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ABSTRACT 

Despite its necessarily finite aperture, an optical system can theo- 

retically be coated to produce arbitrarily perfect imagery over a limited 

field. When the object is of limited extent, this field can be made the op- 

tical conjugate to the object, so that the whole object is imaged with arbi- 

trary precision. 

The required pupil coating approximates low- contrast cosine fringes 

over its central region; toward the aperture edge the frequency and amplitude 

rapidly accelerate. The maximum occurs as a narrow spike. 

The frequency near the central region varies directly with the total 

extent of the conjugate field and inversely with the required central core 

width A in the point amplitude response. As t is made arbitrarily narrow, 

the point amplitude response approaches the form of a sinc function over the 

field of view. This function is precisely the point amplitude for a diffrac- 

tion- limited pupil with a magnified aperture of 1/A times the given pupil 

aperture! The only image property that is not in compliance with this effec- 

tive aperture magnification is that of total illumination. This is severely 

reduced from that of the original, uncoated aperture, and is the major re- 

striction on practical use of the derived pupil. 

Applications to microscopy and telescopy are discussed. 
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INTRODUCTION 

The image produced by an optical system can be degraded in various 

ways, such as by motion of the object or the optical system, and some work 

has been done at improving such images by processing of the image itself. 

An image is also degraded by intrinsic characteristics of the lens. Cor- 

rection of this type of degradation can be done by processing the image, as 

above, and in theory such image processing can restore the object scene 

perfectly'-`'. In practice, however, such a restoration is inaccurate be- 

cause of measurement errors in the images. Furthermore, much computing time 

is required, and the restoration is not available until some time after the 

image is first obtained. 

It would be of advantage to be able to make the perfect restoration 

as the image forms. Conceivably this could be accomplished by coating the 

lens with a particular transmission pattern. Some years ago Toraldo di 

Francia6 worked on a similar problem. He showed that this method might be 

feasible, but his paper is relatively inaccessible and most optical workers 

have been unaware of it and its promise. 

In this paper, we investigate the coating that would be required to 

produce arbitrarily perfect imagery. This is done for the usual cases of 

interest: (a) when the object is of limited extent and radiates either totally 

coherently or totally incoherently, (b) when the image and object are con- 

nected by a convolution, and (c) when the Fraunhofer approximation holds. 

Unfortunately, we find that the perfect restoration is achieved only 

at the expense of a considerable loss of illumination. 
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PHYSICAL ASSUMPTIONS 

Limited field 

Suppose an object is radiating either coherently or incoherently. We 

let o represent the object amplitude for the object radiating coherently, or 

radiance for the object radiating incoherently. We assume the observer knows 

that o is of limited extent xo, so that if x is the distance coordinate, 

o(x) = 0 if Ix' > x0/2. (1) 

If xo is small enough, a situation of isoplanatism exists, and image i is 

formed as a convolution : 

xo/2 

i(x) = 
I 

dx' o(x') s(x-x'). 
1 

-xo/2 

For simplicity, unit magnification is assumed throughout this paper. In 

Eq. (2), function s is the optical point response, defined as 

s(x) = 

a(x) for o coherent 

la(x)I2 for o incoherent. 

Function a(x) is the point amplitude response for the optics. 

A condition of perfect image formation exists when 

(2) 

(3) 

i (x) = C o (x) (4a) 

over the field of view 

x0/2. (4b) 

C represents a uniform attenuation over the field of view if C < 1, or a uni- 

form gain if C > 1. Remember that equality (4a) need be satisfied only over 

the limited field (4b). The ramifications of this situation are discussed next. 
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With an arbitrary object, the image (2) meets requirement (4a) only if 

optical response 

s(x) = C 6(x), (5a) 

where 6(x) is the Dirac delta function .7 Identity (4a) follows from substi- 

tution of Eq. (5a) into convolution (2), with use of the "sifting property "7 

of the delta function. Now, by the limited field requirement (4b) and convo- 

lution (2), optical response s(x) only contributes to the image at all 

Ix! < xo. The strong requirement (5a) is now somewhat weakened. It need hold 

only over the limited field 

(5b) 

It will be shown that any finite xo allows the problem to be solved. A pupil 

function exists whose corresponding response s(x) is arbitrarily close to 

C 6(x) over the field of view lx1 < xo. 

State of coherence 

Both coherent and incoherent imagery can be simultaneously optimized by 

one pupil if point amplitude a(x) satisfies Eq. (5). That is, 

a(x) = K 6(x) for lx1 < xo . (6) 

This is because of identities (2) and (3), and the fact that [6(x)]2 must be 

proportional to 6(x), as shown below. 

Function 6(x) is defined by two conditions : 

and 

6(x) = 0 for x # 0 

E 

dx6(x) = i for any E > O. 

-E 

(7a) 

(7b) 
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The square of Eq. (7a) is the same identity in [6(x)]2. Hence, [6(x)]2 sat- 

isfies (7a). Also, since [6(x)]2 » 6(x) for x = 0, certainly 

J 

dx[6(x)]2 > O. 

-E 

(8) 

Hence, [6(x)]2 satisfies requirement (7b) except for a multiplicative constant. 

