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S

Assuming that the two failure times of interest with bivariate current status data follow
a bivariate copula model, we propose a two-stage estimation procedure to estimate the
association parameter which is related to Kendall’s tau. Asymptotic properties of the
proposed semiparametric estimator show that, although the first-stage marginal estimators
have a convergence rate of only n1/3, the resulting parameter estimator still converges to
a normal random variable with the usual n1/2 rate. The variance of the proposed estimator
can be consistently estimated. Simulation results are presented, and a community-based
study of cardiovascular diseases in Taiwan provides an illustrative example.

Some key words: Copula model; Cross-sectional data; Kendall’s tau; Odds ratio; Pseudolikelihood;
Semiparametric estimation.

1. I

1·1. Background

Current status data arise commonly in many studies of epidemiology, biomedicine,
demography and reliability; Jewell, Malani & Vittinghoff (1994) gave two examples in
 studies, and Diamond & McDonald (1992) discussed examples in demography. In
its univariate setting one is interested in a fatigue time variable T which is never observed
but can only be determined to lie below or above a random monitoring or censoring time
C. Such a data structure is also called interval censoring or case I in Groeneboom &
Wellner (1992, p. 35). Statistical inference methods for univariate current status data have
been extensively studied. For example algorithms for the nonparametric maximum likeli-
hood estimator of the distribution function of T were proposed by Ayer et al. (1955),
Peto (1973), Turnbull (1976) and Groeneboom & Wellner (1992) under the assumption
that T and C are independent. Asymptotic properties of the estimator were studied in
Groenboom & Wellner (1992), who showed that it converges pointwise at rate n1/3 to a
complex limiting distribution related to Brownian motion. The efficacy of smooth func-
tionals of the estimator was studied in Groenboom & Wellner (1992). In S. van der Geer’s
1994 Ph.D. Thesis at the University of Leiden, and in Huang & Wellner (1995). Van der
Laan & Robins (1998) relaxed the independent censoring assumption by incorporating
covariate information which accounts for the dependence between T and C and then
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proposed methods for estimating smooth functionals of the distribution function of T.
Semiparametric regression methods which study the relationship between T and a set of
covariates have been proposed by Finkelstein (1986), Jewell & Shiboski (1990), Klein &
Spady (1993), Rabinowitz, Tsiatis & Aragon (1995), Rossini & Tsiatis (1996) and Lin,
Oakes & Ying (1998), just to name a few. The papers by Huang & Wellner (1997) and
Jewell & van der Laan (1997) summarise recent developments for current status data.

In this paper we consider bivariate current status data. Let (T1 , T2 ) be two failure times
of interest with respective marginal survival functions S1( . ) and S2( .) and joint survival
function S(., .). The times T1 and T2 are possibly correlated and their dependent relation-
ship is of main interest. Bivariate current status occur naturally when T1 and T2 represent
the ages of onset of two chronic diseases whose starting times are difficult to trace back
precisely. In the general setting, observable data consist of the vector

{C1 , C2 , d1=I(T1∏C1), d2=I(T2∏C2)},

where (C1 , C2) are random monitoring times and I(.) is the indicator function. Note that,
if T1 and T2 are measured from the same individuals, then C1=C2=C, which is likely to
be the case in most applications. Hence in the following analysis we assume that the
observed data have the form

{C, d1=I(T1∏C), d2=I(T2∏C)}

and that (T1 , T2) are independent of C.
Our main goal is to propose inference methods for studying the relationship between

T1 and T2 . A community-based study of cardiovascular diseases in Taiwan provides an
illustrative example. The study was designed to determine risk factors for cardiovascular
diseases in two towns, Chu-Dung and Pu-Tze, in Taiwan. Our scientific goal is to investi-
gate whether or not the ages of hypertension, diabetes mellitus and hypercholesterol-
aemia are correlated with each other. Their mutual associations may reveal important
information about the underlying mechanism of cardiovascular diseases.

In § 1·2 we define notation and introduce some fundamental concepts. In § 2, we derive
the proposed estimators and their asymptotic properties. We examine finite sample per-
formance of the proposed estimators in § 3 by simulation. In § 4 the proposed methodology
is applied to the aforementioned dataset. In § 5 we discuss how to extend our methods to
more general data structures.

1·2. Some preliminaries

Let S(s, t)=pr(T1>s, T2>t) be the joint survival function of (T1 , T2) and let S
i
( .), for

i=1, 2, be their marginal survival functions, respectively. Let G(c)=pr (C∏c) be the distri-
bution function of C and H(c, d1 , d2 )=pr(C∏c, d1 , d2 ) be the subdistribution function of
the observed vector (C, d1 , d2). The density or probability functions of C and (C, d1 , d2)
are denoted by g(c) and h(c, d1 , d2 ), respectively.

