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ON ARITHMETIC MACAULAYFICATION
OF NOETHERIAN RINGS

TAKESI KAWASAKI

Abstract. The Rees algebra is the homogeneous coordinate ring of a blowing-
up. The present paper gives a necessary and sufficient condition for a Noe-
therian local ring to have a Cohen-Macaulay Rees algebra: A Noetherian local
ring has a Cohen-Macaulay Rees algebra if and only if it is unmixed and all the
formal fibers of it are Cohen-Macaulay. As a consequence of it, we characterize
a homomorphic image of a Cohen-Macaulay local ring. For non-local rings,
this paper gives only a sufficient condition. By using it, however, we obtain the
affirmative answer to Sharp’s conjecture. That is, a Noetherian ring having a
dualizing complex is a homomorphic image of a finite-dimensional Gorenstein
ring.

1. Introduction

Let A be a commutative ring with identity and b an ideal in A. The Rees algebra
of b is the graded ring

R(b) =
⊕
n≥0

(bT )n,

where T is an indeterminate. We often regard R(b) as an A-subalgebra A[bT ] of
the polynomial ring A[T ]. The Rees algebra is an important object of Algebraic
Geometry and Commutative Algebra because the canonical morphism ProjR(b)→
SpecA is the blowing-up of SpecA along the closed subscheme SpecA/b.

In the present paper, we consider the existence of Cohen-Macaulay Rees algebras.
A Rees algebra R(b) is said to be an arithmetic Macaulayfication of A if it is
Cohen-Macaulay and b is of positive height. The main theorem of this paper is the
following.

Theorem 1.1. Let A be a Noetherian local ring of positive dimension. Then the
following statements are equivalent :
(A) A has an arithmetic Macaulayfication;
(B) A is unmixed and all the formal fibers of A are Cohen-Macaulay.

Here a Noetherian local ring A is said to be unmixed if dim Â/p = dim Â for
every associated prime p of the completion Â. The formal fibers of A are the fiber
rings of the natural homomorphism A→ Â.
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The studies in the Cohen-Macaulay property of Rees algebras started from Bar-
shay’s paper [5]. He gave the defining ideal of R(b) and its free resolution if b is
generated by a regular sequence. He also showed that R(b) is Cohen-Macaulay if A
is also and if b is generated by a regular sequence. Around 1980, Goto and Shimoda
studied several properties of R(b) in the case where A is a Buchsbaum local ring
and b a parameter ideal. See [9], [10], [11], and [31]. Summarizing these investi-
gations, Goto and Yamagishi [12] established the theory of unconditioned strong
d-sequences. Their theory contains the existence of an arithmetic Macaulayfication
in the case where A is unmixed and Spec Â is Cohen-Macaulay except for the closed
point. See also Brodmann [7] and Schenzel [27]. Recently Kurano [19] proved that a
Noetherian local ring A containing a finite field has an arithmetic Macaulayfication
if the non-F -rational locus of A is of dimension 1. Independently this was also done
by Aberbach [1]. Motivated by Kurano’s work, the author [18] also gave some suf-
ficient conditions for A to have an arithmetic Macaulayfication. Theorem 1.1 gives
a necessary and sufficient condition for an arithmetic Macaulayfication to exist.

If the Rees algebra R(b) is a Cohen-Macaulay ring, then the projective scheme
ProjR(b) is Cohen-Macaulay. However, the converse is not true in general. The
author [17] gave an ideal b such that ProjR(b) is a Cohen-Macaulay scheme for
fairly general Noetherian local rings. Theorem 1.1 gives another proof of the result
in [17].

In our arithmetic MacaulayficationR(b), the ideal b is generated by monomials of
a certain system of parameters, named a p-standard system of parameters. Sections
2 and 3 are devoted to discussing the existence and properties of a p-standard system
of parameters. Theorems 2.5 and 3.6 are improvements of Theorems 2.7 and 3.1
of [17], respectively. We give a proof of Theorem 1.1 in Section 4. In our proof the
theory of multigraded Rees algebras, which was introduced by Herrmann, Hyry,
and Ribbe [15], plays a key role. Our ideal b is very complicated. However, their
theory makes the proof of Theorem 1.1 simple.

In section 5 we give a consequence of Theorem 1.1.

Corollary 1.2. A Noetherian local ring is a homomorphic image of a Cohen-
Macaulay local ring if and only if it is universally catenary and all the formal
fibers of it are Cohen-Macaulay. An excellent local ring is a homomorphic image
of a Cohen-Macaulay excellent local ring.

However, there exists no analogy with the Gorenstein property. In fact, Ogoma
[22, Example 1] gave an example of an acceptable local ring which is not a homo-
morphic image of a Gorenstein ring.

For non-local rings, this paper gives only a sufficient condition for an arithmetic
Macaulayfication to exist.

Theorem 1.3. Let B be a Noetherian ring possessing a dualizing complex. If the
codimension function is a constant on the associated primes of B, then B has an
arithmetic Macaulayfication.

We refer the readers to Section 5 for the definition of the codimension function.
By using Theorem 1.3, we give an affirmative answer to Sharp’s conjecture [30,

Conjecture 4.4].

Corollary 1.4. A Noetherian ring has a dualizing complex if and only if it is a
homomorphic image of a finite-dimensional Gorenstein ring.
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This is a simple criterion for a dualizing complex to exist. Several authors gave
partial answers. See [2], [3], [4], [22], and [23]. We give proofs of Theorem 1.3 and
Corollary 1.4 in Section 6.

Throughout this paper, A denotes a Noetherian local ring with maximal ideal m.
We assume that the dimension of A is positive. We refer the reader to [13], [14],
and [20], for unexplained terminology.

2. A p-standard system of parameters, I

In this section, we give the definition of a p-standard system of parameters
and discuss the existence of it. For a finitely generated A-module M , let ap(M)
denote the annihilator of the pth local cohomology module Hp

m(M) of M and let
a(M) =

∏
p<dimM ap(M).

Definition 2.1. Let M be a finitely generated A-module of dimension d > 0,
x1, . . . , xd a system of parameters for M and s an integer such that 0 ≤ s < d.
We say that x1, . . . , xd is a p-standard system of parameters of type s for M if

(1) xs+1, . . . , xd ∈ a(M);
(2) xi ∈ a(M/(xi+1, . . . , xd)M) for 1 ≤ i ≤ s.

This notion was given by N. T. Cuong [8]. He showed that there exists a p-
standard system of parameters of type d−1 for M whenever A possesses a dualizing
complex. We improve his result. For a finitely generatedA-moduleM , let NCM(M)
denote the non-Cohen-Macaulay locus of M , that is, NCM(M) = {p ∈ SpecA |Mp

is not a Cohen-Macaulay Ap-module}. By modifying the proof of [29, Theorem 3.3],
we obtain the following lemma.

Lemma 2.2. Let B and C be Noetherian rings and B → C a faithfully flat ring
homomorphism. We assume that Cp/pCp is a Cohen-Macaulay ring for every prime
ideal p in B. Let M be a finitely generated B-module. If there exists an ideal c in C
such that NCM(M ⊗B C) = V (c), then NCM(M) = V (c ∩B).

We need the following propositions to choose a p-standard system of parameters.

Proposition 2.3. Assume that A is universally catenary and that all the formal
fibers of A are Cohen-Macaulay. Let M be a finitely generated A-module of dimen-
sion d > 0. If M is equidimensional, then NCM(M) = V (a(M)). In particular,
dimA/a(M) < d.

Proof. If A has a dualizing complex, then the assertion was given by Schenzel [26,
p. 52]. Assume that A has no dualizing complex. The completion Â of A has a
dualizing complex and is a faithfully flat A-algebra. Since A is formally catenary,
M ⊗ Â is also equidimensional. Therefore the non-Cohen-Macaulay locus of M ⊗ Â
is

V (a(M ⊗ Â)) = V (a0(M ⊗ Â) ∩ · · · ∩ ad−1(M ⊗ Â)).

By using Lemma 2.2, we find that the non-Cohen-Macaulay locus of M is

V (a0(M ⊗ Â) ∩ · · · ∩ ad−1(M ⊗ Â) ∩A) = V (a0(M) ∩ · · · ∩ ad−1(M)).

The right-hand side of the equation above is equal to V (a(M)). Since NCM(M)
contains no minimal prime of M , dimA/a(M) = dim NCM(M) < d.
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Corollary 2.4. Assume that A is universally catenary and that all the formal fibers
of A are Cohen-Macaulay. Let M be a finitely generated A-module of dimension d >
0. If dimA/p = d for every associated prime ideal p of M , then dimA/a(M) < d−1.

Proof. Let p be a prime ideal of A such that dimA/p = d−1 and Mp 6= 0. Then the
one-dimensional Ap-module Mp is Cohen-Macaulay because Mp has no embedded
prime. Therefore dimA/a(M) = dim NCM(M) < d− 1.

The following theorem assures us of the existence of the p-standard system of
parameters.

Theorem 2.5. Assume that A is universally catenary and that all the formal fibers
of A are Cohen-Macaulay. Let M be a finitely generated A-module of dimension d >
0. If M is equidimensional and s an integer such that dimA/a(M) ≤ s < d, then
there exists a p-standard system of parameters of type s for M .

Proof. Since d − dimA/a(M) ≥ d − s, there exist d − s elements xs+1, . . . , xd
in a(M) such that dimM/(xs+1, . . . , xd)M = s. If elements xi+1, . . . , xd in A such
that dimM/(xi+1, . . . , xd)M = i are given, then M/(xi+1, . . . , xd)M is also equi-
dimensional. Therefore dimA/a(M/(xi+1, . . . , xd)M) < i and hence there exists an
element xi in a(M/(xi+1, . . . , xd)M) such that dimM/(xi, . . . , xd)M = i− 1.

3. A p-standard system of parameters, II

In this section, we give some properties of a p-standard system of parameters.
First we recall the definition of d-sequences and the one of unconditioned strong
d-sequences.

Definition 3.1. Let M be an A-module. A sequence x1, . . . , xd of elements in A
is said to be a d-sequence on M if

(x1, . . . , xi−1)M :xixj = (x1, . . . , xi−1)M :xj

for any 1 ≤ i ≤ j ≤ d. Here we set (x1, . . . , xi−1) = (0) if i = 1.
A sequence x1, . . . , xd of elements in A is said to be an unconditioned strong

d-sequence (for short, a u.s.d-sequence) on M if xn1
1 , . . . , xndd is a d-sequence on M

for any positive integers n1, . . . , nd and in any order.

