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Abstract—Unsupervised Learning (UL) methods are a class of
machine learning which aims to disentangle the representations
and reduce the dimensionality among the data without any pre-
defined labels. Among all UL methods, the Non-negative Matrix
Factorization (NMF) factorizes the data into two subspaces of
non-negative components. Moreover, the NMF enforces the non-
negativity, sparsity, and part-based analysis, thus the represen-
tations can be interpreted and explained for the Explainable
Artificial Intelligence (XAI) applications. However, one of the
main issues when using the NMF is to impose the factorization
rank r to identify the dimensionality of the subspaces, where
the rank is usually unknown in advance and known as the
non-negative rank that is used as a prior to carrying out the
factorization. Accordingly, we propose a novel method for the
non-negative rank r approximation to help solving this problem,
and we generalize our method among different image scales.
Where, the results on different image data sets confirm the
validity of our approach.

Index Terms—Unsupervised Learning, Explainable Artificial
Intelligence (XAI), Non-negative Matrix Factorization, Non-
negative Rank, Image Reduction.

I. INTRODUCTION

Explainable Artificial Intelligence (XAI) is considered an
emerging field in Machine Learning (ML), with the aim of
interpreting how the decisions of ML applications are made
[1], [2]. The early stages of any XAI model include data
reduction and disentangling the interpretable representations,
i.e., the explainable features that reflect parts of the data [3].

To disentangle the representations and reduce data dimen-
sionality, Unsupervised Learning (UL) methods have been
especially studied, due to their advantage of working on
unlabeled data. In particular, the UL methods include Principal
Component Analysis (PCA), Independent Component Analy-
sis (ICA), Autoencoder (AE), Non-negative Matrix Factoriza-
tion (NMF), Tensor Decomposition (TD), and others [4]-[6].
Among all UL methods, the NMF decomposes the data into
low dimensional subspaces, where the first one contains the
bases of the latent features and is named as the latent space
W, the other space hides the coefficients that reconstruct the
data and is called the mixing space I [7]. The capability of
the NMF lies in the fact that it factorizes the data into non-
negative components, which usually in low dimensional form
and represent portions of the original data itself. Moreover,
the other advantage of the NMF is that it is an inherently
sparse method for feature representations, thus it offers sparse

components (subspaces) that are isolated and represent the
original data objects [8].

The NMF can be integrated into the XAI models to improve
their explainability and interpretability, as it is easy to relate
the hidden (or latent) representations to the original data itself.
Also, it reduces the dimensionality and the computational time
required to disentangle the interpretable representations among
the data. However, one of the main issues when using the NMF
is to identify the factorization rank r among the data, which
is usually unknown in advance and can be imposed as a prior
to carrying out the factorization [9].

To help solving this problem, we propose a novel rank
approximation method for the NMF, where our contribution
is twofold: (1) introducing an effective rank truncation method
based on a mathematical operators and a physical conceive,
thus the dimensionality among the data and the processing
time are reduced according to the approximated rank; (II)
generalizing the rank truncation from small-size data samples
to a large-size ones, thus achieving adaptability at different
scales. The rest of this paper is organized as follows: Section
2 highlights the S-NMF. Section 3 outlines the NMF rank
analysis. The experimental results are reported in Section 4.
Section 5 summarizes the conclusion and future works.

II. THE 3-NMF FACTORIZATION

For a given image X € R™*", the NMF decomposes the
data matrix as X ~ WH + R, where W € R™*" contains
the bases of the latent subspace, H € R"*™ represents the
coefficients of the mixing subspace, R is the residual, and 7 is
the input rank. The NMF expresses the data as a product of two
subspaces, where the factorization is carried out by minimizing
the objective function that measures the mismatch between
the original image data and the reconstructed subspaces [7].
Specifically, the [-divergences is a class of the objective
functions comprising the Itakura-Saito (IS) when S = 0,
Kulback Leibler (KL) when 8 = 1, and Frobenius norm when
[ = 2. These objective functions are used to quantify the
distance between the original image and the reconstructed one
obtained from the factorized subspaces, i.e., W and H [10],
[11]. The S-divergence between two matrix elements is given
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where d is the divergence, x represents the original image data
pixel (or point), Z is the reconstructed pixel after applying the
factorization or learning. When extending the notation from
pixel or data point to matrix (whole image), the -divergence
generalization is given as:

da(X,X) = > ds(X(i gy, (W H )i ) @)
(4,9)

where dg is the divergence, X is the original image data,
X = W, H, are the bases of the latent subspace and coeffi-
cients of the mixing subspace, respectively, and resulting by
the factorization using rank r. Furthermore, the matrix update
for the bases W and coefficients H (i.e., changing the latent
factors for W and H to reach the minimum divergence) can
be done according to the following rules [12]:
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where T is the matrix transpose and ©® denotes the element-
wise multiplication.

The most widely used approaches for the NMF initial-
izations are SVD-NMF, non-negative double SVD, and non-
negative SVD with low-rank correction [13]. These methods
share a similar procedure to carry out the NMF initialization
and identifying the dimensions of both W and H spaces; by
updating the matrices W and H based on the rank increment
at each iteration until a given level of the performance is
reached. Other approaches, based on the rank adaptation from
the lowest to the highest or full rank, are time-consuming since
they depend on a trial and error procedure [14].

To avoid the cost given by the iterative search, a commonly
used practical approach (the rule of thumb) keeps the singular
values that contribute to 90 : 99% of the total energy sum and
impose their number as the rank, however, such an approach
suffers from the instability due to fixing the bounds of the
singular values [15]. The recent method proposed in [16]
based on the Minimum Description Length (MDL). The MDL
method depends on finding a possible way to encode the data
with high precision and low decoding error, where it does not
approximate the rank directly from the data itself; it selects
the suitable rank that reflects the minimum MDL among a list
of all imposed ranks, thus it can be seen as a kind of trial and
error method. Moreover, the MDL method assumes that the
data samples are already factorized with all available ranks and
the subspaces W and H which correspond to each rank are
kept, then it converts the subspace to distributions and utilizes
the Shannon information content [17] among the distributions
to measure the minimum MDL that reflect the best rank.
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To obtain the factorization rank automatically, we will
propose an innovative rank approximation based on the combi-
nations between the matrix trace, nuclear-, and the Frobenius-
norm. Such a combination able to preserve suitable bounds of
the singular values that reflect the optimal rank, also it obtains
the rank directly from the data itself to achieve the stability
and reduce the computational cost.

III. PROPOSED RANK ANALYSIS

Advocated by the fact that the NMF requires to impose
the factorization rank r before carrying out the factorization,
i.e., the size of the data columns and row spaces that identify
the dimensions of the NMF subspaces, also the rank must be
accurate and able to preserve an acceptable level of the recon-
struction accuracy [13]. Practically, running the empirical rank
approximations for the NMF factorization among all available
ranks is considered a computational burden, especially when
the data comes in a multi-way form as in the RGB images
and when its size is relatively big [8]. For instance, to identify
the optimal rank for an image with dimensions of 256 x 256
empirically, we need to run 256 iterations from the lower
rank (r = 1) to the full rank (r = 256). Thus, to reach
the appropriate rank without alternating all possible ranks,
we propose an automatic rank truncation procedure, which
can be useful for different data sets and based on the linear
transformations among the data.

Both the trace and nuclear norm have been utilized to
produce a very low-rank solution theoretically [18], [19],
however, we extend the theory to the practice by proposing
a suitable rank approximation for ML data sets. The trace
of the data matrix (the data matrix is an image and denoted
as X in all parts of this work) is considered a useful linear
transformation, and it gives the derivative of the determinant
det| X| that offers the volume equipped by the column space
to approximate the data rank [20]. Mathematically, the trace is
the sum of all diagonal elements of a square matrix (or sum of
the eigenvalues), whereas the physical meaning of the trace is
the constructions of the Hamiltonians (the total energy) of the
quantum system that associated with a finite set of the energy
eigenvalues [21]. The trace of the n x n square matrix X is
given as:

n
Tr(X) = 244, i=1,,,n (5)