The dependence relationship between T1 and T2 can be fully characterised by their joint
survival function S(s, t). Nonparametric estimation of the bivariate survival function for
right-censored data under independent censorship has been thoroughly studied in recent
years. For a review, please refer to Wang & Wells (1997). However, for the bivariate
current status data discussed here, there exist different functions of S(T1 , T2 ) and G(C)
that induce the same distribution function H(C, d1 , d2 ) for the observed vector.
Hence S(., . ) is not identifiable nonparametrically and we can only estimate S(., .) under
parametric or semiparametric assumptions.



881Bivariate current status data

Semiparametric analysis for bivariate right-censored data has been proposed by Shih
& Louis (1995) and Hsu & Prentice (1996). They assume that (T1 , T2) follow a copula
model with the joint survival function

S(s, t)=C
a
{S1 (s), S2 (t)}, (1)

where C(., .) : [0, 1]2�[0, 1], which is itself a genuine survival function on the unit square,
determines the local dependence structure and aµR is a global association parameter
related to Kendall’s tau, denoted by t, as follows:

t=4 P 1
0
P 1
0

C
a
(u, v) du dv−1. (2)

The copula family includes many useful bivariate lifetime models and has gained consider-
able attention in recent years because of its modelling flexibility; see Genest & McKay
(1986), Oakes (1989) and Genest & Rivest (1993).

The main result of the paper focuses on semiparametric estimation of the association
parameter a for bivariate current status data when the form of association C

a
( . , . ) is speci-

fied up to a but the marginals S
i
( .) (i=1, 2) remain unspecified. The proposed

approach involves two stages of estimation. In the first stage S
i

is estimated by SC
i

(i=1, 2). In the second stage the proposed estimator of a, denoted by a@ , is obtained by
maximising a ‘pseudo’ likelihood estimating equation with the true S

i
being replaced by

SC
i
(i=1, 2). Similar ideas have been used by Genest, Ghoudi & Rivest (1995) for complete

data and Shih & Louis (1995) for right-censored data. The properties of a@ depend on
regularity conditions on the imposed copula model and the plugged-in estimators SC

i
(i=1, 2). For our problem, the nonparametric maximum likelihood estimator can be a
candidate for SC

i
(i=1, 2). However, unlike the above two papers in which SC

i
has the

standard n1/2 convergence rate, the convergence rate of the nonparametric maximum
likelihood estimator for current status data is only n1/3. Therefore, the asymptotic expan-
sions of SC

i
(i=1, 2) are more complex in the present setting than in the cases of complete

data or right-censored data. Using the results in Groneboom & Wellner (1992) and Huang
& Wellner (1995) we show that, under suitable assumptions, the proposed estimator of a
converges to a normal random variable at the standard rate n1/2 and can be asymptotically
expressed as a sum of independently identically distributed terms which will be useful in
variance estimation.

2. E   

2·1. Notation

Let {T
1i

, T
2i

, C
i
, i=1, . . . , n} be a random sample from (T1 , T2 , C). Under the copula

assumption stated in (1), the loglikelihood function is given by

log L (a, S1 , S2 )= ∑
n

i=1
log g(c

i
)+ ∑

n

i=1
d
1i

d
2i

log S11(a, c
i
)+ ∑

n

i=1
(1−d

1i
)d
2i

log S01(a, c
i
)

+ ∑
n

i=1
d
1i

(1−d
2i

) log S10(a, c
i
)+ ∑

n

i=1
(1−d

1i
)(1−d

2i
) log S00 (a, c

i
),

(3)
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where

S11(a, c)=pr(T1<c, T2<c)=1−S1(c)−S2 (c)+C
a
{S1 (c), S2(c)},

S01(a, c)=pr(T1>c, T2<c)=S1 (c)−C
a
{S1 (c), S2(c)},

S10(a, c)=pr(T1<c, T2>c)=S2 (c)−C
a
{S1 (c), S2(c)},

S00(a, c)=pr(T1>c, T2>c)=C
a
{S1(c), S2 (c)}.

When the marginals S1 and S2 are known, a natural estimator for the association parameter
a is the maximum likelihood estimator that maximises (3). The proposed two-stage esti-
mator of a, denoted by a@ , maximises the ‘pseudo’ likelihood function log L (a, SC 1 , SC2 ), where
SC
j
is an estimator of S

j
( j=1, 2).

2·2. T he estimation procedure

In the first stage, S
j
can be estimated based on the univariate sample

{(C
i
, d
ji
), i=1, . . . , n; j=1, 2}.

