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Abstract

In this paper we study the area and depth trade-off in LUT based
FPGA technology mapping. Starting from a depth-optimal mapping
solution, we perform a number of depth relaxation operations to
obtain a new network with bounded increase in depth and advanta-
geous to subsequent re-mapping for area minimization. We then
re-map the resulting network to obtain an area-minimized mapping
solution. By gradually increasing the depth bound, for each design
we are able to produce a set of mapping solutions with smooth area
and depth trade-off. For the area minimization step, we have
developed an optimal algorithm for computing an area-minimum
mapping solution without node duplication. Experimental results
show that our solution sets outperform the solutions produced by
many existing mapping algorithms in terms of both area and depth
minimization.

1. Introduction

The Field programmable gate array (FPGA) has become a
very popular technology in VLSI ASIC design and system
prototyping. The lookup table (LUT) based FPGAs are pro-
duced by several FPGA manufacturers [16, 8], in which the
basic programmable logic block is a K-input lookup table that
can implement any Boolean function of up to K variables.
The technology mapping problem for LUT-based FPGA
designs is to convert a general Boolean network into a func-
tionally equivalent K-LUT network.

Previous technology mapping algorithms for LUT-based
FPGA designs can be roughly divided into three categories
according to their optimization objectives: the area minimiza-
tion algorithms [6, 10, 12, 9, 15, 13], the depth minimization
algorithms [7, 11, 13, 2, 3], and the algorithms that maximize
routability [14, 1]. Most of these mapping algorithms are
based on heuristic techniques, except FlowMap [3] which
guarantees to produce depth-optimal mapping solutions. It
remains open if the area-optimal mapping problem for LUT-
based FPGAs can be solved efficiently.

The common limitation of the existing algorithms is that
for a given design, each algorithm produces only a single
mapping solution optimized under a fixed objective, while
other good mapping solutions under different optimization
objectives are ignored. Figure 1 compares the 5-LUT map-
ping results by some existing algorithms on an MCNC bench-
mark circuit named rot. The depths and the numbers of
LUTs of the solutions by different algorithms vary
significantly. In general, the area-minimized solutions have
much larger depth, while the depth-minimized solutions use
much more LUTs. However, in practice the best design may
not come from either one of these two extremes. It is impor-
tant to let the system designer have the flexibility to choose
from a set of mapping solutions with smooth trade-off
�����������������������������������������������������������������������

between area and depth.
In this paper we study the trade-off between area and depth

in LUT-based FPGA technology mapping. Specifically, we
are interested in obtaining a set of mapping solutions for each
design, which can meet various area and depth requirements.
In practice, the designer usually has to produce the most
compact design satisfying certain depth bound determined by
the performance specification. To satisfy such a need, our
algorithm produces a set of area-minimized mapping solu-
tions under various depth bounds.

The basic approach of our algorithm is as follows. Starting
from a depth-optimal mapping solution (computed by the
FlowMap algorithm [3]), we perform a number of depth
relaxation operations to obtain a new network with bounded
increase in depth so that it is advantageous to subsequent re-
mapping for area minimization. We then re-map the result-
ing network to obtain an area-minimized mapping solution
with bounded depth. By gradually increasing the depth
bounds, for each design we are able to produce a set of map-
ping solutions with smooth area and depth trade-off. As the
core of the area minimization step, we have developed a
polynomial-time algorithm for computing an area-optimal
mapping solution without node duplication for a general
Boolean network, which makes a significant step towards
complete understanding of the general area optimization
problem in FPGA technology mapping.

Due to page limitation, detailed algorithm descriptions and
the proofs of the theorems are not included in this paper.
They can be found in [4].