Therefore [6(x)]2 must itself be proportional to 6(x). In summary, we may con- 

clude that 6(x) is infinitely sharp, but [6(x)]2 is sharper yet. Or physically, 

if we can make amplitude a(x) '= 6(x), then s(x) approximates 6(x) even better. 
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TORALDO DI FRANCIA'S APPROACH 

Before embarking on the derivation, it is useful to review Toraldo di 

Francia's work6 on a similar problem. He found that a pupil of concentric, 

equispaced rings, of alternating phase, makes the first dark ring of s ar- 

bitrarily wide, while maintaining a fixed central core width. This design 

problem resembles requirements (5a) and (5b) if xo is taken as the outside 

radius of the first dark ring. Toraldo di Francia was able to systematically 

widen xo, keeping the sidelobes within xo relatively small, by increasing the 

number of pupil rings to five. However, this technique probably cannot be 

used to solve the converse problem of arbitrarily reducing the energy in the 

sidelobes for a fixed xo. This is because the point amplitude contribution 

from his Qth pupil ring is the Bessel function Jo(Qx /L), where Q =1, 2, ..., L. 

But functions .Jo(Qx /L) are not a complete set, so no superposition of them, 

in image space, could approximate a delta function. If s(x) were expanded as 

a series of complete functions (as we do here), then it might approach 6(x) 

as the number of series terms'is indefinitely increased. 

The existence of Toraldo di Francia's pupil shows that the solution 

found in this paper is not so radical as it seems. Both solutions are simi- 

lar in being extremely wasteful of illumination, most of which is thrown out- 

side the yield of view, Eq. (5b). 
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DERIVATION OF REQUIRED PUPIL 

We now find the optical pupil function that accomplishes the require- 

ments (6) of perfect imagery. In the Fraunhofer approximation,7 a(x) is re- 

lated to the optical pupil function U(ß) through 

J 

a(x) = dß U(ß) ejßx, j = (-1)2. (9) 

-ßo 

Coordinate ß is 2îr /aR times the pupil distance coordinate, where a is the ra- 

diation wavelength and R is the Gaussian image distance. ßo defines the pupil 

extent, a finite number for any real optical system. 

We seek the pupil U(ß) which, through Eq. (9), satisfies design re- 

quirements (6). We previously noted that requirements (6) can be satisfied 

only if a(x) is physically an expansion of complete functions. Hence, the 

problem is to choose a series of functions for U(ß) such that its finite 

Fourier transform, a(x) in Eq. (9), is a series of complete functions. Luck- 

ily, such a representation exists. 

Over the pupil 1ßI <_ ßo, let amplitude 

CO 

U(ß) = ¿ bn IPn(c,ßxo/ßo), 
n=0 

c = Boxo, 

where In is the nth prolate spheroidal wave function.8 By Eq. (lOb), c is 

thus the space- bandwidth product for the system design. For brevity, we drop. 

the notation c from the argument of tpn. Coefficients bn are to be found. 

Functions P (x) are normalized "angular functionsi8 Son(x): 

tyn(x) = (Xn/Nn)z Son(x/xo) (lla) 



Normalization coefficients 

1j 

Nn = J dtCson(t)72 

-1 

7 

(lib) 

and the an are known eigenvalues. All quantities in Eqs. (11) are functions 

of c. 

Functions tpn(x) have precisely the properties we require above. They 

are complete8 over the field (x) < xo, i.e. 

d 
A 
n n 

(0) 11,11(x) = ô(x) for lx1 <_ xo. 

n =0 

Also, the finite Fourier transformé of in is again 1111. 

(12a) 

ßo 

1 

dß vn(ßxo/ßo)ei 
ßx 

= jn(2Tranßo/xo) 
z11)n(x) 

. (12b) 

-ß0 

By substituting representation (l0a) into Eq. (9), switching orders 

of integration and summation, and using identity (12b), we find 

a(x) = (27ßo/xo) z 
¿ bn jn An t,n(x) . 

n=0 

(13) 

Comparing Eq. (13) with the completeness property (12a), we note that design 

requirements (6) can indeed be met if each 

bn = (xo/27ßo) 
z 

j-n añ3/2 n(0) . 

The problem is solved. 

(14) 
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The required pupil for meeting requirements (6) is found by substitut- 

ing coefficients (14) back into series (l0a). Using the fact that8'9 

rPn(0) = 0 for n odd, (15) 

we find a pupil 

U(ß) = (x /2,rß ) 2 G (-1)n/2 -3/2 (0) (ßx /ß ). 
0 o 

n(even)=0 
n n n o o 

The resulting point amplitude a(x) obeys 

a(x) = 

CO 

Xñ1 Vpn(0) n(x), 
n(even)=0 

(16a) 

(16b) 

which, according to identity (12a), is just 6(x) within the field of view 

lx¡ < xo. We shall see below that, outside the field of view, a(x) departs 

maximally from delta function behavior, having incredibly large sidelobes. 
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PROPERTIES OF THE PUPIL AND POINT AMPLITUDE 

By Eq. (16a) and the evenness of tpn for n even,8'9 pupil U(ß) is 

purely real and even, but not necessarily positive everywhere. Hence, the 

pupil contains zones of zero and 7 phase values. The necessity for Tr phase 

changes is in accord with the discovery of Gal'pernl0 that a purely positive 

pupil cannot produce an arbitrarily narrow central core in a(x). 

