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ON APPROXIMATING PARAMETRIC BAYES
MODELS BY NONPARAMETRIC BAYES MODELS

By S. R. DALAL! AND GAINEFORD J. HALL, JR.
Rutgers University and The Rand Corporation

Let r be a prior distribution over the parameter space © for a given
parametric model Py, § € ©. For the sample space % (over which Py’s are
probability measures) belonging to a general class of topological spaces, which
include the usual Euclidean spaces, it is shown that this parametric Bayes
model can be approximated by a nonparametric Bayes model of the form of a
mixture of Dirichlet processes prior, so that (i) the nonparametric prior assigns
most of its weight to neighborhoods of the parametric model, and (ii) the Bayes
rule for the nonparametric model is close to the Bayes rule for the parametric
model in the no-sample case. Moreover, any prior parametric or nonparametric,
may be approximated arbitrarily closely by a prior which is a mixture of
Dirichlet processes. These results have implications in Bayesian inference.

1. Introduction. In the usual parametric Bayes approach to point estimation
problems, the Bayesian assumes that the data X = (X, - - - , X,) are distributed on
the sample space X according to some measure Py, § € O, and that given 6, the
random variables are i.i.d. Moreover, © is typically assumed to be a subset of some
Euclidean space R*, and often each P, is assumed to have a density f(x|6) with
respect to some o-finite measure p on X. In the Bayes approach 8 is treated as
random and a prior distribution 7(d#) is assigned to ©. The problem is to estimate
some function g(#) of the parameter, using the data at hand. Given a loss function
L(g(0), d), the Bayes estimate of g(#) is the d(x) which minimizes
(1) J[SL(&(8), d(x))7(db|x)] Fx(dx)
where 7(df|x) is the posterior distribution of # given the sample X = x and F, is
the marginal distribution of X.

Ferguson ([7], [8]) has recently introduced Dirichlet processes as priors for the
nonparametric Bayes estimation problems. This class of priors, besides having
“large support” in the space M (%) of all probability measures over %, leads to
analytically tractable and usually easily calculable posteriors and Bayes decisions.
Antoniak [1], extending Ferguson’s work, showed that the use of Dirichlet

rocesses, at times, naturally leads to, the posteriors which are the mixtures of
Dirichlet processes. Further the fact that a mixture of Dirichlet processes is
conditionally a Dirichlet process allows one to carry many properties of Dirichlet
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processes to the mixtures, and facilitates the task of finding the posterior. Several
applications involving the mixtures as priors, including Bioassay, Regression,
Empirical Bayes, etc., have also been discussed by Antoniak.

In this paper we show that Dirichlet processes and mixtures of Dirichlet
processes can have large support in the topology of weak convergence on I(%X).
This is a type of “richness” property which Antoniak [1] (cf. Raiffa and Schlaifer
[14], page 44) finds desirable. However this type of “richness” is not enough: we
believe that “richness” of a class of priors can only be exhibited if one can show
that given any prior belief one can approximate it in the class considered. We show
that any prior can be approximated as closely as desired in the topology of weak
convergence for distributions by a prior which is a mixture of Dirichlet processes.
Thus the class MDP of mixtures of Dirichlet process priors is “rich” in this sense.
We call this property adequacy. Using this it is shown that given any neighborhood
O of {Py; 8 € B} in M (X), there is an MDP prior P approximating beliefs in =
regarding { Py; 0 € @}, assigning most of its weight to O. This can have important
implications for Bayesian statistics, since it may be that the true unknown distribu-
tion P governing the data is not actually any of the P,, but is only in some
neighborhood (relative to the weak topology on 9 (%X)) of the parametric model.
Thus it is important to study priors having large support in (%K) and assigning
most of their weight to neighborhoods of the parametric model.

Under a different formulation due to Ferguson [7] and Doksum [6] results
related to adequacy and finite additivity have been obtained by Dalal [5].

2. Preliminaries. For any topological space ©2,%(f2) denotes the Borel o-alge-
bra on . In the following, only nonnull regular measures on % () will be
considered. S, will denote the support of measure p. The sample space X will
usually be a compact Hausdorff space or a metric space. The space I (%X) is the
collection of all regular probability measures P on X endowed with the topology
of weak convergence. The space I (M (X)) is the collection of all probability
measures ¥ on M (%X) (i.e., priors) together with the topology of weak conver-
gence derived from 9N (%X). If X is compact Hausdorff then 9L (%X) is compact
Hausdorff and if % is separable metric so is I (°X) (cf. [16]).