2. Problem Formulation

A general Boolean network is represented as a DAG where
a node represents a logic gate and a directed edge <i, j >
exists if the output of gate i is an input of gate j. A primary
input (PI) node has no incoming edge and a primary output
(PO) node has no outgoing edge. We use input (v) to denote
the set of nodes which are the fanins of node v, and output (v)
to denote the set of nodes which are the fanouts of node v.
Given a subgraph H of the Boolean network, input (H)
denotes the set of distinct nodes outside H which supply
inputs to the gates in H. The level (or depth) of a node v is
the number of edges on the longest path from any PI node to
v. The depth of a network is the largest node level in the
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Figure 1 Mapping solutions of various algorithms for rot (K=5).



network. A Boolean network is K-bounded if
| input (v) | ≤ K for each node v. In the rest of this paper, we
only consider K-bounded networks.1

For a node v in the network, a cone of v, denoted Cv , is a
subgraph of logic gates (excluding PIs) consisting of v and its
predecessors such that any path connecting a node in Cv and
v lies entirely in Cv . We call v the root of Cv . A fanout-free
cone (FFC) at v, denoted FFCv , is a cone of v such that for
any node u≠v in FFCv , output (u) ⊆ FFCv . A K-feasible
cone of v is a cone Cv such that

�
input (Cv)

�
≤ K.

If a K-LUT LUTv implements (covers) a K-feasible FFC of
v, we say that LUTv implements node v and that v is the root
of LUTv . If the K-feasible cone Cv is not fanout free, we
have to duplicate the non-root nodes in Cv that have fanouts
outside of Cv in order to cover Cv by a K-LUT. Given a K-
bounded network, the technology mapping problem for K-
LUT based FPGA designs is to cover the network with K-
feasible FFCs (possibly with node duplications). A technol-
ogy mapping solution S is a DAG where each node is a K-
feasible FFC (equivalently, a K-LUT) and the edge
<Cu, Cv> exists if u is in input (Cv). Figure 2 shows a
Boolean network and two mapping solutions, one with node
duplication and the other without node duplication.

We say an LUT mapping solution satisfies the depth bound
D if the depth of the LUT network is no more than D. Given
a satisfied depth bound D, the slack on node v is defined as
follows: If v is not a PI or PO, the slack of v is D −(Lv+Pv),
where Lv is the level of v in the network, and Pv is the length
of the longest path from v to any PO node. If v is a PI or PO,
the slack of v is zero. A node is critical if it has zero slack. A
path from a PI to a PO consisting of only critical nodes is a
critical path.

3. Basic Operations and Outline of the Algorithm

In this section we discuss the effect of depth relaxation and
node duplication which are important in area/depth trade-off,
and give an overview of our algorithm.

FlowMap [3] produces depth-optimal LUT-based FPGA
mapping solutions for general Boolean networks. It worths
noticing that in a FlowMap mapping solution, every node
(LUT) has the minimum possible depth. Insisting minimum
depth for every node, including the non-critical ones, may
lead to inefficient use of LUTs. Figure 3(b) shows the map-
ping solution by FlowMap for the network in Figure 3(a).
Another solution is shown in Figure 3(d), which has the same
depth as (b) but uses one fewer LUT. Note that LUTv in (b)
has the minimum depth 3. However, since it is not critical,
LUTv ′ does not have the minimum depth in (d). In fact, solu-
tion (d) can be obtained from (b) by decomposing LUTv to
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Figure 2 Technology mapping for LUT-based FPGA (K=3).
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1 We use the DMIG algorithm [2] to transforms a network which is not

K-bounded into a K-bounded one with minimum depth.
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Figure 3 Depth relaxation for area reduction (K=3, numbers mean levels)

exclude gate w, as shown in (c), and then pack LUTu into
LUTv . Since the decomposition increases the depth of the
LUTv , we call it a depth relaxation operation. When LUTv is
not critical, this operation does not increase the depth of the
network. More discussions about depth relaxation will be
given in section 4.

