
On Approximating Optimal Auctions

(extended abstract)

Amir Ronen∗

Department of Computer Science
Stanford University

(amirr@Robotics.Stanford.EDU)

Abstract

We study the following problem: A seller wishes to sell an item to
a group of self-interested agents. Each agent i has a privately known
valuation vi for the object. Given a distribution on these valuations,
our goal is to construct an auction that maximizes the seller’s expected
revenue (optimal auction). The auction must be incentive compatible
and satisfy individual rationality. We present a simple generic auction
that guarantees at least half of the optimal revenue. We generalize
this result in several directions, in particular, for the case of multiple
copies with unit demand. Our auction requires the ability to learn (or
compute) in polynomial time the conditional distribution of the agent
with the maximal valuation, given the valuations of the other agents.
We show that this ability is in some sense essential. Finally we suggest
a generalization of our auction and argue that it will generate a revenue
which is close to optimal for reasonable distributions. In particular we
show this under an independence assumption.

1 Introduction

Auctions of various kinds play a major role in economics and electronic
commerce. They also give rise to many interesting theoretical questions.
Of particular interest, both practical and theoretical, is the issue of revenue
maximization, also known as optimal auction design.

In this paper we consider the following problem: A seller wishes to sell
one item (e.g a house) to a group of self-interested agents. Each agent has
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a privately known valuation vi ∈ [1, h] for the object. If agent i wins the
auction, her total profit is ui = vi−p, where p denotes the agent’s payment.
If she looses, her valuation is zero. The goal of each agent is to maximize
her own profit. An auction is a protocol that decides who wins the item and
for what price. Since rational agents may manipulate the given protocol if
it is beneficial for them, or may simply refuse to participate in it, we focus
on auctions that satisfy two standard requirements:

Incentive compatibility (IC) Each agent has a dominant strategy, i.e. a
strategy which is always better than any other strategy.

Individual rationality (IR) The profit of an agent who behaves accord-
ing to her dominant strategy is always non negative.

Individual rationality is desirable and even necessary to many applica-
tions. Incentive compatibility guarantees that rational agents will indeed
behave according to their dominant strategies. We say that an auction is
valid if it satisfies both requirements.

The optimal auction problem is described by the following: Given a
distribution of the agents’ valuations, find a valid auction that maximizes
the seller’s expected revenue provided that the agents behave according to
their dominant strategies.

This problem is a subject of long and intensive research in micro eco-
nomics. The major thread of research focuses in characterizing the optimal
auction. The problem is solved ([10] and others) for the case where the
agents’ valuations are independent (and the distributions obey some regu-
larity conditions). Unfortunately, this is barely the case and little progress
has been made for general distributions. Under much weaker requirements
of IR and IC (and under additional assumptions), beautiful results of [10, 1]
show that the seller can extract the expected first order statistics. The as-
sumptions of these theorems are very strong and seem unrealistic for most
applications (see e.g. a discussion in [6]). A comprehensive recent survey of
auction theory can be found in [7].

In this paper we study the optimal auction problem using a different
and more computer science oriented approach. Instead of characterizing the
optimal auction, we look for an algorithm that computes it efficiently. Since
the corresponding problem cannot be solved in polynomial time, we look for
an approximation – a solution that guarantees a revenue of at least 1/c of the
optimum (for a fixed c ≥ 1). We note that when such approximations are
available, they often perform much better in practice than their worst case
performance. Moreover, in cases where the seller knows an auction which is
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not an approximation but seems to function well on many distributions, she
can compare it to the approximation and take the better one. By doing this,
the seller can both guarantee to have at least 1/c of the optimal revenue,
and at the same time, exploit her heuristic knowledge. Such comparison
can be done e.g. by sampling the distribution and comparing the average
revenues.

