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ON ASYMPTOTIC BEHAVIOR OF PERTURBED
NONLINEAR SYSTEMS

R. E. FENNELL AND T. G. PROCTOR

Abstract. A version of the variation of constants formula for
nonlinear systems is used to study the comparative asymptotic
behavior of the systems x'=f(t, x) and y'=f(t, y)+g(t, y).

1. Introduction. Marlin and Struble [6] showed the asymptotic be-
havior of the solutions of a nonlinear system determines the asymptotic
behavior of perturbations of the system. This paper is a continuation of this
problem. We place hypotheses on the basic nonlinear system and its
perturbation analogous to those placed on a linear system and its per-
turbation by Brauer and Wong [2] and Hallam and Heidel [4]. The basic
tools of the investigation are a generalized version of the variation of con-
stants formula, a much used comparison principle and fixed point theorems.
The proofs are similar to those given in [2] and [4] for perturbations of a
linear system.

Let a be a real number, let Q. be a region in Rn, let/andg be continuous
functions from [a, co)x£2 into Rn such that fx(t,x) exists and is con-
tinuous on [a, co)x£l and consider the differential equations

(1) x'=/(?,*),

(2) y' =f(t,y) +g{t, y).
Let x(t, t, y) denote the solution of (1) passing through y at t=r, let q, be
open and such that Q,cü and assume that for y in L\, a^r, the function
x(t, t, y) exists for a^?. It is known [3] the derivative matrix

dx— (t, r, y) = <D(«, t, y)
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exists, satisfies the variational equation

z' = fxiU *0> T> r))z>
<5(t, t, y)=I, and

^ 0, r, y) = -<!>(', r, y)/(r, y).

Suppose w(t, X) is a continuous nonnegative function on [a, oo)xi\+,
is nondecreasing in X, and for some 0<A: there is a unique solution of

(3) r' = w(t, r),      r(a) = k.

Further we assume r(t), the solution of (3), exists for t^.a. and
lim^oo r(t)=r00. Notice that if O^A</-00 we have j"" w(>, A) dt< co. This
follows since     vv(.», r(s)) tfa exists, so for tt such that X^r(t) for r^Jfx,

0        w(s, A)     <M   w(s, r(s)) < oo.

2. Main results. Theorem 1 below establishes that corresponding to
some solutions of (2) which exist for r^ot there is a solution of (1) which
is asymptotically similar and Theorem 2 investigates the converse problem.

Theorem 1. Let D(t) be a continuous nonsingular nxn matrix for
12: a and £22 <= Qt be such that

(a) f^oc, |£(f)}'l=''a> implies y is in Q1;
(b) l/JCW, r, y)£(f, y)|^h'(r, |£(t)yQ,/or f, t in [a, oo), y /n L\,
(c) |Z>(0*0, «, y)\^k,for        y in C22.

77?e«/or y /« £22 r7?ere i* a solution y(t), a^f, o/ (2) passing through y at
?=a; /or eacn such solution there is a corresponding solution x*, c/.^t,
of (I) such that

(4) lim D(t)Lv(0 - x*(0] = 0.
<->00

Proof. It is known [1] that for y in £22 the solutions of (2) passing
through y at r = ac satisfy

(5) y(t) = x(t, a, y) + j 0(«, 5, y(s))g(s, y(s)) ds

for all t for which y(?) is in Q,. We have

10(0X01 ^ fc + fw(S, I D(s)Xs)|)ds;
Ja

thus by standard inequality theorem [5, p. 29]

\D(t)y(t)\ ^ r(t) < r„.
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By (a) in the hypothesis y(t) is in Q,; therefore y is defined and satisfies (5)
for all t^.x. Further for s>0 there is a T such that when T^t1^t2 we
have 0<.r(t2)—r(t1)<.E. Consequently

D(f)<D(f, s, y(s))g(s, y(s)) ds P2<    w(s, r(s)) dshi
= r(t2) - r(h) < e;

therefore J™ 0(7, s,y(s))g(s, y(s)) ds exists uniformly for t in compact
intervals. Now

x(t, a, y) +    0(f, s, y(s))g(s, y(s)) ds~\
J a

D(t)y(t) = D(t)

- 0(0
thus

D(0 y(0 - x(t, a, y) - J <D(f, s, y(s))g(s, y(s)) rfs

5? j*^ w(s, r(s)) eis = rx — r(t) -> 0

as f->co. It remains to show

x*(0 = x(f, a, y) +    <B(f, s, y(s))g(s, y(s)) ds
Ja

is a solution of (1). We have

x(t, T, y(T)) + \\t, s, y(s))g(s, y(s)) ds - x*(t)

CT d CT=    — x(t, s, y(s)) ds =    <D(f, s, y(s))g(s, y(s)) ds,
Ja   US Jot

which implies lim^^ x{t, T,y(T))=x*{t) uniformly for t in compact
intervals. Also

f(t, x*(0) - fit, xit, a, y)) = lim  f^-f [f(t, x(t, s, y(s)))] ds
T->oo Ja OS

= lim    fxit, xit, s, y(s)))<D(«, s, y(s))g(s, y(s))
r->oo Ja

uniformly for t in compact intervals. Therefore

x*'(0 = fit, xita, y)) +j*Ut, Ht, », 3'(s)))(l)(<, s, y(s))g(s, yisjj ds

= fit,x*ii)).
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Theorem 2 below investigates the converse problem to that considered
in Theorem 1. In the case/is linear in x this problem [4] amounts to showing
there is a solution of the integral equation

|*COy(t) = x(t) - J        s, y(s))g(s, y(s)) ds.

