On Approximation of the Best Case Optimal Value in Interval Linear Programming

Milan Hladík ${ }^{1,2}$ Michal Černý ${ }^{2}$

1 Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic

2 Faculty of Computer Science and Statistics, University of Economics, Prague, Czech Republic

ORO 2013, Tehran, Iran
January 19 - 22

. . . intervals

Motivation

Interval data are used to model:

- real life uncertainties
- measurement errors
- sensitivity analysis

Notation

An interval matrix

$$
\mathbf{A}:=[\underline{A}, \bar{A}]=\left\{A \in \mathbb{R}^{m \times n} \mid \underline{A} \leq A \leq \bar{A}\right\} .
$$

The center and radius matrices

$$
A_{c}:=\frac{1}{2}(\bar{A}+\underline{A}), \quad A_{\Delta}:=\frac{1}{2}(\bar{A}-\underline{A}) .
$$

Interval linear equations

Interval linear equations

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$. The family of systems

$$
A x=b, \quad A \in \mathbf{A}, b \in \mathbf{b}
$$

is called interval linear equations and abbreviated as $\mathbf{A} x=\mathbf{b}$.

Solution set

The solution set is defined

$$
\left\{x \in \mathbb{R}^{n}: \exists A \in \mathbf{A} \exists b \in \mathbf{b}: A x=b\right\}
$$

Enclosure

$\mathbf{x} \in \mathbb{R}^{n}$ containing the solution set.

Methods

Interval Gaussian elimination, interval Gauss-Seidel, Krawczyk method, Hansen-Bliek-Rohn method, ...

Interval linear equations

Example (Barth \& Nuding, 1974))

$$
\begin{aligned}
& \left(\begin{array}{cc}
{[2,4]} & {[-2,1]} \\
{[-1,2]} & {[2,4]}
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{[-2,2]}{[-2,2]} \\
& \hline 14 \\
& \hline 14 \\
& \hline
\end{aligned}
$$

Interval linear equations

Example (typical case)

$$
\left(\begin{array}{cc}
{[6,7]} & {[2,3]} \\
{[1,2]} & -[4,5]
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{[6,8]}{-[7,9]}
$$

Interval linear programming

Interval linear programming

Consider a family of linear programming problems

$$
\min c^{T} x \text { subject to } A x \leq b
$$

where $A \in \mathbf{A}, b \in \mathbf{b}, c \in \mathbf{c}$.

Remark

- There is loss of generality assuming the form (\star).
- For instance, transformation of

$$
\min c^{T} x \text { subject to } A x=b, x \geq 0
$$

to

$$
\min c^{T} x \text { subject to } A x \leq b,-A x \leq-b, x \geq 0
$$

causes dependencies.

Problem statement

State of the art

- optimal value range (Chinneck \& Ramadan, 2000, Hladík, 2009, Jansson, 2004, Mráz, 1998, Rohn, 2006, etc.)
- duality (Gabrel \& Murat, 2010, Rohn, 1980, Serafini, 2005)
- basis stability (Beeck, 1978, Koníčková, 2001, Hladík, 2012, Rohn, 1993)
- optimal solution set (Beeck, 1978, Jansson, 1988, Machost, 1970)

The best and worst case optimal values

$$
\begin{aligned}
& \frac{f}{f}:=\min f(A, b, c) \text { subject to } A \in \mathbf{A}, b \in \mathbf{b}, c \in \mathbf{c} \\
& \bar{f}
\end{aligned}=\max f(A, b, c) \text { subject to } A \in \mathbf{A}, b \in \mathbf{b}, c \in \mathbf{c} .
$$

The worst case optimal value

Algorithm (The worst case optimal value)

(1) Compute

$$
\bar{\varphi}=\sup \underline{b}^{T} y \text { subject to } \bar{A}^{T} y \leq \bar{c},-\underline{A}^{T} y \leq-\underline{c}, y \leq 0
$$

(2) If $\bar{\varphi}=\infty$, then set $\bar{f}:=\infty$ and stop.
(3) If the system

$$
\bar{A} x^{1}-\underline{A} x^{2} \leq \underline{b}, x^{1} \geq 0, x^{2} \geq 0
$$

is feasible (i.e., each realization of the original system is feasible), then set $\bar{f}:=\bar{\varphi}$; otherwise set $\bar{f}:=\infty$.

Corollary

We compute \bar{f} by solving two linear programs.

The best case optimal value

Theorem (Gabrel \& Murat, 2010)

Computing the best case optimal value

$$
\underline{f}=\min f(A, b, c) \text { subject to } A \in \mathbf{A}, b \in \mathbf{b}, c \in \mathbf{c}
$$

is strongly NP-hard even in the class of problems with interval objective function coefficients and real constraint coefficients.

Proposition

We can put

$$
\mathbf{b}:=\bar{b} .
$$

Proof.

$A x \leq b$ implies $A x \leq \bar{b}$ for any $A \in \mathbf{A}$ and $b \in \mathbf{b}$.

The best case optimal value

Proposition (Computation of \underline{f})

We have

$$
\underline{f}=\min _{s \in\{ \pm 1\}^{n}} f_{s}
$$

where

$$
\begin{aligned}
& f_{s}=\min \left(c_{c}-\operatorname{diag}(s) c_{\Delta}\right)^{T} x \\
& \quad \text { subject to }\left(A_{c}-A_{\Delta} \operatorname{diag}(s)\right) x \leq b, \operatorname{diag}(s) x \geq 0
\end{aligned}
$$

Remarks

- It requires solving 2^{n} linear programs.
- If variables are a priori non-negative, then just one LP.
- It suffices to inspect orthants with feasible solutions only.