We introduce a simple generic auction called 1-lookahead. In this auction
the bidders are simply requested to report their true valuations. The auction
is designed in such a way that reporting the true valuations is a dominant
strategy. Let wi denote the declaration of agent i. W.l.o.g. assume that
w1 ≥ w2, . . . ,≥ wn. Our auction rejects all bids except the highest one w1.
According to the rejected bids, it computes a price p = p(w2, . . . , wn). If
w1 ≥ p, the corresponding agent wins and pays p. Otherwise, nobody wins.
We show that this auction is valid and extracts a revenue of at least half of
the optimum. The auction is simple and can be implemented as a standard
English (or Japanese) auction with one final price increment by the seller.
Similar results are obtained for the case of multiple copies with unit demand,
risk averse or risk seeking seller and buyers and for auctions that instead of
incentive compatibility demand only the existence of Bayesian equilibrium.

Our auction is ”fair” in the sense that the highest offer is always preferred
over lower ones. It is also simple and traditional. Our approximation ratio
shows that the loss because of these properties is not too large.

We require that the computation of the auction and the auction itself
are executed in polynomial time. Let the conditional first order statistics
be the distribution of the maximal valuation v1 given the other valuations
(v2, . . . , vn). In order to compute the 1-lookahead auction, the auctioneer
must be able to compute this distribution in polynomial time. We show
that this assumption is in some sense critical. We consider a setting where
the designer can only sample the underlying distribution. We show that if
pseudo random functions exist, it is impossible to do better than a 1/2 ·
log(h)-approximation. A simple auction which does not use the conditional
first order statistics was proposed in [3]. Using that paper’s technique, we
show that this auction is a 2 · log(h)-approximation. These results are given
in the context of learning.

The approximation ratio of our 1-lookahead auction is tight. Moreover,
in many interesting cases, other intuitive auctions will perform better. Thus,
we suggest a natural generalization of our auction called k-lookahead . Al-
though the approximation ratio of this auction is also 2, we argue that it
will extract a revenue which is close to optimal for most reasonable distri-
butions. For the case where (v1, . . . , vk) are independent, we show that this
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is a (k + 1)/k-approximation.
Optimal auction design is a fundamental problem in micro economics.

A guide to the extensive literature on this topic as well as a collection of
important papers can be found in [7]. The first auction that satisfies IR and
IC was formally introduced in [12]. Two recent papers [3, 2] pioneer the
study of optimal auctions from the computer science point of view. These
papers consider the case of unlimited supply which is essentially different
from our case. Nevertheless, some of the tools established in these papers
can be applied to our problem as well. More general mechanism design
problems were studied by many researchers in recent years, but as far as we
know, not in the context of revenue maximizing.

Organization of the paper: Section 2 formally defines our problem.
Section 4 defines the 1-lookahead auction and proves that it is a 2-
approximation. Section 5 shows the necessity of the conditional first order
statistics and section 6 describes the k-lookahead auction.

2 The Problem

In this section we formally present our problem and notations. A seller
wishes to sell1 one item (e.g a house) to a group of self-interested agents.
Each agent has a privately known valuation vi ∈ [1, h] for the object. If
agent i wins the auction, her total profit is ui = vi − p, where p denotes the
agent’s payment. If she looses, her valuation is zero. The goal of each agent
is to maximize her own profit.

Notations: We let [n] = {0, 1, 2, . . . , n}. We denote the possible types
(valuations) of each agent i, by W i = {1, 1+ε, 1+2ε, . . . , 2, 2+ε, . . . , h} and
let W = (W 1, . . . ,Wn). We use the following vectorial notation: given a
vector a = (a1, . . . , an) we let a−i = (a1, . . . , ai−1, ai+1, . . . , an) and (bi, a−i)
denote the vector (a1, . . . , ai−1, bi, ai+1, . . . , an).

An auction is a protocol that decides who wins the item and for what
price. The simplest type of auctions are protocols in which the agents are
simply required to declare their types (revelation auctions). According to
these declarations the auction determines who has won and for what price.
We say that an agent i is truthful if she declares her actual type. We call an
auction truthful if truth-telling is dominant for all agents. By the revelation
principle [9, pp. 871] for every valid auction there exists a truthful revelation

1All our results apply for reverse auctions as well.
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auction that yields the same revenue. Thus, we can limit ourselves to such
auctions. Formally:

Definition 1 (auction) An auction is a pair of functions (k, p) such that:

• k : W → [n] is an allocation algorithm determining who wins the
object. (a zero value means that nobody won.)