The following is one of the important properties of d-sequences. It was first
given by Goto and Shimoda [11, Lemma 4.2] for the system of parameters for a
Buchsbaum local ring, which is a typical example of d-sequences.

Proposition 3.2 ([12, Theorem 1.3]). Let M be an A-module and x1, . . . , xd a
d-sequence on M . If we put q = (x1, . . . , xd), then

(x1, . . . , xi−1)M :xi ∩ qnM = (x1, . . . , xi−1)qn−1M

for any n > 0 and 1 ≤ i ≤ d.

A p-standard system of parameters has several nice properties. The following
two properties are given in [17].

Proposition 3.3 ([17, Proposition 2.8]). Let M be a finitely generated A-module
of dimension d > 0 and x1, . . . , xd a p-standard system of parameters of type s
for M . Then xs+1, . . . , xd is a u.s.d-sequence on M/(y1, . . . , yu)M where y1, . . . ,
yu is a subsystem of parameters for M/(xs+1, . . . , xd)M .
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Proposition 3.4 ([17, Theorem 2.9]). Let M be a finitely generated A-module of
dimension d > 0, x1, . . . , xd a p-standard system of parameters of type s for M ,
and y1, . . . , yu a subsystem of parameters for M/(xi, . . . , xd)M where 2 ≤ i ≤ d
and 1 ≤ u < i. If yu ∈ a(M) or yu ∈ a(M/(xi, . . . , xd)M), then

(y1, . . . , yv−1, {xλ | λ ∈ Λ})M : yvyu = (y1, . . . , yv−1, {xλ | λ ∈ Λ})M : yu

for any 1 ≤ v ≤ u and Λ ⊆ {i, . . . , d}.

The next proposition is not in [17] but we need it to prove Theorem 1.1. The
author is inspired by [8, Theorem 2.6].

Proposition 3.5. Let M be a finitely generated A-module of dimension d > 0,
x1, . . . , xd a p-standard system of parameters of type s for M and y1, . . . , yu a
subsystem of parameters for M/(xi, . . . , xd)M where 1 ≤ i ≤ d and 1 ≤ u < i. Then
xi, . . . , xj is a d-sequence on M/(y1, . . . , yu, xj+1, . . . , xd)M for any i ≤ j ≤ d.

Proof. Let i ≤ l ≤ j be an integer. By applying Proposition 3.4 to a subsystem of
parameters y1, . . . , yu, xi, . . . , xl for M/(xl+1, . . . , xd)M and a subset {j+1, . . . , d}
of {l + 1, . . . , d}, we obtain

(y1, . . . , yu, xi, . . . , xk−1, xj+1, . . . , xd)M :xkxl
= (y1, . . . , yu, xi, . . . , xk−1, xj+1, . . . , xd)M :xl

for any i ≤ k ≤ l.

The following theorem and corollaries are improvements of Theorem 3.1, Corol-
laries 3.2 and 3.3 of [17], respectively. The old theorems require that all ni, . . . , nj
are positive but new ones require only that all ni, . . . , nj are nonnegative.

Theorem 3.6. Let M be a finitely generated A-module of dimension d > 0 and
x1, . . . , xd a p-standard system of parameters of type s for M . We put qi =
(xi, . . . , xd) for all 1 ≤ i ≤ d. Then, for any integers 1 ≤ i ≤ j ≤ d and ni, . . . ,
nj ≥ 0, the following statements hold :

(Aij) If y1, . . . , yu is a subsystem of parameters for M/qiM and if nk > 0 for
some integer i ≤ k ≤ j, then

(y1, . . . , yu, xk, . . . , xl−1)M :xl ∩ [(y1, . . . , yu)M + q
ni
i · · · q

nj
j M ]

= (y1, . . . , yu)M + (xk, . . . , xl−1)qnii · · · q
nk−1
k · · · qnjj M

(3.6.1)

for arbitrary integer k ≤ l ≤ d.
(Bij): If y1, . . . , yu is a subsystem of parameters for M/qiM and if nk > 0 for

some integer i ≤ k ≤ j, then

[(y1, . . . , yu−1)M + (xk, . . . , xl)qnii · · · q
nj
j M ] : yu

= (xk, . . . , xl){[(y1, . . . , yu−1)M + q
ni
i · · · q

nj
j M ] : yu}

+ (y1, . . . , yu−1)M : yu

(3.6.2)

for arbitrary integer k ≤ l ≤ d. In particular, by letting l = d, we have

[(y1, . . . , yu−1)M + q
ni
i · · · q

nk+1
k · · · qnjj M ] : yu

= qk{[(y1, . . . , yu−1)M + q
ni
i · · · q

nj
j M ] : yu}

+ (y1, . . . , yu−1)M : yu.
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(Cij): If y1, . . . , yu is a subsystem of parameters for M/qiM and if ni > 0,
then

[(y1, . . . , yu−1)M + q
ni
i · · · q

nj
j M ] : yu

⊆ (y1, . . . , yu−1)M : yu + q
ni−1
i · · · qnjj M.

(3.6.3)

(Dij): If y1, . . . , yu is a subsystem of parameters for M/qiM and if ni > 0,
then

(3.6.4) [(y1, . . . , yu−1)M + q
ni
i · · · q

nj
j M ] : yu ∩ xiM

⊆ xi{[(y1, . . . , yu−1)M + q
ni−1
i · · · qnjj M ] : yu}+ (y1, . . . , yu−1)M.

(Eij): Let y1, . . . , yu be a subsystem of parameters for M/qkM where 2 ≤ k ≤ i
and 1 ≤ u < k. If yu ∈ a(M/qkM) or yu ∈ a(M) and if ni > 0, then

[(y1, . . . , yv−1, {xλ | λ ∈ Λ})M + q
ni
i · · · q

nj
j M ] : yvyu

= [(y1, . . . , yv−1, {xλ | λ ∈ Λ})M + q
ni
i · · · q

nj
j M ] : yu

(3.6.5)

for any 1 ≤ v ≤ u and Λ ⊆ {k, . . . , i− 1}.

Proof. We work by induction on j − i. First we assume that i = j.
(Aii): Since xi, . . . , xd is a d-sequence on M/(y1, . . . , yu)M , (3.6.1) coincides

with Proposition 3.2.
(Bii): Let a be an element in the left-hand side of (3.6.2) and put yua = xlb+ c

with b ∈ q
ni
i M and c ∈ (y1, . . . , yu−1)M + (xi, . . . , xl−1)qnii M . By using (Aii), we

obtain

b ∈ (y1, . . . , yu, xi, . . . , xl−1)M :xl ∩ q
ni
i M

⊆ (y1, . . . , yu)M + (xi, . . . , xl−1)qni−1
i M.

Let b = yua
′ + c′ with c′ ∈ (y1, . . . , yu−1)M + (xi, . . . , xl−1)qni−1

i M . Then a′ ∈
[(y1, . . . , yu−1)M + q

ni
i M ] : yu and

a− xla′ ∈ [(y1, . . . , yu−1)M + (xi, . . . , xl−1)qnii M ] : yu.

By induction on l, we find that a is in the right-hand side of (3.6.2). The opposite
inclusion is obvious.

(Cii): By using (Bii) repeatedly, we have

[(y1, . . . , yu−1)M + q
ni
i M ] : yu = (y1, . . . , yu−1)M : yu

+ q
ni−1
i {[(y1, . . . , yu−1)M + qiM ] : yu}

⊆ (y1, . . . , yu−1)M : yu + q
ni−1
i M.

(Dii): If ni = 1, then the right-hand side of (3.6.4) equals (y1, . . . , yu−1, xi)M
and hence contains the left-hand side.

Assume that ni > 1. Let a be an element in M such that xia is in the left-hand
side of (3.6.4). Then

yuxia ∈ [(y1, . . . , yu−1)M + q
ni
i M ] ∩ (y1, . . . , yu−1, xi)M

= (y1, . . . , yu−1)M + xiq
ni−1
i M

because of (Aii). Hence

xia ∈ [(y1, . . . , yu−1)M + xiq
ni−1
i M ] : yu

= (y1, . . . , yu−1)M : yu + xi{[(y1, . . . , yu−1)M + q
ni−1
i M ] : yu}.
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Here we used (Bii). By applying Proposition 3.4 to a subsystem of parameters
y1, . . . , yu, xi for M/qi+1M , we have

(y1, . . . , yu−1)M : yuxi = (y1, . . . , yu−1)M :xi

and hence

(y1, . . . , yu−1)M : yu ∩ xiM = xi[(y1, . . . , yu−1)M : yuxi]

⊆ (y1, . . . , yu−1)M.
(3.6.6)

Therefore

xia ∈ xi{[(y1, . . . , yu−1)M + q
ni−1
i M ] : yu}+ (y1, . . . , yu−1)M : yu ∩ xiM

⊆ xi{[(y1, . . . , yu−1)M + q
ni−1
i M ] : yu}+ (y1, . . . , yu−1)M.

(Eii): By using (Bii), we have

[(y1, . . . , yv−1, {xλ | λ ∈ Λ})M + q
ni
i M ] : yvyu

= (y1, . . . , yv−1, {xλ | λ ∈ Λ})M : yvyu

+ q
ni−1
i {[(y1, . . . , yv−1, {xλ | λ ∈ Λ})M + qiM ] : yvyu}.

Applying Proposition 3.4 to a subsystem of parameters y1, . . . , yu for M/qkM and
two subsets of {k, . . . , d}: Λ and Λ ∪ {i, . . . , d}, we obtain

(y1, . . . , yv−1, {xλ | λ ∈ Λ})M : yvyu

+ q
ni−1
i {[(y1, . . . , yv−1, {xλ | λ ∈ Λ})M + qiM ] : yvyu}

= (y1, . . . , yv−1, {xλ | λ ∈ Λ})M : yu

+ q
ni−1
i {[(y1, . . . , yv−1, {xλ | λ ∈ Λ})M + qiM ] : yu}

= [(y1, . . . , yu−1, {xλ | λ ∈ Λ})M + q
ni
i M ] : yu.