Node duplication is performed when we use an LUT to
cover a K-feasible cone C which has a non-root node with a
fanout node outside of C (see node v in Figure 2(a)(b)). In
general, node duplication is very important to depth optimiza-
tion. Without node duplication, we may have to implement
many multi-fanout nodes explicitly with LUTs, which may
lead to large depth in the mapping solution. In the FlowMap
mapping solutions, node duplication is very often used to
guarantee the optimal depth. However, node duplication may
not be very beneficial to area minimization. If we make m
duplications of a node, we need to cover this node by m
LUTs, and it may use certain input capacity of each of the m
LUTs. Therefore, excessive node duplication will very likely
result in large number of LUTs. Based on this observation,
we have developed the DF-map algorithm, which performs
area-optimal mapping without node duplication. Details will
be discussed in section 5.

Our algorithm, named FlowMap-r, starts with the depth-
optimal mapping solution produced by FlowMap. For each
given depth bound of the mapping solution, our algorithm
consists of two phases. During the first phase, we apply a
number of depth relaxation operations to produce an inter-
mediate network for subsequent area minimization. During
the second phase, we carry out re-mapping for area minimi-
zation on the intermediate network. First, we use the DF-Map
procedure to compute an area-optimal mapping solution
without node duplication. Then, we carry out two post-
processing procedures which allow necessary node duplica-
tions for further area minimization. The two procedures are
MP-Pack, a matching-based multi-fanout predecessor pack-
ing procedure from the DAG-Map package [2], and Flow-
Pack, a flow-based area minimization procedure from the
FlowMap package [3].

To generate a set of mapping solutions, we gradually
increase the depth bound for the mapping solution and repeat
the two-phase process for each depth bound. The algorithm
stops when no improvement on area is available by further
increase of the depth bound. Clearly, the number of itera-
tions is bounded by the depth of the original network.

4. Depth Relaxation

Given a non-critical LUT LUTv rooted at a node v and
some node w ∈ LUTv , the depth relaxation operation decom-
poses LUTv into LUTv ′ and LUTw, so that LUTw becomes a
fanin of LUTv ′. In the case where w is a duplicated node in
LUTv and LUTw already exists in the mapping solution, the
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Figure 4 Three types of depth relaxation operations

(assume K=5 and LUTv has non-zero slack).

depth relaxation simply replaces LUTv with LUTv ′ and let
LUTw be a fanin of LUTv ′, as in Figure 3(c). Otherwise,
LUTw needs to be created explicitly. Normally, we will
choose v and w in such a way that after the depth relaxation
operation, LUTv ′ and/or LUTw can be packed with existing
LUTs during subsequent re-mapping (as shown in Figure
3(d)). Since the depth relaxation operations may lead to dif-
ferent results when applied on different LUTs, we want to
apply them to the most promising LUTs first. Figure 4 illus-
trates three types of depth relaxation, which are considered in
our algorithm.

In Figure 4(a), LUTv contains a duplication of node w, and
LUTw is already in the network. If we apply depth relaxation
operation on LUTv to exclude w, no new LUT needs to be
created. Moreover, the input size of LUTv will be reduced in
most cases, so that it may be packed with other LUTs. In this
example, LUTv can be packed either with LUTu or with
LUTz . Furthermore, the elimination of the duplication w also
reduces the fanout size of the fanin LUTs of w, which may
either enable further packing of LUTw with the fanin LUT (in
this example, LUTy), or the elimination of a redundant dupli-
cation of the fanin node (in this example, node x).

In Figure 4(b), the two duplications of node w are in LUTu
and LUTv . Since LUTw needs to be explicitly created, this
case is not as favorable as case (a). However, By applying
depth relaxation on LUTv , the input size of LUTv is reduced,
therefore further packing may be possible. In this example,
LUTv can be packed with LUTs , or with LUTy and LUTz .
Moreover, if we can later apply depth relaxation on LUTu to
exclude its copy of node w, no new LUT needs to be gen-
erated.

In Figure 4(c), LUTv contains node w which has a single
fanout. However, decomposing LUTv to exclude w may lead
to further packing to merge LUTv with LUTy , and to merge
LUTw with LUTz . In this case the depth relaxation is also
applicable.