• p : W → R+ is a payment function determining how much the winner
must pay.

As agents may manipulate the auction or refuse to participate in it we
impose the following standard requirements on the set of auctions that we
allow:

Definition 2 (valid auction) We call an auction (k, p) valid if it satisfies
the following conditions:

Individual rationality (IR) The profit of a truthful agent is always non
negative. I.e. p(w) ≤ wk(w).

Incentive compatibility (IC) Truth-telling is a dominant2 strategy for
each agent.

Given the distribution φ on the type space, we can compare between
valid auctions according to their expected revenue. In particular we can
define optimal and approximating auctions.

Definition 3 (c-approximation) Let φ be a distribution on the type space
of the agents, m = (k, p) a valid auction and c ≥ 1. The revenue R̄m of
m is the expected payment Ev∈φ[p(v)]. m is called c-approximation if for
every valid auction m′, R̄m ≥ 1/c · R̄′m. It is called optimal if it is a 1-
approximation.

Consider an algorithm that accepts as input a probability distribution
on the type space and returns an auction. We say that the algorithm
solves the c-approximation optimal auctions problem if it returns a
c-approximation for every distribution φ. Both, the algorithm and the auc-
tion, must have a polynomial computational time. Until section 5 we ignore
the actual representation of the distribution φ.

2Most results in this paper apply for Bayesian incentive compatibility as well.
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Note that there are many valid auctions. Let k be an allocation algorithm
with the following property: If i = k(w) and wi increases then i keeps
winning. One can define the payment p(w) as the minimal wi such that
i = k(wi, w−i). It is not difficult to show that this characterizes the family
of valid auctions [11, 8]. Since this family of auctions is huge and complex,
it is unlikely that the optimal auction can be found in polynomial time.
Currently, we do not know what is the complexity of the optimal auction
problem.

It is possible to formulate the optimal auction problem as an integer
program. For every possible v = (v1, . . . vn), let pi

k(v) ∈ {0, 1} be 1 iff agent
i wins the auction and pays k. One possible formulation is:

max
∑
v,i,k

k · pi
k · φ(v) such that:

IR For all i, v, k: pi
k(v) · (vi − k) ≥ 0

IC For all i, vi, wi ≥ vi, v−i, k: pi
k(v

i, v−i) ≤ pi
k(w

i, v−i)
Uniqueness For all v:

∑
i,k

pi
k(v) = 1

Unfortunately, the number of variables of this program (n · ((h− 1)/ε)(n+1))
is exponential in the number of agents. Thus, this approach is feasible only
when the number of agents is small. It is not difficult to see that the above
matrix is not totally unimodular.

3 Some Basic examples

This section gives a few toy examples of optimal auctions. All the examples
consist of two agents Agent1 and Agent2, a simple distribution and an opti-
mal valid auction. Real life problems are of course much more complicated.

Independent valuations: Consider the following distribution: Each
agents i’s valuation vi is uniformly distributed in [0, 100]. The valuations
are independent. Consider the following solution known as the second price
auction [12]. Each agent declares her type. Let wi denote their declarations.
(Note that they can lie!) The object is given to the agent with the maximal
declaration for the price of the second one. The reader can verify that this is
a valid auction. It is possible however to generate higher revenue. Consider
the same auction where the seller has a reserved price of $50. A convenient
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way to describe this auction is as a second price auction with the addition
of one dummy agent Agent0. This agent’s valuation is fixed to $50. The
reader may verify that the revenue of this auction is indeed higher. The
optimality of this auction is implied by classic results in auction theory (see
e.g. [10]).

Correlation: Consider the following distribution: Agent1’s valuation v1 is
uniformly distributed in [0, 100]; v2 = 2 · v1. Clearly a second price auction,
even with reserved prices, is not optimal here. Consider the following solu-
tion: Denote the higher declaration by w and the lower declaration by w.
Let p = 2 ·w. The lower agent is rejected. If w ≥ p, the high agent wins and
pays p. Otherwise nobody wins. The reader can verify that this is indeed a
valid auction. When both agents are truthful the auction extracts all pos-
sible revenue (i.e. p = w). Thus, this auction is clearly optimal among the
valid ones.