To study nonparametric problems in a Bayesian framework, Ferguson in-
troduced a type of random probability measure known as Dirichlet process priors.
Briefly, if a is a finite measure on (%X, % (X)) the random element P € IM(X) is
a Dirichlet process (and its distribution P, € M(IM(X)) is a Dirichlet process
prior) if for every k > 1 and every measurable partition 4,, - - - , 4, of %, the
distribution of (P(4,),* - -, P(A4,)) is a Dirichlet distribution with parameters
(a(A)), * + -, a(Ay)), written D(a(4,), - -, a(Ak)). The distribution of P is de-
noted by P € % (a).

Antoniak extended this definition to that of mixtures of Dirichlet processes. Let
(U, B, H) be a probability space and assume a(-,*): U X B(X) > [0, o) is a
transition measure; i.e., for each u € U, a(u, *) = a,(-) is a finite measure on
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(%X, B (%)) and for each 4 € B (X), a(+, A) is measurable inu € U. Then P is a
mixture of Dirichlet processes if the conditional distribution of P given u is % (a,).
We write P € [, (a,)H(du) to denote this and P, € M (IM (X)) denotes the
distribution of P.

Ferguson showed that if P € ) (a) and if 9N (X) is given the topology of
pointwise convergence (if Q,, @ € IM(X), Q, — Q if and only if Q,(4) - O(4)
for all 4 € B (X)) then ?_(O) > 0 for every open neighborhood O of Q if and
only if Q < a. Antoniak gave a sufficient condition that %,(0) > 0 if P is an
MDP (mixture of Dirichlet processes). We show that with the topology of weak
convergence on M (X), Q € Sy _if and only if S, C S,. We also give a sufficient
condition that Q € Sy, (analogous to Antoniak’s result).

In this paper we shall prefer to work with the following definition of random
probability measure, used by Jagers [12].

DErFINITION. Let (2, ¥, Q) be a probability space and P : (2, %) —»
(OM(X), B (DM (%X))) be measurable. Then P(-) is a random probability measure
on (%X, B (%X)).

As shown in Ferguson [7], there is a version of the Dirichlet process P which
satisfies the above definition. It is now necessary to show that for any random
probability P and any 4 € P (%X), P(A) is a random variable (i.e., is measurable).
Let Q be a set and S a class of subsets of Q. & is a w-system if it is closed under
finite intersections, and it is a d-system if () @ € S, (ii) 4, B € S, A C B implies
B — 4 €5, (iii) the countable union of a monotone increasing sequence of
members of S is again in S. For any class & let d(S) and 6(S) denote the smallest
d-system and smallest g-algebra containing S, respectively. We state the following
two results without proof.

PROPOSITION 1. If S is a w-system, then d(S) = o(S).

A proof of this is found in Jagers. Let C = {4 € B(X): P— P(A) is
B (M (%X ))-measurable}. We will show that C = B (X) for any normal space X.
We need the following lemma (from [4]) based on Urysohn’s lemma and the
regularity of the measures involved.

LemMma 1. Let (X, 9) be a normal space and ON(%X) be the class of all regular
probability measures on (X, B (X)) endowed with the weak topology. Suppose A is a
closed subset of X and for each real a let M, = {P € ON(X) : P(A) > a}. Then
M, is a closed subset of IM(X).

PROPOSITION 2. C = B () for any normal space .

PrROOF. By the lemma, the class K of all closed sets is contained in C. If 4, B
are in C and 4 C B, then P(B — A) = P(B) — P(A), hence B — A4 is in C.
Suppose 4, € C and A4,14; then P(A4,)— P(A), so that 4 € C. Thus C is a
d-system containing K and so d(¥K) = o(K) = B (X) C C, completing the proof.
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3. Some results on the support of MDP’s. In this section we show that if %X is
either compact Hausdorff or metric, and if F € 9 (%X) and P € % (a), then
F € Sy_if and only if Sp C S,. Also we give a sufficient (but not necessary) .
condition that F belongs to the support an MDP.

