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Abstract

The present article is one of a number of articles in which the authors

study the properties of integro-differential splines. The paper deals with

the construction of integro-differential polynomial and nonpolynomial

splines of the fifth order. The order of approximation with integro-

differential polynomial and nonpolynomial splines of the fifth order are

given. We use the tensor product of polynomial and non-polynomial

splines constructed in this paper for the approximation of functions of

two variables. The results of these numerical experiments are given.
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1 Introduction

There are certain problems in the fields of mathematics, mechanics, physics
and engineering that can’t be solved without using of splines. Nowerdays many
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splines are known, including cubic, bicubic and biquadratic B-splines, trigono-
metric, orthogonal splines. Those splines are applied to the construction of
curves and surfaces, for the designing of ship hulls, for the transformation of
a sound signal’s frequency [1, 2, 6–8,10–19].

Kireev V.I. became the first to use values of one-variable integrals of a func-
tion over subintervals for the construction of approximations. As is well known,
the one-dimensional case can be extended to multiple dimensions through the
use of the tensor product spline constructs [3, 4, 9].

In the present paper we discuss the construction of the polynomial and
nonpolynomial splines which use three integrals over subintervals in addition
to the values of the function in the nodes. As in previous papers, we construct
the approximation separately for each subinterval. As usual, local spline ap-
proximation uses values of the approximated function and, sometimes, values
of its derivatives.

2 Constructing polynomial integro-differential

splines

Suppose that n is natural number, while a, b are real numbers. Let {xj} be
points of interpolation, {xj} ∈ [a, b], xj = a+jh, j = 0, 1, . . . , n, h = (b−a)/n.

Suppose that the function f(x) such that f ∈ C5([a, b]).
For constructing the approximation of the function f(x) in the interval

[xj, xj+1] we need to know the values of the function f(xj), f(xj+1), and∫ xj

xj−k
f(x)dx, k = 1, 2, 3.

We denote f̃(x) the approximation of the function f(x):

f̃(x) = f(xj)ωj(x) + f(xj+1)ωj+1(x) +

xj∫

xj−1

f(x)dxω<−1>
j (x)+

+

xj∫

xj−2

f(x)dxω<−2>
j (x) +

xj∫

xj−3

f(x)dxω<−3>
j (x), x ∈ [xj, xj+1]. (1)

Here ωj(x), ωj+1(x), ω
<−k>
j (x), k = 1, 2, 3 are the basis functions which are

obtained from the following system of equations:

f̃(x) ≡ f(x), f = 1, x, x2, x3, x4. (2)

Suppose that supp ωj = [xj−1, xj+1], supp ω
<−k>
j (x) = [xj, xj+1], k = 1, 2, 3.

The system of equations can be written in the form:
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ωj(x) + ωj+1(x) + (xj − xj−1)ω
<−1>
j (x) + +(xj − xj−2)ω

<−2>
j (x) + (xj −

xj−3)ω
<−3>
j (x) = 1,

xjωj(x) + xj+1ωj+1(x) +
1
2
(x2

j − x2
j−1)ω

<−1>
j (x) + 1

2
(x2

j − x2
j−2)ω

<−2>
j (x) +

(x2
j − x2

j−3)ω
<−3>
j (x) = x,

x2
jωj(x) + x2

j+1ωj+1(x) +
1
3
(x3

j − x3
j−1)ω

<−1>
j (x) + 1

3
(x3

j − x3
j−2)ω

<−2>
j (x) +

(x3
j − x3

j−3)ω
<−3>
j (x) = x2,

x3
jωj(x) + x3

j+1ωj+1(x) +
1
4
(x4

j − x4
j−1)ω

<−1>
j (x) + 1

4
(x4

j − x4
j−2)ω

<−2>
j (x) +

(x4
j − x4

j−3)ω
<−3>
j (x) = x3,

x4
jωj(x) + x4

j+1ωj+1(x) +
1
5
(x5

j − x5
j−1)ω

<−1>
j (x) + 1

5
(x5

j − x5
j−2)ω

<−2>
j (x) +

(x5
j − x5

j−3)ω
<−3>
j (x) = x4.