Anti correlation: Agent1’s valuation v1 is uniformly distributed in [0, 100];
v2 = 100 − v1. The optimal auction in this case is similar except that
p = max(100 − w,w. Note that while in a ”classic” auction it is unlikely
that such an anti-correlation will occur, it is not hard to imagine it in the
context of reverse auctions and resource allocation problems.

4 A 2-approximation auction

This section presents a simple generic 2-approximation auction. From now
on we order the agents in a decreasing order of their bids, i.e. w1 > w2 >
. . . > wn. (Ties are broken arbitrarily.) Given the distribution φ and
(v2, . . . , vn) let φ1 denote the conditional distribution on the agent with
the maximal valuation.

Definition 4 (1-lookahead auction) The auction computes the price
p1 = p1(w2, . . . , wn) that maximizes its revenue from agent1 (according to
φ1!). If w1 ≥ p1, agent1 wins and pays p1, otherwise nobody wins.

In other words, all the agents except the one with the maximal offer are
rejected. Based on the rejected agents only, the auction proposes a price p1

to agent1. Agent1 wins iff w1 ≥ p1. Since by setting p1 = w2 the auction
can guarantee itself a revenue of w2, it must be that p1 ≥ w2. Such an
auction can be implemented as a standard English (or Japanese) auction3

3This is highly desirable for many applications.
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with one final price increment by the seller. We now show that this is a two
approximation.

Theorem 4.1 The 1-lookahead auction is a 2-approximation.

Proof: Clearly our auction satisfies IR. We now show that it satisfies IC
as well. Fix the declarations of the other agents and consider agent i. We
need to show that declaring vi is a dominant strategy. If vi > w2 and the
agent is truthful, she wins and pays p1 iff v1 ≥ p1. In the case of v1 ≥ p1,
the agent would like to win and therefore truth-telling is optimal for her.
If w2 < v1 < p1 then the only way the agent can affect her profit is by
declaring w1 ≥ p1. In this case her profit will be v1 − p1 < 0, therefore she
is better of losing the auction. Consider the case of vi < w2. Since p1 ≥ w2,
in order to win the agent must pay at least w2 and therefore lose money.
Thus in this case, truthfulness is optimal for the agent as well. It remains
to show that this auction is a 2-approximation. Let R̄ denote the revenue of
the 1-lookahead auction, let m′ be another mechanism and let R̄′ denote its
revenue. We need to show that R̄ ≥ 2 · R̄′. We present the expected revenue
of m′ as the sum of two disjointed cases: when it picks the highest bid and
when it is not. We denote the contribution of each of these cases by R̄′1 and
R̄′2 respectively. Clearly R̄′ = R̄′1 + R̄′2.

Claim 4.2 R̄ ≥ R̄′1

Proof: We first note that in the case of a single bidder, it is known that
the auction must offer the agent a threshold p such that the agent wins and
pays p iff w1 ≥ p. Fix (v2, . . . , vn) and consider agent1. Since we choose p1

as the price that maximizes the expected payment of agent1, we get that
it is at least the expected payment of agent1 in m′. By integrating over all
possible tuples (v2, . . . , vn), we prove our claim.

Claim 4.3 R̄ ≥ R̄′2.

Proof: Fix (v2, . . . , vn). Because of the individual rationality, m′ cannot
get more than v2 from agents (2 . . . n). On the other hand, since by setting
p1 = v2, our mechanism can guarantee a revenue of v2, we get that it
extracts from agent1 at least v2 in expectation (over v1). We prove our
claim by integrating over all possible (v2, . . . , vn).

As clearly, R̄′ = R̄′1 + R̄′2 ≤ 2 · R̄, our theorem is proven.
This simple principle can be generalized in several ways. For the case of

k copies of the same item with unit demand, the seller can reject all but the
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k-highest offers and then construct the optimal auction on the remaining
agents. Similar analysis shows that it is a 2-approximation as well. The
analysis remains true in the case of a risk-averse or risk-seeking seller and
even when truth-telling is only required to be a Bayesian equilibrium (but
IR remains a hard constraint) and the buyers have any risk profile. A first
price version of this auction is possible as well. We do not know if similar
principles can be applied to more complex problems and in particular to
combinatorial auctions.

