

On Architectural Stability and Evolution

Mehdi Jazayeri
Technische Universität Wien

jazayeri@tuwien.ac.at

Abstract
Many organizations are now pursuing software architecture as a way to control their
software development and evolution costs and challenges . A software architecture
describes a system’s structure and global properties and thus determines not only
how the system should be constructed but also guides its evolution. An important
challenge is to be able to evaluate the “goodness” of a proposed architecture. I
suggest stab ility or resilience as a primary criterion for evaluating an architecture. The
stability of an architecture is a measure of how well it accommodates the evolution of
the system without requiring changes to the architecture. As opposed to traditional
predictive approaches to architecture evaluation, I suggest retrospective analysis for
evaluating architectural stability by examining the amount of change applied in
successive releases of a software product. I review the results of a case study of
twenty releases of a telecommunication software system containing a few million lines
of code to show how retrospective analysis may be performed.

Keywords : software architecture, software evolution, architecture evaluation,

architectural stability, retrospective analysis, software visualization

1. Introduction

 After many years of research on software architecture, interest in software
architecture seemed to suddenly explode in the latter half of the 1990s. Both industry
and academic interest in software architecture has been intense, as witnessed by the
many books, conferences and workshops on software architecture. Some of the recent
milestone publications are the paper by Perry and Wolf [Perry92] that proposed a
systematic framework for the s tudy of software architecture, Sh aw and Garlan
[Shaw96] that tried to present software architecture as a systematic discipline,
Kruchten[Kruchten96] that proposed a model of software architecture that enlarged
the view of software architecture from dealing only with static structure to consisting
of four different aspects.
Prior to these works, Parnas had laid the foundations of software architecture in a
number of seminal papers. The problems he addressed in these papers in the 1970s
and 1980s took two decades to be recognized as real problems by the software
industry. Parnas not only identified the key problems, he also developed a set of
related architectural concepts for addressing these problems. These concepts are still
fundamental for understanding and solving the problems of software construction. I

will review some of these concepts here because they form the underpinnings of any
work on software architecture, including this one.
The most fundamental of these ideas was the principle of “information hiding”
[Parnas72]. This principle gives the designer a concrete method for decomposing a
design into modules. The modularization is on the basis of design decisions. Each
module protects, or encapsulates, or “hides” an important design decision. The
motivation behind the method is that if important design decisions are encapsulated in
separate modules, then changing a design decision in the future will affect only the
associated module and not require changes that are scattered throughout the
software. The same motivation is behind the development of object-oriented
development, but information hiding is a more fundamental and basic notion.
The problem of change is a key challenge to software engineering. The ideas of
“design for change” and “anticipation of changes” [Parnas79] were the motivations
for Parnas’s work and information hiding was a concrete design method to implement
them. Parnas also proposed a set of relations and structures as a basis for designing
and documenting a system’s architecture. The “uses” relation [Parnas74] describes a
relationship among modules of a system. A module M1 uses module M2 if a working
copy of M2 must be present for module M1 to satisfy its specification. This
fundamental relationship supports the design of software stru ctures that are
organized as a hierarchy of modules. One important implication of such a design is
that it makes it possible to define working subsets of the hierarchy. This means that
we can not only build the software incrementally, but also that we can build
potentially useful subsets of the software.
The subsettable software designs and information hiding lead almost naturally to the
idea of a family of designs. In [Parnas76], Parnas describes the reasons for designing
families of programs rather than single programs and gives a concrete approach for
doing it. The idea is to clearly identify the design decisions that are common to family
members and those that distinguish among family members. Naturally, design
decisions can be hidden by appropriate modules and we can build the right family
member by using the module that captures the right decision. The idea of program
families was inspired by the IBM System 360 architecture, which indeed billed itself as
a family architecture. The architecture was shared by all the members of the family.
Particular “realizations” of the architecture exhibited different properties, primarily in
terms of performance. Today, the concept of program families is pursued under the
topic of software product families or product-line architectures.