Eq. (16b) shows that a(x) is even in x. In order for U(ß) to represent 

real optics, passive or active, it must be finite everywhere. But, for the 

infinite number of terms indicated in Eq. (16a), U(ß) must be singular at 

least at one point. This follows from observation of Eq. (9): If we demand 

that a(x) = K 6(x), then a(0) must be singular, and since ßo is finite, U(ß) 

must contain a singularity somewhere. 

Hence, in order to arrive at a U(ß) that is everywhere finite, series 

(16a) must be truncated at finite n. By Eq. (9), the effect upon a(x) is 

likewise truncation at the same n. Hence, we now define the truncated 

quantities 

and 

N 

UN(ß) = (x0/2nfo) 
z 

(-1)n/2 
n3/2 

Vn(0) Vn(ßxo/ßo) (17a) 
n (even)=0 

N 

aN(x) = ¿ n"1 4,11(0) 4)11(x). (17b) 

n(even)=0 

Both UN(ß) and aN(x) are observed to be even functions. 

Active optics 

If we physically allow values of UN(ß) > 1, which assumes an active op- 

tical system, then pupil (17a) may be directly used. 
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Aside from the desirable delta- function properties of aN(x) (shown 

below), there is no light loss due to attenuation in the pupil. Such light 

loss will be shown to be the major limitation to the use of passive optics 

in this manner. Hence, pupil (17a) is one of the best possible uses for an 

active optical pupil, once active optics are physically realizable. 

Passive optics 

In the meantime, we must be content with examination of the role of 

passive optics in our scheme. Numerical evaluation of Eq. (17a) shows that 

UN(ß) is maximum in absolute value at a =ßo. Therefore, we can define a pas- 

sive pupil 

PN(ß) = UN(ß)/UN(ßo) (18a) 

For purposes of analyzing aN(x), it is convenient to examine the nor- 

malized point amplitude 

AN(x) E aN(x)/aN(0) - 
(18b) 

The efficiency of PN(ß) in transmitting light into the central core of AN(x) 

may be measured by the Strehl flux ratio .7 By use of Eqs. (9) and (18a), 

S E CaN(0) / 2ßoUN(ßo).72. (18c) 

All quantities in Eqs. (18) may be related to known quantities tpn and an 

through Eqs. (17). Numerical analysis of PN(ß), AN(x), and S was performed 

on a CDC 6400 computer. 
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Point amplitude 

1.0 

Figure 1 shows AN(x) for the case c = 6.25, with N = 40. 

\\ Uncoated, diffraction- limited optics 

A x) 

\ \\ C lear, filled pupil A. : w ® A .. a. / - W .: . .... . i Tr V . 
N, / / 

`----., 
....... 
/ 

. 4 .6 .8 
RELATIVE COORDINATE x /x0 

I .0 

Fig. 1. Point amplitude response A40(x) for space -bandwidth of c = 6.25. 
Dashed curve is the point amplitude for uncoated, diffraction - limited 
optics of same physical aperture as A40(x). Comparison of the two cen- 
tral core widths shows an effective aperture magnification of about 
6.67 in A40(x). The dotted curve is the amplitude response from a 
clear, filled pupil of physical extent equal to the effective aperture 
extent of A40(x). To the accuracy of the plots, this curve and A40(x) 
are identical through the first two sideZobes. 

This is a typical AN(x) curve, and certain properties of AN(x) for general 

N and c may be drawn from it: 

(1) There are exactly N zeros over the entire field 'xi < xo. (The 

half -field x < xo is shown.) 
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(2) Let ON represent the total width of the central core. For 

N > 20 we find the amazingly simple result that 
AN 

= 6.0 xo /N, independent 

of c. A simple measure of the resolution quality is the ratio of 
AN 

to the 

central core width for uncoated optics of the same aperture ßo. The latter 

core width is 2ir /ß0. Thus, we define resolution enhancement 

6N 
- 

ANßo/2ff. 

From the preceding identity we therefore have 

(19a) 

3c/N7 (19b) 

for N ? 20. This shows that the core width is made arbitrarily narrow as N 

is increased, which corroborates Wilkins' observationll on ultimate core 

width. We also see that, for given aperture size ßo and order N, 6N directly 

increases with field xo. 

(3) The dashed curve in Fig. 1 is the point amplitude Ao(x) due to 

uncoated optics of aperture Bo. The enhanced resolution due to A40(x) is im- 

mediately apparent. However, a much more important observation is that the 

form of A40(x) is very similar to that of Ao(x), except for being compressed 

in x. In fact, we find that asymptotically as N increases 

with 

AN(x) sinc(Wo), 

BO = ßo/6N, 

(20a) 

(20b). 

except for x in the vicinity of xo. For example, in Fig. 1 the dotted curve 

is sinc(7ß0/640), with 640 = 0.149. We note that the dotted curve agrees 

perfectly with A40(x), to the accuracy of the plot, for all 0 <x /xo < -0.25. 
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Farther out, the difference is mainly an increasing shift of phase between the 

two curves. Thus, the sidelobes of A40(x) decrease nearly as l /x, which is 

both convenient to know and a good image- forming property. For incoherent il- 

lumination the sidelobes fall off as 1 /x2, an even better situation. 

