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PREFACE

The study reported in this Memorandum is a product of RAND's
continuing interest in electronically scanned radars., It is a
contribution to the theoretical understanding of certain problems in

the design of such radars.






This Memorandum considers least-mean-square comparison of
directivity patterns of line sources having different illumination
distributions. 1In particular, it considers approximation of & given
directive pattern by means of discrete arrays of equally excited,
unequally spaced elements., The given array factor may come from
an ideal array that is continuous, discrete or mixed. The common
equal-area approximation to the illumination distribution is shown
to be equivalent to least-mean-square approximation with weighting
proportional to the inverse square of the usual normalized pattern
argument. An illustrative example is worked and the ideal and
approximate array factors are shown. It is suggested that iterative
solutions for other weight functions of low-pass type could start

from the equal-area result.
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I. LEAST MEAI SQUART APPROAIMATION OF DIRECTIVITY FACTORS

Iet -a < z < a be the aperture of a linear array, as sketched
below. Iet Ifz) be the {cumulative) distribution function and

ar‘z)/éz 2 ¢

the density function, which corresponds to the magnitude of the aperture
excitation. ‘e allow I(z) to consist of a finite nw:ber of steps plus
an absolutely continuous component. In addition, the aperture excita-
tior may have a phase proportional to z, so that the main lobe points

iy the direction eo . Then the array factor produced has voltags

pattern(l)

a 2rniz(cos o - )
( cos 90)/\

p(e) = f e

-

aI(z) (1)

vhere the direction 6 is nmeasured fron the line along wiich tho
excitation is produced. We shall suppose I(z) so scaled that p(go) = 1.
Putting z = at and x = 22 (cos 4 - cos ao)/x, we may write Tq. (1) in

the normalized form

p(x) = fl ™ a1(t) (2)



A particular case of Tg. (2) which will interest us occurs when the

distribution I(t) is a swum of the sort given by

N
LJ(t) = \ 5(t - t.) (3)
k=1

vhere S{t) is the unit step and -1 s tl <t, < e oty s 1. The

array factor corresponding to Eq. (3) is

Recently there has been considsreble interest in the sutject of
discrete linear arrays of equally excited, unequally spaced radiators(e'S)
with patterns and illuminations given by Egs. (4) and (%) respectively.
One probler. receiving attention may be forrmlated as follovs, e

are given & model distribution, I(t), which is often continuous, has

a known array factor, p(x), and has some useful shape (for e:xample,

all of the visible sidelobes of p(x) may have the same conveniently low
arplitude). ¥e wish to approximate this p(x) as well as possible by

a2 sw. as given by ©q. (4). The corresponding approximatc aperture
distribution is given by Eq. (3), and our proble:: is to locate the

Jurps, t,_, optimally.

Since one is usually interested in power, it seems reasonable to
choose as a measure of pattern agreement & weighted mean square

difference such as



-3

e = I Ip(x) - q(x)|2 w(x) ax (5)

" -0

where the sidelobes weight function w(x) = O represents our opinion
about the relative importance of agreement at various distances off

the main beam (x = 0). The rangz of x over which w(x) is appreciable
will generally depend on the range of scanning, the range of wavelength
and the actual aperture. For example, if agreement is equally
important at all points of the interval =X, £ x< X and of no interest
outside, then we would take w(x) = S(x + xo) - S(x - xo). Another w(x)
we shall consider is w(x) = l/x2, which indicates steadily waning
interest in agreement the farther we move off the main beam. It is
easy to check that p(x) - a(x) = O(x2) for |x| near O; hence

fp(x) - q(x)]g/xa = 0(x2) also, and the contribution to Eq. (5) from
the region near the main lobe will be small despite the behavior of

l/x2 near the origin.



ITI. MINIMIZATION OF ERROR EXPRESSION

One can go through the motions of setting the N partials of ew
with respect to the parameters tk equal to zero, obtaining the N

sirmltaneous transcendental equations

-]

Im [ Ip(x) - a(x)] w(x) xe™ % ax = 0 (6)
7 -
If the integrals can be evaluated, the resulting simltaneous equations

for the t, will still defy closed form solution for almost any w(x).

k
However, particular numerical cases can be solved iteratively by the
Newton-Raphson method of replacing each transcendental equation by an
approximate linear equation in the differentials of the unknowns., If
a good enough first approximation is available so that only one or two
iterations are necessary, then this process may be practical even
though it is as difficult as inverting Nth order matrices. Ve shall

have a few more remarks about this after examining the special weight

w(x) = l/x2 more closely.



ITI. MINIMIZATION FOR WEIGHT x-e

We consider a q(x) which is a least mean square approximation to
a model pattern p(x), with sidelobe weighting function w(x) = l/x2 .

We have, after integrating by parts

p(x) - q(x) = Iw X arr(e)-g(t)1 = -in rxe"iXt [I(t)-J(t)] at

- -

Dividing by x and applying Parseval's theoren, we get

rm !P(X)QQ(X)IQ ax = n° IP [I(t)-J(t)]2 dt (7
J_o N o

Thus, & least mean square approximation to the array factor p(x),
with weight function w(x) = l/x2, is equivalent to making J(t) a least
mean square approximation to I(t).