2. Architecture and Evolution

Despite the concern with “change” and accommodating changes, most of the early
definitions of software engineering focus explicitly on construction and only
implicitly, if at all, with the phenomenon of software “evolution.” By and large,
software processes and design techniques concentrate on construction. Yet we know
from experience that evolution is a key problem in software engineering and exacts
huge costs. Anecdotal evidence even hints that companies spend more resources on
maintenance (i.e. evolving their software) than on initial development. Probably the

earliest work to deal explicitly with software evolution is that of Lehman[Lehman80,
Lehman85]. Even Parnas finally got to deal explicitly with the issue of evolution in his
paper on software aging [Parnas94], where he posits a set of hypotheses and insights
on why software needs to evolve and how we can deal with the challenges. Recently,
Bennett and Rajlich[Bennet00] proposed a software development process that
considers the evolution and retirement of software as explicit phases in the software
lifecycle.
We can argue that, as Parnas foresaw in his early work on “change,” evolution is the
underlying, if implicit, motivation for much of the recent software development
research. For example, product-line architectures are a systematic approach to
controlling software evolution. They try to anticipate the major evolutionary
milestones in the development of the product, capture the properties that remain
constant through the evolution and document the variability points from which
different family members may be created. The approach gives a structure to the
product’s evolution and possibly rules out some unplanned evolutions, if the
architecture is respected. Incremental software processes, such as the unified
process, are also ways to structure the software’s evolution through prescribed steps.
The assumption is that evolution is helped by the feedback gained from releases of
the early increments.

3. The Role of Software Architecture

 There are many definitions for software architecture. Definitions usually concentrate
on structural properties and the kinds of decisions that an architect must make. A
common view is that architectural decisions are those that have to be made before
concurrent work on the system can be started. That is, the architectural decisions
span the system components and determine their overall relationships and
constraints. Once these decisions have been made, work on the individual
components may proceed relatively independently. The architectural decisions
determine many of the significant properties of the system and are difficult to change
because they span the whole system. Therefore, one of the major implications of a
software architecture is to render particular kinds of changes easy or difficult, thus
constraining the software’s evolution possibilities. Despite the importance of
evolution, and the impact of the software architecture on evolution, it is surprising
that most definitions of software architecture do not explicitly mention evolution. In
fact, it can be argued that the primary goal of a software architecture is to guide the
evolution of the system, the construction of the first release of the system being only
the first of many milestones in this evolution.

4. Architecture Evaluation and Assessment

Because of the key role that architecture plays in the life of a system, it is important to
evaluate or assess a system’s architecture. Reviews and inspections are accepted
evaluation methods in software engineering. In such an evaluation, we have to decide
what factors we are evaluating and what the goals of the evaluation are. Depending
on the definition of software architecture and its goals, it is possible to define an

evaluation procedure. Typically, such an evaluation is qualitative and is itself difficult
to evaluate.
A representative architecture evaluation method is the Architecture Tradeoff Analysis
Method (ATAM), developed at the Software Engineering Institute [Kazman99].
ATAM tries to help elicit the goals of the architecture and then evaluates the
architecture against those goals. The procedure is said to take 3 or 4 calendar days. It
is aimed at evaluating how well the architecture meets its quality goals such as
performance, reliability, security, and modifiability.
We call such kinds of evaluations predictive. They try to anticipate how well an
architecture will perform in the future. While useful, predictive evaluations suffer from
inherent uncertainty. How do we know what to assess? Even if we did know, how do
we assess it? How sure can we be of the results?
A way to answer these questions is to apply retrospective evaluation. I will describe
retrospective evaluation here in the context of evolution. First, we start with the
assumption that the software architecture’s primary goal is to guide the system’s
evolution. Retrospective evaluation looks at successive releases of the product to
analyze how smoothly the evolution took place. Intuitively, we want to see if the
system’s architectural decisions remained intact throughout the evolution of the
system, that is, through successive releases of the software. We call this intuitive idea
“architectural stability.”
There are many ways we can perform such an analysis but all rely on comparing
properties from one release of the software to the next. This implies that some
architectural information must be kept for each release. For example, we might compare
the uses relation in successive releases. If the relation remains substantially
unchanged, we can conclude that it was a stable (or robust) architecture that
supported evolution well. There are virtually any number of quantitative measures we
can make depending on what aspect of the architecture we are interested in
evaluating.
Retrospective analysis can have many uses. First, we can empirically evaluate the
software architecture’s stability. Second, we can calibrate our predictive evaluation
results. Third, we can use the res ults of the analysis to predict trends in the system’s
evolution. Such predictions can be invaluable for planning the future development of
the system. For example, a manager may use previous evolution data of the system to
anticipate the resources needed for the next release of the system, or to identify the
components most likely to require attention, or to identify the components needing
restructuring or replacement, or, finally, to decide if it is time to retire the system
entirely. In the next section, we describe a case study that shows some simple
examples of retrospective analyses.