Thus (3.6.5) is shown.
Next we assume that j > i and prove (Aij)–(Eij). If ni = 0, then (Aij) and (Bij)

are contained in (Ai+1,j) and (Bi+1,j), respectively. Therefore we may assume that
ni > 0. Similarly we may also assume that nj > 0.

(Aij): Let a be an element in the left-hand side of (3.6.1). If k = l = i, then

a ∈ (y1, . . . , yu)M :xi ∩ (y1, . . . , yu, xi, . . . , xd)M = (y1, . . . , yu)M.

Otherwise, by using (Ai+1,j), we have

a ∈ (y1, . . . , yu, xi, xk, . . . , xl−1)M :xl ∩ [(y1, . . . , yu, xi)M + q
ni+ni+1
i+1 · · · qnjj M ]

=

{
(y1, . . . , yu, xi)M + (xi+1, . . . , xl−1)qni+ni+1−1

i+1 · · · qnjj M if k ≤ i+ 1,
(y1, . . . , yu, xi)M + (xk, . . . , xl−1)qni+ni+1

i+1 · · · qnk−1
k · · · qnjj M if k > i+ 1

= (y1, . . . , yu, xi)M + (xk, . . . , xl−1)qnii · · · q
nk−1
k · · · qnjj M.

Taking the intersection with (y1, . . . , yu)M + q
ni
i · · · q

nj
j M , we obtain

a ∈ (y1, . . . , yu)M + (xk, . . . , xl−1)qnii · · · q
nk−1
k · · · qnjj M

+ xiM ∩ [(y1, . . . , yu)M + q
ni
i · · · q

nj
j M ].
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Because of (Ci+1,j),

xiM ∩ [(y1, . . . , yu)M + q
ni
i · · · q

nj
j M ]

= xiq
ni−1
i · · · qnjj M

+ xiM ∩ [(y1, . . . , yu)M + q
ni+ni+1
i+1 · · · qnjj M ]

= xiq
ni−1
i · · · qnjj M + xi{[(y1, . . . , yu)M + q

ni+ni+1
i+1 · · · qnjj M ] :xi}

⊆ xiqni−1
i · · · qnjj M + xi[(y1, . . . , yu)M :xi + q

ni+ni+1−1
i+1 · · · qnjj M ]

⊆ (y1, . . . , yu)M + xiq
ni−1
i · · · qnjj M.

Therefore

a ∈ (y1, . . . , yu)M + (xk, . . . , xl−1)qnii · · · q
nk−1
k · · · qnjj M

+ xiq
ni−1
i · · · qnjj M.

If k = i, then the proof is completed. If k > i, then we work by induction on ni.
Let a = xib+ c with b ∈ q

ni−1
i · · · qnjj M and

c ∈ (y1, . . . , yu)M + (xk, . . . , xl−1)qnii · · · q
nk−1
k · · · qnjj M.

If we apply Proposition 3.4 to a subsystem of parameters y1, . . . , yu, xk, . . . , xl−1,
xi, xl for M/ql+1M , then we have

b ∈ (y1, . . . , yu, xk, . . . , xl−1)M :xixl = (y1, . . . , yu, xk, . . . , xl−1)M :xl.

If ni = 1, then (Ai+1,j) says that

b ∈ (y1, . . . , yu, xk, . . . , xl−1)M :xl ∩ q
ni+1
i+1 · · · q

nj
j M

⊆ (y1, . . . , yu)M + (xk, . . . , xl−1)qni+1
i+1 · · · q

nk−1
k · · · qnjj M

and hence a = xib+ c is in the right-hand side of (3.6.1). If ni > 1, then we obtain

b ∈ (y1, . . . , yu, xk, . . . , xl−1)M :xl ∩ q
ni−1
i · · · qnjj M

⊆ (y1, . . . , yu)M + (xk, . . . , xl−1)qni−1
i · · · qnk−1

k · · · qnjj M
by the induction hypothesis. Thus a = xib+c is also in the right-hand side of (3.6.1).

(Bij): Let a be an element in the left-hand side of (3.6.2) and put yua = xlb+ c
with b ∈ q

ni
i · · · q

nj
j M and c ∈ (y1, . . . , yu−1)M + (xk, . . . , xl−1)qnii · · · q

nj
j M . Then

b ∈ (y1, . . . , yu, xk, . . . , xl−1)M :xl ∩ q
ni
i · · · q

nj
j M

⊆ (y1, . . . , yu)M + (xk, . . . , xl−1)qnii · · · q
nk−1
k · · · qnjj M.

Here we used (Aij). If we put b = yua
′ + c′ with

c′ ∈ (y1, . . . , yu−1)M + (xk, . . . , xl−1)qnii · · · q
nk−1
k · · · qnjj M,

then a′ ∈ [(y1, . . . , yu−1)M + q
ni
i · · · q

nj
j M ] : yu and

a− xla′ ∈ [(y1, . . . , yu−1)M + (xk, . . . , xl−1)qnii · · · q
nj
j M ] : yu.

By induction on l, we find that a is in the right-hand side of (3.6.2). The opposite
inclusion is obvious.

(Cij): We first show that

(y1, . . . , yu−1, xi)M : yu ∩ (y1, . . . , yu−1, xi, . . . , xl)M

= (y1, . . . , yu−1, xi)M
(3.6.7)
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for all i ≤ l ≤ d. We work by induction on l. If l = i, then there exists nothing to
prove. Assume that l > i and let a be an element in the left-hand side of (3.6.7).
If we put a = xlb+ c with c ∈ (y1, . . . , yu−1, xi, . . . , xl−1)M , then

b ∈ (y1, . . . , yu−1, xi, . . . , xl−1)M : yuxl = (y1, . . . , yu−1, xi, . . . , xl−1)M :xl.

Here we applied Proposition 3.4 to a subsystem of parameters y1, . . . , yu−1, xi,
. . . , xl−1, yu, xl for M/ql+1M . Thus we obtain

a = xlb+ c ∈ (y1, . . . , yu−1, xi)M : yu ∩ (y1, . . . , yu−1, xi, . . . , xl−1)M

= (y1, . . . , yu−1, xi)M

by the induction hypothesis.
Next we show (3.6.3). By using (Bij), we may assume that ni = 1. Let a be an

element in the left-hand side of (3.6.3). Then

a ∈ [(y1, . . . , yu−1, xi)M + q
ni+1+1
i+1 · · · qnjj M ] : yu

⊆ (y1, . . . , yu−1, xi)M : yu + q
ni+1
i+1 · · · q

nj
j M

because of (Ci+1,j). On the other hand, since nj > 0, we obtain

a ∈ [(y1, . . . , yu−1)M + q2
iM ] : yu

⊆ (y1, . . . , yu−1)M : yu + qiM.

Here we used (Cii). Hence

a ∈ [(y1, . . . , yu−1, xi)M : yu + q
ni+1
i+1 · · · q

nj
j M ] ∩ [(y1, . . . , yu−1)M : yu + qiM ]

= (y1, . . . , yu−1)M : yu + q
ni+1
i+1 · · · q

nj
j M + (y1, . . . , yu−1, xi)M : yu ∩ qiM

= (y1, . . . , yu−1)M : yu + q
ni+1
i+1 · · · q

nj
j M + xiM.

Here we used (3.6.7). Taking the intersection with

[(y1, . . . , yu−1)M + q
ni+1
i+1 · · · q

nj
j M ] : yu,

we obtain

a ∈ (y1, . . . , yu−1)M : yu + q
ni+1
i+1 · · · q

nj
j M

+ xi{[(y1, . . . , yu−1)M + q
ni+1
i+1 · · · q

nj
j M ] : yuxi}.

By applying (Ei+1,j) to a subsystem of parameters y1, . . . , yu, xi for M/qi+1M ,
we have

[(y1, . . . , yu−1)M + q
ni+1
i+1 · · · q

nj
j M ] : yuxi = [(y1, . . . , yu−1)M + q

ni+1
i+1 · · · q

nj
j M ] :xi.

Therefore a ∈ (y1, . . . , yu−1)M : yu + q
ni+1
i+1 · · · q

nj
j M .

(Dij): Let a be an element in M such that xia is in the left-hand side of (3.6.4).
Then

yuxia ∈ xiM ∩ [(y1, . . . , yu−1)M + q
ni
i · · · q

nj
j M ]

⊆ (y1, . . . , yu−1)M + xiq
ni−1
i · · · qnjj M.

Here we used (Aij). We put yuxia = xib + c with b ∈ q
ni−1
i · · · qnjj M and c ∈

(y1, . . . , yu−1)M . Then

b ∈ (y1, . . . , yu)M :xi ∩ qjM

⊆ (y1, . . . , yu)M :xi ∩ qiM

⊆ (y1, . . . , yu)M
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because nj > 0 and xi, . . . , xd is a d-sequence on M/(y1, . . . , yu)M . If we put
b = yua

′ + c′ with c′ ∈ (y1, . . . , yu−1)M , then

a′ ∈ [(y1, . . . , yu−1)M + q
ni−1
i · · · qnjj M ] : yu

and

xi(a− a′) ∈ (y1, . . . , yu−1)M : yu ∩ xiM
⊆ (y1, . . . , yu−1)M.

Here we used (3.6.6) again. Therefore

xia ∈ (y1, . . . , yu−1)M + xi{[(y1, . . . , yu−1)M + q
ni−1
i · · · qnjj M ] : yu}.

(Eij): We may assume that ni = 1 in the same way as the proof of (Eii). We
divide the proof into two cases.

First we assume that ni+1 + · · · + nj = 1, that is, ni+1 = · · · = nj−1 = 0 and
nj = 1. We show that

(3.6.8) [(y1, . . . , yv−1, {xλ | λ ∈ Λ})M + (xi, . . . , xl−1, xj , . . . , xd)qiM ] : yvyu
= [(y1, . . . , yv−1, {xλ | λ ∈ Λ})M + (xi, . . . , xl−1, xj , . . . , xd)qiM ] : yu

for all i ≤ l ≤ j by descending induction on l. If l = j, then (3.6.8) coincides
with (Eii). Assume that l < j and let a be an element in the left-hand side
of (3.6.8). The induction hypothesis says that

a ∈ [(y1, . . . , yv−1, {xλ | λ ∈ Λ})M + (xi, . . . , xl, xj , . . . , xd)qiM ] : yu.