This can be done using the Schauder fixed point theorem for general /;
however if / is nonlinear it is not readily apparent that such a solution
satisfies (2).

Theorem 2. Let the hypothesis of Theorem 1 hold. Then for any solution
x of (I) which exists for t^.cn and such that x(ol) is in Q2> there is a t^ct and
a solution y of (2) for t^tx such that lim^ D(t)[y(t)—x(j)]=0.

Proof. We begin by constructing a sequence of solutions of (2) which
is uniformly convergent on compact subintervals. Let 0<o'<rco—k,
choose t^ot so large that J,™ w(s, o+k) ds<o; and for any integer n^ty
let &n be the set of continuous functions, v, from [tu n] into Rn satisfying

KOI ^ \D(t)x(t)\ 4- a  for h < n.
First we show that (2) has a solution vn in 3* n. Define an operator S on
^«by

Sv(t) = D(0*(0 + I D(t)®(t, s, D-\s)v(s))g(s, D-\s)v(s)) ds
J n

for ?,<r</2. We observe

\Sv(t) - £>(0x(0l = j""w(s> IK*)!) ds = j"w(s> a + k) ds = a'

thus S maps SP'„ into itself. It is easy to see the hypothesis of the Schauder
fixed point theorem holds; thus there is a fixed point of S in 3^n which we
denote by vn. The function yn given by yn(t) = D~1(t)vn(t) satisfies

y'n{t) =f(t, x(0) 4- g(t, Mm

+   fx(t, x(t, s, yn(s)))®(U s. yn(s))g(s, y«(s)) ds;
Jn

and since

f(t, xit, t, ynit))) - fit, x(0) = {'-jfit, *(t, s, ynis))) ds
Jn dS

= f Lit, s, ynis))Q>it, s, ynis))[y'n(s) - /(s, y„(s)) ds],
J n

we have

«(0-I Ut, xit, s, ynis)))$it, s, ynis))cois) ds
J n
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where io(t)=y'n(t)-f(t,yn(t))-g(t,yn(t)). But this implies co=0 thusj„
is a solution of (2) on [tx, n].

Let N be an integer larger than tt and consider the sequence vn, n=N,
N+l,---, of fixed points obtained above. Clearly \vn(t)\^k+a for
ty^t^N and the sequence {vn}x is equicontinuous on this interval.

By Ascoli's theorem there is a subsequence {vnl} of the vn's converging
uniformly on [tu N]. Similarly the sequence {vnl} is defined on [tu N+l]
for nl^.N+1 and is equicontinuous on [tu N+l] so there is a subse-
quence of the Bal's say {vn2] converging uniformly on this interval. Clearly
on the interval [ty, N] both subsequences converge to the same limit. Pro-
ceeding inductively we define a function v on [tx, oo) and a chain of sub-
sequences {vnk} such that {vnk} converges uniformly to v on [tu N+k].
The sequence {vn}?, where vn=vnn, then converges to v uniformly on
compact subintervals of [tlt oo).

By using hypothesis (b) it is easy to see that

32>(0«J>(*, s, D-\s)v(s))g(s, D-\s)v(s)) ds

exists and that

lim f nD(t)1>(t, s, D-\s)vn(s))g(s, D-\s)vn(s)) ds
n~* oo Jt

= j™D(t)®(t, s, D-\s)v(s))g(s, D-\s)v(s)) ds.

The functions y„(t)=D~1(t)v„(t) are solutions of (2); consequently
y(t) = D~\t)v(t) is also a solution and we note

-ImW) - *(01 = - I   D(tys>(t, s, y(s))g(s, y(s)) ds
which vanishes at t—>co.

Marlin and Struble [6] consider the case D(t) = I and L\ is bounded and
convex. By arguments used in the proof of Theorem 2 above it is possible
to improve the corresponding theorem in [6].

Theorem 3. Assume q, is bounded and x is a solution of (1) with values
in L\ for t ̂  a and without limit points on the boundary of L\. Further assume
that whenever z is a continuous function from [a, oo) into Qj and a^t^T
then

\0(t, s, z(S))g(s, z(s))| ds <: J(T)
T

where J(T)—>-0 as T—>co. Then there is a t^a. and a solution y of (2) for
t^ty such that lim^a, [y(t)—x(t)] = 0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



r. e. fennell and t. g. proctor

3. An example. The following example is similar to an example given
by Brauer and Wong in [2] and shows that the asymptotic behavior of
unbounded solutions can be compared. This feature is not present in
the theorems of Marlin and Struble [6]. Let h be a continuous real
valued function defined on [0, co) x R2 which satisfies

\h{t,u,u)\^h0{t)\ur + ih(t) \n\\
where h0 and /;, are continuous functions and m and n are positive numbers
with p=max{m, «}>1. If

I   rm+1«0(r) dr < CO,        I   H&) dr < co,

a is large enough and max{|y,|, |y2|}=2 there is a solution u of

w + e-'u2 = h(t, u, u),      h((x) = j-j,      ii(a) = y2,

u exists for and there is a constant 6 such that u(t) = dt+o(t) as f-*co.
Here we used

01D(t) = Q, = {y in R2; \y2\ < 2],3

_0 1.
Q2 = {y in R2: max{\Yl\ , \y2\ ^ |}},

w(f, r) = A(0max{rp, 1}

where X is constructed as in [2].
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