Since we know now that AN(x) is a sinc function for N large, we can 

see the manner in which AN(x) -> S(x) as N increases. The sidelobes do not de- 

crease in amplitude, but rather become increasingly compressed about the ori- 

gin, so that the total radiant energy in the sidelobes approaches zero. Thus, 

the image contributions from the sidelobes become decreasingly energetic, and 

the imagery approaches perfection. 

Figure 1 shows that as x /xo > 1, the sidelobes become increasingly com- 

pressed. These are the last small oscillations of AN(x) before a mammoth side - 

lobe has its beginnings at about x /xo = 0.995. Before this sidelobe can attain 

any great magnitude, it is cut off by the field edge x = xo at about 0.2. Con- 

sidering the great slope of this sidelobe near x = xo, it is quite important 

that the value xo not be exceeded in the field of view. Otherwise, this side - 

lobe would swamp the useful AN(x) distribution for Ix; < xo and would cause 

very imperfect image formation. 

In summary, pupil PN(ß) causes a point amplitude which, for Ixl < xo, 

acts in almost all respects like the point amplitude from a "magnified" aper- 

ture (20b). Moreover, by Eq. (19b), the magnification increases arbitrarily 

and linearly with N. Thus, neglecting the question of total illumination for 

the moment, a given small aperture may be made to form images as if it were a 

much larger and "filled" aperture. This ultimate goal of aperture synthesis12 

is now seen to be a theoretical possibility. 
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The pupil 

Figure 2 shows the pupil P40(ß) for the case c = 6.25. This pupil 

causes point amplitude A40(x) in Fig. 1. 

1.0 

.8- 

.6 

r 

2 .4 .6 .8 
RELATIVE COORDINATE /3/ß0 

.0 

Fig. 2. Pupil function P400). For values 113/0I < 0.3, P40(ß) is 

well approximated by cos (6x0/640). Both frequency and ampli- 
tude increase rapidly once (ß /ß0) exceeds about 0.8. 

Pupil P400) is typical of the general pupil PN(ß) with arbitrary N 

and c, which has the following properties: 

(1) There are exactly N zeros to PN(ß) over the pupil 1(31 <- This This 

results in N/2 regions each of zero and 7 phase shift. 

(2) NO) attains its maximum of unity at the pupil edge. 

(3) For I(3/ßoI small (for example, less than 0.3 in Fig. 2), 

PN(ß) a ( -1)N /2 cos (13xo /6N). (21) 
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The proportionality constant seems to be finite in the limit N-, but this 

has not yet been conclusively established. It might be zero. When 18/801 is 

more than 0.3, P400) still resembles a cosine curve, but the frequency and 

amplitude noticeably increase as iß /ßol increases. 

One reason that the largest sidelobes fall outside field of view 

< xo now becomes apparent. Substitution of pupil (21) into Eq. (9) yields 

amplitude 

sinc(c/3) (x/xo - 1/(5N) + sinc(c/3) (x/xo + 1/dN) . (22) 

With SN typically on the order of 0.1, the main sidelobes are centered about 

x /xo = ±10, that is, at 10 times the total field of view. Also, with c on the 

order of 10, the amplitude contribution (22) near the center of the field is 

merely 0.06 of the sidelobe amplitude, or 0.0036 of the energy. We shall see 

that other effects further diminish the total energy in the field of view. 

(4) As 8/8o 1, PN(ß) rapidly becomes a highly oscillatory function. 

The last oscillations at the pupil edge are quite narrow and steep; e.g. for 

P40(8), the last and greatest oscillation occurs within the confines 0.99 < 

ß /ßo s 1.0. 

It might seem that these large oscillations cannot contribute much to 

AN(x) because they are so narrow and therefore nonenergetic. This was found 

to be untrue. A program was written for numerically taking the finite Fourier 

transform of PN(ß) over intervals of 0 < Ißß < (80_A8), Aß arbitrary. In par- 

ticular, Aß was the width of the last fluctuation in PN(ß). Comparison of the 

resulting point amplitude with AN(x) showed large differences over the field 'of 

view. Use of this program with Aß = 0 showed perfect agreement with analytic 

formulas (17b) and (18b) for AN(x), corroborating derivations (9) through (16b) 

of pupil PN(ß). 
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Strehl flux ratio 

Expression (18c) for S was evaluated at values of 2 < N < 40, with 

0.25 <_ c < 10.0. Since the main importance of point amplitude AN(x) lies in 

the arbitrary narrowness of its central core, which we have measured by the 

enhancement ratio SN, it is pertinent to find the variation of S with dN. 

Further, we have previously found that dN is increased (so that resolution is 

degraded) by an increase in field xo. It would be useful to establish the 

tradeoff among parameters S, SN, and xo, and this we do in Fig. 3. However, 

instead of xo we use parameter c, assuming the pupil extent ßo to be fixed. 

RESOLUTION ENHANCEMENT 8N 

Fig. 3. Tradeoff among Strehl S, resolution enhancement .N, and space - 
bandwidth c, for 0.25 e s 10.0. Numbered points on the curves des- 
ignate values of N. The curves show that for a required 5N, S falls 
off by orders of magnitude with unit increments in c. Parameter c 
represents the field extent expressed alternatively as (1) a linear 
width of 27 times the number of Airy central core widths or (2) angu- 
extent of 7 times the number of light wavelengths within the pupil. 
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Independent of ß0, parameter c is directly related to the field extent 

as follows. Since the central (or Airy) core for the uncoated pupil ßo has 

width Ao = 27/ßo, and since there are xo /Do Airy cores in distance xo, param- 

eter c is 27 times the number of Airy cores in the field of view. Thus, an 

increment in c of 2iî corresponds to the addition of an Airy core, i.e. another 

resolved point, to the field of view. 