We put yua = xlb+ c with b ∈ qiM and

c ∈ (y1, . . . , yv−1, {xλ | λ ∈ Λ})M + (xi, . . . , xl−1, xj , . . . , xd)qiM.

On the other hand, Proposition 3.4 says that

a ∈ (y1, . . . , yv−1, {xλ | λ ∈ Λ}, xi, . . . , xl−1, xj , . . . , xd)M : yvyu
= (y1, . . . , yv−1, {xλ | λ ∈ Λ}, xi, . . . , xl−1, xj , . . . , xd)M : yu.

Hence

b ∈ (y1, . . . , yv−1, {xλ | λ ∈ Λ}, xi, . . . , xl−1, xj , . . . , xd)M :xl ∩ qiM

⊆ (y1, . . . , yv−1, {xλ | λ ∈ Λ}, xi, . . . , xl−1, xj , . . . , xd)M

because xi, . . . , xj−1 is a d-sequence on

M/(y1, . . . , yv−1, {xλ | λ ∈ Λ}, xj, . . . , xd)M.

Therefore

yua = xlb+ c ∈ (y1, . . . , yv−1, {xλ | λ ∈ Λ})M + (xi, . . . , xl−1, xj , . . . , xd)qiM.

Thus (3.6.8) is proved. If we put l = i, then we obtain

[(y1, . . . , yv−1, {xλ | λ ∈ Λ})M + qiqjM ] : yvyu
= [(y1, . . . , yv−1, {xλ | λ ∈ Λ})M + qiqjM ] : yu.

Next we assume that ni+1 + · · ·+ nj > 1. Let

a ∈ [(y1, . . . , yv−1, {xλ | λ ∈ Λ})M + qiq
ni+1
i+1 · · · q

nj
j M ] : yvyu.
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Then (Ei+1,j) says that

a ∈ [(y1, . . . , yv−1, {xλ | λ ∈ Λ}, xi)M + q
ni+1+1
i+1 · · · qnjj M ] : yvyu

= [(y1, . . . , yv−1, {xλ | λ ∈ Λ}, xi)M + q
ni+1+1
i+1 · · · qnjj M ] : yu.

Therefore

yua ∈ [(y1, . . . , yv−1, {xλ | λ ∈ Λ})M + qiq
ni+1
i+1 · · · q

nj
j M ] : yv

∩ [(y1, . . . , yv−1, {xλ | λ ∈ Λ}, xi)M + q
ni+1+1
i+1 · · · qnjj M ]

= (y1, . . . , yv−1, {xλ | λ ∈ Λ})M + q
ni+1+1
i+1 · · · qnjj M

+ [(y1, . . . , yv−1, {xλ | λ ∈ Λ})M + qiq
ni+1
i+1 · · · q

nj
j M ] : yv ∩ xiM

= (y1, . . . , yv−1, {xλ | λ ∈ Λ})M + q
ni+1+1
i+1 · · · qnjj M

+ xi{[(y1, . . . , yv−1, {xλ | λ ∈ Λ})M + q
ni+1
i+1 · · · q

nj
j M ] : yv}.

Here we used (Dij) to show the second equality. We put yua = xib+ c with

b ∈ [(y1, . . . , yv−1, {xλ | λ ∈ Λ})M + q
ni+1
i+1 · · · q

nj
j M ] : yv(3.6.9)

and

c ∈ (y1, . . . , yv−1, {xλ | λ ∈ Λ})M + q
ni+1+1
i+1 · · · qnjj M.

By applying (Ci+1,j) to a subsystem of parameters y1, . . . , yv−1, yu, {xλ | λ ∈
Λ}, xi for M/qi+1M , we obtain

b ∈ [(y1, . . . , yv−1, yu, {xλ | λ ∈ Λ})M + q
ni+1+1
i+1 · · · qnjj M ] :xi

⊆ (y1, . . . , yv−1, yu, {xλ | λ ∈ Λ})M :xi + q
ni+1
i+1 · · · q

nj
j M.

(3.6.10)

On the other hand, since ni+1 + · · ·+ nj > 1, we have

b ∈ [(y1, . . . , yv−1, {xλ | λ ∈ Λ})M + q
2
i+1M ] : yv

⊆ (y1, . . . , yv−1, {xλ | λ ∈ Λ})M : yv + qi+1M
(3.6.11)

by using (Ci+1,i+1).
Furthermore, by applying Proposition 3.4 to a subsystem of parameters y1, . . . ,

yv−1, {xλ | λ ∈ Λ}, yv, xi for M/qi+1M , we obtain

(y1, . . . , yv−1, {xλ | λ ∈ Λ})M : yv
⊆ (y1, . . . , yv−1, {xλ | λ ∈ Λ})M : yvxi
= (y1, . . . , yv−1, {xλ | λ ∈ Λ})M :xi.

(3.6.12)

Hence, by taking the intersection of (3.6.10) and (3.6.11), we have

b ∈ (y1, . . . , yv−1, {xλ | λ ∈ Λ})M : yv + q
ni+1
i+1 · · · q

nj
j M

+ (y1, . . . , yv−1, yu, {xλ | λ ∈ Λ})M :xi ∩ qi+1M

⊆ (y1, . . . , yv−1, {xλ | λ ∈ Λ})M : yv + yuM + q
ni+1
i+1 · · · q

nj
j M.

Here we apply Proposition 3.2 to a d-sequence xi, . . . , xd on

M/(y1, . . . , yv−1, yu, {xλ | λ ∈ Λ})M.
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Taking the intersection with (3.6.9), we obtain

b ∈ (y1, . . . , yv−1, {xλ | λ ∈ Λ})M : yv + q
ni+1
i+1 · · · q

nj
j M

+ [(y1, . . . , yv−1, {xλ | λ ∈ Λ})M + q
ni+1
i+1 · · · q

nj
j M ] : yv ∩ yuM

= (y1, . . . , yv−1, {xλ | λ ∈ Λ})M : yv + q
ni+1
i+1 · · · q

nj
j M

+ yu{[(y1, . . . , yv−1, {xλ | λ ∈ Λ})M + q
ni+1
i+1 · · · q

nj
j M ] : yvyu}

= (y1, . . . , yv−1, {xλ | λ ∈ Λ})M : yv + q
ni+1
i+1 · · · q

nj
j M.

Here we used (Ei+1,j) to show the last equality. By using (3.6.12) again, we find
that

yua = xib+ c ∈ (y1, . . . , yv−1, {xλ | λ ∈ Λ})M + qiq
ni+1
i+1 · · · q

nj
j M.

That is,

a ∈ [(y1, . . . , yv−1, {xλ | λ ∈ Λ})M + qiq
ni+1
i+1 · · · q

nj
j M ] : yu.

The opposite inclusion is obvious. The proof is completed.

Corollary 3.7. With the same notation as Theorem 3.6, we have

[(y1, . . . , yu)M + q
ni
i · · · q

nj
j M ] :xni−1

i−1 = [(y1, . . . , yu)M + q
ni
i · · · q

nj
j M ] : qi−1

for any integers 2 ≤ i ≤ j ≤ d, ni−1 > 0, ni, . . . , nj ≥ 0 and for any subsystem of
parameters y1, . . . , yu for M/qi−1M .

Proof. If ni = · · · = nj = 0, then the equality is trivial. Therefore we may assume
that one of ni, . . . , nj is positive. We may also assume that ni−1 = 1 by using
Theorem 3.6(Eij). Then we have

[(y1, . . . , yu)M + q
ni
i · · · q

nj
j M ] :xi−1 ⊆ (y1, . . . , yu)M :xi−1 + q

ni−1
i · · · qnjj M

by applying Theorem 3.6(Cij) to a subsystem of parameters y1, . . . , yu, xi−1 for
M/qiM . Since xi−1, . . . , xd is a d-sequence on M/(y1, . . . , yu)M ,

(y1, . . . , yu)M :xi−1 ⊆ (y1, . . . , yu)M : qi−1.

Therefore

qi−1{[(y1, . . . , yu)M + q
ni
i · · · q

nj
j M ] :xi−1} ⊆ (y1, . . . , yu)M + q

ni
i · · · q

nj
j M.

The opposite inclusion is trivial.

Corollary 3.8. With the same notation of Theorem 3.6, we let k be an integer such
that 1 ≤ k ≤ d and y1, . . . , yu a subsystem of parameters for M/qkM . Assume
that

[(y1, . . . , yu−1)M + qkM ] : yu = (y1, . . . , yu−1)M + qkM.

Then

(y1, . . . , yu−1, {xλ | λ ∈ Λ})M : yu = (y1, . . . , yu−1, {xλ | λ ∈ Λ})M(3.8.1)

for any Λ ⊂ {k, . . . , d}. Furthermore

[(y1, . . . , yu−1, {xλ | λ ∈ Λ})M + q
ni
i · · · q

nj
j M ] : yu

= (y1, . . . , yu−1, {xλ | λ ∈ Λ})M + q
ni
i · · · q

nj
j M

(3.8.2)

for any integers k ≤ i ≤ j, ni, . . . , nj ≥ 0, and Λ ⊆ {k, . . . , i− 1}.
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Proof. We first show (3.8.1) by descending induction on the number of elements
in Λ. If Λ = {k, . . . , d}, then there exists nothing to prove. Assume that Λ 6=
{k, . . . , d} and let l be an element in {k, . . . , d} \ Λ. Let a be an element in the
left-hand side of (3.8.1). Then

a ∈ (y1, . . . , yu−1, xl, {xλ | λ ∈ Λ})M : yu = (y1, . . . , yu−1, xl, {xλ | λ ∈ Λ})M
because of the induction hypothesis. We put a = xlb+ c with

c ∈ (y1, . . . , yu−1, {xλ | λ ∈ Λ})M.

Since xl ∈ a(M) or xl ∈ a(M/ql+1M), we obtain

b ∈ (y1, . . . , yu−1, {xλ | λ ∈ Λ})M : yuxl = (y1, . . . , yu−1, {xλ | λ ∈ Λ})M :xl
by using Proposition 3.4. Therefore a = xlb+ c ∈ (y1, . . . , yu−1, {xλ | λ ∈ Λ})M .