In general, the potential of area reduction after a depth
relaxation operation varies. Our algorithm chooses the
operation which will result in the most reduction. After the
depth relaxation operation, the slacks of related nodes are
recomputed, and the process is repeated until no slack is
available. Note that the re-mapping is not performed

immediately after a single depth relaxation operation. It is
invoked after all slacks are exhausted under the current depth
bound so that it can perform global optimization for area
minimization.

It is easy to see that the total cost of the depth relaxation
procedure for each depth is no more than O (n 2).

5. Area Optimal Mapping without Node Duplication

In this section we present an algorithm for area-optimal
mapping without node duplication (duplication-free mapping,
or DF-mapping) for general Boolean networks, which is the
core of the re-mapping phase for area minimization. Note
that DF-mapping is not equivalent to tree-based mapping.
Figure 5 shows a simple example where DF-mapping uses 2
LUTs, while tree-based mapping uses 6 LUTs. Our algo-
rithm is based on an important concept called the maximum
fanout free cone.

The maximum fanout free cone (MFFC) of v, denoted
MFFCv , is an FFC of v such that for any non-PI node w, if
output (w) ⊆ MFFCv , then w ∈ MFFCv . Figure 6 shows the
MFFC of each node (the smallest shadowed area) in a net-
work. Clearly, MFFC is unique for every node, and any FFC
of v is contained in MFFCv . Moreover, MFFC has the fol-
lowing important properties.

Lemma 1 If w ∈ MFFCv , then MFFCw ⊆ MFFCv . �
Lemma 2 Two MFFCs are either disjoint or one must

contain the other. �
Lemma 3 If LUTw is in a DF-mapping solution S, then for

any v, node w ∈ MFFCv implies LUTw ⊆ MFFCv . �
These properties of MFFC allows us to carry out optimal

DF-mapping efficiently.
First, we point out that a general Boolean network can be

decomposed into a set of disjoint MFFCs such that the
optimal DF-mapping for the entire network can be carried out
in each MFFC independently.

Theorem 1 Let v be a PO node of a general Boolean net-
work N. Then, any optimal DF-mapping solution S of N also
induces an optimal DF-mapping solution Sv of MFFCv . �

According to Theorem 1, we can partition the network N
into MFFCv and N − MFFCv for any PO node v. An optimal
DF-mapping solution consists of an optimal DF-mapping
solution of MFFCv and an optimal DF-mapping solution of
N − MFFCv . By applying this theorem recursively on
N − MFFCv , we can partition the entire network N into a set
of disjoint MFFCs so that we can compute the optimal DF-
mapping for each MFFC independently to obtain an optimal
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Figure 5 Duplication-free mapping vs. tree-based mapping (K=3).
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DF-mapping solution of N. In Figure 6, the MFFCs of nodes
p, q, r, s, and t form a disjoint partition of the network.

A cut of MFFCv is a partition (X, X� � ) of MFFCv such that X� �

is an FFC of v. The size of a cut (X, X� � ) is defined to be
| input (X� � ) | . A cut is K-feasible if its size is no more than K.
Clearly, a cut (X, X� � ) of MFFCv is K-feasible if and only if X� �

can be covered by a K-LUT rooted at v.
For each K-feasible cut P = (X, X� � ) of MFFCv , we can

cover X� � with a K-LUT LUTv
P, and partition X = MFFCv − X� �

into a set of disjoint MFFCs MFFCv1
p , MFFCv2

p , ..., MFFCvm
p .

Then, we recursively compute the area-optimal DF-mapping
of each MFFCvi

p (1≤i≤m). The cost of the cut P is defined to

be cost (P) = 1 +
i =1
Σ
m

area (MFFCvi
p ), where area (MFFCvi

p ) is

the area of the area-optimal DF-mapping of MFFCvi
p .

Clearly, cost (P) gives the area of the best DF-mapping solu-
tion of MFFCv if X� � is covered by LUTv

P. Therefore, we gen-
erate each K-feasible cut of MFFCv and choose the cut with
the least cost. Cost computation of each cut involves recur-
sively solving a set of DF-mappings for MFFCs of smaller
sizes. Clearly, the same discussion can be applied to depth-
optimal DF-mapping by simply altering the cost function.