i=1
In the same orientation, the nuclear norm || - ||, is considered
a substantial tool in the field of multivariate statistics and
dimensionality reduction, whereas it used recently for deep
learning optimization as a convex replacement of the dimen-
sional rank [19]. The nuclear norm reflects the importance of
the singular values that constitute the rank variation among the
data. The nuclear norm can be obtained by summing all sin-
gular values, which can be retrieved using the Singular Value
Decomposition (SVD) [22]. Where the singular values’ matrix
is constituted in a diagonal form and reflects the importance of
the eigenvalues and data points when reconstructing the data.
Factually, summing all singular values is equivalent to adding



up the absolute values of the diagonal elements (i.e. the L,
norm) of the diagonal matrix, where the rank minimization
problem is tuned to find a sparse vector in the affine subspace
[19]. The nuclear norm of a given data matrix X is obtained
from the SVD as:

X = ZUiUiV;T; where || X||.« = Zai (6)
i=1

where U; and V, are orthonormal matrices called the left
and right singular vectors, respectively, and they represent the
eigenvectors of X XT and XTX, respectively. Additionally,
o; is a diagonal matrix that contains the singular values
{oi|]i = 1,...,n} of the matrix X and are sorted in
decreasing order.

In our proposed approach, we combine the Frobenius norm
[23] to penalize the rank truncation threshold, due to its
capability to the transformations which are unitary invariant.
Thus, the bound of the singular values can be increased to
an appropriate level reaching the optimal rank. The Frobenius
norm for a given matrix X € R™*™ can be obtained by the
square root of the sum of the squares of the matrix elements
as follows:
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The nuclear norm and the trace of the data are considered
algebraic tools, which help to identify a truncation limit to
remove the unwanted portions of data and only keep the ones
that reflect the rank r. The rank truncation limit is a threshold
€ at which performance can be saturated and the data can be
reduced [20], [24]. Dividing the trace of eigenvalues by the
nuclear norm (as in Eqn. 8) is equivalent to spreading out
the total energy among different separate states with different
capacities, where the highest singular values absorb the highest
energies and the lowest values only get very low energies [21].

Because the trace of the square matrix is equal to the sum
of its eigenvalues', there is an ability to compute the trace
directly from the data matrix without the need to diagonalize
the data (in Eqn. 8) to obtain the trace of its eigenvalues matrix.
However, if the data matrix in a non-square form or if all
values are zeros in its diagonal, it must diagonalize the matrix
first (i.e., to covert it as sets of eigenvalues and eigenvectors),
then summing of its eigenvalues as a trace.

The proposed threshold is able to identify suitable bounds of
singular values that reflect the rank; by truncating the singular
values that absorb the minimum energies, and only keeping
the highest ones which conclude the essential and appropriate
features among the data. Our methodology is divided into four
steps as follows:

« For a given image X € R™*™, calculate the Tr(X) and
[ X
o Calculate the SVD and obtain || X]||..
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o Identify the truncation threshold as:

_ Tr(X)
X+ 11X |

e The rank is obtained by counting the singular values
(taken from SVD) up to e.

Accordingly, the rank can be expressed as the total number
of the singular values that lie up to the truncation threshold e.

To measure the performance of our proposed method, we
will employ both MNIST digits and MNIST fashion data sets
[25], [26], which share similar small image dimensions. Thus,
there is a possibility to build a common threshold to obtain
the non-negative rank as it appears in the Eqn. 8. Moreover,
we found that it is important to inject the Frobenius norm to
the threshold denominator as a penalty factor, to expand the
minimum bound of singular values into an appropriate limit
that reflect the optimal rank.