We shall first focus on using the nonparametric maximum likelihood estimators as our
first-stage estimators. Estimation of S

j
( j=1, 2) by incorporating covariate informa-

tion will be discussed in § 5. Let S
j
=1−F

j
and SC

j
=1−FC

j
. The nonparametric maximum

likelihood estimator of F
j
, denoted by FC

j
, maximises the function

l(F
j
)= ∑

n

i=1
{d
ji

log F
j
(C
i
)+ (1−d

ji
) log S

j
(C
i
)} ( j=1, 2).

Estimator FC
j

solves the self-consistency equation described in Groeneboom & Wellner
(1992, pp. 66–7) and can be obtained using the greatest convex minorant algorithm
(Groeneboom & Wellner, 1992, pp. 40–1; Huang & Wellner, 1997, p. 127), which is con-
sidered to be faster than the  algorithm. Note that FC

j
can be represented by the max–min

formula

FC
j
(c
(i)

)=max
l∏i

min
k�i

Wk
m=l

d
(jm)

k− l+1
,

where c(1)< . . .<c
(n)

are ordered observed values of (C1 , . . . , Cn
) and d

(ji)
( j=1, 2) are

the associated indicators for C
(i)

.
In the second stage, we estimate the association parameter a by plugging in the first-

stage estimators SC1 and SC2 , and then maximising the resulting ‘pseudo’ loglikelihood
function, namely

log L (a, SC 1 , SC2 )=n P l{a, SC1 (c), SC2(c), d1 , d2} dH
n
(c, d1 , d2),

where

l{a, S1(c), S2 (c), d1 , d2}=d1d2 log S11 (a, c)+d1 (1−d2 ) log S10 (a, c)

+(1−d1)d2 log S01 (a, c)+ (1−d1 )(1−d2 ) log S00 (a, c),
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and H
n
(c, d1 , d2 ) denotes the empirical estimator of H(c, d1 , d2). Equivalently a@ solves the

score equation

U(a, SC 1 , SC2 , Hn
)=

1

n

∂
∂a

log L (a, SC1 , SC2)

= P ∂∂a l{a, SC1(c), SC 2(c), d1 , d2} dH
n
(c, d1 , d2)=0. (4)

Empirically the proposed estimator a@ can be obtained by iterating

a@ (k)=a@ (k−1)−q ∂∂a U(a, SC1 , SC2 , Hn
) K
a=a@(k−1)
r−1U(a@ (k−1), SC1 , SC 2 , Hn

),

where a@ (k) is the estimated value of a in the kth iteration.

2·3. Asymptotic properties of the two-stage estimator

When the nonparametric maximum likelihood estimators of S
j

( j=1, 2) are used as
the first-stage estimators for the marginals, it can be shown that a@ is asymptotically normal
under the required conditions. The result is formally stated in Theorem 1; the details of
the proof are given in the Appendix. The main idea is that, by standard Taylor expansion
techniques, one can write

0=U(a@ , SC1 , SC2 , Hn
)

=U(a0 , SC1 , SC2 , Hn
)+ (a@−a0)V (a0 , SC 1 , SC2 , Hn

)+O
p
( |a@−a0 |2 ),

where

V (a0 , S1 , S2 , H )= P ∂2∂a2 l{a, S1(c), S2(c), d1 , d2}K
a=a

0

dH(c, d1 , d2 ).

It will be shown that V (a0 , SC 1 , SC2 , Hn
)�V (a0, S1 , S2 , H)<0. If we express U(a0 , SC1 , SC 2 , Hn

)
as the sum of independently identically distributed components and smooth functionals
of SC

j
−S

j
( j=1, 2), asymptotic normality of nDU(a0 , SC1 , SC 2 , Hn

) can be established, and
here asymptotic normality of nD(a@−a0) follows, where a0 is the true value of a.

T 1. Assume that the joint distribution of (T1 , T2) follows a copula model in (1)
with the true association parameter a=a0 an interior point in the parameter space and that
the following regularity conditions hold.

(i) T he support of S is a bounded region [0, t01]×[0, t02], G has density g with respect
to L ebesgue measure, G%F1 and G%F2 , where F1 and F2 are the marginal distribution
functions of T1 and T2 .

(ii ) We require that (y1/g)0S−11 and (y2/g)0S−12 are bounded and L ipschitz on [0, 1],
where y1 and y2 are derivatives of the influence curves of the marginals on the loglikelihood
defined in (A3), where f 0g denotes the composite function of f and g. Specifically

y
j
(c)=

∂
∂a

l
j
{a, S1(c), S2 (c)}K

a=a
0

h
a
0

(c) ( j=1, 2), (5)

l1 (a, u0 , v0)=
∂
∂u

l(a, u, v0 )K
u=u

0

, l2(a, u0 , v0)=
∂
∂v

l(a, u0 , v)K
v=v

0

. (6)
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(iii) We require that

I−1
1
= P t01

0

S1(c){1−S1(c)}
g(c)

y2
1
(c) dc<2,

I−1
2
= P t02

0

S2(c){1−S2(c)}
g(c)

y2
2
(c) dc<2.