5. Case Study

We have applied three different kinds of retrospective analyses to twenty releases of
a large telecommunication software system. In the first, we compared simple measures
such as module size, number of modules changed, and the number of modules added
in the different releases. In the second, we tried to detect coupling among modules by

discovering which modules tend to change in the same releases, and in the third, we
used color visualization to “map out” the system’s evolution. In this section, we give
an overview of these experiments. The details may be found in [Gall97, Gall98, Gall99].
The telecommunication system under study consists of over ten million lines of code.
The system is organized into subsystems, each subsystem consists of modules, and
each modules consists of programs. We had access to a database that contained
information about the system but not the code itself. The size of components is
recorded as the number of subcomponents it contains. For example, the size of a
module is the number of programs it contains.

5.1 The first analysis: Simple metrics

In the first set of analyses, we simply plotted various basic size-related metrics
according to releases. For example, Fig. 1 shows the growth in the number of programs
in the system. It shows a steady but stabilizing growth of the system. It appears to
show a stable system, possibly approaching a dormant state, getting ripe for
retirement.

Size of the system

0

500

1000

1500

2000

2500

"1.0
0"

"2.0
0"

"3.0
0"

"4.0
0"

"5.0
0"

"6.0
0"

"6.0
1"

"6.0
2"

"6.0
3"

"6.0
4"

"6.0
5"

"6.0
6"

"6.0
7"

"6.0
8"

"6.0
9"

"6.1
0"

"6.1
1"

"6.1
2"

"7.0
0"

"8.0
0"

releases

o

f p
ro

g
ra

m
s

Fig. 1 Growth of the system in size

Fig. 2 shows the number of added programs. Here we see that a decreasing number of
programs are added at each release, with a curiously higher number in every other
release. This phenomenon could be due to the way the releases were planned. The
manager of the project should be able to interpret the result and decide whether it was
expected. In any case, the fact that the number of additions is decreasing also points
to a stabilization of the system.
Fig. 3 plots two related numbers: the percentage of programs added and the
percentage of programs changed in each release. The figure seems to indicate that in
one release “many” programs are added and in the next “many” are changed. We
don’t know if there is any correlation between the programs added and those changed

in the next release. But the figure certainly invites many questions that should be of
interest to the manager.
Finally, in Fig. 4 we show the growth in size of three different modules. We see that
two of the modules are relativ ely stable while the third is growing significantly. This
figure indicates that it is not enough to study the data only at the system level. It is
possible that undesirable phenomena at a lower level, in this case at the module level,
mask each other out at the system level. Certainly the growth of Module A compared
to the other modules should ring an alarm bell to the manager.
These figures show how simple metrics plotted along the releases of a system can
reveal interesting phenomena about the evolution of the system. Unusual and
anomalous evolutions of components can be easily spotted. Any deviations from
expectations should be investigated.

Number of added programs

-20
0

20
40
60
80

100
120
140
160
180
200

"2
.0

0"

"3
.0

0"

"4
.0

0"

"5
.0

0"

"6
.0

0"

"6
.0

1"

"6
.0

2"

"6
.0

3"

"6
.0

4"

"6
.0

5"

"6
.0

6"

"6
.0

7"

"6
.0

8"

"6
.0

9"

"6
.1

0"

"6
.1

1"

"6
.1

2"

"7
.0

0"

"8
.0

0"

releases

o

f
p

ro
g

ra
m

s

Fig. 2. No. of added programs per release

Changing and growing rate

0
5

10
15
20
25
30
35
40
45

"2
.0

0"

"3
.0

0"

"4
.0

0"

"5
.0

0"

"6
.0

0"

"6
.0

1"

"6
.0

2"

"6
.0

3"

"6
.0

4"

"6
.0

5"

"6
.0

6"

"6
.0

7"

"6
.0

8"

"6
.0

9"

"6
.1

0"

"6
.1

1"

"6
.1

2"

"7
.0

0"

"8
.0

0"

releases

p
er

ce
n

ta
g

e

changed

new

Fig. 3 . No. of changed and added programs per release

sizes of modules in Subsystem C

0
50

100
150
200
250
300
350
400
450

"1
.0

0"

"2
.0

0"

"3
.0

0"

"4
.0

0"

"5
.0

0"

"6
.0

0"