Our auction is ”fair” in the sense that the highest offer is always preferred
over lower ones. It is also simple and traditional. Theorem 4.1 shows that
the loss because of these properties is not too large.

The approximation ratio of 2 is tight for the 1-lookahead auction. Con-
sider a case of two agents. Agent2’s type is fixed to 1. v1 is determined
according to the following distribution:

Pr[v1 = k] =

{
1/h k = h
1− 1/h k = 1 + ε

The optimal revenue in this case is about 2 while our auction extracts a
revenue of around 1. The approximation ratio of our auction improves when
E[v1/v2] is small.

5 Computational issues

Our main goal in this paper is to ensure that both the computation of our
auction and the auction itself are performed in polynomial time. This section
shows that the 1-lookahead auction satisfies this requirement provided that
the distribution v1|(v2, . . . , vn) can be computed in polynomial time. We
then show that this assumption is in some sense essential: if the above
distribution is hard to learn or compute, then no auction can do better than
a (1/2 · log h)-approximation. A simple auction which does not require the
above distribution was suggested in [3]. Using that paper’s technique, we
show that this auction is a 2 · log(h)-approximation.

Definition 5 (first order statistics) Let φ be a distribution over the type
space. A first order statistics is a polynomial time algorithm that gets a price
k and computes Prφ[max(v1, . . . , vn) ≥ k].

Definition 6 (conditional first order statistics) Let φ be a distribu-
tion on the type space. A conditional first order statistics is a polyno-
mial time algorithm that gets a price k and (v2, . . . , vn) and computes
Pr[v1 ≥ k|(v2, . . . , vn)].
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When the actual distribution φ can be computed polynomially by the
designer, she can also compute the conditional first order statistics. A nat-
ural interpretation of the results of this section is in a learning setup. In
such a setup, the designer can only sample φ. Based on these samples, she
computes the desired auction. This section is greatly inspired by [3].

5.1 Computing the 1-lookahead auction

When the conditional first order statistics is available, the computation of
the 1-lookahead auction is trivial. The designer can simply try all possible
prices k and take the one that maximizes k · Pr[v1 ≥ k|(v2, . . . , vn)]. If h
is large, it is also possible to try only the prices (v2, α · v2, α2 · v2, . . . , h)
and get an α-approximation of the optimal price. Similarly, the designer
can compute the optimal price (with high probability) when she can only
sample the conditional statistics.

5.2 Without the conditional first order statistics

In this subsection we study a setup where instead of having an oracle for the
distribution φ, the designer can only sample it. Both the auction construc-
tion and the auction itself must be polynomial time computable. For such a
setting we show that if pseudo random functions exist [4], it is impossible to
do better than a 1/2 · log h-approximation. A simple 2 · log h-approximation
is shown in theorem 5.6.

Consider the following distribution4 φ:

Pr[v1 = k] =

{
1/2 + 1/2h k = 1
1/2k k = (2, 4 . . . , h)

For simplicity we assume that h is a power of 2. Consider the case of one
bidder with this distribution. By asking a price of 1, the seller gets a revenue
of 1. It is not difficult to see that this is optimal. We now show that this
remains true even if we weaken the IC requirement by allowing probabilistic
auctions and require that truth telling only maximizes the agent’s expected
profit5.

Lemma 5.1 No auction that satisfies IC in expectation and IR can extract
revenue greater than 1 on φ.

