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Abstract

The present article is one of a number of articles in which the authors
study the properties of integro-differential splines. The paper deals with
the construction of integro-differential polynomial and nonpolynomial
splines of the fifth order. The order of approximation with integro-
differential polynomial and nonpolynomial splines of the fifth order are
given. We use the tensor product of polynomial and non-polynomial
splines constructed in this paper for the approximation of functions of
two variables. The results of these numerical experiments are given.
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1 Introduction

There are certain problems in the fields of mathematics, mechanics, physics
and engineering that can’t be solved without using of splines. Nowerdays many
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splines are known, including cubic, bicubic and biquadratic B-splines, trigono-
metric, orthogonal splines. Those splines are applied to the construction of
curves and surfaces, for the designing of ship hulls, for the transformation of
a sound signal’s frequency [1,2,6-8,10-19].

Kireev V.I. became the first to use values of one-variable integrals of a func-
tion over subintervals for the construction of approximations. As is well known,
the one-dimensional case can be extended to multiple dimensions through the
use of the tensor product spline constructs [3,4,9].

In the present paper we discuss the construction of the polynomial and
nonpolynomial splines which use three integrals over subintervals in addition
to the values of the function in the nodes. As in previous papers, we construct
the approximation separately for each subinterval. As usual, local spline ap-
proximation uses values of the approximated function and, sometimes, values
of its derivatives.

2 Constructing polynomial integro-differential
splines

Suppose that n is natural number, while a, b are real numbers. Let {z;} be
points of interpolation, {z;} € [a,b], z; = a+jh,j=0,1,...,n, h = (b—a)/n.
Suppose that the function f(z) such that f € C°([a,b]).
For constructing the approximation of the function f(z) in the interval
[z;,xj41] we need to know the values of the function f(z;), f(z;+1), and
[5 f@)de, k=1,2,3.

IEJ',

We denote f(x) the approximation of the function f(x):

Flo) = flapss(o) + fampn(@) + [ Fladews™>(0)+

+ / f(z)dxwf_b(:v)—l— / f(:E)d:l:wf_3>(:B), T € [z, 241]. (1)

Here w;(z), wjti(x), wf_k>(x), k = 1,2,3 are the basis functions which are

obtained from the following system of equations:

flx) = f(x), f=120%2° 2" (2)
Suppose that suppw; = [xj_1, Tj41], suppwf’b(x) = [xj,xj41], k= 1,2,3.

The system of equations can be written in the form:
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wj (@) + winr(z) + (25 — zj_)wy 7 (2) + (25 — 2j_0)ws 27 (2) + (z; —
zig)ws P (x) =1, .
-1 _

arng( )+ zjwin(r) + 52 — 23w T (@) + 5(af - 2wy T (@) +

(fL’ _x] 3C<J< 3>( )_'Ia

(:c5 — SL‘? 3)%

The value of the determinant of the system is the following: det = —222h'3/5.
If we put x = x; + th,t € [0,1], than we can get the basis functions as
follows:

<—=3>

wj(z; +th) = —(t — 1)(125¢> + 557> + +736¢t + 222) /222, (3)
wir1(zj + th) = t(5t> + 12 + 33t + 24t*) /74, (4)
w7 (7 + th) = t(t — 1)(155¢* + 603t + 516) /(148 h), (5)
(6)

(7)

J

w2 (w; + th) = t(t — 1)(55¢% + 171t + 90) /(148 ),

Wi (zj + th) = t(t — 1)(85¢* + 197t + 92) /(1332 h).

J

Figures 1-3 show the graphics of the basic functions w;(x), wji1(x), wf_b(x),

k = 1,2,3. Figure 3 (right) shows the error of approximation of the Runge
function 1/(1 + 25x2) with the polynomial splines, h = 0.1, = € [-1,1].
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Figure 1: Plots of the basic functions: w;(x) (left), w;1(z) (right)

Let us take F(z), = € [a,b], such that: F(z) = f(z) if © € [z, 2,41],
j=3,...,n—1. Now we can obtain the order of approximation of f( )—f(x).
Suppose || flljas = max |f(w)]-

Theorem 2.1 Let function f(z) be such that f € C°([a,b]). For approzi-
mation f(x), x € [x;,xj41] by (1), (3)-(7), we have:

1F(@) = £y ey < KRNV s gm0}y where K =0.094,  (8)
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Figure 2: Plots of the basic functions: w ' (x) (left), ws?7(z) (right)
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Figure 3: Plot of the basic function wj<_3> (x) (left), and the error of approxi-

mation of the Runge function with the polynomial splines, h = 0.1, z € [—1, 1]
(right)

ifn >4 then |F(x) = f(2)|imsmn) < KBV limgun), where K = 0.094. (9)

Proof. From (3)-(7) we obtain:

_ 1.514
()] £ 1691, foya(@)] < 1, w1 ()] < ——, (10)
_ 0.346 _ 0.044
wf @) < S ()] < (1)

We obtain (8) using the Taylor formula in the vicinity of point z; in the interval
[z;,%j41], and (10), (11). The inequality (9) follows from (8).
Table 1 shows the errors R = m[a>§] |E' — f|, when [a,b] = [-1,1], h = 0.1,
z€[a,
h = 0.01. Calculations were done in Maple, Digits=25.

Table 2 shows the absolute values of the theoretical errors R = m[a%] |F—f|,
z€la,

obtained by using Theorem 2.1, when [a,b] = [—1,1], h = 0.1,0.01.
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Table 1.
N f R.h=0.1 | R,h=0.01
1 | sin(z) |0.180-10°° | 0.100- 10~
2 | cos(z) | 0.156-10~% | 0.163 - 1013
3 | sin(2z) | 0.572-107° | 0.577 - 10~
4 | cos(2z) | 0.573-107° | 0.578 - 1012
5 | sin(3z) | 0.433-107% | 0.438 - 107!
6 | cos(3z) | 0.432-107* | 0.438 - 10~
7 e” 0.420-107% | 0.562 - 10713
8 e 0.313-107% | 0.414 - 1071
9 e 0.558 - 1073 | 0.840 - 1071°
10 | & | 0.225-107! | 0.559- 10
Table 2.

N[ 7 Rh=01] R h=001
1 | sin(z) | 0.507-10° | 0.507- 10~ 11
2 | cos(x) [0.789-107% | 0.789 - 10~
3 | sin(2z) | 0.125-107* | 0.125-107°
4 | cos(2z) | 0.273-107* | 0.300-107°
5 | sin(3z) | 0.226-1073 | 0.226 10~
6 | cos(3x) | 0.228-1073 | 0.228-1078
7 e’ 0.255-107° | 0.255- 107!
8 e 0.222-1073 | 0.222-1078
9 3 0.458 - 1072 | 0.458 -1077
10 | e 0.294 294 - 10~
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3  Non-polynomial integro-differential spline

constructing

As in the previous section suppose that we know the values of the function

f(z;), f(zj41) and f;j_k fx)dx, k=1,2,3.
We denote f (x) the approximation of the function f(x):

o) = £2,) (@) + S (w0 i 0) + F(t)dtws ™ (o) +

J

[ s @ [ i @), o€ ol

<—=85>

where wy(7), k= j,j +1, w;y % (x), s = 1,2,3, we obtain from

f(z) = f(z) for f(z) = ¢i(z),i=0,1,2,3,4.

(12)

(13)
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Let us examine the approximation for the following functions ¢;(z):
1) gi(x) = 1,2,e% 77, €™,
2) pi(z) = 1,sin(z), cos(x), sin(2x), cos(2z),

3) gi(z) =1, 2,2 23, €.

Theorem 3.1 Let function f(x) be such that f € C5([a,b]). For approxi-
mation f(x), x € [z, x;41] by (12), (13) we have the error estimations:

1)‘]?(17) - f(x)|[-1’j71'j+1] < th5||f(5) - 2f(4) - f(g) + 2f(2)|’[$j—37$]’+1]7 Ky > 0,
(14)

x 2z

where @;(x) = 1,z,e*, 7", e,

2)|f<$> - f('r)’[$j7$j+l] < K2h5||f(5) + 5f(3) + 4f/H[zj_3,$j+1}7 K2 > 07 (15)

where @;(x) = 1,sin(x), cos(x), sin(2x), cos(2z),

3 (@) = F(@)lfayayen) S Ksh®e | fO —4f Dl ooy, K >0, (16)

where p;(x) = 1,2, 2% 23, €.