Let % be a metric space and F € 9N (%X). Billingsley [2] shows that each of the
following types of sets generates the topology of weak convergence for M (°X) and
is a basic open neighborhood of ¥:

@) {Q:0Q(C) < F(C)+ ¢ 1<i<k)} where each C; C X is closed, ¢ > 0,
k > 1 arbitrary;

(i) {Q :|Q(4,) — F(4,)| <e&, 1 <i <k} where each 4, is an F-continuity set
(i.e., F(d4,) = 0) and ¢ > 0, k > 1 arbitrary.

Furthermore, if X is compact Hausdorff, sets of type (i) also generate the topology
of weak convergence (Varadarajan [16]).

THEOREM 1. Let %X be metric or compact Hausdorff. Then F € Sg,_ if and only if
S C S,

Proor. First suppose X is a metric space. If there is an element x € S, N S,
then there is an open neighborhood ¥ of x such that F(¥) > 0 and a(V) = 0.
From Ferguson [7], if P € % (a) then P(V) =0, a.s. Thus P (P : P(V°) < F(V°)
+ ¢} =0, where e < 1 — F(V°). Hence F & Sy .

Conversely, assume S, C S,. It suffices to show that for any neighborhood O of
type (i), ?,(©) > 0. Form the 2* sets obtained by intersections of the A; and their
complements, ie., B, ..., for each », =0or 1as B, ..., = r\j’-‘_,Aj’i‘ where
Al = A;and 4? = A Putv = (v, - - -, %). Now, by using the arguments similar
to Proposition 3 of Ferguson [7], it suffices to show that

?,{|P(B,) — F(B,)| <27%, V¥r} > 0.

Note that each B, is also an F-continuity set and let Int(4) denote the topological
interior of A. If «(B,) = 0 then P(B,) = 0, a.s. Also, a(Int(B,)) = 0, so F(Int(B,))
=0 (as Sg C S,). Thus F(B,) =0 and therefore |P(B,) — F(B,)| =0, as. For
those » with a(B,) > 0, the joint distribution of the corresponding Dirichlet
random variables P(B,) gives positive weight to all open sets in the set
2,5u8)>0P(B,) = 1.

The case where °X is compact Hausdorff is quite similar. The term “open set” of
X is then replaced by “open Baire set” of X. A net u, of measures in IM(X)
converges to p € IM(X) if and only if u,(4) — u(4) for all those A for which
there exist open Baire sets U,, U, such that U, c 4 c U; and w(U; N Uf) =0
(Varadarajan [16]). A set A of this type will be called a p continuity set. The
necessary changes in the proof should now be clear.

It follows immediately from Theorem 1 that if P € 37 A% (), (; > 0), a
finite mixture of Dirichlet processes, then F € Sg, if and only if Sy C S, , for
some i. A sufficient but not necessary condition that F € Sy _is given in the next
theorem.
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THEOREM 2. Let X be metric or compact Hausdorff, let P € [,°D (a,) H(du) and
let F € ON(X). If there is an event B € B such that H(B) > 0 and Sp C S, for
allu € B,then F € Sy_.

ProOF. Let O be a neighborhood of F of type (ii). By Theorem 1, ¥, (0) > 0
for all u € B. Thus 9,(0) = (9, (O)H(du) > 0.

To show that the above condition is not necessary, let U = [0, 1], H(du) be
uniform on U, and a, = §,. Then % (a,) is degenerate at §,, i.e., if Plu € D(a,)
then P = §,. Thus for F € M (%X) there is no set B of positive H-measure such
that Sy C Sg,.

We do not know of a necessary and sufficient condition. However, in many cases
of interest, S, = X, for allu € U, so that S, = M (X).

4. The adequacy of mixtures of Dirichlet processes. In this section we give
several theorems which will enable us to approximate parametric Bayes models by
nonparametric models using Dirichlet processes and MDP’s. We give the proof for
% compact Hausdorff and sketch the proof for %X Polish (i.e., a Borel subset of a
complete separable metric space).

Let F(X)= {2748, :4,>0, 2ig;=1, x;€ XVi, 1 <i<n, n>1} ie,
F(%X) is the class of all (atomic) probability measures with finite support on X.
% (%) denotes the weak closure of F(%X) in IM(X).

LemMA. If X is compact Hausdorff then F(ON(X)) = M (M (X)).

ProOF. By repeated applications of the Riesz representation theorem and weak
compactness of the closed unit sphere it follows that I (IM (X)) is compact
Hausdorff. Now apply the Krein-Milman theorem (Robertson and Robertson [15])
to M (%) to conclude that F(M(X)) = M (M (X)).