4φ was introduced at [3] as an example of a distribution which is bad for auctions.
5Alternative proofs rely on mechanism design theory.
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Proof: Let θi and mi denote the winning probability and the expected
payment when the agent declares 2i, (i = 0, . . . , log(h)). Let v denote the
actual valuation of the agent. The profit of the agent when declaring 2i is
θi ·v1−mi. Note that because of the IR requirement, it must be thatmi ≤ 2i.
Let Ri = mi/2i+1. Let R′ =

∑
iRi. Note that for i ≥ 1, Ri is equal to the

contribution of the type 2i to the total revenue. Thus R′ = 1/2h+
∑

iRi.
When the type of the agent is 2i+1, it is not beneficial for her to declare

2i. Therefore:
2i+1 · θi+1 −mi+1 ≥ 2i+1 · θi −mi

Thus:

θ1 − θ0 ≥ 2 ·R1 −R0

θ2 − θ1 ≥ 2 ·R2 −R1

...
θh − θh−1 ≥ 2 ·Rh −Rh−1

By summation we get that θh − θ0 ≥ R′ + (Rh − 2 · R0) and thus R′ ≤
(θh −Rh) + (2 ·R0 − θ0) ≤ 1− 1/2h. Therefore R ≤ 1.

We now have a distribution in which any valid auction can obtain a
revenue of no more than 1. On the other hand, if the designer knew the
agent’s type, she would be able to extract a revenue of more than 1/2 · log h.
Consider the following setting: There are n agents. Agent1’s type is always
maximal and is distributed according to φ. The types of agents (2, . . . , n)
are always smaller than Agent1’s smallest type. For convenience we assume
that vi≥2 ∈ {ε, 2ε} (although these types are less than 1). Consider the
case where (v2, . . . , vn) uniquely determine v1 but this dependency is hard
to learn (or compute). If this dependency is hard enough, a polynomial
auction will not be able to distinguish between this case and the case where
v1 is independent of (v2 . . . , vn). As v1 is distributed according to φ, any
polytime auction must have a revenue around 1. In the rest of this section we
formally define hard functions, show that if hard functions exist, polytime
auctions cannot do better than (1/2 · log h)-approximation, and present an
auction that achieves a (2 · log h) approximation ratio. In order to avoid the
discussion of pseudo randomness as much as possible, we use non-standard
definitions and notions. A good reference for pseudo randomness is [5].

Some conventions: When considering algorithms that accept a distribu-
tion as input we assume that they can sample this distribution in one unit
of time (and therefore learn it). We call an algorithm T -algorithm if its
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running time is bounded by T . We let ◦ denote the string concatenation
operator and if not stated otherwise let the operator ∈ denote the uniform
choice.

Definition 7 (T -pseudo randomization) Let θ be a distribution and D
a family of polytime distributions (over the same space as θ). We say that D
is a T -pseudo randomization of θ if for every T -algorithm A, |Prd∈D[A(d) =
1]− Pr[A(θ) = 1]| ≤ 1/3.

Let P denote the distribution where (v2, . . . , vn) are chosen uniformly
from (ε, 2ε) and v1 is independently drawn from φ (of lemma 5.1). The
existence of a pseudo-randomization for P follows naturally from standard
assumptions in cryptography. One possible way to see this is to construct
a pseudo randomization of P from a pseudo random function [4]. Roughly
speaking, ψ(k, x) is pseudo random if it can be computed in polynomial time
but looks random for any polytime algorithm which does not have k. We
say that ψ is injective of for every k, ψ(k, .) is injective. This requirement
is satisfied by the standard constructions of pseudo random functions.

Lemma 5.2 Let T << 2n. If injective pseudo random functions exist then
there exists a T -pseudo randomization of P .

Proof:(sketch) Let ψ(k, x) be a pseudo random function. For every key
k, define lk(x) = ψ(k, x) where x is a string of length n − 1 and lk(x) is of
length h+1. Let g : {0, 1}h+1 → {0, 1, 2, 4, . . . , h} such that when y is chosen
uniformly, g(y) is distributed according to φ. Define a family D = {dk(.)}
by dk(x) = g(x◦ lk(x)). It is not difficult to see that as long as T << 2(n−1),
D is a T -pseudo randomization of P .

For small values of n, it is possible to obtain a similar construction by
enlarging the set of possible types for agents (2 . . . n).).