The value of the determinant of the system is the following: det = −222h13/5.
If we put x = xj + th, t ∈ [0, 1], than we can get the basis functions as

follows:

ωj(xj + th) = −(t− 1)(125t3 + 557t2 ++736t+ 222)/222, (3)

ωj+1(xj + th) = t(5t3 + 12 + 33t+ 24t2)/74, (4)

ω<−1>
j (xj + th) = t(t− 1)(155t2 + 603t+ 516)/(148h), (5)

ω<−2>
j (xj + th) = t(t− 1)(55t2 + 171t+ 90)/(148h), (6)

ω<−3>
j (xj + th) = t(t− 1)(85t2 + 197t+ 92)/(1332h). (7)

Figures 1–3 show the graphics of the basic functions ωj(x), ωj+1(x), ω
<−k>
j (x),

k = 1, 2, 3. Figure 3 (right) shows the error of approximation of the Runge
function 1/(1 + 25x2) with the polynomial splines, h = 0.1, x ∈ [−1, 1].
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Figure 1: Plots of the basic functions: ωj(x) (left), ωj+1(x) (right)

Let us take F̃ (x), x ∈ [a, b], such that: F̃ (x) = f̃(x) if x ∈ [xj, xj+1],

j = 3, . . . , n−1. Now we can obtain the order of approximation of f̃(x)−f(x).
Suppose ‖f‖[a,b] = max

[a,b]
|f(x)|.

Theorem 2.1 Let function f(x) be such that f ∈ C5([a, b]). For approxi-
mation f(x), x ∈ [xj, xj+1] by (1), (3)-(7), we have:

|f̃(x)− f(x)|[xj ,xj+1] ≤ Kh5‖fV ‖[xj−3,xj+1], where K = 0.094, (8)
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Figure 2: Plots of the basic functions: ω<−1>
j (x) (left), ω<−2>

j (x) (right)
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Figure 3: Plot of the basic function ω<−3>
j (x) (left), and the error of approxi-

mation of the Runge function with the polynomial splines, h = 0.1, x ∈ [−1, 1]
(right)

if n ≥ 4 then |F̃ (x)− f(x)|[x3,xn] ≤ Kh5‖fV ‖[x0,xn], where K = 0.094. (9)

Proof. From (3)-(7) we obtain:

|ωj(x)| ≤ 1.691, |ωj+1(x)| ≤ 1, |ω<−1>
j (x)| ≤

1.514

h
, (10)

|ω<−2>
j (x)| ≤

0.346

h
, |ω<−3>

j (x)| ≤
0.044

h
. (11)

We obtain (8) using the Taylor formula in the vicinity of point xj in the interval
[xj, xj+1], and (10), (11). The inequality (9) follows from (8).

Table 1 shows the errors R = max
x∈[a,b]

|F̃ − f |, when [a, b] = [−1, 1], h = 0.1,

h = 0.01. Calculations were done in Maple, Digits=25.

Table 2 shows the absolute values of the theoretical errors R = max
x∈[a,b]

|F̃−f |,

obtained by using Theorem 2.1, when [a, b] = [−1, 1], h = 0.1, 0.01.
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Table 1.
N f R, h = 0.1 R, h = 0.01
1 sin(x) 0.180 · 10−8 0.190 · 10−13