"6
.0

1"

"6
.0

2"

"6
.0

3"

"6
.0

4"

"6
.0

5"

"6
.0

6"

"6
.0

7"

"6
.0

8"

"6
.0

9"

"6
.1

0"

"6
.1

1"

"6
.1

2"

"7
.0

0"

"8
.0

0"

releases

o

f
p

ro
g

ra
m

s

Module A

Module B

Module C

Fig. 4. Growth of size of modules in one subsystem

5.2 The second analysis: Hidden module coupling

In the second experiment, we tried to uncover potential (hidden) dependencies among
modules or programs of the system. The idea was to discover if there are certain
modules that always change during the same release. For example, Table 1 shows two
particular programs that are changed in nine releases together. In the two other
releases, one is changed but not the other. We developed a number of analysis
techniques for discovering and correlating “change sequences”. If two modules are
always changed in the same sequences of releases, it is likely that they share some
possibly hidden dependencies. The longer the sequence, the higher is the likelihood
of cross-dependencies. Such analysis can be easily performed and can reveal a great
deal about the architecture. In fact, the goal of the architecture is to minimize such
dependencies so that change and evolution is isolated in different modules. If
changes are required in many modules, the architecture suffers from lack of stability.

SUB2=<1 2 3 4 6 7 9 10 14>
A.aa.111 1 2 3 4 6 7 9 10 14 17 19
B.ba.222 1 2 3 4 6 7 9 10 14 16 18

Table 1. Coupling among subsystems A and B

5.3 The third analysis: Color visualization

In this study our goal was to make the results of retrospective study more apparent
and easy to grasp. We used visualization techniques to summarize the large amount of
data that could be plotted and displayed. In particular, we explored the use of color in
such visualizations. Due to the need for color, the reader is urged to look at an on-line
version of this paper to view the figures in color. We use color percentage bars to
display a history of a release. For example, Fig. 5 represents a module by a bar in each
release. The bar contains different colors. The colors represent different version
numbers of programs in the module. For example, in the first release, when all
programs are at version 1, the bar is a single color. By comparing the bars for different

releases, the eye can quickly observe the amount of changes from one release to the
next. Large variations in color indicate a release that is undergoing lots of change,
possibly indicating an unstable architecture. Fig. 6 shows the change maps for
modules A through H of the system. Such maps can be used to quickly identify
problematic modules. The color maps for different modules may be quickly compared
to get a sense of how module evolutions relate to each other. Such maps could be
used as a “fingerprint” of a module to show its evolution. It is possible to spot
different types of evolution and modules that share certain patterns of evolution. A
predictive evaluation of the architecture, if effective, should be able to anticipate the
kind of fingerprint a module should produce during its evolution.

Fig. 5. Visualizing evolution with percentage bars

6. Retrospective analysis

The case studies of the previous section show a glimpse of how retrospective
analysis may be applied and exploited. The information from retrospective analysis
may be used for forward engineering as well, primarily by using the information from
the past to predict the requirements of the future, for example, in answering questions
such as how much code changes the next release will entail and how much it will cost.
The tools we have used are simple and require very little information to be kept for
each release of the software. Yet, such data is not commonly maintained, analyzed, or
exploited. The key point is that the tools must maintain data across releases to enable
the reasoning and analysis about the software’s evolution. This means that software
reengineering tools must be enhanced to deal with releases explicitly to be able to

support retrospective evolution analysis. Because of the huge amount of data
involved, visualization techniques seem to be useful.
An example tool that can be used for evolution analysis is the Evolution Matrix
[Lanza01] which visualizes the evolution of classes in an object-oriented system. The
evolution of various metrics about a class may be displayed. Size and color are used
to represent the metrics. The evolution analysis applied to a large number of classes
has led to classifying different types of classes based on their evolution patterns.
Lanza [Lanza01] has observed classes that he categorizes as supernova (suddenly
explodes in size), pulsar (grows and shrinks repeatedly), white dwarf (shrinks in size),
red giant (continues being very large), and idle (does not change). Such a tool can be
a powerful aid in retrospective analysis. For example, a large number of idle classes
would indicate a stable architecture. (Clearly, idle classes could also indicate dead
code so analysis had to be done carefully.)