Given a distribution d on the type space and auction A, let RA(d) be a
random variable that denotes A’s revenue and let R̄A(d) denote its expecta-
tion. As before we let Ropt(d) to denote the revenue of the optimal (possibly
exponential) valid auction on d. Note that a designer with an unlimited
computational power can fully learn d and construct the optimal auction.

Theorem 5.3 Let T > 0, 0 < ε < 1 and let m = 3/ε2. If an ((m+ 1) · T )-
pseudo randomization for P exists, then for every T -auction A, there exists
a distribution d such that R̄A(d) ≤ 1 + 5 · ε, but Ropt(d) > 1/2 · log(h)− ε.
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Proof: Let D be an ((m+ 1) · T )-pseudo randomization for P and assume
by contradiction an auction A that violates the theorem. We will define an
((m + 1) · T ) algorithm A′ that distinguishes between P and D as follows:
Given an input distribution d, run the auction m times. If the average
revenue is better than 1 + 3 · ε, output 1, otherwise 0.

Claim 5.4 Prd∈D[A′(d) = 1] ≥ 0.75

Proof: Let d ∈ D. Denote by R̄1
A(d) the expected payment of Agent1. Since

A violates the theorem’s assumption, R̄1
A(d) ≥ 1 + 3 · ε. From the Chernoff

bound Pr[R1
A(d) < 1+ε] ≤ Pr[R1

A(d) < (1−ε)(1+3 ·ε)] ≤ exp(−ε2 ·m/2) <
0.25

Claim 5.5 Pr[A′(P ) = 1] ≤ 0.4

Proof: By lemma 5.1, R̄1
A(P ) ≤ 1. Thus, by the other direction of the

Chernoff bound, Pr[R1
A(P ) ≥ 1 + ε] ≤ exp(−ε2 ·m/3) < 0.4

Thus, A′ separates between P and D – a contradiction. Therefore for
the majority of the distributions d ∈ D, R̄A(d) ≤ 1 + 5 · ε. Finally, most
d′s have a distribution of v1 which is close to φ. Otherwise it is possible to
distinguish between P and D according to v1. Therefore there exists a d
such that E[v1] ≥ 1/2 · log(h)− ε and R̄A(d) ≤ 1 + 5 · ε as requested.

Although, this example may look somewhat artificial, it represents a
”real” phenomenon. If the dependency between the agents is hard to learn
or compute, we cannot expect to approximate the optimal auction. Finally,
we show that a trivial auction achieves an approximation factor of 2 · log(h).
This result was proven in [3] under a different setting.

Definition 8 (Vickrey auction with reserved price) Let r ≥ 0. The
Vickrey auction with reserved price r is the following auction: If v1 < r, all
agents are rejected. Otherwise agent1 wins and pays max(v2, r).

Proposition 5.6 There exists a price r such that the Vickrey auction with
reserved price r is a 2 · log(h) approximation.

Proof:[3] Let d be a distribution and let v̄1(d) denote the expectation of
v1. Consider the intervals Ii = [2i, 2i+1) and the (mutually exclusive) events
that v1 ∈ Ii. There are log(h) such intervals. Let Ii be the interval that
contributes most to v̄1(d). Define r = 2i and let R̄(d) denote the revenue
of the Vickrey auction with reserved price r. Clearly R̄(d) ≥ 1/(2 log(h)) ·
v̄1(d) ≥ 1/(2 log(h)) ·Ropt(d).
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In order to compute such an r, the designer needs to have only the first
order statistics available. For learning this statistics, it is sufficient to learn
log(h) Boolean variables, each converges exponentially to its expectation.

It is possible to show a matching bound of ln(h) by considering the
distribution that satisfies k · Pr[v1 ≥ k] = 1 for all k. The number of
Boolean variables that need to be learnt increases from log(h) to h though.

6 A k-lookahead auction

The 1-lookahead auction rejected all but the highest offer and then computed
the optimal auction for agent1. For many distributions of interest, this does
not look like a reasonable solution. A natural generalization of this auction
is to reject all but the k-highest bidders. Then, according to the conditional
distribution of the remainders, compute the optimal auction for them. We
call this auction k-lookahead. Formally:

Definition 9 (k-lookahead auction) Let φ′ be the conditional distribu-
tion φ((v1, . . . , vk)|(vk+1, . . . , vn)). The (k-lookahead auction) is the optimal
auction on agents (1, . . . , k) according to φ′.