(iv) We require that

∂3
∂a3

l{a, S1 (c), S2(c)}K
a=a

0

,
∂3
∂a2 ∂u

l{a, u, S2(c)}K
a=a

0
,u=S

1
(c)

,

∂3
∂a2 ∂v

l{a, S1(c), v}K
a=a

0
,v=S

2
(c)

are continuous and bounded for (t1 , t2 )µ[0, t01]×[0, t02].
T hen nD(a@−a0) converges to a zero-mean normal random variable with variance equal to

s2=var{Q(a0 , S1 , S2 , C, d1 , d2)},

where

Q(a0 , S1 , S2 , c, d1 , d2)=
∂
∂a

l{a, S1 (c), S2 (c), d1 , d2}K
a=a

0

+ ∑
2

j=1
[d
j
−{1−S

j
(c)}]

∂
∂a

l
j
{a, S1(c), S2(c)}K

a=a
0

h
a
0

(c)

g(c)
. (7)

T 2. Under the regularity conditions stated in T heorem 1, the variance s2 can
be consistently estimated by the sample variance of

Q(a@ , SC1 , SC 2 , c, d1 , d2 )=
∂
∂a

l{a, SC1 (c), SC 2(c), d1 , d2}K
a=a@

+ ∑
2

j=1
[d
j
−{1−SC

j
(c)}]

∂
∂a

l
j
{a, SC1 (c), SC2(c)}K

a=a@

h
a@
(c, d1 , d2)

g(c)
;

that is

s@ 2=
1

n−1
∑
n

i=1
{Q(a@ , SC 1 , SC2 , ci , d1i , d2i)−Q9 }2,

where

Q9=
1

n
∑
n

i=1
Q(a@ , SC1 , SC2 , ci , d1i , d2i).

Proof. Since a@ , SC1 and SC 2 are uniformly consistent estimators for a, S1 and S2 respectively,
and Q is continuous in a, S1 and S2 ,

var{Q(a@ , SC1 , SC2 , c, d1 , d2 )}�var{Q(a0 , S1 , S2 , c, d1 , d2 )}.

The sample variance of Q(a@ , SC1 , SC2 , c, d1 , d2) is then a consistent estimator of its variance.
%
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Remark 1. In our notation we omit the dependence of a quantity on the d
j
’s in order

to denote the summation of the same quantity over all possible (d1 , d2) values. For example,

l{a0 , S1(c), S2(c)}ha
0

(c)= ∑
1

d
1
=0
∑
1

d
2
=0

l{a0 , S1 (c), S2(c), d1 , d2}ha
0

(c, d1 , d2).

Remark 2. Although the first condition in Theorem 1 requires that C be continuous
and to have a density, we believe that the theory should still hold for the discrete case,
and the assumption that g(. ) exists is just for convenience. To verify this argument, we
ran a simulation, not presented here, with C generated from a discrete distribution and
the result was still valid.

3. N 

Simulations were carried out to examine the finite-sample performance of the proposed
estimators of a and s. Failure times (T1 , T2) were generated from the Clayton family
(Clayton, 1978), also known as the Gamma frailty model, with the survival function

S(s, t)={S1 (s)1−a+S2( t)1−a−1}1/(1−a) (a>1),

where S
j
(t)=exp(−t) ( j=1, 2) and t=(a−1)/(a+1). The censoring variable C was gen-

erated from a uniform distribution. Define pr(d=1) as the prevalence level. The perform-
ance of the proposed estimators was evaluated under the combination of three dependence
levels (t=0·25, 0·5, 0·75), two prevalence levels (j 0·2, 0·5) and two sample sizes
(n=200, 400). We also computed an estimator aA which solves U(a, S1 , S2 , Hn

)=0. Note
that aA can be viewed as the ‘best’ estimator based on current status data since the marginals
are completely specified. The difference between a@ and aA indicates the effect of using SC

j
instead of S

j
( j=1, 2). The estimator of Kendall’s tau is calculated using the relationship

q(a)=t=(a−1)/(a+1). The results are summarised in Table 1, showing Monte Carlo
estimates for the biases and standard deviations of a@ , aA , t@ and tA and the empirical coverage
probability of the confidence interval, (a@−1·96s@ , a@+1·96s@ ).