2 cos(x) 0.156 · 10−8 0.163 · 10−13

3 sin(2x) 0.572 · 10−5 0.577 · 10−12

4 cos(2x) 0.573 · 10−5 0.578 · 10−12

5 sin(3x) 0.433 · 10−4 0.438 · 10−11

6 cos(3x) 0.432 · 10−4 0.438 · 10−11

7 ex 0.420 · 10−8 0.562 · 10−13

8 e2x 0.313 · 10−4 0.414 · 10−11

9 e3x 0.558 · 10−3 0.840 · 10−10

10 1
1+25x2 0.225 · 10−1 0.559 · 10−8

Table 2.
N f R, h = 0.1 R, h = 0.01
1 sin(x) 0.507 · 10−6 0.507 · 10−11

2 cos(x) 0.789 · 10−6 0.789 · 10−11

3 sin(2x) 0.125 · 10−4 0.125 · 10−9

4 cos(2x) 0.273 · 10−4 0.300 · 10−9

5 sin(3x) 0.226 · 10−3 0.226 · 10−8

6 cos(3x) 0.228 · 10−3 0.228 · 10−8

7 ex 0.255 · 10−5 0.255 · 10−11

8 e2x 0.222 · 10−3 0.222 · 10−8

9 e3x 0.458 · 10−2 0.458 · 10−7

10 1
1+25x2 0.294 294 · 10−5

3 Non-polynomial integro-differential spline

constructing

As in the previous section suppose that we know the values of the function
f(xj), f(xj+1) and

∫ xj

xj−k
f(x)dx, k = 1, 2, 3.

We denote f̃(x) the approximation of the function f(x):

f̃(x) = f(xj)ωj(x) + f(xj+1)ωj+1(x) +

∫ xj

xj−1

f(t)dt ω<−1>
j (x)+

∫ xj

xj−2

f(t)dt ω<−2>
j (x) +

∫ xj

xj−3

f(t)dt ω<−3>
j (x), x ∈ [xj, xj+1]. (12)

where ωk(x), k = j, j + 1, ω<−s>
j (x), s = 1, 2, 3, we obtain from

f̃(x) = f(x) for f(x) = ϕi(x), i = 0, 1, 2, 3, 4. (13)
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Let us examine the approximation for the following functions ϕi(x):
1) ϕi(x) = 1, x, ex, e−x, e2x,
2) ϕi(x) = 1, sin(x), cos(x), sin(2x), cos(2x),
3) ϕi(x) = 1, x, x2, x3, ex.

Theorem 3.1 Let function f(x) be such that f ∈ C5([a, b]). For approxi-
mation f(x), x ∈ [xj, xj+1] by (12), (13) we have the error estimations:

1)|f̃(x)− f(x)|[xj ,xj+1] ≤ K1h
5‖f (5) − 2f (4) − f (3) + 2f (2)‖[xj−3,xj+1], K1 > 0,

(14)
where ϕi(x) = 1, x, ex, e−x, e2x,

2)|f̃(x)− f(x)|[xj ,xj+1] ≤ K2h
5‖f (5) + 5f (3) + 4f ′‖[xj−3,xj+1], K2 > 0, (15)

where ϕi(x) = 1, sin(x), cos(x), sin(2x), cos(2x),

3)|f̃(x)− f(x)|[xj ,xj+1] ≤ K3h
5e4xj+1‖f (5) − 4f (4)‖[xj−3,xj+1], K3 > 0, (16)

where ϕi(x) = 1, x, x2, x3, ex.

Proof. We consider (16) more detail. The proof for the others two are
similar. The function f(x) in the third case (as was shown by the author at
the conference in Gdansk, May, 2014 [5]) in [xj, xj+1] can be represented in
the form:

f(x) =

∫ x

xj

(32(x3 − t3)− 24(x2 + t2) + 12(x− t) + 96(xt2 − tx2)+

48tx− 3)(4f (4) − f (5))dt+ c1 + c2x+ c3x
2 + c4x

3 + c5e
4x.

where ci, i = 1, 2, 3, 4, 5 are arbitrary constants. Using the inequalities

|ωj(x)| ≤ 3.135, |ωj+1(x)| ≤ 1, |ω<−1>
j (x)| ≤ 4.544, (17)

|ω<−2>
j (x)| ≤ 1.441, |ω<−3>

j (x)| ≤ 0.233 (18)

we obtain:

|f̃(x)− f(x)| ≤ K3h
5e4xj+1‖f (5) − 4f (4)‖[xj−3,xj+1].