THEOREM 1. Let X be a compact Hausdorff space and let {a,} be a net of
measures on % such that a\(X)too and ay(-)/a\(X) = G\(-) >, F. Then ¥,

-0z

PrOOF. We only need show that for any open set O containing F in I (%),
?P,,(0) > 1. Assume O is a basic open set of type (ii) of Section 3, containing F.
Again form the 2 sets B, obtained from intersection of the 4; and 4 and note

(1) ?,.(9) > @, {IP(B,) — F(B,)| < 27%, Vr}.

Since {P(B,)) have a joint Dirichlet distribution and since &, P(4) =
or(4)/oy(X) and Var, P(4) = ay(A)or(4°)/[{ax(¥)}{ar(X) + 1}] for any
event A4 and ay(4)/ ay(X) — F(A) for any F-continuity set A4, it is clear that the
probability on the right-hand side of (1) converges to 1 as n — oo, completing the
proof.

Theorem 1 combined with the lemma immediately yield the following result.

THEOREM 2. If X is compact Hausdorff then MDP = I (IM(X)).
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The method of proof of Theorem 1 together with the Portmanteau theorem and
the fact that F(%X) is weak dense in (%K) is X is Polish (Billingsley [2]) produce
the analogous result for X Polish:

TueoreM 3. If X is a Polish space then MDP = IIL(IM (X)).

The last theorem of this section is a result for MDP’s analogous to Theorem 1. It
will be useful in the next section on applications.

THEOREM 4. Let X be a Polish space or a compact Hausdorff space. Let
o{a,(u, -); u € U, n > 1} be a sequence of transition measures on X such that for
each u € U, a,(u, X)too as ntoo and a,(u, -)/a,(u, X) = G,(u, -) —>,F(u, -) €
OM(X), where F(u, -) is a transition probability. Let H,, n > 0, be probability
measures on (U, B) and o be a o-finite measure on (U, B) such that if h, =
dH,/do, n > 0, then h, — hy a.s. —[o]. If Py = [,D(a,(u, -))H,(du) and 2 , =
J U0k, yHo(du) then Py —,2 o

PrROOF. Let O be open in M (X). It suffices to show lim inf, P, (0) > 2 «(0).
HfE={ucU:Fu, )€ 0} then 2 (0) = Hy(E). Thus by Fatou’s lemma,

lim inf, P, (0) = lim inf,f ;P ., .(O)h,(4)o(du)
> [y liminf,{ D, . (O)h,(x)}o(du)
> [ lim,{®, (O)h,(u)}o(du)
= [l - ho(u)o(du) = Hy(E)

since for each u € E, lim,?, (, ,(0) =1
In particular if H, = H,, for all n, then [, (a,(u, -))Hy(du) converges weakly
to [y0p, yHo(du), where 0 = H, and by = 1.

()

5. Interpretation and applications of the main results. We turn now to the
question of approximating parametric Bayes models. Let {Py; 8 € O}, 7(df) be
the Bayes model described in the introduction. Assume that X is compact
Hausdorff or Polish (e.g., Euclidean space). Take U = © and H(df) = 7(df) for
the MDP. Let M : ® — (0, o) be measurable and put (4, -) = M(8)P,(-). Then
for any e > 0 and any open neighborhood O of the set {P,; § € O} in IM(X), it is
possible to find M(#) so that

ey PO)>1—e

To show this let O, be an open neighborhood of P, of type (ii) of Section 3 so that
Op C 0, and choose M(#) so large that @, ,(05) > 1 — & (Theorem 1, 2, Section
4). Then P,(0) > [P 4, 4(0g)7(d) > 1 — e.

Thus we can find a mixture of Dirichlet processes prior which will assign most of
its mass to neighborhoods of {P,; # € ©}. Moreover, if there is a set B C © such
that 7(B) > 0 and S, ,= X for all § € B, then Sy = IM(X), so the true
unknown distribution F governing the data (which may only be known to be



670 S. R. DALAL AND GAINEFORD J. HALL, JR.

“near” the model { P,; # € O} in the topology of weak convergence) will lie in Sg
(Theorem 2, Section 3). In many cases of interest, it will happen that Sp = X for
all # € ©. Further note that the MDP thus obtained approximates (parametric
beliefs in) 7 (in the weak convergence sense) when r is viewed as a prior over
{P,; § € O}, rather than merely on ®. Thus in this broad sense a nonparametric
Bayes model can be found approximating the given parametric Bayes model.