We can make several observations: the proposed procedure has reasonable performance
when n=200 and works better when n=400; the estimating procedure usually works
better under j 50% than it does under j 20%; if we compare the two estimators
aA and a@ , the cost of using the marginal estimators seems to have more effect on the bias
than on the standard deviation. We suggest that readers pay more attention to the perform-
ance of t@ than that of a@ because t has the same interpretation under all model alternatives.
Note that, for the Clayton model, as a�1, t�0, and, as a�2, t�1. If we use the delta
method, s

t@
j q∞(a)s=2s/(a+2)2, where s

t@
is the standard deviation of t@. Therefore,

although, as t increases, the bias and variance of a@ increase, the variance of t@ may still
decrease.

The empirical coverage proabability of the proposed confidence interval is very close
to the nominal level when n=400. The bootstrap method can also be used to obtain a
variance estimator. In a simulation with n=200 we found that the empirical coverage
probability using the bootstrap quantiles was close to the nominal level. Formal theoretical
justification of the bootstrap method is beyond the scope of the paper, but it is covered
by the general bootstrap theory in Politis & Romano (1994).

Note that the results in Table 1 exclude the very few cases where the estimates did not
converge; when n=200, t=0·25 and j 20%, there are 38 non-convergent cases out
of 1000 and in the other scenarios fewer than 1% of cases failed to converge.
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Table 1. Simulation summary statistics of the two-stage esti-
mator with n=200, 400 for the Clayton model, based on 1000
simulations. T he result for each estimator is the estimated bias,

with estimated standard deviation in brackets

Approx.
 Estimator t=0·25 t=0·5 t=0·75

n=200

50% tA 0·001 (0·072) 0·002 (0·064) 0·002 (0·049)
aA 0·024 (0·271) 0·009 (0·564) 0·421 (1·901)
t@ 0·010 (0·076) 0·022 (0·076) 0·032 (0·057)

a@ 0·061 (0·293) 0·283 (0·698) 2·103 (5·700)
Cover. 94·6% 95·3% 98·0%

20% tA 0·005 (0·110) −0·005 (0·091) −0·001 (0·049)

aA 0·078 (0·428) 0·091 (0·763) 0·285 (1·757)
t@ 0·022 (0·113) 0·015 (0·098) 0·024 (0·055)
a@ 0·150 (0·479) 0·304 (0·929) 1·514 (3·039)

Cover. 97·1% 93·5% 98·0%

n=400
50% tA −0·001 (0·050) 0·000 (0·045) 0·000 (0·035)

aA 0·005 (0·182) 0·030 (0·373) 0·149 (1·220)

t@ −0·001 (0·053) 0·003 (0·050) 0·012 (0·040)
a@ 0·008 (0·192) 0·063 (0·416) 0·656 (1·610)

Cover. 95·5% 95·5% 95·2%

20% tA −0·004 (0·085) −0·001 (0·062) 0·000 (0·035)
aA 0·018 (0·308) 0·056 (0·512) 0·165 (1·185)
t@ 0·005 (0·086) 0·008 (0·065) 0·014 (0·039)

a@ 0·052 (0·322) 0·139 (0·563) 0·701 (1·480)
Cover. 94·6% 94·8% 95·9%

, the prevalence level pr(d=1); cover., the empirical coverage probability
of the confidence interval with endpoints a@±1·96s@ .

4. A  

This 1991–93 study was designed to determine important risk factors for cardiovascular
diseases in two towns, Chu-Dung and Pu-Tze, in Taiwan. The population of Taiwan
consists of people of four major ancestral origins, namely Fukienese, Hakka, Chinese
mainlander and aboriginal. Chu-Dung is a Hakka township located in the northern part
of Taiwan and Pu-Tze is a Fukienese township located in the southwest of Taiwan. Five
villages in each of the two townships were randomly selected from those with either more
than 1000 people or population density greater than 200 per square kilometre. Altogether
6314 residents, including 2904 males and 3410 females, participated in the study. Of them
3824 were from Chu-Dung and 2490 from Pu-Tze.

Denote by (T1 , T2 , T3) the ages of onset of hypertension, diabetes mellitus and hyper-
cholesterolaemia respectively, and let C be the age at the monitoring time. Formally the
prevalence of the diseases should have been determined based on doctors’ diagnoses, but
for convenience the three prevalence indicators were defined as follows: d1=1 if the
participant’s systolic/diastolic blood pressures were at least 140/90 mmHg or he/she was
taking medication for hypertension; d2=1 if the participant’s blood sugar was at least
126 mg/dl or he/she had a history of diabetes mellitus; and d3=1 if the total cholesterol
was at least 240 mg/dl. The data consist of (C, d1 , d2 , d3 ), where d

j
=I(T

j
∏C) ( j=1, 2, 3).
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Fig. 1. Cardiovascular disease example. Nonparametric estimates of mar-
ginal survival functions for the three diseases.