Now let us restrict attention to the case when J(t) has the form
of a sum of steps of equal height, Eq. (3). It is obvious that an
optimum choice of J(t), in the sense of minimizing Eq. (7), will be
one for which I(t) passes through each step. In other words, if a

step of the optimum J(t) occurs at t,, then we have

k=1 - + k k-l It
— = < = -, = a—— = e

W J(tk) I(tk) < J(tk) N If we let I(a) % and I(b) 5
we now know that the optimum tk is in the interval a < tk sb q

as sketched on the following page:



Thus, to make & least mean square fit of the step function, J(t), to

the model distribution, I(t), we need only locate each t, within its

k
own interval so that the contribution
t
b k ] b 1.
[ tre)-a0F et = [ rne) - R av 4 [ rE - 1007 e
Ta ‘a N t N

k

is minirmum for each interval separately. Differentiating with respect

to tk and solving
.y 2 . 2
k=1 k _

gives

k-1
) = Sy

This says to choose each step of J(t) so that I(t) crosses the middle

of the step. Notice that this analysis also applies to the case when



I(t) itself contains a finite number of steps.

In terms of the illumination density function, 4I(t)/dt, this
solution amounts to dividing the total "area" of the illumination
density into 2 equal sub-areas and then placing an element at every
other division point. This scheme has been used before,(e’j) with
good results, However, although it has seemed obvious to many people
that this equal-area approximation (as we shall call it) should give
good results, it has not up to now been clear in precisely what sense,
if any, this approximation was optimal., Our result supplies an answer
to this question.

It also suggests that the egual area approximation should be a
good first trial in any iterative scheme, based on Eq. (6), for
obtaining optimum mean square approximations for other weight functions
of "low pass" type. In particular, it should be a good first approxi-

mation when the weight function is S(x + xo) - S(x - xo).



IV. AN APPLICATION

We give an example which may be of interest in its own right.
Suppose we would like to produce an array of equally excited, unegually
spaced radiators whose array factor has uniform sidelobes (in the
visible region) with some convenient level. An array factor that
behaves in this way is Taylor's "ideal space factor." For the side-

()

lobe voltage ratio T = cosh b, the basic relations are

p(x) = cos nexz - b2

and
p 3
I, (bA1-t°)
L + 2 8(t-1) + £ 8(t+1) for lt! < 17
2 2 5
1-t
arft)
"3 =9

0 for It > 1

The distribution function, I(t), looks like the sketch below.

1.0 |

0.5




We have taken T = 10 (20 db design sidelobe level) and calculated
(equal area) approximate step distributions for several values of N
(number of elements). We expect, because of the tapered weightirg,
l/x2, that the agreement will deteriorate steadily as we move toward
the farther out sidelobes,

The ideal illumination density itself appears in Fig. 1, along
with the boundaries for equal areas and the resulting element locations
when this illumination is approximated by an array of 20 equally
excited radiators,

Table 1 lists the element locations for six different approximations
to this illumination distribution. The locations may be off about

two in the last decimal place.

Table 1

ELEMENT LOCATIONS, TAYLOR IDEAL ILUTITUATION, 20-2b “IDTLOBES

Element Nurber of rlements
Nurber 12 1k 16 18 20 2k
1 .069 .059 .051 .045 .04 .035
2 .21k .182 .159 .14l .126 .105
3 . 367 .31 .270 .239 .21k 177
L 537 J4ho . 387 . 340 . 304 .251
5 .Th2 .605 .51k ko <399 327
6 .948 T4 .659 .568 .501 Lo7
7 .97Th .836 . 7Ok .617 h92
8 . 990 871 .Th2 .58k
9 .998 .900 .686
10 1.000 .802
11 .948
12 1.000




6 m =10~ (20* db sidelobes ) a=2.987
— N =20 elements shown 7=9.94
T —— 20 log 7 = 19.94

5 \\

ot

al- \ :
F(s) \ 172 8(5-!)\'
3 e
2
1=
oleo—lie | g | 4 | 4 o— | 1o |1 o 1l 4 )\
0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

S

Fig. 1 — lllumination factor and elements
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The resulting approximations to the ideal array factor are
shovn in Pigs., 2 through 7. The dotted curve is the ideal directivity
factor, while the solid curve is the directivity of the unequally

spaced discrete approximation. The abscissa is

ha(cos & - cos 90)
vos (N - L)X

Tts significance is perhaps most easily grasped by considering the
"standard" case when the average inter-element spacing is ) /2 and the
bear is aimed broadside (90 = n/2). In that case the range of angles
frorm broadside to the line of the array, =n/2 = @ 2 0, corresponds to
the range O < u £ 1. Thus the range out to u = 1 may be considered
the ordinary visible range of the array. For the example given the
aporoximation is fairly good out to this point, deteriorating with

increasing u, as expected from the weight function l/x?.
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Fig.6 — Approximate and ideal space factors
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V. CONCIUSIONS

Discrete arrays of equally excited, unequally spaced elements
have been used to approximate desirable patterns by assigning elements
to equal increments of the corresponding illumination distribution.

By examining this approximation from the viewpoint of least mean
square pattern fitting, we have discovered the sense in which such
e fit is optirum: 4t is optimum for the sidelobe weighting function
l/x2.

We suggest that approximations for other weights, for example,
uniform over an interval and zero beyond, should be obtainable fairly
quickly by the Newton-Raphson method if the solution for 1/x2 weighting
is taken as a first approximation,

Some illustrative cases are worked for the l/x2 case and the fit

of ideal and approximate space factors is shown,








