAL ILU.T:'tP:~TI,:>::, 20-db ~ TIJ~LOBES 

Element Uur.:ber of ~lerients 

Nur.:ber 12 14 16 18 20 24 

1 .o69 .059 .051 .045 .040 .033 

2 .214 .182 .159 .141 .126 .105 

3 • 367 .311 .270 .239 .214 .177 

4 .537 .449 .387 .340 .304 .251 

5 .742 .605 .514 .449 .399 .327 

6 .948 • 794 .659 .568 .501 .407 

7 .974 .836 • 704 .613 .492 

8 .990 .871 .742 .584 

9 .998 .900 .686 

10 1.000 .802 

11 .948 

12 1.000 
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The resultinc approximations to the ideal array factor are 

sho,m in Figs. 2 through 7. The dotted curve is the ideal directivity 

factor, while the solid curve is the directivity of the unequally 

spaced discrete approximation. The abscissa is 

u = 
4a(cos e - cos e) 

0 

(N - 1)>. 

Its significance is perhaps most easily grasped by considerinc the 

"standard" case when the average inter-element spacing is >./2 and the 

bea~ is aimed broadside (A = ~/2). In that case the range of angles 
0 

frorr. broadside to the line of the array, ~/2 ~ ~ ~ o, corresponds to 

the range O $ u ~ 1. Thus the range out to u = 1 may be considered 

t!1e ordinary visible range of the array. For the exar.iple given the 

approximation is fairly good out to this point, deteriorating with 

increasing u, as expected frore the weight function l/x2• 
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V. CONCDJS IONS 

Discrete arrays of equa1ly excited, unequa1ly spaced elements 

have been used to approximate desirab1e patterns by assignine ele~ents 

to equa1 increments of the corresponding i11umination distribution. 

By examining this approximation from the viewpoint of least mean 

square pattern fitting, we have discovered the sense in which such 

a fit is optinnu:i: it is optimun for the sidelobe wei$hting function 

2 
1/x • 

We suggest that approximations for other weights, for example, 

uniform over an interval and zero beyond, shou1d be obtainab1e fairly 

quickly by the Newton-Raphson method if the so1ution for 1/x2 weighting 

is taken as a first approximation. 

2 Some 111ustrative cases are worked for the 1/x case and the fit 

of ideal and approximate space factors is shown. 
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