7. Summary and conclusions

We have argued that a primary goal of a software architecture is to guide the
evolution of a software product. To evaluate how well a software architecture
achieves this goal, we can analyze the architecture for adherence to certain rules that
we believe support evolution. But there is more that we can do. Using appropriate
analysis tools, we can try to evaluate an architecture’s “stability” or “resilience” by
observing the actual evolution of the associated software product. We call this kind
of analysis “retrospective” because it looks back on the software product’s releases.
We have shown the results of some simple tools that can help in retrospective
analysis. These tools combine simple metrics and visualization to summarize in a
compact form the evolution patterns of a system, thus enabling the engineer or
manager to check the reality against the expected results.
In principle, predictive analysis and retrospective analysis should be combined.
Perfect predictive evaluations would re nder retrospective analysis unnecessary. If we
are not sure of perfection, however, retrospective analysis is necessary to validate our
predictions and detect deviations from plans.

Acknowledgments
I would like to acknowledge the support of Harald Gall who has been a close
collaborator on all this work, particularly on the case studies.
This work was supported in part by the European Commission within the ESPRIT
Framework IV project no. 20477 ARES (Architectural Reasoning for Embedded
Systems). We would like to thank our partners in this project. Many of the results of
the ARES project are presented in [Jazayeri00].

Fig. 6. Evolution of modules A through H in terms of programs

8. References

[Bennett00]
 K. Bennett and V. Rajlich, “A staged model for the software lifecycle,”

Computer 33(7): 66–71, July 2000.
[Gall97]

 H. Gall, M. Jazayeri, R. Klösch, and G. Trausmuth, “Software Evolution
Observations Based on Product Release History,” Proceedings of
International Conference on Software Maintenance (ICSM ’97), Bari, Italy,
IEEE Computer Society Press, Los Alamitos, CA, September 1997.

[Gall98]
 H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling based on

product release histories,” Proceedings of International Conference on
Software Maintenance (ICSM ’98), Washington, DC, IEEE Computer
Society Press, Los Alamitos, CA, November 1998.

[Gall99]
 H. Gall, M. Jazayeri, and C. Riva, “Visualizing software release histories: the

use of color and third dimension,” Proceedings of International Conference
on Software Maintenance (ICSM ’99), pp. 99–108, Oxford, UK, IEEE
Computer Society Press, Los Alamitos, CA, September 1999.

[Jazayeri00]
 M. Jazayeri, A. Ran, and F. van der Linden, Software Architecture for

Product Families: Principles and Practice, Addison-Wesley, Reading, 2000.
[Kazman99]
 R. Kazman, M. Klein, and P. Clements, “Evaluating software architectures

for real-time systems.”
[Kruchten95]
 P. B. Kruchten, “The 4+1 view model of architecture,” IEEE Software,

29(11): 42–50, November 1995.
[Lanza01]
 M. Lanza, “The Evolution Matrix: Recovering Software Evolution using

Software Visualization Techniques ,” Proceedings of IWPSE (International
Workshop on Principles of Software Evolution), 2001, Vienna.

[Lehman80]
 Lehman M.M., “Programs, life cycles and laws of software evolution,”

Proceedings of the IEEE, pp. 1060-1076, September 1980.
[Lehman85]
 Lehman M.M. and Belady L. A., Program evolution, Academic Press,

London and New York, 1985.
[Parnas72]
 D. L. Parnas, “On the criteria to be used in decomp osing systems into

modules,” Communications of the ACM, 15(12): 1053–8, December 1972.
[Parnas74]
 D. L. Parnas, “On a buzzword: hierarchical structure,” Proceedings IFIP

Congress (1974), North-Holland, Amsterdam, 1974.
[Parnas76]
 D. L. Parnas, “On the design and development of program families,” IEEE

Transactions on Software Engineering, 2(2): 1–9, March 1976.
[Parnas79]
 D. L. Parnas, “Designing software for ease of extension and contraction,”

IEEE Transactions on Software Engineering, 5(2):128–138, March 1979.

[Parnas94]
 D. L. Parnas, “Software aging,” Proc. International Conference on Software

Engineering (ICSE 94), Sorrento, May 1994, pp. 279-287.
[Perry92]
 D. E. Perry and A. L. Wolf, “Foundations for the study of software

architecture,” ACM SIGSOFT Software Engineering Notes, 17(4): 40–52,
October 1992.

 [Shaw96]
 M. Shaw and D. Garlan. Software architecture: perspectives on an emerging

discipline. Prentice Hall, Englewood Cliffs, NJ, 1996.