Next we show that (3.8.2). If ni = · · · = nj = 0, then the equality is trivial. We
assume that ni, nj > 0 and we work by induction on j − i. If i = j, then

[(y1, . . . , yu−1, {xλ | λ ∈ Λ})M + q
ni
i M ] : yu

= (y1, . . . , yu−1, {xλ | λ ∈ Λ})M : yu

+ q
ni−1
i {[(y1, . . . , yu−1, {xλ | λ ∈ Λ})M + qiM ] : yu}

= (y1, . . . , yu−1, {xλ | λ ∈ Λ})M + q
ni
i M.

Here we used Theorem 3.6(Bij) and (3.8.1). Assume that j > i. We may assume
that ni = 1 by using Theorem 3.6(Bij). Let a be an element of the left-hand side
of (3.8.2). The induction hypothesis says that

[(y1, . . . , yu−1, xi, {xλ | λ ∈ Λ})M + q
ni+1+1
i+1 · · · qnjj M ] : yu

= (y1, . . . , yu−1, xi, {xλ | λ ∈ Λ})M + q
ni+1+1
i+1 · · · qnjj M.

Therefore

a ∈ [(y1, . . . , yu−1, {xλ | λ ∈ Λ})M + qiq
ni+1
i+1 · · · q

nj
j M ] : yu

∩ [(y1, . . . , yu−1, xi, {xλ | λ ∈ Λ})M + q
ni+1+1
i+1 · · · qnjj M ]

= (y1, . . . , yu−1, {xλ | λ ∈ Λ})M + q
ni+1+1
i+1 · · · qnjj M

+ [(y1, . . . , yu−1, {xλ | λ ∈ Λ})M + qiq
ni+1
i+1 · · · q

nj
j M ] : yu ∩ xiM

⊆ (y1, . . . , yu−1, {xλ | λ ∈ Λ})M + q
ni+1+1
i+1 · · · qnjj M

+ xi{[(y1, . . . , yu−1, {xλ | λ ∈ Λ})M + q
ni+1
i+1 · · · q

nj
j M ] : yu}

= (y1, . . . , yu−1, {xλ | λ ∈ Λ})M + qiq
ni+1
i+1 · · · q

nj
j M.

Here we used Theorem 3.6(Dij) and the induction hypothesis.

4. The proof of Theorem 1.1

Before the proof of Theorem 1.1, we give some statements on Zr-graded rings.
Let R =

⊕
n1,...,nr≥0R(n1,...,nr) be a Noetherian Zr-graded ring. For such a ring,

let R+ =
⊕

(n1,...,nr) 6=(0,...,0)R(n1,...,nr).

Proposition 4.1. Let M be a finitely generated graded R-module and b an ideal
in R(0,...,0). Then there exists an integer n such that

[Hp
bR+R+

(M)](n1,...,nr) = 0 unless n1, . . . , nr < n

for all p ≥ 0.
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Proof. If b = (0), then we can prove the assertion in the same way as [28, no. 66
Théorème 2]. The spectral sequence Epq2 = Hp

bRH
q
R+

(−) ⇒ Hp+q
bR+R+

(−) says that
the assertion holds in general.

Let ϕ : Zr → Zs be a group homomorphism satisfying ϕ(Nr) ⊆ Ns. We put

Rϕ =
⊕

m1,...,ms≥0

 ⊕
ϕ(n1,...,nr)=(m1,...,ms)

R(n1,...,nr)

 ,

which is a Zs-graded ring. For a graded R-module M , let

Mϕ =
⊕

m1,...,ms∈Z

 ⊕
ϕ(n1,...,nr)=(m1,...,ms)

M(n1,...,nr)

 ,

which is a graded Rϕ-module. We know that

[Hp
bR+R+

(M)]ϕ = Hp
bRϕ+(Rϕ)+

(Mϕ)

for any ideal b in R(0,...,0). See Lemma 1.1 of [15].
The following proposition is contained in the proof of [15, Theorem 2.2].

Proposition 4.2. Let M =
⊕

n1,...,nr≥0M(n1,...,nr) be a finitely generated graded
R-module and b an ideal in R(0,...,0). We put

S =
⊕

n1,...,nr+1≥0

R(n1,...,nr−1,nr+nr+1)

and

N =
⊕

n1,...,nr+1≥0

M(n1,...,nr−1,nr+nr+1).

Then S is a Noetherian Zr+1-graded ring and N a finitely generated graded S-
module.

If there exists an integer p0 such that

Hp
bR+R+

(M) = 0 for all p > p0,(4.2.1)

then

Hp
bS+S+

(N) = 0 for all p > p0 + 1.

If

[Hp
bR+R+

(M)](n1,...,nr) = 0 unless n1, . . . , nr < 0(4.2.2)

for all p, then

[Hp
bS+S+

(N)](n1,...,nr+1) = 0 unless n1, . . . , nr+1 < 0

for all p. If, in addition, there exist integers p0 > 0 and n0 < 0 such that

[Hp
bR+R+

(M)](n1,...,nr) = 0 whenever n1 + · · ·+ nr ≤ n0(4.2.3)

for all p < p0, then

[Hp
bS+S+

(N)](n1,...,nr+1) = 0 whenever n1 + · · ·+ nr+1 ≤ n0

for all p < p0 + 1.
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Proof. It is easy to show that S is a Zr+1-graded ring and N a graded S-module.
First we show that S is Noetherian. To do this, we may assume that r = 1 without
loss of generality. Since R is Noetherian, R0 is also and R is generated by finitely
generated R0-modules R1, . . . , Rk over R0. Then S = S(0,0)[S(n1,n2) | n1 +n2 ≤ k].
Indeed, if i+ j > k, then Ri+j = R1Ri+j−1 + · · ·+RkRi+j−k. Therefore

S(i,j) =

{∑k
l=1 S(l,0)S(i−l,j), if i ≥ k;∑i
l=1 S(l,0)S(i−l,j) +

∑k−i
m=1 S(i,m)S(0,j−m), if i < k.

We can show that S(i,j) ⊂ S(0,0)[S(n1,n2) | n1 + n2 ≤ k] by induction on i + j.
Similarly we can prove that N is a finitely generated S-module.

Next we consider local cohomology modules. Let

I =
⊕

n1,...,nr≥0,nr+1>0

R(n1,...,nr−1,nr+nr+1)

and

L1 =
⊕

n1,...,nr≥0,nr+1>0

M(n1,...,nr−1,nr+nr+1).

If we put ϕ(n1, . . . , nr) = (n1, . . . , nr, 0), then S/I ∼= Rϕ and N/L1
∼= Mϕ. There-

fore

[Hp
bS+S+

(N/L1)](n1,...,nr+1) =

{
[Hp

bR+R+
(M)](n1,...,nr), if nr+1 = 0;

0, otherwise

for all p. Similarly we put

L2 =
⊕

n1,...,nr−1,nr+1≥0,nr>0

M(n1,...,nr−1,nr+nr+1).

Then

[Hp
bS+S+

(N/L2)](n1,...,nr+1) =

{
[Hp

bR+R+
(M)](n1,...,nr−1,nr+1), if nr = 0;

0, otherwise

for all p.
There exist two long exact sequences of local cohomology modules

· · · → Hp−1
bS+S+

(N/Li)→ Hp
bS+S+

(Li)→ Hp
bS+S+

(N)→ Hp
bS+S+

(N/Li)→ · · ·

for i = 1 and 2. On the other hand, L1
∼= L2(0, . . . , 0, 1,−1).

Assume that (4.2.1) holds. If p > p0 + 1, then

[Hp
bS+S+

(N)](n1,...,nr+1)
∼= [Hp

bS+S+
(L1)](n1,...,nr+1)

∼= [Hp
bS+S+

(L2)](n1,...,nr−1,nr+1,nr+1−1)

∼= [Hp
bS+S+

(N)](n1,...,nr−1,nr+1,nr+1−1)

∼= · · · = 0.

Here we used Proposition 4.1.
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Next we assume that (4.2.2) holds for all p. Unless n1, . . . , nr < 0, then

[Hp
bS+S+

(N)](n1,...,nr+1)
∼= [Hp

bS+S+
(L1)](n1,...,nr+1)

∼= [Hp
bS+S+

(L2)](n1,...,nr−1,nr+1,nr+1−1)

∼= [Hp
bS+S+

(N)](n1,...,nr−1,nr+1,nr+1−1)

∼= · · · = 0.

We can also show that [Hp
bS+S+

(L)](n1,...,nr+1) = 0 if nr+1 ≥ 0. In addition, we
also assume that (4.2.3) holds for all p < p0. If p < p0 + 1, n1 + · · · + nr+1 ≤ n0,
and n1, . . . , nr+1 < 0, then

[Hp
bS+S+

(N)](n1,...,nr+1)
∼= [Hp

bS+S+
(L1)](n1,...,nr+1)

∼= [Hp
bS+S+

(L2)](n1,...,nr−1,nr+1,nr+1−1)

⊆ [Hp
bS+S+

(N)](n1,...,nr−1,nr+1,nr+1−1)

∼= · · · = 0.

The proof is completed.

Let b1, . . . , br be ideals in A. The multigraded Rees algebra of A (for short, the
multi-Rees algebra) with respect to them is defined to be

R(b1, . . . , br) = A[b1T1, . . . , brTr],

where T1, . . . , Tr are indeterminates. If b1, . . . , br are of positive height, then
dimR(b1, . . . , br) = dimA + r. See Proposition 1.17 of [15]. For an A-module M ,
let RM (b1, . . . , br) denote the R(b1, . . . , br)-module⊕

n1,...,nr≥0

b
n1
1 · · · bnrr MT n1

1 · · ·T nrr .

Recently Hyry gives the following theorem.

Theorem 4.3 ([16, Corollary 2.10]). Let b1, . . . , br be ideals in A of positive
height. If the multi-Rees algebra R(b1, . . . , br) is Cohen-Macaulay, then the or-
dinary Rees algebra R(b1 · · · br) is also Cohen-Macaulay.

We start to prove Theorem 1.1.