The marginal survival functions, estimated by the nonparametric maximum likelihood
estimator approach, are plotted in Fig. 1 which shows that the marginal behaviours of T2
and T3 are quite similar. The copula association parameters for the three bivariate models
were estimated, under the assumption that (T1 , T2 ), (T1 , T3) and (T2 , T3) all belong to the
Clayton family; see Table 2. For each bivariate analysis, we also tested H0 : a=1 (t=0)
versus H

a
: a>1 (t>0) and the p-value of the test was computed. The ages of onset of

hypertension and diabetes mellitus are significantly correlated, with t@HT,DM=0·128. Also
the ages of onset of diabetes mellitus and that of hypercholesterolaemia are significantly
correlated, with t@DM,HC=0·304. Note that t@HT,HC=0·07 with p=0·052, and that T1 and T3
are not correlated for females but are correlated for males. The disease relationships differ
little between the two towns. Note that, although the analysis is based on the Clayton
model assumption, model selection should not be an important issue here. According to
Wang & Wells (2000), when t is small all the copula models behave similarly. In fact
when t�0 all the models approach the same one with S(s, t)=S1 (s)S2 (t).

5. D

Note that the dataset used in § 4 is not an ideal example since we implicitly made the
dubious assumption that the one-time measurements could serve as formal medical diag-
noses. Furthermore, the data were collected using a cluster-style sampling design, selecting
participants by township. One therefore needs to be cautious in drawing conclusions about
the general population based on the analysis; the results may be biased since the sample
is not a simple random sample.

A nice feature of the proposed two-stage estimation procedure is that it can easily
be adjusted under different scenarios. We have assumed univariate censorship, that is
C1=C2=C. We believe that this setting is very common for current status data which
often arise from survey studies where the two components are measured at the same time.
However, our two-stage estimation procedure can still be extended to deal with bivariate
current status data under different observation times C1 and C2 . We can show that the
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Table 2. Summary statistics of the two-stage esti-
mator applied to the dataset concerning three cardio-
vascular diseases in two towns under the Clayton
(1978) model assumption. Tabulated are the estimated
value of t, the estimated value of a, the estimated value
of s and the p-value of the test of H0 : a=1 (t=0)

versus H
a
: a>1 (t>0)

 versus   versus   versus 

Overall
Estimate of t 0·128 0·082 0·304

Estimate of a 1·295 1·178 1·875
Estimate of s 0·155 0·110 0·175
p-value 0·028 0·052 0·000

Females only

Estimate of t 0·228 0·055 0·266
Estimate of a 1·591 1·115 1·725
Estimate of s 0·182 0·113 0·216

p-value 0·001 0·154 0·000

Males only
Estimate of t 0·210 0·179 0·295

Estimate of a 1·531 1·436 1·836
Estimate of s 0·179 0·160 0·265
p-value 0·002 0·003 0·001

Chu-Dung only
Estimate of t 0·190 0·105 0·318
Estimate of a 1·469 1·234 1·932

Estimate of s 0·147 0·110 0·221
p-value 0·001 0·017 0·000

Pu-Tze only

Estimate of t 0·282 0·123 0·208
Estimate of a 1·785 1·280 1·527
Estimate of s 0·242 0·162 0·254

p-value 0·001 0·042 0·003
, hypertension; , diabetes mellitus; , hypercho-
lesterolaemia.

second stage estimator a@ is still asymptotically normal at the rate nD. However, variance
estimation is much more difficult to examine analytically.

Additional covariate information may be incorporated to improve the first-stage esti-
mation of S

j
( j=1, 2) by accounting for heterogeneity of the sample; the observed data

then consist of independently identically distributed replications of {C, d1 , d2Z}, where Z
is the covariate. For a review of regression models for univariate current status data, see
Huang & Wellner (1997). Under the specified regression model, S

j
(t) can be expressed as

S
j
( t |b, z) and estimated by SC

j
(t |b@ , z). Asymptotic normality of the resulting estimator of

a at the usual nD rate can be established if one can show that with the new first-stage
estimators nDb

3n
, where b

3n
is defined in (A5), the estimator still converges to a zero-mean

normal random variable. The asymptotic variance formula of a@ will change accordingly.
Similar arguments apply to the situation of dependent censoring, in which case the mar-
ginal estimators proposed by van der Laan & Robins (1998) may be used in the first-
stage estimation.
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In this paper, the marginals are estimated separately. If T1 and T2 are exchangeable, the
marginals can be estimated jointly and the estimator a@ may in turn be used to improve
the marginal estimation. This issue deserves further investigation.