Table 3 shows the actual errors of the approximation of f(x) by the non-
polynomial splines in [−1, 1], h = 0.1. The approximations were constructed
using the functions ϕi(x). Here we use the next notations for the errors of
approximations:
RI : 1, x, ex, e−x, e2x,
RII : 1, sin(x), cos(x), sin(2x), cos(2x),
RIII : 1, x, x2, x3, x4.
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Table 3.

f(x) RI RII RIII

x3 0.352 · 10−5 0.784 · 10−5 0.
e2x 0. 0.787 · 10−4 0.314 · 10−4

e3x 0.172 · 10−3 0.898 · 10−3 0.558 · 10−3

sin(3x) 0.604 · 10−4 0.214 · 10−4 0.433 · 10−4

sin(5x) 0.638 · 10−3 0.440 · 10−3 0.545 · 10−3

1
1+25x2 0.227 · 10−1 0.223 · 10−1 0.225 · 10−1

Figure 4 show the error of approximation of the Runge function: with
the trigonometrical splines RII , and with the exponential splines RIII , where
h = 0.1, [a, b] = [−1, 1].
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Figure 4: Plots of the error of approximation of the Runge function: with
the trigonometrical spline (left), with the exponential spline where ϕi(x) =

1, x, x2, x3, ex (right), here h = 0.1, x ∈ [−1, 1]

4 The approximation of functions of two vari-

ables

Suppose that n,m are natural numbers, while a, b, c, d are real numbers. Let
us build a grid of interpolation nodes: {xj} ∈ [a, b], xj = a+jh, j = 0, 1, . . . , n,
{yk} ∈ [c, d], yk = c+ kh1, k = 0, 1, . . . ,m, hx = (b− a)/n, hy = (d− c)/m.

Consider a rectangular domain Ω where

Ω = {(x, y)| a ≤ x ≤ b, c ≤ y ≤ d}.

We introduce a mesh of lines on Ω which divides the domain Ω into the rect-
angles Ωj,k,

Ωj,k = {(x, y)| x ∈ [xj, xj+1], y ∈ [yk, yk+1]}.
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If (x, y) ∈ Ωj,k then we put

ũ(x, y) =
3∑

s=1

3∑

i=1

yk∫

yk−s

xj∫

xj−i

u(x, y)dxdy ω<−s>
k (y) ω<−i>

j (x)+

+
3∑

i=1

1∑

s=0

xj∫

xj−i

u(x, yk+s)dx ω<−i>
j (x) ωk+s(y)+

+
3∑

p=1

1∑

i=0

yk∫

yk−p

u(xj+i, y)dy ωj+i(x) ω
<−p>

k (y)+

+
1∑

i=0

1∑

p=0

u(xj+i, yk+p) ωj+i(x) ωk+p(y). (19)

Figure 5 shows the plot of the approximation of function u1(x, y) = 1/((1 +
9x2)(1 + 9y2)) by (19) with the polynomial splines and the error of the ap-
proximation, when hx = hy = 0.2,Ω = [−1, 1] × [−1, 1]. Figure 6 shows the
plot of the approximation of function (x− y)2(x + y)2 by (19) with the poly-
nomial splines and the error of the approximation, when hx = hy = 0.2,Ω =
[−1, 1]× [−1, 1], Digits=15.

–1 –0.5 0 0.5 1
–0.5

0

0.5
0

0.2

0.4

0.6

0.8

–1 –0.5 0 0.5 1
–0.5

0
0.5–0.04

–0.02

0

0.02

0.04

0.06

Figure 5: Plots of the approximation of the function u1(x, y) with the polyno-
mial splines (19) (left), the error of the approximation (right)

5 Conclusion

Here we constructed the approximation using the values of integrals of the
function over the subintervals immediately to the left of this subinterval. Fur-
ther, we will investigate in detail the construction of the approximation of
a function in subinterval using the values of the function in the ends of the
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Figure 6: Plots of the approximation of the function (x− y)2(x+ y)2 with the
polynomial splines (left), the error of the approximation (right)

subinterval and the values of the integrals of function over the subintervals
immediately to the left of this subinterval. If the values of integral of the
function are unknown, we will use quadrature formulae with the fifth order of
approximation in polynomial and non-polynomial cases.
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