Theorem 4.4. Let M be a finitely generated A-module and xt, . . . , xd elements
in A. We fix integers t ≤ s + 1 < d, αt, . . . , αs > 0, and αs+1 ≥ d − s − 1. Let
qi = (xi, . . . , xd) for all t ≤ i ≤ s+ 1. We put

S = A[qtTt,1, . . . , qtTt,αt , qt+1Tt+1,1, . . . , qsTs,αs , qs+1Ts+1,1, . . . , qs+1Ts+1,αs+1]

and N the S-module RM (qt, . . . , qs+1). If the sequence xt, . . . , xd satisfies the
following six conditions :

(1) the sequence xi, . . . , xd is a d-sequence on M/(xnλλ | λ ∈ Λ)M for all t ≤ i ≤
s+ 1, nt, . . . , ni−1 > 0, and Λ ⊆ {t, . . . , i− 1};

(2) the sequence xi, . . . , xd−1 is a d-sequence on M/({xλ | λ ∈ Λ}, xd)M for all
t ≤ i ≤ s+ 1, nt, . . . , ni−1 > 0, and Λ ⊆ {t, . . . , i− 1};

(3) the sequence xs+1, . . . , xd is a u.s.d-sequence on M/(xnλλ | λ ∈ Λ)M for all
nt, . . . , ns > 0 and Λ ⊆ {t, . . . , s};
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(4) the equality

({xnλλ | λ ∈ Λ}, xk, . . . , xl−1)M :xl ∩ [(xnλλ | λ ∈ Λ)M + q
ni
i · · · q

ns+1
s+1 M ]

= (xnλλ | λ ∈ Λ)M + (xk, . . . , xl−1)qnii · · · q
nk−1
k · · · qns+1

s+1 M

holds for any integers t ≤ i ≤ k ≤ s + 1, k ≤ l ≤ d, nt, . . . , ni−1, nk > 0,
ni, . . . , nk−1, nk+1, . . . , ns+1 ≥ 0, and Λ ⊆ {t, . . . , i− 1};

(5) the equality

[(xnλλ | λ ∈ Λ)M + q
ni
i · · · q

ns+1
s+1 M ] :xni−1

i−1

= [(xnλλ | λ ∈ Λ)M + q
ni
i · · · q

ns+1
s+1 M ] : qi−1

holds for any t < i ≤ s + 1, nt, . . . , ni−1 > 0, ni, . . . , ns+1 ≥ 0, and
Λ ⊂ {t, . . . , i− 2};

(6) 0 :M xd ⊆ 0 :M xt,
then

H0
qtS+S+

(N) = 0 :
M
xd,(4.4.1)

Hp
qtS+S+

(N) = 0 for p 6= 0, d− t+ 1 + αt + · · ·+ αs+1,(4.4.2)

and

[Hd−t+1+αt+···+αs+1
qtS+S+

(N)](nt,1,...,ns+1,αs+1) = 0,(4.4.3)

unless nt,1, . . . , ns+1,αs+1 < 0.

Proof. We show that (4.4.1)–(4.4.3) by descending induction on t. First we note
that d − s ≥ 2 because of the assumption. Furthermore 0 :M xt ⊂ · · · ⊂ 0 :M xd
because xt, . . . , xd is a d-sequence on M . Therefore (1) and (6) say that 0 :M xt =
· · · = 0 :M xd. Without loss of generality, we may assume that 0 :M xd = 0. Indeed,
assumptions (1)–(6) hold on M = M/0 :M xd. For example,

[({xnλλ | λ ∈ Λ}, xk, . . . , xl−1)M + 0 :
M
xt] :xl

= ({xnλλ | λ ∈ Λ}, xk, . . . , xl−1)M :x2
l

= ({xnλλ | λ ∈ Λ}, xk, . . . , xl−1)M :xl

because 0 :M xt ⊂ 0 :M xl. Hence

({xnλλ |λ ∈ Λ}, xk, . . . , xl−1)M ] :xl ∩ [(xnλλ | λ ∈ Λ)M + q
ni
i · · · q

ns+1
s+1 M + 0 :

M
xt]

= ({xnλλ | λ ∈ Λ}, xk, . . . , xl−1)M :xl ∩ [(xnλλ | λ ∈ Λ)M + q
ni
i · · · q

ns+1
s+1 M ]

+ 0 :
M
xt

= (xnλλ | λ ∈ Λ)M + (xk, . . . , xl−1)qnii · · · q
nk−1
k · · · qns+1

s+1 M + 0 :
M
xt.

Thus (4) holds on M . Similarly we can show that (1)–(3) and (5) hold on M .
Of course 0 :M xt = 0 :M xd = 0. On the other hand, if N denotes the S-module
RM (qt, . . . , qs+1), then there exists an exact sequence of S-modules

0→ 0 :
M
xt → N → N → 0.

Since 0 :M xt is annihilated by qtS + S+,

0→ 0 :
M
xt → H0

qtS+S+
(N)→ H0

qtS+S+
(N)→ 0

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



140 TAKESI KAWASAKI

is exact and

Hp
qtS+S+

(N) ∼= Hp
qtS+S+

(N) for all p > 0.

Thus if the assertion holds for M , then the one holds for M .
From now on we assume that 0 :M xt = · · · = 0 :M xd = 0. Because of Propo-

sition 4.2, we may assume that αt = · · · = αs = 1 and αs+1 = d − s − 1.
For the simplicity, we write Tt = Tt,1, . . . , Ts+1 = Ts+1,1, Ts+2 = Ts+1,2, . . . ,
Td−1 = Ts+1,d−s−1.

Assume that t = s+ 1 and put R = A[qs+1Ts+1]. Then we know that

[Hp
qs+1R+R+

(RM (qs+1))]n = 0 unless 2− p ≤ n ≤ −1

for all p < d− s+ 1,

[Hd−s+1
qs+1R+R+

(RM (qt+1))]n = 0 unless n < 0,

and

Hp
qs+1R+R+

(RM (qt+1)) = 0 for all p > d− s+ 1.

See [12, Theorem 4.1]. By using Proposition 4.2, repeatedly, we find that

Hp
qs+1S+S+

(N) = 0 for p 6= 2d− 2s− 1

and

[H2d−2s−1
qs+1S+S+

(N)](ns+1,...,nd−1) = 0 unless ns+1, . . . , nd−1 < 0.

Thus we obtain (4.4.1)–(4.4.3).
Next we assume that t < s + 1. Then xmt M :xt+1 = xmt M :xd for any m > 0.

Indeed, if a ∈ xmt M :xd and we put xda = xmt b, then b ∈ xdM :xmt ⊆ xdM :xt+1

because of (2). Let xt+1b = xdc. Then xt+1xda = xmt xt+1b = xmt xdc. Therefore
xt+1a − xmt c ∈ 0 :M xd = 0 and hence a ∈ xmt M :xt+1. Thus the sequence xt+1,
. . . , xd satisfies (1)–(6) on M and on M/xmt M for any m > 0.

Let R = A[qt+1Tt+1, . . . , qs+1Ts+1, . . . , qs+1Td−1] and

Y =
⊕

nt+1,...,nd−1≥0

[qnt+1
t+1 · · · q

ns+1+···+nd−1
s+1 M : qt]T

nt+1
t+1 · · ·T

nd−1
d−1 .

Then assumption (5) gives an exact sequence of R-modules

0→ Y
xmt−−→ RM (qt+1 · · · qs+1)→ RM/xmt M

(qt+1, . . . , qs+1)→ 0

and hence Y is finitely generated over R. The induction hypothesis says that

Hp
qt+1R+R+

(RM (qt+1, . . . , qs+1)) = 0 for p 6= 2d− 2t− 1,

[H2d−2t−1
qt+1R+R+

(RM (qt+1, . . . , qs+1))](nt+1,...,nd−1) = 0

unless nt+1, . . . , nd−1 < 0,

Hp
qt+1R+R+

(RM/xmt M
(qt+1, . . . , qs+1)) = 0 for p 6= 0, 2d− 2t− 1,

and

[H2d−2t−1
qt+1R+R+

(RM/xmt M (qt+1, . . . , qs+1))](nt+1,...,nd−1) = 0

unless nt+1, . . . , nd−1 < 0. The spectral sequence

Epq2 = Hp
xtH

q
qt+1R+R+

(−)⇒ Hp+q
qtR+R+

(−)
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gives a short exact sequence

0→ H1
xtH

p−1
qt+1R+R+

(−)→ Hp
qtR+R+

(−)→ H0
xtH

p
qt+1R+R+

(−)→ 0.

By using it, we obtain

Hp
qtR+R+

(RM (qt+1, . . . , qs+1)) = 0 for p 6= 2d− 2t− 1, 2d− 2t,

[H2d−2t
qtR+R+

(RM (qt+1, . . . , qs+1))](nt+1,...,nd−1) = 0

unless nt+1, . . . , nd−1 < 0,

Hp
qtR+R+

(RM/xmt M
(qt+1, . . . , qs+1)) = 0 for p 6= 0, 2d− 2t− 1,

and

[H2d−2t−1
qtR+R+

(RM/xmt M
(qt+1, . . . , qs+1))](nt+1,...,nd−1) = 0

unless nt+1, . . . , nd−1 < 0. Therefore

Hp
qtR+R+

(Y ) = 0 for p 6= 1, 2d− 2t− 1, 2d− 2t,

[H2d−2t
qtR+R+

(Y )](nt+1,...,nd−1) = 0 unless nt+1, . . . , nd−1 < 0,

and

0→ H2d−2t−1
qtR+R+

(Y )→ H2d−2t−1
qtR+R+

(RM (qt+1, . . . , qs+1))

is exact. We show that H2d−2t−1
qtR+R+

(Y ) = 0. Let E = H2d−2t−1
qtR+R+

(RM (qt+1, . . . , qs+1)).
Because of (5),

qtY ⊆ RM (qt+1, . . . , qs+1) ⊆ Y.
Therefore

Hp
qtR+R+

(Y/RM (qt+1, . . . , qs+1)) ∼= Hp
R+

(Y/RM (qt+1, . . . , qs+1)).

Let
f2t+2 = xt+1Tt+1,
f2t+3 = xt+2Tt+1,
f2t+4 = xt+3Tt+1 + xt+2Tt+2,

...
fd+t+1 = xdTt+1 + xd−1Tt+2 + · · · ,
fd+t+2 = xdTt+1 + · · · ,

...
f2d−2 = xdTd−2 + xd−1Td−1,
f2d−1 = xdTd−1.

Then
√
R+ =

√
(f2t+2, . . . , f2d−1)R. The proof is quite similar to [11, Lemma 3.2].