Bivariate current status data have the form of cross-sectional data which can be analysed
using methods for two-by-two tables. For example, at an observed monitoring time c,
define the odds ratio

h(c)=
pr (C=c, d1=d2=1) pr (C=c, d1=d2=0)

pr(C=c, d1=1, d2=0) pr(C=c, d1=0, d2=1)
.

Note that h(c) measures the association between the prevalence indicators d1 and d2 , and
is sensitive to the marginal distributions of T1 and T2 . However the proposed method
evaluates the relationship between onset times of two diseases which are more related to
the disease incidence.
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A

Proof of T heorem 1

Stage (a): Proof that V (a0 , SC 1 , SC 2 , Hn
)�V (a0 , S1 , S2 , H)<0. From condition (iv), we can assume

that the derivatives

∂3
∂a2 ∂u

l(a, u, v, d1 , d2 ),
∂3
∂a2 ∂v

l(a, u, v, d1 , d2 )

are both bounded by some constant K on [0, t01]×[0, t02]. We can write

V (a0 , SC 1 , SC 2 , Hn
)=V (a0 , S1 , S2 , Hn

)+{V (a0 , SC1 , SC 2 , Hn
)−V (a0 , S1 , S2 , Hn

)}

=V (a0 , S1 , S2 , Hn
)+a

n
.

Since sup
tµ[0,t

0j
]
|SC
j
(t)−S

j
(t) |�0 for j=1, 2 (Groeneboom & Wellner, 1992, § 4.1), it follows that

|a
n
|∏ P K ∂2∂a2 l{a, SC1 (c), SC 2 (c), d1 , d2}−

∂2
∂a2

l{a, S1 (c), S2 (c), d1 , d2}K dH
n
(c, d1 , d2 )

∏ P K ∂2∂a2 l{a, SC 1 (c), SC 2 (c), d1 , d2}−
∂2
∂a2

l{a, S1(c), S
C
2 (c), d1 , d2}K dH

n
(c, d1 , d2 )

+ P K ∂2∂a2 l{a, S1 (c), SC 2 (c), d1 , d2}−
∂2
∂a2

l{a, S1 (c), S2 (c), d1 , d2}K dH
n
(c, d1 , d2 )

∏ P K |SC1 (c)−S1 (c) | dH
n
(c, d1 , d2 )+ P K |SC 2 (c)−S2 (c) | dH

n
(c, d1 , d2 )

∏K A sup
0∏c∏t

01

|SC 1 (c)−S1 (c) |+ sup
0∏c∏t

02

|SC 2 (c)−S2 (c) |B
�0.
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Hence we have shown that V (a0 , S
C
1 , S
C
2 , Hn

)�V (a0 , S1 , S2 , Hn
). By the Glivenko–Cantelli theorem,

H
n
�H, and, by the Dominated Convergence Theorem, it follows that

V (a0 , S1 , S2 , Hn
)�V (a0 , S1 , S2 , H).

Finally, since l{a, S1 (c), S2 (c), d1 , d2}= log{h
a
(c, d1 , d2 )},

V (a0 , S1 , S2 , H)=
∂2
∂a2 P dH

a
(c)K

a=a
0

− P C ∂∂a l{a, S1 (c), S2(c)}D2K
a=a

0

dH
a
0

(c)

=− P C ∂∂a l{a, S1 (c), S2 (c)}D2K
a=a

0

dH
a
0

(c)

<0.

Stage (b): Asymptotic distribution of nDU(a0 , SC 1 , SC2 , Hn
). One can write

U(a0 , SC 1 , SC 2 , Hn
)= P ∂∂a l{a, SC 1 (c), SC 2 (c), d1 , d2} dH

n
(c, d1 , d2 )

= P q ∂∂a l{a, SC 1(c), SC 2 (c), d1 , d2}−
∂
∂a

l{a, S1 (c), S2 (c), d1 , d2}r d(H
n
−H)(c, d1 , d2 )

+ P ∂∂a l{a, S1 (c), S2 (c), d1 , d2} dH
n
(c, d1 , d2 )

+ P q ∂∂a l{a, SC1 (c), SC 2 (c), d1 , d2}−
∂
∂a

l{a, S1 (c), S2 (c), d1 , d2}r dH(c, d1 , d2 )

=b
1n
+b

2n
+b

3n
. (A1)

Since SC 1�S1 , SC 2�S2 , nD(H
n
−H)=O

p
(1) and

∂
∂a

l{a, SC 1 (c), SC 2 (c), d1 , d2}

is continuous and bounded, by the Dominated Convergence Theorem, the first term b
1n
=o

p
(n−D ).