However, for the data sets which are relatively larger than
the MNIST on terms of image size, the trace and the nuclear
norm can be fixed without injecting the Frobenius norm;
since the MNIST data sets contain a lot of zero elements in
the images which affect the bounds of the singular values.
Following the same footprint in approximating the rank for the
MNIST data sets, we can build similar rank truncation based
on the trace and the unclear norm for the color and large-
sized images. The rank truncation threshold for such type of
images that hides a lot of information due to their size and
dimensionality can be designed as:
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IV. EXPERIMENTAL RESULTS
A. Approximating the rank for small-size images

The MNIST digits data set comprises 70000 handwritten
images divided in 10 classes, representing digits from 0 — 9.
The kin new data set to the MNIST digits is called the MNIST
fashion with the same number of samples. The size of each
image in the MNIST data sets is similar, and each image size
is 28 x 28 which forms the data columns and the rows spaces.
The MNIST data sets are ideal for analyzing the small-size
images, due to the limited size of the images. Where our used
computational platform to approximate the NMF rank includes
Intel CPU Core i7—4800M @ processor with 8G DDR3 RAM,
and all experiments have carried out using MATLAB R2019b
on windows 10 operating system.

To extract the non-negative features for the MNIST data
sets, the factorization rank r among the images must be
imposed. Traditionally, the rank can be approximated by
alternating the rank from r = 1 to the full rank-size where
r = 28. We used the S-NMF [11] with 5 = 1 to show how
the traditional rank affects the image reconstruction. Moreover,
we used the Frobenius norm as a function of image rank in the
following Fig. 1(a) to depict how the original images and the
reconstructed ones are similar to each other. Furthermore, to
show the relationship between the rank approximation and the
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distribution of singular values of the same data used in Fig.
1(a), we plot the singular values and the rank (from r = 1 : 28)
for each image as it can be illustrated in Fig. 1(b). For the sake
of space, we plot only the Frobenius norm and singular values
distributions for the first 100 images of the third class from
the MNIST digits, where the idea is generalized among all
samples and classes.

Frobenius norm
Singular values

Fig. 1. (a) The Frobenius norm of 100 images of the third class as a function
of rank r, (b) the corresponding singular values of the same images in (a). It
is possible to observe that the Frobenius norm decays at » = 15, where the
optimal bound of the singular values lies at the same rank.

As can be noticed from the Fig. 1(a) and Fig. 1(b) when the
rank is very low at » = 1 : 5, the Frobenius norm is very high,
conversely, the norm is saturated in the pool of ranks greater
than 15. The rule of thumb [15] to extract the rank from the
data can be carried out by retaining 90 — 99% of the singular
values that contribute to the sum of total energies and utilizing
their number as the NMF rank. However, according to Fig. 2
using the rule of thumb reflects the rank r» = 10, also at that
rank the averaged Frobenius norm between the original images
and the reconstructed ones for the same samples used in Fig.
1(a) and Fig.1 (b) is equal to 0.0209. Whereas, our method
expands the bounds of the singular values to enhance the
performance and gives the rank r = 15, also the reconstruction
loss obtained by the Frobenius norm enhanced and reached to
0.0049 when comparing the useful rule of thumb [15].

" =10
Energy = 0.933

0 10 20 30
Rank

Fig. 2. The distribution of the accumulated energies of the singular values. It
is apparent from the figure that the largest » = 10 singular values contribute
for the 99% of their total energy.

Another used approach in the practice, by keeping 90% of
the singular values that contribute to the nuclear norm, where

it gives the average rank for the images used in Fig. 1 equal
to r = 9. Also, at that rank the Frobenius norm still not
saturated, i.e., the reconstruction loss requires to increase the
rank to be enhanced. From this angle, it is important to build
a suitable rank threshold to be utilized for automatic non-
negative rank approximation, thus the rank can be imposed
easily with minimum reconstruction loss as what we proposed
in Eqn. 8.

Table I shows the average rank for each class extracted from
the MNIST data sets using our threshold in Eqn. 8, using only
the average rank of 1000 random images from each class to
be generalized among the whole images within each class.
Moreover, the table presents the performance analysis of all
data sets samples (not just 1000 samples) when using the
generalized rank, utilizing the Frobenius norm and the SSIM
index to compare the original images and the reconstructed
ones after the factorization. For more details about the SSIM
index we refer to [27].

TABLE I
THE APPROXIMATED RANK AND THE PERFORMANCE ANALYSIS FOR THE
MNIST DATA SETS.