We omit it. Therefore

Hp
qtR+R+

(Y/RM (qt+1, . . . , qs+1)) = 0 for p > 2d− 2t− 2

and hence

H2d−2t−2
qtR+R+

(Y/RM (qt+1, . . . , qs+1))→ E → H2d−2t−1
qtR+R+

(Y )→ 0

is exact. Thus

H2d−2t−1
qtR+R+

(Y/RM (qt+1, . . . , qs+1))→ E
xmt−−→ E(4.4.4)
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is exact. Since the first term of (4.4.4) is annihilated by xt, we obtain 0 :E xmt =
0 :E xt. Therefore xtE = 0 and hence H2d−2t−1

qtR+R+
(Y ) = 0 because E =

⋃
m>0 0 :E xmt .

Since R = S/qtTtS, Y is also an S-module and

Hp
qtS+S+

(Y ) = 0 for p 6= 1, 2d− 2t,(4.4.5)

[H2d−2t
qtS+S+

(Y )](nt,...,nd−1) = 0 unless nt = 0, nt−1, . . . , nd−1 < 0.

Let S′ = A[qt+1Tt, qt+1Tt+1, . . . , qsTs, qs+1Ts+1, . . . , qs+1Td−1]. Then the induc-
tion hypothesis says that

Hp
qt+1S′+S′+

(RM/xtM (qt+1, qt+1, . . . , qs+1)) = 0 for p 6= 0, 2d− 2t

and

[H2d−2t
qt+1S′+S′+

(RM/xtM (qt+1, qt+1, . . . , qs+1))](nt,...,nd−1) = 0

unless nt, . . . , nd−1 < 0. Since S′ is an A-subalgebra of S, we can regard the S-
module RM/xtM (qt, . . . , qt+1) as an S′-module and there exists an S′-isomorphism

RM/xtM (qt, qt+1, . . . , qs+1) ∼= RM/xtM (qt+1, qt+1, . . . , qs+1).

Since (xt, xtTt)RM/xtM (qt, . . . , qs+1) = 0,

Hp
qtS+S+

(RM/xtM (qt, . . . , qs+1))

= Hp
(qt+1S′+S′+)S(RM/xtM (qt, . . . , qs+1))

= Hp
qt+1S′+S′+

(RM/xtM (qt, . . . , qs+1)) = 0

(4.4.6)

for p 6= 0, 2d− 2t and

[H2d−2t
qtS+S+

(RM/xtM (qt, . . . , qs+1))](nt,...,nd−1) = 0 unless nt, . . . , nd−1 < 0.

Let X be the kernel of the natural epimorphism N → RM/xtM (qt, . . . , qs+1). Then
there exists an exact sequence of S-modules

0→ X → N → RM/xtM (qt, . . . , qs+1)→ 0.

Since

xtM ∩ q
nt
t · · · q

ns+1+···+nd−1
s+1 M = xtq

nt−1
t · · · qns+1+···+nd−1

s+1 M

if nt > 0, ⊕
nt>0

X(nt,...,nd−1) = xtTtN

and there exists an exact sequence

0→ N(−1, 0, . . . , 0) xtTt−−−→ X
x−1
t−−→ Y → 0.

Because of (4.4.5) and (4.4.6),

0→ Hp
qtS+S+

(N)(−1, 0, . . . , 0) xtTt−−−→ Hp
qtS+S+

(N)

is exact if 3 ≤ p < 2d− 2t+ 1 or p > 2d− 2t+ 1. Since Hp
qtS+S+

(N) is annihilated
by some power of xtTt elementwise,

Hp
qtS+S+

(N) = 0 if 3 ≤ p < 2d− 2t+ 1 or p > 2d− 2t+ 1.

Furthermore

H2d−2t
qtS+S+

(Y )→ H2d−2t+1
qtS+S+

(N)(−1, 0, . . . , 0)→ H2d−2t+1
qtS+S+

(X)→ 0
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and

H2d−2t
qtS+S+

(RM/xtM (qt, . . . , qs+1))→ H2d−2t+1
qtS+S+

(X)→ H2d−2t+1
qtS+S+

(N)→ 0

are exact. Unless nt, . . . , nd−1 < 0, then we obtain

[H2d−2t+1
qtS+S+

(N)](nt,...,nd−1)
∼= [H2d−2t+1

qtS+S+
(X)](nt+1,nt+1,...,nd−1)

∼= [H2d−2t+1
qtS+S+

(N)](nt+1,nt+1,...,nd−1)

∼= · · · = 0.

Thus (4.4.2) is proved.
Finally we show that xsTs, xs+1Ts+1, xs+2 is a regular sequence on N . Since xs

is regular on M , xsTs is regular on N .
Let aT ntt · · ·T

nd−1
d−1 ∈ xsTsN :xs+1Ts+1. If ns = 0, then xs+1a = 0 and hence

a = 0. If ns > 0, then

a ∈ xsM :xs+1 ∩ q
nt
t · · · q

ns+1+···+nd−1
s+1 M = xsq

nt
t · · · qns−1

s q
ns+1+···+nd−1
s+1 M.

Here we used (4). Hence aT ntt · · ·T
nd−1
d−1 ∈ xsTsN .

Let aT ntt · · ·T
nd−1
d−1 ∈ (xsTs, xs+1Ts+1)N :xs+2. If ns = ns+1 = 0, then xs+2a = 0

and hence a = 0. If ns > 0 and ns+1 = 0, then a ∈ xsM :xs+2. Because of (3), we
have xsM :xs+1 = xsM :xs+2. Hence

a ∈ xsM :xs+1 ∩ q
nt
t · · · q

ns+1+···+nd−1
s+1 M = xsq

nt
t · · · qns−1

s q
ns+1+···+nd−1
s+1 M,

that is, aT ntt · · ·T
nd−1
d−1 ∈ xsTsN . If ns = 0 and ns+1 > 0, then

a ∈ xs+1M :xs+2 ∩ q
nt
t · · · q

ns+1+···+nd−1
s+1 M = xs+1q

nt
t · · · q

ns+1+···+nd−1−1
s+1 M

and hence aT ntt · · ·T
nd−1
d−1 ∈ xs+1Ts+1N . If ns, ns+1 > 0, then

a ∈ (xs, xs+1)M :xs+2 ∩ q
nt
t · · · q

ns+1+···+nd−1
s+1 M

= (xs, xs+1)qntt · · · qns−1
s q

ns+1+···+nd−1
s+1 M

= xsq
nt
t · · · qns−1

s q
ns+1+···+nd−1
s+1 M + xs+1q

nt
t · · · q

ns+1+···+nd−1−1
s+1 M.

Therefore aT ntt · · ·T
nd−1
d−1 ∈ (xsTs, xs+1Ts+1)N .

Thus we obtain

Hp
qtS+S+

(N) = 0 for p < 3.

The proof is completed.

Corollary 4.5. Let A be a Noetherian local ring of dimension d ≥ 2 and x1, . . . ,
xd a p-standard system of parameters of type s for A. We put qi = (xi, . . . , xd)
for all 1 ≤ i ≤ s + 1. If s < d − 1 and (0) :xd = 0, then the Rees algebra
R(q1 · · · qsqd−s−1

s+1 ) is a Cohen-Macaulay ring. If, in addition, A/qt is Cohen-
Macaulay for some 1 < t ≤ s + 1, then R(qt · · · qsqd−s−1

s+1 ) is a Cohen-Macaulay
ring.

Proof. In this case Propositions 3.3, 3.5, Theorem 3.6, and Corollary 3.7 say that
x1, . . . , xd satisfies assumptions (1)–(5) of Theorem 4.4. Moreover (0) :x1 ⊇
(0) :xd = 0. Thus we find that A[q1T1, . . . , qsTs, qs+1Ts+1, . . . , qs+1Td−1] is Cohen-
Macaulay by using Theorem 4.4. Hyry’s theorem says that R(q1 · · · qsqd−s−1

s+1 ) is
Cohen-Macaulay.
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Assume thatA/qt is Cohen-Macaulay. That is, x1, . . . , xt−1 is a regular sequence
on A/qt. We show that

(x1, . . . , xi) :xd = (x1, . . . , xi) for 1 ≤ i ≤ t− 1

by induction on i. If i = 0, then there exists nothing to prove. Assume that i > 0
and let a ∈ (x1, . . . , xi) :xd. If we put xda = b+ xic with b ∈ (x1, . . . , xi−1), then

c ∈ (x1, . . . , xi−1, xd) :xi
= (x1, . . . , xi−1, xd).

Here we used Corollary 3.8. Let c = b′ + xda
′ with b′ ∈ (x1, . . . , xi−1). Then

a− xia′ ∈ (x1, . . . , xi−1) :xd = (x1, . . . , xi−1)

because of the induction hypothesis. Therefore a ∈ (x1, . . . , xi). Thus xt, . . . , xd
satisfies the assumptions of Theorem 4.4 on Ā = A/(x1, . . . , xt−1). Therefore

Ā[qtĀTt, . . . , qsĀTs, qs+1ĀTs+1, . . . , qs+1ĀTd−1]

is a Cohen-Macaulay ring and hence R(qt · · · qsqd−s−1
s+1 Ā) is also. Corollary 3.8 also

says that x1, . . . , xt−1 is a regular sequence on A and on A/(qt · · · qsqd−s−1
s+1 )n for

all n > 0. Taking Koszul cohomology of a short exact sequence

0→ R(qt · · · qsqd−s−1
s+1 )→ A[T ]→

⊕
n>0

(A/(qt · · · qsqd−s−1
s+1 )n)T n → 0

with respect to x1, . . . , xt−1, we obtain that

Hp(x1, . . . , xt−1;R(qt · · · qsqd−s−1
s+1 )) = 0 for p < t− 1

and

Ht−1(x1, . . . , xt−1;R(qt · · · qsqd−s−1
s+1 )) ∼= R(qt · · · qsqd−s−1

s+1 Ā).

That is, x1, . . . , xt−1 is a regular sequence on R(qt · · · qsqd−s−1
s+1 ) and

R(qt · · · qsqd−s−1
s+1 Ā) ∼= R(qt · · · qsqd−s−1

s+1 )/(x1, . . . , xt−1)R(qt · · · qsqd−s−1
s+1 ).

Therefore R(qt · · · qsqd−s−1
s+1 ) is a Cohen-Macaulay ring.

Proof of Theorem 1.1. Let A be a Noetherian local ring of dimension d > 0. First
we prove that (B) implies (A). Assume that A satisfies (B). If d = 1, then A
is Cohen-Macaulay because A has no embedded prime. Let a be a system of
parameters for A. Then R(aA) is a polynomial ring over A and hence Cohen-
Macaulay.