Figure 3 shows the family of curves S vs. SN for differing values of 

c. Each curve actually consists of a finite spacing of points, since the var- 

iation of S with SN is found by truncating the series AN(x) at discrete values 

of N. However, not all values of N up to 40 were used in the calculation, so 

we allow for interpolation to intermediate N- values by forming a smooth curve 

through points (S,SN). Each point used to establish the curves S vs. SN is 

indicated by its N- value. 

The most important feature of Fig. 3 is the low values of S, once res- 

olution (5N is required to be less than 0.9. For any SN, we note that S mono- 

tonically decreases by orders of magnitude with each additional Airy core half - 

width (i.e., an increase in c of 7) in the field of view. The upshot is that 

the simultaneous existence of superresolution and low sidelobes is paid for 

with 99.99% and more of the object radiation. Any practical use of pupils 

PN(ß) therefore depends critically on use of a sufficiently (a) small field of 

view, (b) bright source, (c) long time exposure, and (d) sensitive detector. 

A value of S also indicates the required gain in the equivalent active 

pupil. To maintain a Strehl of 1, the active pupil would have to obey 

(23) 

The square root is, of course, a helpful effect. Observing Fig. 3, amplitude 

gains of 100 and upward would be required. 
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TWO -DIMENSIONAL RESULTS 

A rectangular field of view may be imaged with arbitrary precision by 

a rectangular pupil 

PMN(ß,Y) = UM(ß)UN(Y) / UM(ßo)UN(Yo), 

161 ßo, 

(24a) 

The derivation is analogous to the preceding one for one dimension. Function 

U is the one -dimensional solution (17a), and (ß,y) are rectangular pupil coord- 

inates. There are now two space- bandwidth products, cl =ßox0 and c2 = yoyo 

with cl = c2 for the square field case. 

By using pupil (24a) and the two -dimensional analogy to Eq. (9), we 

now find a Strehl flux ratio 

S' = CaN(0) / 213oUN0o)] `` = S2, (24b) 

where S was the one -dimensional result (18c). Equation (24b) assumes a square 

field of view and the use of M=N, which would be required for equal resolution 

enhancement in the x and y directions. 

If rectangular fields of view are characteristic of photographic in- 

struments, circular fields are characteristic of observational instruments. 

For this case, a circular pupil of the type (17a) must be designed. Since the 

"hyperspheroidal" functions9 are the circular analogy to spheroidal functions, 

a pupil expansion in terms of the former is probably required. Further work 

on this problem awaits a representation of Dirac ö (of radius) in terms of 

these functions. 
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POSSIBLE APPLICATIONS 

Despite the extremely small values of S in Fig. 3, and despite expo- 

nent 2 in Eq. (24b), we will now show that pupils PNN(13,y) may be useful in 

certain square -field cases. The basis of such application is that a light 

beam with 1 W of power contains a flux of about 1018 photons /sec. 

We will not examine the problem of fabricating such coatings, which 

should be considerable. 

In the following applications and others, it is useful to know the 

angular field of view e subtended by region Ix' sxo. It is easily shown that 

e = (c/2ff)(a/ro) 

where 2r0 is the spatial extent of the square pupil. Hence, for values of 

c s10, 0 is very small when visible radiation is used. 

(25) 

Laser -illuminated microscope 

A continuously radiating laser beam, with wavelength A =500 pm and 

irradiance p =0.25 mW /mm2, illuminates a specimen whose intensity distribu- 

tion is desired. The microscope objective, with a square aperture of area 

A=4 mm2 and an f /number F =10, is diffraction -limited. It is to be coated 

according to PNN(e,y) for a resolution enhancement SN ,0.60 in both directions. 

In effect, the numerical aperture is to be nearly doubled. We also require 

the image to be bright enough to be photographed with an exposure time not 

exceeding 2 sec. 

The central irradiance in the Airy disc for a square aperture is 

I(0) = pA/(4A2F2). (26) 

For the values given above, we find I(0) = 10 W /mm2. With A = 500 pm, 1 W 
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of light contains 2.5 x 1018 photons /sec, so that I(0) represents 2.5 x 1019 

photons /mm2sec. 

For a typical film, the grain size is about 5.0 pm, and the slowest 

grain component requires 250 photons /grain for development. Therefore, I(0) 

represents 0.25 x 1013 times the number of photons needed for development of 

any one grain in 1 sec, and a Strehl attenuation of S' =10 -13 is required. 

Fig. 3 showed that the coating N =10 and c =8.0 results in bN =0.62 

and S = 4.74 x 10 -7. Then, by Eq. (24b), S' = 2.25 x 10 -13. Attenuation of 

our I(0) by this factor results in at least 0.56 developed grains /sec. Hence, 

an exposure time of 1.8 sec produces a developable photo. 