It is not difficult to see that there are only polynomial
number of K-feasible cuts, since the total number of possible
combinations of K or fewer nodes is O (n K), where n is the
number of nodes in the MFFC. In practice, however, exa-
mining all these combinations to compute the K-feasible cut
with the least cost is too wasteful, since most of them do not
form a K-feasible cut. We shall present a more efficient way
to generate the K-feasible cuts in MFFCv .

We first consider the case where the MFFC is a tree.
Assume that MFFCv is a tree T, v has f fanin nodes
v 1, v 2, ..., vf (f ≤ K). Let Ti denote the subtree in T rooted at
vi (1≤i≤f). Clearly, any cut of size K in T induces a Ki-cut of
Ti , with Σi

Ki = K, and vice versa. Based on this fact, we can

generate all K-feasible cuts of a tree recursively. Note that in
this case, the number of cuts generated according to this
recursion is bounded by a constant that depends only on K
and is independent of the size of MFFCv . More specifically,
we can prove

Lemma 4 If MFFCv is a tree, the number of cuts of size K
in MFFCv is no more than the Kth Catalan number, i.e.

K
1� ��� (K −1

2K −2). �
For K =5 the above bound is 14.
If MFFCv is not a tree, We first construct a spanning tree T

rooted at v, and then carry out the recursion on the spanning
tree. Again, we assume that node v has f fanin nodes
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Figure 7 Complication in cut generation.

v 1, v 2, ..., vf (f ≤ K), and let Ti denote the subtree in T rooted
at vi (1≤i≤f). However, a simple combination of the cuts in
T 1, T 2, . . . , Tf does not always give a cut of MFFCv . In
Figure 7, The MFFC in (a) has a spanning tree shown in (b)
where the dashed edge is not in the spanning tree. If we
represent a cut (X, X� � ) by input (X� � ), then, {s,u} is a cut in the
left subtree, and {x,y} is a cut in the right subtree, but their
combination does not form a cut in the MFFC, since the edge
<v, w > provides a path connecting the nodes outside of the
MFFC to the root p. On the other hand, the cut {s,u,v,x,y} of
the MFFC cannot be generated from the combinations of the
cuts in the two subtrees, since {s,u,v} is not a cut of the left
subtree.

The problem occurs because of the existence of the edges
not in the spanning tree (called non-tree edges). If a non-tree
edge <ui , uj> crosses two subtrees Ti and Tj of the spanning
tree T, we call ui an escape node of Ti and uj an entrance
node of Tj . False cuts can be easily eliminated by examining
the entrance nodes. In order to generate the cuts that are not
combinations of the cuts of the subtrees, we generalize the
concept of a cut. A generalized cut in a subtree of the span-
ning tree of an MFFC is a combination of a cut with some
escape nodes. In Figure 7, {s,u,v} is a generalized cut of the
left subtree.

It can be shown (see [4] for details) that the generalized
cuts of tree T can be generated from the combinations of the
generalized cuts of its subtrees T 1, T 2, . . . , Tf , and the com-
binations of the the root with the escape nodes. Both the set
of generalized cuts and the set of escape nodes can be com-
puted recursively. Therefore, we can compute all the gen-
eralized cuts of size no more than K efficiently, which
include all the K-feasible cuts in MFFCv .

Cut generation for general networks is more costly than for
trees due to the existence of the escape nodes. However, our
experimental results showed that in practice, the recursion
often quickly reaches the point where the subtree does not
contain any escape node. In this case, the more efficient tree
cut generation algorithm is applied. For K = 5, the number of
all possible K-node combinations is O (n 5), while the total
number of cuts examined by our algorithm is between n 2 to
n 3, where n is the number of nodes in one MFFC.