Clearly, this auction is at least as good as the 1-lookahead auction and
therefore a 2-approximation. Surprisingly, this ratio is tight. We first
demonstrate this for the case of k = 2. Consider the case of three agents
with the following distribution:

• Agent3’s type is always 1.

• Agent2’s type is uniformly drawn from {1 + j · ε} where j =
(1, . . . log(h)).

• Agent2 determines the probability which the type of Agent1 is drawn
from. If v2 = 1 + j · ε then v1 = 2j with probability 1/2j+1 and
1 + (j + 1) · ε with probability 1− 1/2j+1.

It is not difficult to show that our auction extracts a revenue around
1 + 1/ log(h). The optimal auction on the other hand uses Agent2 as an
”indicator” of Agent1. It asks from Agent1 a price of 2j . If v1 < 2j , it
gives the item to Agent3 for the price of 1. The revenue of this auction
is of around 2. To generalize this example for larger values of k, consider
a similar case where agents (2, . . . , k) determine v1’s distribution in a fully
sensitive way – each change in vi flips v1’s distribution. Similar analysis
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shows that the revenue of the k-lookahead is around 1 while the optimal
revenue is about 2. This example, however, is very artificial. Moreover,
when the agents are highly dependent, the seller takes a lot of risk when
relying on the agents’ information. We argue that the k-lookahead auction
will extract revenues which are close to optimal on reasonable distributions.
In particular, we show this for the case where (v1, . . . , vk) are independent
(but not necessarily independent of (vk+1, . . . , vn)).

Theorem 6.1 If (v1, . . . , vk) are independent, the k-lookahead auction is a
(k + 1)/k-approximation.

Proof: Fix the values of the n − k lowest valuations and the agents who
have them. For convenience assume that these are agents (k+1, . . . , n). Let
Aopt be the optimal auction and let R̄opt(vk+1, . . . , vn) denote its revenue
in this case (i.e. the expected revenue over agents (1, . . . , k)). Similarly let
R̄(vk+1, . . . , vn) denote the revenue of the k-lookahead auction. Note that
the order among the types of agents (1, . . . , k) is not fixed. We will show that
R̄(vk+1, . . . , vn) ≥ (k/(k+1)) ·R̄opt(vk+1, . . . , vn). Since, this holds for every
n−k lowest agents and valuations, the theorem follows. Consider the optimal
auction Aopt. Letmk+1 denote the contribution of agents (k+1, . . . , n) to the
optimal revenue R̄opt(vk+1, . . . , vn). Because of the IR requirement it must
be that mk+1 ≤ vk+1. For j ≤ k, let mj denote the contribution of agent j
to R̄opt(vk+1, . . . , vn). Clearly R̄opt(vk+1, . . . , vn) =

∑
j mj . If for all j ≤ k,

mk+1 ≤ mj , then we are done as R̄(vk+1, . . . , vn) ≥ m1+. . .+mk. Otherwise,
let ĵ denote the agent with the minimal mj . Consider the following auction:
pretend that agent ĵ declares vk+1 and run the optimal auction Aopt. In case
where one of the n− k lowest agents would have won Aopt, give the item to
agent ĵ for the price of vk+1. Clearly, the contribution of agent ĵ now is at
least mk+1. Because of the independence assumption, the distribution of the
other agents remains the same. (I.e. the auction does not lose information
because it ignores the declaration of agent ĵ.) Since we only reduced the type
of agent ĵ, the contribution of the other agents can only increase. Thus this
auction extracts a revenue of at least R̄opt(vk+1, . . . , vn)−mĵ =

∑
j 6=ĵ mj

≥
(k/(k + 1)) · R̄opt(vk+1, . . . , vn).

This technique may also be used to show bounds for weakly dependent
agents. Currently we do not know if it is possible to achieve approximation
ratios better than 2 for general distributions. We leave this as an intriguing
open problem.
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