By Eq. (25), angular field 8 equals 2.2 arc. min. If the specimen is 

larger than this, it must be masked off with a 2.2 min (or smaller) aperture. 

Otherwise, the severe sidelobes of Alp(x) for lx1 >x0 would obliterate the 

picture. With mask held fixed, the specimen may be moved about for piecewise 

observation of its entire image. 

Telescope 

The limitation on field of view cited above would be an artificial lim- 

itation on many uses of the astronomical telescope. For example, the angular 

field of interest when observing the diameter of Betelgeuse is 0.047 arc sec. 

Furthermore, if the instrumental field of view initially exceeds the permissible 

value e of Eq. (25), it can be reduced to 8 in certain cases by suitable 

baffling. 

On the other hand, star irradiances are extremely small compared with 

the laser illumination cited above, so some other means of providing a large 

irradiance must be found. Of course, the collecting area of the telescope ap- 

erture provides just this effect. 



21 

Suppose a typical 6th magnitude star, with an irradiance of 2 x 10 -14 

W /mm2, is to be observed with a resolution enhancement SN < 0.5. The same 

light wavelength as above (now representing an average), film characteristics, 

and f /number are assumed. In addition, suppose the aperture is 10 inches on a 

side so that A = 0.65 x 105 mm2. Substitution of these parameters into Eq. (26) 

now produces an I(0) = 0.31 x 1014 photons /mm2sec. This represents 0.31 x 107 

times the number of photons required to develop the slowest grain in 1 sec. 

Searching Fig. 3 for designs with SN < 0.5, we note a value 6N = 0.488 

for the case c = 3, N = 4, and S = 4.91 x 10 -4. The net intensity resulting 

from use of this pupil coating is therefore (0.31 x 10)(4.91 x 10-4)2 = 0.75 

of the required irradiance to develop the slowest grain in 1 sec. Therefore, 

an exposure time of 1.3 sec results in a developable picture. Use of Eq. (25) 

discloses an angular field e of 0.39 arc sec. 

Hence, by use of pupil coating PNN(ß,y) with c = 3 and N = 4, a 

diffraction -limited 10 -inch telescope is made to act like a diffraction - limited 

telescope of aperture 10 : 0.488 = 20.5 inches, except for light - gathering 

power. For earthbound telescopes, it would not pay to make SN < 1 once aper- 

ture size exceeds roughly 10 inches. This is because, for large apertures, 

image degradation due to atmospheric turbulence is dominant over that due to 

pupil diffraction. An orbiting astronomical telescope, however, is above the 

turbulence and hence is limited in image quality only by its own capabilities. 

Hence, the enhancement of SN to 0.5 and less, by use of pupils PN, is con- 

ceivable for a large- aperture orbiting telescope. 
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TOLERANCE ON PUPIL NOISE, BY S/N CRITERION 

Atmospheric turbulence causes random fluctuations of phase and ampli- 

tude in the pupil of any earth -based telescope. Consequently, no telescope 

can be diffraction -limited during actual use. Recalling that coating PNN(ß,Y) 

was to be applied to a diffraction -limited instrument, we must expect turbu- 

lence to degrade the coated telescope's amplitude response from the ideal re- 

sult aNN(x,y). 

In addition, any optical instrument intrinsicaZZy suffers from random 

phase errors across the pupil. This is a consequence of tolerances during 

fabrication, of misalignment, of flexing, etc. During use, vibrations and 

heat waves further contribute to the phase randomness. 

It is therefore of practical interest to compute the effect upon the 

point amplitude of random amplitude and phase errors in the pupil 
PNN(8,y). 

Recalling the sensitivity of the amplitude response to removal of a minute 

fluctuation in transmission PN(ß) near the pupil margin, we might well expect 

a high sensitivity to such errors. This will be borne out. 

The analysis is most conveniently done in one dimension. We first 

treat the case of random errors in pupil phase, alone. Let 4)(8) represent 

the pupil phase, a random number, at each point ß. Using the Fraunhofer ap- 

proximation, the amplitude response is 

Bo 

a(x) = J dß ej(3) PN(ß) ei/3x . (27) 

-ßo 

Assume 4(8) is small enough (< 7r /6) that we may expand exp (je) = 

1 +j4 in Eq. (27). Define error 

Aa(x) = a(x) - aN(x), (28) 
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the change in amplitude response due to the presence of a 4(0 distribution. 

Then, 

ßo 

Aa (x) = j 

J 

dß (1)(8) PN(ß) e ßx. (29) 

-ßo 

The mean - square average value of Aa(x) across the field is defined as 

( /xjo 
e2 \J 

-xo 

dx lia(x)12> . (30) 

This is a simple and (as shown below) convenient measure of the randomness in- 

troduced in aN(x) due to the random phase. 

Taking expectation( >within the integral, substituting Eq. (29) for 

Aa(x), and performing the x- integration, we find 

ßo 

e2 = 2xo If dß dß' <")"')>N() PN(ß' ) sinc x0(8-8'). (31) 

-ßo 

To proceed further, we must specify a functional form for the expecta- 

tion in Eq. (31). Assume uncorrelated, white noise characteristics for cl). 