MNIST Digit MNIST Fashion
ClassID #Sample Rank Fnorm SSIM ClassID #Sample Rank Fnorm SSIM
0 5923 16 0.0107 | 0.9962 T-shirt/top 6001 17 0.0048 | 0.9971
1 6742 10 0.0029 | 0.9992 1Trouser 6001 11 0.0001 0.9997
2 6742 15 0.0074 | 0.9974 Pullover 6001 16 0.0027 | 0.9974
3 6131 15 0.0065 | 0.9975 Dress 6001 14 0.0019 | 0.9987
4 5842 14 0.0071 0.9976 Coat 6001 17 0.0031 0.9969
5 5421 14 0.0097 | 0.9977 Sandal 6001 15 0.0096 | 0.9953
6 5918 16 0.0068 | 0.9982 Shirt 6001 18 0.0056 | 0.9950
7 6265 13 0.0090 | 0.9971 Sneaker 6001 14 0.0025 | 0.9984
8 5841 15 0.0083 | 0.9987 Bag 6001 17 0.0036 | 0.9988
9 5949 14 0.0056 | 0.9986 | Ankle boot 6000 19 0.0020 | 0.9991

As it evident from Table I that the performance based on
the SSIM metric is greater than 0.9950% among all classes
in both MNIST data sets, which confirms the validity of our
proposed rank truncation method.

B. Approximating the rank for large-size images

In this section, we select miscellaneous standard color
images of size 256 x 256 and 512 x 512, which published
by the Computer Vision Group of the University of Granada®.
Where the resolution of such images are very high, and
approximating their rank for the NMF factorization in their
RGB domain is considered substantial [27]; in the view of fact
that a lot of information is vulnerable to be lost during images
transformation to the grayscale or in resizing their dimensions.
Accordingly, it is important to approximate the rank at R-, G-,
and B-domain separately to keep an appropriate level of the
information at each, then extracting the rank for each domain.
Fig. 3(b) highlights the Frobenius norm of the Lena image
of size 256 x 256 and its reconstructed version after applying
the S-NMF with 8 = 1. Where the rank identified following
the traditionally used approach, by varying the rank from the
lowest 7 = 1 to highest r = 256.

As it can be noticed from the Fig. 3 that the highest Frobe-
nius difference between the original and the reconstructed

Zhttp://decsai.ugr.es/cvg/index2.php
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Fig. 3. Approximating the rank for Lena’s image. Where (a) Lena image, (b)
the Frobenius norm as a function of the rank. The red, green, blue curves in
(b) represent the Frobenius norm as a function of rank for R-, G-, B-domain,
respectively.

image can be noticed at the first 50 ranks, and the performance
is improved as a function of rank around r = 130 : 170. The
proposed truncation threshold in Eqn. 9 gives » = 141 for R
domain, » = 165 for G domain, and r = 193 for B domain
for Lena image, which is applicable with the rank plot in Fig.
3(b). Moreover, the SSIM index is equal to 0.9880 according
to our truncation threshold, where it is lower than the full rank
(when 7 = 256) by 0.0060. Thus, the proposed rank threshold
in Eqn. 9 is able to preserve a higher level of the original
structure (for large-size images) after the NMF factorization,
by retaining the appropriate bounds of singular values that
reflect the non-negative rank among the data.

The application domain is extended to a new series of
natural images with a size of 512 x 512 for each one in Fig.
4. By utilizing the same rank truncation proposed in Eqn. 9,
where we fixed the evaluation indicator to the SSIM which is
commonly used to compare the large-sized images in terms of
the structure and the local mapping.

C. Related works comparison

The rank selection stage is considered the first step to carry
out the NMF factorization, which initializes the dimensions
of both W and H subspaces. Moreover, the rank selection
is usually tricky, and there are limited practical approaches
available to identify the rank r. For that aim, we proposed a
novel method to identify the NMF rank automatically, and we
compare our method with the common practical approaches.