Proof. We consider (16) more detail. The proof for the others two are
similar. The function f(x) in the third case (as was shown by the author at
the conference in Gdansk, May, 2014 [5]) in [z;,x;41] can be represented in
the form:

flz) = / (32(2® — %) — 24(2® + %) + 12(x — t) + 96(xt* — ta®)+
Tj
48tz — 3)(4fW — fONdt 4 ¢1 4 o + c32” + 42> + 5™
where ¢;, © = 1,2, 3,4, 5 are arbitrary constants. Using the inequalities

Jwj()] < 3.135, lwjg (x)| < 1, w7 (z)] < 4.544, (17)

w2 (2)] < 1441, |wS ¥ (2)] < 0.233 (18)

we obtain:
f(z) = f(2)] < KshPe* || fO) — 4 f D0y o

Table 3 shows the actual errors of the approximation of f(z) by the non-
polynomial splines in [—1,1], A = 0.1. The approximations were constructed
using the functions ¢;(z). Here we use the next notations for the errors of

approximations:
R!: 1,z,e%, e * e,
RM: 1,sin(x), cos(z), sin(2z), cos(2x),

RUT . 1z, 22 23, 2
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Table 3.

f(l’) RI RII RIII

3 0.352-107° | 0.784-107° 0.

e 0. 0.787-107* | 0.314-107*

e 0.172-107% | 0.898 - 107 | 0.558 - 10~*
sin(3z) | 0.604-107* | 0.214- 1074 | 0.433 - 10~*
sin(5z) | 0.638 - 1073 | 0.440 - 1073 | 0.545 - 1073
mﬁ 0.227-107* | 0.223-107* | 0.225- 107"

Figure 4 show the error of approximation of the Runge function: with
the trigonometrical splines R, and with the exponential splines R/, where
h=0.1, [a,b] = [-1,1].
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Figure 4: Plots of the error of approximation of the Runge function: with
the trigonometrical spline (left), with the exponential spline where ¢;(x) =
1,z,22, 23 e® (right), here h = 0.1,z € [-1,1]

4 The approximation of functions of two vari-
ables

Suppose that n, m are natural numbers, while a, b, ¢, d are real numbers. Let

us build a grid of interpolation nodes: {z;} € [a,b], z; = a+jh, j =0,1,...,n,

{ye} € [e,d], yp = c+ khy, k=0,1,...,m, hy = (b—a)/n, hy = (d—c)/m.
Consider a rectangular domain {2 where

Q=A{(r,y)a<zr<be<y<d}

We introduce a mesh of lines on €2 which divides the domain €2 into the rect-
angles €2, .,

ijk = {(.’I,y)| VS [xjaijrl]?y € [ykvyk+1]}-
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If (z,y) € Q;, then we put

3 3

i(z.y) E:E:/(/U$y¢wW%87)@fD@H

s=1 1=1
Yk—s Tj—i

Tj

/ u(x, Yprs)dx oJ () wigs(y)+

MH

D3

=1 s

D3

p=1 1=

I
=

[y

/u%% dy wyrs(@) Wi (y)+

11
+ Z Z W(Zjris Yerp) Wit (T) Wt (Y)- (19)
=0 p=0
Figure 5 shows the plot of the approximation of function u(z,y) = 1/((1 +
92%)(1 + 9y?)) by (19) with the polynomial splines and the error of the ap-
proximation, when h, = h, = 0.2,Q = [—1,1] x [-1,1]. Figure 6 shows the
plot of the approximation of function (x — y)?(x + y)? by (19) with the poly-
nomial splines and the error of the approximation, when h, = h, = 0.2,Q =
[—1,1] x [~1, 1], Digits=15.

Figure 5: Plots of the approximation of the function w;(z,y) with the polyno-
mial splines (19) (left), the error of the approximation (right)

5 Conclusion

Here we constructed the approximation using the values of integrals of the
function over the subintervals immediately to the left of this subinterval. Fur-
ther, we will investigate in detail the construction of the approximation of
a function in subinterval using the values of the function in the ends of the



On approximations by polynomial ... 743

Figure 6: Plots of the approximation of the function (z — y)?(z + y)? with the

polynomial splines (left), the error of the approximation (right)

subinterval and the values of the integrals of function over the subintervals
immediately to the left of this subinterval. If the values of integral of the
function are unknown, we will use quadrature formulae with the fifth order of
approximation in polynomial and non-polynomial cases.
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