Then 

< = 62 d(ß-ß') (32) 

where a is the noise variance. Substitution into Eq. (31), use of Eqs. (17a), 

(18a), and evaluation of the remaining integral by use of the orthogonality8 

of functions 4n(x), results in 

N 

e2 = 02 xo fl FU 
N( o)1-2 

[4) (0)/X11]2. 
n(even)=0 

(33a) 
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By proceeding with the same analysis, (27) to (33), we can find eó , 

the response noise due to random phase fluctuations in an uncoated, diffrac- 

tion limited pupil of the same extent Bo and field xo: 

e2 = 4c 62 
o o 

(33b) 

We may now compare e2 and et:. 

If o = ßo, evaluation of Eqs. (33) shows that e2 « e02; that is, the 

coated amplitude response fluctuates much less than the uncoated one. But 

this is merely a consequence of the extremely low light transmission for the 

coated pupil (see Fig. 3), which attenuates both the signal and the noise from 

the uncoated case. A judgment on sensitivity to pupil noise should instead be 

based on the response noise relative to the background signal, since the out- 

put of the image detector (regardless of type) is always scaled by the average 

signal level. This signal -to -noise ratio, S /N, also represents the number of 

distinguishable intensity levels within the central region lxi < xo of the am- 

plitude response. By evaluating S/N for each of the two pupils, the sensitiv- 

ity to phase fluctuation is measured by a physically pertinent (and, it will 

be seen, mathematically convenient) factor. 

The average signal in the amplitude response for each of the pupils 

may be found in the same manner as above: For the coated pupil, define the 

mean -square signal response over the field Ix1 < xo as 

Using 

x 

f jS2 

= > = < J dx laN.(x) 12> 

-x 
o 

ß(o 

aN(x) = I dB PN(ß)eißx 

-ß 
o 

(34) 

(35) 



and Eqs. (17a) and (18a), we find 

N 

S2 = xoCuN(ßo)7-2 xñl 
Vn(0)2 

n=0 

For the uncoated pupil we find a mean - square signal 

Sot .. 
4Tr5 

with reasonably small error for values c > Tr. 

The quotient of Eqs. (33a) and (36a) yields 

where 

(S/N)2 
Tr 

x1 (ßYN)-2 

N 
yN2 

= 
y xn2 0, 

n=0 

N 

L 
Al n rn(0)2. 

n=0 

The quotient of Eqs. (33b) and (36b) yields 

(S /N)o2 xol U-2 

Finally, Eqs. (37a) and (38) show that 

(S /N) = 
(6o 

/a)yN -1 (S /N)o. (39) 
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(36a) 

(36b) 

(38) 

Thus, the sensitivity to noise in the coated pupil depends critically 

upon numerical factor yN. For example, if a = uo (i.e. both pupils have the 

same phase fluctuations), a large 1N would cause the coated response to be 

severely degraded, in distinguishable levels, below that of the uncoated 

response. A condition o = ao arises, e.g., when both pupils are to be ex- 

posed to the same atmospheric turbulence. 
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If o and c 
o 

arise chiefly from manufacturing tolerance, they are ad- 

justable to some extent. Then, to keep (S /N) >- (S/N)0, the tolerance a on 

phase must be 
6o 

/yN or less. If 
oo 

= Tr /2, corresponding to an rms quarter 

wave variation, then a value yN = 100 would force a tolerance on a of 1/40 

wave. Evidently, all depends on quantities yN. 

We computed values of yN from its definition (37b). Figure 4 shows 

yN against resolution enhancement dN for various values of field parameter 

c. We see immediately that, for each c value, yN rises sharply with small 
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Fig. 4. Pupil noise tolerance factor IN against resolution enhancement 6N, 

for various field widths c. Numbered points on each curve denote val- 
ues of N. Each curve shows extreme sensitivity (very high yN) to phase 

at values of 6N less than a characteristic resolution; for example, for 
c = 6.25 it is the value d6 = 0.70. In effect, resolution enhancement 
beyond these values requires impossibly narrow tolerance on the rms 

noise in phase or in log amplitude. 
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decrements in 6 
N 

once a critical value of dN is attained. Hence, for each 

c there is a limiting resolution determined jointly by a sudden increase in 

S/N sensitivity to phase fluctuations and the limit of manufacturing preci- 

sion on phase variation. Thus, pupils PN(ß) require extreme manufacturing 

precision, and extremely clean seeing conditions, to be used with a substan- 

tial resolution enhancement. 

If the pupil suffers random amplitude variations, without phase vari- 

ation, then Eq. (39) still holds, and e and o now refer to rms variations 

in the log amplitude transmittance. Thus, the tolerances on phase, or on 

log amplitude, are the same. The case of simultaneous phase and amplitude 

errors will not be analyzed. 

We may conclude, then, that a coating PNN(ß,y) will improve both the 

resolution and the S/N of an uncoated pupil only if the coating is applied 

with a much narrower tolerance on rms phase and amplitude noise than existed 

for the uncoated pupil. If the pupil noise arises mainly from turbulence or 

vibration, so that it is unadjustable and equal for the two pupils, then a 

tradeoff between resolution enhancement and S/N must take place: improvement 

in one causes a degradation in the other. 
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DISCUSSION 

Although arbitrarily perfect image formation is possible in theory, 

we have seen it to be limited in practice by (a) severe loss of illumination 

in the image, (b) a severely narrow field of view, or (c) a severely narrow 

tolerance on pupil rms noise. In any real design, resolution enhancement must 

necessarily be compromised by these effects, as indicated in the section on 

applications. 