Upper bound on \underline{f}

Definition (Feasible set)

$$
\mathcal{F}:=\{x: \exists A \in \mathbf{A}: A x \leq b\}
$$

Algorithm (Upper bound on \underline{f})

(1) Start with the orthant corresponding to $f\left(A_{c}, b, c_{c}\right)$.
(2) Then check the neighboring connected orthants.

Proposition

The algorithm computes \underline{f} provided \mathcal{F} is connected.

Example

The feasible set to

$$
[-1,1] x+y \leq-1, \quad y \leq 0,-y \leq 0
$$

consists of two disjoint sets $(-\infty,-1] \times\{0\}$ and $[1, \infty) \times\{0\}$.

Connectivity of \mathcal{F}

Proposition

If $b \geq 0$, then \mathcal{F} is connected.

Proof.

$0 \in \mathcal{F}$, so \mathcal{F} is connected via the origin.

Proposition

If the linear system of inequalities

$$
\bar{A} u-\underline{A} v \leq b, u, v \geq 0
$$

is feasible, then \mathcal{F} is connected.

Proof.

If u, v solves (\star), then $x^{*}:=u-v$ solves $A x \leq b$ for every $A \in \mathbf{A}$.

Another upper bound on \underline{f}

Algorithm (Another upper bound on \underline{f})

(1) Put $A:=A_{c}, c:=c_{c}$.
(2) Let x^{*} be a solution to $f^{*}:=f(A, b, c)$
(3) Put $s:=\operatorname{sgn}\left(x^{*}\right)$.
(9) Let x^{s} be a solution to

$$
\begin{aligned}
f^{s} \equiv & \min \left(c_{c}-\operatorname{diag}(s) c_{\Delta}\right)^{T} x \\
& \quad \text { subject to }\left(A_{c}-A_{\Delta} \operatorname{diag}(s)\right) x \leq b .
\end{aligned}
$$

(5) Update $f^{*}:=\min \left(f^{*}, f^{s}\right)$.
(6) Put $s:=\operatorname{sgn}\left(x^{s}\right)$.
(1) Go to step 3. (repeat while f^{*} improves)

Lower bound on \underline{f}

Algorithm (Lower bound on \underline{f})

(1) Let B be an optimal basis corresponding to $f\left(A_{c}, b, c_{c}\right)$.
(2) Let \mathbf{y} be an enclosure to the interval linear system

$$
A_{B}^{T} y=c, \quad c \in \mathbf{c}, A_{B} \in \mathbf{A}_{B}
$$

(3) Provided $\bar{y} \leq 0$, we have a lower bound

$$
b_{B}^{T} y^{*} \leq \underline{f}
$$

where $y_{i}^{*}=\underline{y}_{i}$ if $b_{B_{i}} \geq 0$, and $y_{i}^{*}=\bar{y}_{i}$ otherwise.

Proof.

$\bar{y} \leq 0$ implies that B is an optimal basis of the dual problem, so it gives a lower bound on the primal objective.

Example

Example

$$
\min 1 x_{1}+2 x_{2} \text { subject to }\left(\begin{array}{cc}
-[4,5] & -[2,3] \\
{[4,5]} & -[1,2] \\
{[2,3]} & {[5,6]}
\end{array}\right)\binom{x_{1}}{x_{2}} \leq\left(\begin{array}{c}
-[11,12] \\
{[26,28]} \\
{[43,45]}
\end{array}\right)
$$

Example

Example

Results:

- The exact best case optimal value

$$
\underline{f}=-9.6154
$$

- Optimal solution for the selection $A:=A_{c}, c:=c_{c}$:

$$
x^{*}=(4.8056,-4.2500)^{T}, \quad f^{*}=-3.6944 .
$$

Optimal solution in the orthant $s=(1,-1)$:

$$
x^{s}=(5.1538,-7.3846)^{T}, \quad f^{s}=-9.6154
$$

- Enclosure to the dual system $A_{B}^{T} y=c, A_{B} \in \mathbf{A}_{B}, c \in \mathbf{c}$:

$$
\mathbf{y}=([-0.8340,-0.3326],[-0.6536,-0.0686])^{T}
$$

which yields a lower bound -14.6402 .

Conclusion and future work

Conclusion

- Not necessarily exponential algorithm for \underline{f}.
- Lower and upper bounds for \underline{f}.
- By duality in LP, we have analogous results for the worst case of

$$
\min c^{T} x \text { subject to } A x=b, x \geq 0
$$

where $A \in \mathbf{A}, b \in \mathbf{b}, c \in \mathbf{c}$.

Future work

- Improve the lower bound on \underline{f}.
- Extension to more complex forms (mixed equations and inequalities, ...)
- Handling dependencies.

References

(in M. Fiedler, J. Nedoma, J. Ramík, J. Rohn, and K. Zimmermann.
Linear optimization problems with inexact data.
Springer, New York, 2006.
围 M. Hladík.
How to determine basis stability in interval linear programming. Optim. Lett.
to appear, DOI: $10.1007 / \mathrm{s} 11590-012-0589-\mathrm{y}$.
固 M. Hladík.
Optimal value range in interval linear programming. Fuzzy Optim. Decis. Mak., 8(3):283-294, 2009.
M. Hladík.

Interval linear programming: A survey.
In Z. A. Mann, editor, Linear Programming - New Frontiers in Theory and Applications, chapter 2, pages 85-120. Nova Science Publishers, New York, 2012.