Table II reports the performance evaluation of our proposed
method employing the same images used in Fig. 1. We
compare our results with respect to (i) trial and error method
by adapting the rank from 1 to full image size [14], (ii)
retaining 99% of the energy of singular values contribute to the
total sum [15], (iii) the truncated SVD with keeping 90% of the
whole singular values [14], and (iv) the MDL [16]. Moreover,
we show the average execution time for each method to obtain
the rank, also we evaluate the stability when reconstructing the
images (the stability is application dependent and we measured
the SSIM among the reconstructed and original images, thus
the method that gives the highest SSIM is considered the most
stable one).

Global SSIM Value: 0.94385

(b)

Global 55IM Valua: 0.92057

-

(©) (d

Fig. 4. Generalizing the rank truncation threshold for natural images with
a size of 512 x 512 for each, where the first column contains the original
images and the next one represents the corresponding reconstructed ones. The
SSIM equal to 0.9438, 0.9205, and 0.9663 for (b), (d), and (f).

TABLE II
RELATED METHODS COMPARISONS, WHERE THE SAME IMAGES OF FIG. 1
USED FOR THE PERFORMANCE ANALYSIS.

Comparison Indicators
Method Rank CPU Time SSIM
Trial and Error [14] 1 :28 NA 0.4732 : 0.9995
99% of Energy of Singular Values [15] 10 5.259 s 0.9866
90% of Truncated Singular Values [14] 9 4.781 s 0.9839
MDL [16] 13 16.903 m 0.9943
Our Method 15 3.873 s 0.9955

As can be noticed from Table II, that our method achieves
the minimum execution time and high reconstruction accuracy
based on the SSIM, especially when comparing our result to
the recent method (MDL) [16]. Although the MDL achieves
similar results to our method, it requires time greater than
our method by 262 times to obtain the rank of the set of
images used in Fig. 1. Also, the trial and error method that is
used in the practice is considered time-consuming and requires



to increase the rank by 1 at each factorization round. Where
the mean CPU time needed to factorize each MNIST image
using S-NMF is 0.1200 s, provided that the factorization rank
is imposed. For the trial and error method, we found that
the factorization time when adapting all ranks is equal to
0.1200 s x 28, and if the image size is relatively large such
method is considered time-wasting. Moreover, the truncated
singular values [14] however it achieved the lower SSIM,
but it requires an average factorization time greater than our
method by 0.908 s for the same 100 images. Instead, our
proposed method reduces the required time to carry out the
factorization by automatically derive the rank from the data
itself, and our performance analysis shows superior results
in terms of preserving the similar amount of the structure
information when using all possible ranks.

Our method is able to approximate the NMF rank with
a lower computational time with respect to methods in the
literature, at the same time obtaning a higher similarity to the
original images. The proposed approach can therefore be used
to efficiently map the data to reduced subspaces, with limited
information loss. Due to its advantages, it could be used
to optimize the learning process of deep ML architectures,
by using a compact data representation that can reduce the
computational times required to perform the training. Further-
more, our approach could prove beneficial when dealing with
devices with limited computational resources (e.g., mobile
CPUs or FPGAs), or in methodologies requiring real-time
learning (e.g., online learning).

V. CONCLUSIONS

The NMF is a linear factorization technique that enforces
non-negativity constraints among the factorized subspaces,
which leads to precisely additive positive components to the
factorized subspaces that are parts from the original data.Thus,
the NMF offers the interpretability when it is integrated into
the XAI models, due it its ability to relate the factorized
subspaces to the original data. The NMF reduce the di-
mensionality but it requires identifying and impose the non-
negative rank r before carrying out the factorization, that
usually unknown in advance. To solve this problem, we pro-
posed a novel rank truncation method that reflects the rank by
counting the singular values which lie on certain bounds and
consider their number as the rank. The rank is obtained directly
according to the truncation threshold, instead of iteratively
adapting the rank. Also, it evaluated using S-NMF for the
small-sized images of size 28 x 28 and generalized for the
large-sized-images of size 512 x 512. In future works, we plan
to investigate to what extent the learning among the NMF
representations (I, H) able to accelerate the deep learning
models as in utilizing the autoencoder to encode W, or H, to
compress the weights, i.e. partial learning.
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