Assume that d ≥ 2. Since A is unmixed, dimA/p = d for any associated prime p

of A. Thus s = dimA/a(A) < d− 1 because of Corollary 2.4. Theorem 2.5 assures
us that there exists a p-standard system of parameters x1, . . . , xd of type s for A.
Since A is unmixed, x1, . . . , xd are non-zero divisors on A. Therefore Corollary 4.5
gives an arithmetic Macaulayfication of A.

Next we show that (A) implies (B). Let b be an ideal in A of positive height such
that R = A[bT ] is a Cohen-Macaulay ring. Then A is a homomorphic image of a
Cohen-Macaulay local ring RmR+R+ and hence all the formal fibers of A are Cohen-
Macaulay. Next we show that A is unmixed. By passing through the completion,
we may assume that A is complete. Since b is of positive height, dimR = d + 1.
See [32, Corollary 1.6]. Let p1, . . . , ps be the associated primes of A. Then

p
∗
i = piA[T ] ∩R where i = 1, . . . , s
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are the associated primes of R. Since R is a Cohen-Macaulay ring of dimension d+1,
dimR/p∗i = d+1 and hence dimA/pi = d; see [32, Corollary 1.6] again, for all i.

To close this section, we give an example.

Example 4.6. Let k be a field, B an affine semigroup ring

k[a, b, c, d, e2, e3, ade, bde, cde, d2e]

and n the homogeneous maximal ideal of B. Then A = Bn is a Noetherian local
ring of dimension 5. The sequence x1 = a4, x2 = b4, x3 = c4, x4 = d4, x5 = e4 is a
p-standard system of parameter of type 3 for A. See [17, Appendix B].

Let qi = (xi, . . . , xd) for i = 1, . . . , 4. Then the proof of Corollary 4.5 says that
the multi-Rees algebra A[q1T1, . . . , q4T4] is a Cohen-Macaulay ring of dimension 9.
However, we can verify that it is a Cohen-Macaulay ring by using a computer [6].
Indeed the sequence x1, x1T1 + x2, x2T1 + x3, x2T2 + x3T1 + x4, x3T2 + x4T1 + x5,
x3T3 + x4T2 + x5T1, x4T3 + x5T2, x4T4 + x5T3, x5T4 is a regular sequence on
A[q1T1, . . . , q4T4] of length 9.

5. The proof of Corollary 1.2

Before proving Corollary 1.2, we state the definition of the codimension function.

Definition 5.1. Let B be a Noetherian ring. An integer-valued function tB defined
on SpecB is said to be a codimension function of B if

ht p1/p2 = tB(p1)− tB(p2) whenever p1 ⊇ p2.

A codimension function of B is not unique even if it exists. In fact, if t(p) is a
codimension function, then t(p)+c is also a codimension function for any constant c.
However, the codimension function is unique up to constant if SpecB is connected.

Proposition 5.2. (1) A catenary local ring has a codimension function.
(2) A catenary integral domain has a codimension function.
(3) A Cohen-Macaulay ring has a codimension function even if it is neither a

local ring nor an integral domain.
(4) If a Noetherian ring has a codimension function, then its homomorphic image

does also.
(5) If a Noetherian ring has a codimension function, then its localization does

also.
(6) A Noetherian ring possessing a dualizing complex has a codimension function.

Proof. Let B be a Noetherian ring.
(1) Let t(p) = − dimB/p. If B is a cantenary local ring, then t(p) is a codimen-

sion function of B.
(2) Let t(p) = dimBp. If B is a catenary integral domain, then t(p) is a codi-

mension function of B.
(3) Let t(p) = dimBp. Then t(p) is the codimension function of B. See the proof

of [20, Theorem 17.4(ii)].
(4) and (5) Obvious.
(6) See [14, Chapter 5, §7].

A Noetherian ring is catenary if it has a codimension function. But the converse
is not necessarily true. Moreover the universally catenarity is independent of the
existence of a codimension function.
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Example 5.3. (1) Ogoma [24, §5 I] gave a Noetherian, universally catenary ring
with no codimension function.

(2) Nagata [21, Example 2] gave a two-dimensional local integral domain which
is not quasi-unmixed. It has a codimension function but is not universally
catenary.

If a Noetherian ring B is universally catenary and has a codimension function,
then the polynomial ring over B does also.

Theorem 5.4. Let B be a Noetherian, universally catenary ring and C an es-
sentially of finite type B-algebra. If B has a codimension function, then C does
also.

Proof. We may assume that C is a polynomial ring over B. Let tB be a codimension
function. We put

tC(q) = tB(p) + ht q/pC where p = q ∩B
for each prime ideal q in C. Then tC is a codimension function of C.

The following is the key lemma for the proof of Corollary 1.2.

Lemma 5.5. Let B be a Noetherian, universally categnary ring which has a codi-
mension function. Then it is a homomorphic image of a finite type B-algebra C
such that the codimension function of C is a constant on the associated primes
of C. If, in addition, B is a local ring, then there exists a maximal ideal n of C
such that B is a homomorphic image of Cn.

Proof. Let tB be a codimension function of B and

(0) = q1 ∩ · · · ∩ qs

the irredundant primary decomposition of (0) in B. We may assume that

sup{tB(
√

qi) | i = 1, . . . , s} = 0.

We put n = − inf{tB(
√

qi) | i = 1, . . . , s} and ni = −tB(
√

qi) for all i. Then

C = B[T1, . . . , Tn]
/ s⋂
i=1

(qi, T1, . . . , Tni)B[T1, . . . , Tn]

has the required property. If B is a local ring with maximal ideal m, then n =
mC + (T1, . . . , Tn)C has the required property.

Proof of Corollary 1.2. The only if part is obvious. We prove the if part. Let A
be a Noetherian, universally catenary local ring with maximal ideal m and assume
that all the formal fibers of A are Cohen-Macaulay. If dimA = 0, then A itself is
Cohen-Macaulay.

We assume that dimA > 0. By modifying the proof of [29, Theorem 5.7], we
find that all the formal fibers of an essentially of finite type A-algebra are Cohen-
Macaulay. By using this fact and Lemma 5.5, we may assume that dimA/p = dimA
for each associated prime p of A. It implies that A is unmixed because A is formally
catanary and all the formal fibers of A are Cohen-Macaulay. Theorem 1.1 says that
there exists an arithmetic Macaulayfication R of A. Thus A is a homomorphic
image of a Cohen-Macaulay local ring RmR+R+ .

If A is excellent, then any essentially of finite type A-algebra is also. Therefore
we obtain the second assertion.
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We should mention that Corollary 1.2 is not true for non-local rings. Indeed,
all the formal fibers of all the localization of Ogoma’s example above are Cohen-
Macaulay. But it is not a homomorphic image of a Cohen-Macaulay ring because
it has no codimension function.

6. Non-local rings

First we prove Theorem 1.3. Let B be a Noetherian ring with dualizing com-
plex D. Then there exists a codimension function t of B such that

Hp(HomB(B/p, D)p) = 0 if p 6= t(p)

for each prime ideal p in B. The following lemma is an analogue of Proposition 2.3
and Corollary 2.4. We can prove them by using the local duality theorem. Here
annM denotes the annihilator of a B-module M .

Lemma 6.1. Let M be a finitely generated B-module and p a prime ideal in B.
Assume that t(q) = 0 for all minimal prime q of M . Then Mp is Cohen-Macaulay
if and only if p 6⊇

∏
j>0 annHj(Hom(M,D)).

In particular, if p ⊇
∏
j>0 annHj(Hom(M,D)), then t(p) > 0. If t(q) = 0 for all

associated prime q of M , then p ⊇
∏
j>0 annHj(Hom(M,D)) implies that t(p) ≥ 2.

We start the proof of Theorem 1.3.

Proof of Theorem 1.3. Let d = dimB and assume that t(q) = 0 for all associated
primes q of B. Then s0 = inf{t(p) | Bp is not Cohen-Macaulay} ≥ 2. If s is an
integer such that d − s0 ≤ s < d − 1, then there exist elements x1, . . . , xd in B
satisfying the following conditions:

(1) if p is a minimal prime of B/(xi, . . . , xd)B, then t(p) = d− i+ 1;
(2) xs+1, . . . , xd ∈

∏
j>0 annHj(D);

(3) xi ∈
∏
j>d−i annHj(Hom(B/(xi+1, . . . , xd), D)) for i ≤ s.

We note that (1) implies (0) :xd = 0. Let qi = (xi, . . . , xd) for 1 ≤ i ≤ s + 1 and
R = R(q1 · · · qsqd−s−1

s+1 ).
We show that Rp is Cohen-Macaulay for all prime ideal p in B. If q1 · · · qd−s−1

s+1 6⊆
p, then

∏
j>0 annHj(D) 6⊆ p. Therefore Rp is a polynomial ring over a Cohen-

Macaulay ring Bp.
Assume that q1 · · · qd−s−1

s+1 ⊆ p. Then xt, . . . , xd ∈ p and xt−1 /∈ p for some
1 ≤ t ≤ s+ 1, where we put x0 = 1. Taking localization of (1)–(3), we find that

(1) dimBp/(xt, . . . , xd) = dimBp − (d− t+ 1);
(2) xs+1, . . . , xd ∈ a(Bp);
(3) xi ∈ a(Bp/(xi+1, . . . , xd)) for t ≤ i ≤ s+ 1;
(4) a(Bp/(xt, . . . , xd)) = Bp if t > 1.

Hence xt, . . . , xd is a subsystem of a p-standard system of parameters for Bp and
Bp/(xt, . . . , xd) is Cohen-Macaulay if t > 1. We find that Rp = R(qt · · · qd−s−1

s+1 Bp)
is Cohen-Macaulay by using Corollary 4.5.

Now Corollary 1.4 becomes trivial.

Proof of Corollary 1.4. Let B be a Noetherian ring with dualizing complex. We
may assume that the codimension function of B is a constant on the associated
primes of B because of [23, Theorem 3.5]. Then B has an arithmetic Macaulay-
fication R. Since R also has a dualizing complex and is Cohen-Macaulay, R is
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a homomorphic image of a finite-dimensional Gorenstein ring. See [25] and [30,
Theorem 4.3]. Therefore B is also.
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