The situation in image processing is analogous. Although arbitrarily 

perfect restoration is possible, in practice the net resolution is severely 

limited by error in the image measurements.5 

Since neither method of image enhancement is perfect in practice, 

whereas either is perfect in theory, a combination of the two methods might 

be advisable. Because of the two degrees of freedom, i.e. both pupil and im- 

age manipulation, it should be possible to provide a greater Strehl intensity 

and less sensitivity to image noise than by either method alone, for a required 

resolution. 

The exotic functions tpn(x) have been seen to provide a basis for both 

band -unlimited restoration`' and formation of optical images. It is noted here 

that, in theory, it is even possible to perfectly restore an object scene from 

a piece of its image, no matter how small! Again, functions 11)11(x) provide the 

key. Because an image i(x) is band -limited (for either the coherent or the 

incoherent case),$ 

xo/2 

i(x) = X and n (x) J dx' i(x') *1.1(x') 

n=0 
(40) 

at all x. This allows the image at all x, even beyond the edge of the given 

image piece, to be determined from the image piece alone (which in itself is 
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quite a feat, considering that all phase information is lacking in the given 

i(x) if incoherent radiation is present). By taking the Fourier transform of 

both sides of Eq. (40), the image spectrum I(w) is known. Finally, I(w) is 

input into the band -unlimited restoration scheme,4 resulting in perfect resto- 

ration of the object. Noise of detection would, at present, rule out the 

practical use of this scheme, except where the image piece extends over nearly 

all significantly nonzero image values. 

In apposition to the phenomenon of arbitrarily perfect imagery is the 

finite cutoff in the optical transfer function. The latter seems to rule out 

the former. Now, the cutoff in the latter follows from its definition as a 

Fourier transform over the entire point amplitude distribution. However, it 

is the point amplitude only within a finite interval lxi < xo which is opti- 

mized in this paper. Therefore, the infinite transform, and its cutoff, are 

of little relevance to the problem at hand. In fact, a finite transform, 

which would be relevant, cannot cut off. This reasoning seems consistent with 

our discovery that a tradeoff can be made, to any desired extreme, between good 

amplitude response within a finite interval, and poor response outside that 

interval. 

We have computed the S /N, before and after coating PN(B) is employed, 

due to uncorrelated, white noise in the pupil. If the noise is also Gaussian 

random, the amount of information in the image space is13 

log (1 +S /N) per sampling point. (41) 

From the preceding study of S /N, we see that use of a coating PN(B) will simul- 

taneously improve the information content and the resolution if the noise vari- 

ance o in the coated pupil obeys a < ao /yN. But, if atmospheric turbulence is 

the main source of pupil noise, the information must be reduced 'even though the 
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resolution is improved. This is not a paradox, since information and resolution 

are independent criteria. In deciding whether or not to use a pupil PN(ß), the 

user may have to decide which of the two criteria he wants emphasized. 

We conclude that diffraction is not the major limitation on image 

quality. As detectors are made more sensitive, and manufacturing tolerances 

on pupil wave and transmittance errors are narrowed, perfect imagery can be 

arbitrarily approached. 
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CURRENT RESEARCH EFFORTS 

Inherent in the design procedure of this paper is the unconstrained 

nature of Strehl S. The user has no control over its outcome for any design. 

It might seem possible to remedy this situation by defining a new optimiza- 

tion problem for which the user can specify S. However, the solution pupil 

U(ß) for this problem would have to obey an added constraint 1U(ß)1 < 1 for 

all 1131 < and and there seems to be no mathematical trick for constraining U 

in this manner during optimization. Moreover, if S is specified by the user, 

the solution U(ß) cannot finally be renormalized to 1, for this automatically 

changes S from the required value. 

To sidestep the renormalization problem, it is possible to use the 

procedure of Rhodesi`` and specify the fraction y of the total radiant energy 

that is to lie within lx¡ < xo. Here 

xo 

y = dx la(x)12 

0 

J dx la(x)12. 

0 

(42) 

Since a(x) is linear in U(ß), by Eq. (42) if U(ß) is renormalized then y re- 

mains fixed. The design problem is now as follows: For a specified ratio y, 

find the pupil U(ß) whose response a'(x) is the best approximation to a trun- 

cated delta function (12a), in the mean - square sense and over limited inter- 

val 1xl < xo. After obtaining the solution U(ß), divide it by the proper con- 

stant so that 1U0)1 < 1 for all 1ß1 < ßo. 

Since total illumination is governed jointly by the pupil transmit- 

tance and y, a fixed y does not alone fix the total image illumination. How- 

ever, it is expected that the pupil transmittance will not fall below about 

0.01 (this was about the lower limit for the design problem of this paper), 

and thus the absolute image illumination will always exceed 0.01 y. 
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This constrained design problem has been solved, essentially as by 

Rhodes,14 and the resulting point amplitude and Strehl are being evaluated 

on the CDC 6400 computer. The algebraic solution shows that the point am- 

plitude cannot arbitrarily approach a delta function, as did the uncon- 

strained solutions (17b). Hence it will be important to discover the ulti- 

mate resemblance to delta- function behavior that can be obtained for various 

fixed values of y. 
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