The second term b
2n

is a sum of independent and identically distributed quantities:

b
2n
=

1

n
∑
n

i=1

∂
∂a

l{a, S1 (ci ), S2 (ci ), d1i , d2i}K
a=a

0

. (A2)

Each term of (A2) has mean equal to

P ∂∂a l{a, S1 (c), S2 (c), d1 , d2}K
a=a

0

dH(c, d1 , d2 )=0

and variance equal to

P C ∂∂a l{a, S1 (c), S2 (c), d1 , d2}K
a=a

0

D2 dH(c, d1 , d2 )

=− P ∂2∂a2 l{a, S1 (c), S2 (c), d1 , d2}K
a=a

0

dH(c, d1 , d2 ).

By the Central Limit Theorem, nDb
2n

converges to a zero-mean normal random variable.
Applying von Mises expansions to b

3n
, we obtain
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b
3n
= P t01

0
1 (t1 ) d(SC 1−S1 )(t1 )+ P t02

0
2 (t2 ) d(SC 2−S2 )(t2 )+o

p
(n−D ),

where 
j
(t) is the influence curve of the functional U(a, S1 , S2 , H) at S

j
( j=1, 2), obtained

by differentiating U{a, (1−e1 )S1+e1SC 1 , (1−e2 )S2+e2SC 2 , H} with respect to e
j
and evaluating at

e1=e2=0:


j
(t)=− P t0j

0

∂
∂a

l
j
{a, S1 (c), S2 (c)}K

a=a
0

h
a
0

(c) dc. (A3)

In the cases of no censoring or right censoring, nD(SC
j
−S

j
) can be written as sum of n independent

and identically distributed terms, which would in turn imply the asymptotic normality of the term
b
3n

. For current status data, (SC
j
−S

j
) has only rate of convergence n1/3, and hence we cannot write

them as independent and identically distributed sums directly. However, it is not possible to estimate
smooth functionals of S

j
at the rate n1/2. We shall show that b

3n
is a sum of such smooth function-

als satisfying the conditions in Huang & Wellner (1995) and hence is asymptotically normally
distributed.

To do this define the functionals

n
j
(S)= P t0j

0

j
(x) dS(x)=− P t0j

0
Y
j
(x) dS(x) ( j=1, 2),

where

Y
j
(x)=−

j
(x)= P x

0
y
j
(c) dc.

Then b
3n
=n1 (S

C
1 )−n1 (S1 )+n2 (S

C
2 )−n2 (S2 ). If conditions (i), (ii ) and (iii) in Theorem 1 hold, accord-

ing to Huang & Wellner (1995),

nD P t0j
0


j
(t
j
) d(SC

j
−S

j
)( t

j
)=nD{n

j
(SC
j
)−n

j
(S
j
)}=−nD (P

n
−P)(lA)+o

p
(1)

=−n−D ∑
n

i=1
{lA(c

i
, d
ji
, S

j
, G, y

j
)−E

S
j
,G

( lA)}+o
p
(1),

where

lA(c, d, S, G, y)=−[d−{1−S(c)}]
y(c)

g(c)
I{g(c)>0}. (A4)

Therefore

b
3n
=−

1

n
∑
n

i=1
{lA(c

i
, d
1i

, S1 , G, y1 )+ lA(c
i
, d
2i

, S2 , G, y2 )−E
S
1
,G

(lA)−E
S
2
,G

(lA)}+o
p
(n−D ). (A5)

Combining (A2) and (A5) in (A1), we obtain that

U(a0 , SC 1 , SC 2 , Hn
)=

1

n
∑
n

i=1
Q(a0 , S1 , S2 , ci , d

1i
, d
2i

)−E(Q)+o
p
(n−D ),

where

Q(a0 , S1 , S2 , c, d1 , d2 )=
∂
∂a

l{a, S1 (c), S2 (c), d1 , d2}K
a=a

0

− lA(c, d1 , S1 , G, y1 )− lA(c, d2 , S2 , G, y2 ),

and E(Q) denotes the expected value of Q.
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Note that (5) and (A4) imply that

lA(c
i
, d
ji
, S

j
, G, y

j
)=−[d

ji
−{1−S

j
(c
i
)}]
∂
∂a

l
j
{a, S1 (ci ), S2 (ci )}K

a=a
0

h
a
0

(c)

g(c)
,

where

h
a
0

(c, d1 , d2 )
g(c)

=d1d2S11 (c)+ (1−d1 )d2S01 (c)+d1 (1−d2 )S10 (c)+ (1−d1 )(1−d2 )S00 (c)

is independent of g. Hence Q does not depend on G.
Therefore, by the Central Limit Theorem, nDU(a0 , S

C
1 , S
C
2 , Hn

) is asymptotically normal with mean
zero and variance equal to

s2=var{Q(a0 , S1 , S2 , c, d1 , d2 )},

where Q is given in (7).
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