We can further improve the efficiency of the DF-mapping
algorithm by collapsing every K-feasible MFFC into its root
prior to the mapping, without affecting the optimality of the
subsequent DF-mapping.

Theorem 2 There exists an optimal DF-mapping solution
in which every K-feasible MFFC is contained in a K-LUT.
�



In our experiments, such collapsing reduces the network
size by 25% to 50% (when K = 5).

Our area-optimal DF-mapping algorithm, the DF-Map, is
summarized as follows. We first collapse each K-feasible
MFFCv into node v. Then, we use the dynamic programming
approach to compute an optimal DF-mapping solution of
MFFCv for each node v according to the topological order
starting from the PI nodes. This order guarantees that when
we compute the DF-mapping of MFFCv , the optimal DF-
mapping solutions of all the MFFCs inside MFFCv have been
computed, so that we can evaluate the cost of each cut in
MFFCv very easily. Finally, according to Theorem 1, we
generate the optimal DF-mapping solution for the entire net-
work starting from the PO nodes. Based on the above discus-
sion we have

Theorem 3 The DF-mapping problem for general
Boolean networks in LUT-based FPGA designs can be
solved optimally in polynomial time. �

In our FlowMap-r algorithm, unnecessary node duplica-
tions by FlowMap are eliminated in the depth relaxation step.
The subsequent DF-mapping minimizes area without intro-
ducing new node duplication. After applying the DF-Map
algorithm, we carry out the two post-processing procedures,
the MP-Pack [2] and the Flow-Pack [3], which explore
necessary node duplications for further area reduction.
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Figure 8 Area/depth trade-off in FlowMap-r (K=5).
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FlowMap-r Mapping Results for 5-LUT FPGAs
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Optimal No. of 5-LUTs For Different Depths
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dopt dopt+0 dopt+1 dopt+2 dopt+3 dopt+4
� �����������������������������������������������������������������������������������������������������������������
5xp1 3 23 22 - - -

C499 5 151 130 - - -

C880 8 211 195 179 172 -

alu2 8 148 140 133 - 125

alu4 10 245 244 240 231 223

apex6 4 232 221 220 - -

apex7 4 80 76 - - -

count 4 73 57 - - -
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rd84 4 43 42 38 - -
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Table 1 Mapping solutions of FlowMap-r.

6. Experimental Results

We have implemented the FlowMap-r algorithm on SUN
Sparc workstations and tested it on the benchmark circuits
used in [7, 2, 3]. Table 1 shows some of the mapping solution
sets computed by FlowMap-r. In general, larger networks
have more room for area and depth trade-off, as shown in
Figure 8. The area reduction is usually more significant at
the first a few steps of depth bound increase.

We also compared the area- and depth-minimization solu-
tions generated by FlowMap-r with those generated by some
existing mapping algorithms. The data for these algorithms
are quoted from [7, 3, 11]. Table 2 compares the area-
minimum solutions generated by FlowMap-r with those gen-
erated by area minimization mapping algorithms, including
Chortle-crf and MIS-pga. Overall, the area-minimum solu-
tions of FlowMap-r use 4% fewer LUTs and 15% fewer lev-
els than Chortle-crf, and 2% fewer LUTs and 9% fewer lev-
els than MIS-pga (on available data). Table 3 compares the
depth-minimum solutions generated by FlowMap-r with
those generated by depth minimization mapping algorithms,
including FlowMap, MIS-pga(delay), and Chortle-d.
Overall, FlowMap-r shows better performance than the com-
pared algorithms.2 Moreover, FlowMap-r is solely based on
combinatorial optimization techniques, thus it is fast. Furth-
ermore, FlowMap-r produces a set of mapping solutions,
each of them satisfies an explicitly assigned depth bound.
Therefore, it gives the designer more choices.