As mentioned earlier, it is advantageous to have an approximating sequence of
MDP’s for any specified prior 2, since MDP’s usually facilitate computations. This
is not to say that the sequences in the earlier construction are suitable for
numerical computations. In fact the problems of finding efficient, computationally
convenient approximating sequences, the rates of convergence, etc., need further
investigation before an attempt at numerical approximation can be made. How-
ever, a practical advice to the Bayesian seeking a suitable prior is that he should
restrict his attention to a small class, the class of mixtures of Dirichlet processes.

To understand the nature of this result assume that %X is a Polish space with
metric p. Then O (%X) and M (DM (%)) are Polish spaces with Prohorov distances
py» P, Tespectively. We may restrict attention to sequences of measures. To
elaborate further we state the following theorem given in Pyke [13]. An elementary
treatment can also be found in Billingsley [3].

THEOREM. (Skorokhod-Dudley). If (S, m) is a separable metric space, and
{P,}, P are probability measures thereon, P, — P implies the existence of a probabil-
ity space (Q*, @*, P*) and measurable functions X} : Q* — S and X* : Q* — § such
that P, = P*X,” ' and P = P*X "' and m(X}, X*) —> 0 as.

Thus if @ is a given prior probability measure and if ¥, —,2 is an approximat-
ing sequence of MDP’s then by this theorem there exists a probability space
(2*, @*, P*) and measurable mappings {, : @* - O(X), § : @* - M (X) such
that P*¢,"' = @,, P*¢ ' = 2 and p,(§,(@*), §(w*)) >0 as. —[P*]. In addition
for each w*, {,(w*), {(w*) are probability measures on (X, M (X)) and since
cc¢ ivergence in p, norm is equivalent to weak convergence on M(%X), for almost
all w* — [P*] there exists a probability space (2., .., Q) and measurable
mappings {X, ,.}o-; and X,. from . into X such that { (w*) = Qo X, Ler $(w®)
= Q..X5" and p(X, (), X (@) >0 as. —[Q,.].

Thus we have the interpretation that given a prior probability measure 2 on a
Polish space %, there is a sequence ¥, of MDP’s such that samples (on %)
obtained from realizations (which are probability measures on X) of 2 and P, are
arbitrarily close. The interpretation is analogous to that in the usual Bayesian
parametric problems.

However, this result has some limitations. One would like to know whether
P, —»,2 implies that the joint distribution of random variables
(P(B)), " - - , P,(B,)) converges in law to the distribution of (Q(B,), - - - , Q(By)-
The answer in general is negative. Another difficulty with these results is that
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without imposing further conditions one cannot approximate the posterior as a
limit of corresponding posteriors of the approximating priors.

As an example of applications, let the loss function L(-, -) for the parametric
Bayes model have the form L(8, d) = p(g(6) — d) where g : ® > Rand p: R —>
R is differentiable with ¥ = p’. For Q € 9 (R), define T,(Q) as the solution to

(2 J¥(x — 1)Q(dx) =0

whenever the solution exists and is unique (Huber [11]). For the parametric model,
the Bayes rule for the no sample problem is d* = T ,(7,) where 7, is the distribu-
tion of g(#) under 7(df).

Define g(Py) = g(#), where we assume the map § — P, is (weak) continuous. If g
can be extended to all of M (%X) in such a way that g is continuous a.s.-[2,], where
2 =/ 8p,7(dP) then %, — m,, %, denoting the distribution of () under %?.. Thus
we may approximate the parametric model as closely as desired by nonparametric
model so that the distribution of g(P) is as close as desired to the distribution of
g(9). If T, is continuous at =, the Bayes rule T,(7,) will be close to T,(,).
Suppose, for instance, that P, is 9U(4, 1), # € R, and g(8) = g(P,) = 0, the mean
of P,. Take 7(df) = 9(0, 6%), ®> known. We may extend g to all of M (X) by
setting §(P) = Syz(P), the B-trimmed mean, 0 < B8 < ;. Then Sz(P;) =6 and ¢ is
continuous on MM (X ). Thus 7, converges weakly to 7, as &P, converges weakly to
2. Moreover, if ¥ in (2) is bounded, continuous and strictly monotone increasing,
then T,(#,) - T,(7,) (Hampel [10]).
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