The experiments also show that the reduction on the
number of LUTs by the post-processing steps that performs
necessary node duplications is 5% to 10%. Since the
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5-LUT Mapping Result Comparison:

FlowMap-r vs. Area Minimization Algorithms
���������������������������������������������������������������������������������������������������������������

FlowMap-r ��
�

Chortle-crf ��
�

Mis-pga
Circuit � ���������������������������������������������������������������������������������������������

LUTs Depth LUTs Depth LUTs Depth
���������������������������������������������������������������������������������������������������������������
5xp1 22 4 27 4 26 4

9sym 61 5 65 8 65 8

9symml 58 5 62 7 65 7

C499 130 6 141 8 123 7

C880 172 11 172 13 172 11

alu2 125 12 128 13 127 15

alu4 223 14 231 17 234 16

apex6 220 6 235 6 221 6

apex7 76 5 78 6 72 5

count 57 5 58 5 59 5

des 934 9 981 10 - -

duke2 151 7 152 7 161 7

misex1 15 2 18 4 16 3

rd84 38 6 41 7 40 6

rot 209 11 214 11 203 11

vg2 38 4 39 5 37 5

z4ml 13 3 13 4 10 3
���������������������������������������������������������������������������������������������������������������
total 2542 115 2655 135 - -��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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Table 2 Comparison with Chortle-crf and MIS-pga.

�����������������������������������������������������������������������

2 The improved version of MIS-pga program, MIS-pga(new) [12], outper-
forms FlowMap-r in terms of area. The depths of their solutions are not re-
ported in [12].
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5-LUT Mapping Result Comparison:

FlowMap-r vs. Depth Minimization Algorithms����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
FlowMap-r ��

�
FlowMap ��

�
Mis-pga(delay) ��

�
Chortle-d

Circuit � �����������������������������������������������������������������������������������������������������������������

LUTs Dpt LUTs Dpt LUTs Dpt LUTs Dpt
�����������������������������������������������������������������������������������������������������������������������������������
5xp1 23 3 25 3 21 2 26 3

9sym 61 5 61 5 7 3 63 5

9symml 58 5 58 5 7 3 59 5

C499 151 5 154 5 199 8 382 6

C880 211 8 232 8 259 9 329 8

alu2 148 8 162 8 122 6 227 9

alu4 245 10 268 10 155 11 500 10

apex6 232 4 257 4 274 5 308 4

apex7 80 4 89 4 95 4 108 4

count 73 4 76 3 81 4 91 4

des 1087 5 1308 5 1397 11 2086 6

duke2 187 4 187 4 164 6 241 4

misex1 15 2 15 2 17 2 19 2

rd84 43 4 43 4 13 3 61 4

rot 243 6 268 6 322 7 326 6

vg2 38 4 45 4 39 4 55 4

z4ml 13 3 13 3 10 2 25 3
�����������������������������������������������������������������������������������������������������������������������������������
total 2908 83 3261 83 3182 90 4906 87������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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Table 3 Comparison with FlowMap, MIS-pga(delay), and Chortle-d.

percentage of multi-fanout nodes is much larger, it further
justifies the assumption that an area-optimal mapping solu-
tion should not have large number of node duplications.

7. Conclusion and Future Work

We have presented a technology mapping algorithm for
LUT-based FPGA designs that is able to generate a set of
mapping solutions with smooth area/depth trade-off. We
have developed an efficient method to compute an optimal
duplication-free mapping solution for a general network, and
used it for area minimization. The concept of the maximum
fanout free cone plays an important role in our duplication-
free mapping algorithm, and it may finds applications to other
logic synthesis problems as well. The solution sets generated
by our algorithm outperform the solutions by many existing
algorithms in terms of area and depth. Although the algo-
rithm is presented under unit delay model, it can be general-
ized to the case where an arbitrary delay is assigned to a net
[5].

During depth relaxation, we only use structural informa-
tion to decompose the LUTs. It is also possible to use
Boolean optimization techniques to re-synthesize the LUT
network locally to explore more possibilities, at the expense
of longer computation time.

The area-optimal mapping problem with node duplication
for LUT-based FPGA designs remains an open problem. We
are currently studying the problem of area-optimal mapping
with bounded node duplications.
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