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Abstract. The asymptotic behavior of all solutions to the fourth-order Emden–
Fowler type differential equation with singular nonlinearity is investigated. The equa-
tion is transformed into a system on the three-dimensional sphere. By investigation
of the asymptotic behavior of all possible trajectories of this system an asymptotic
classification of all solutions to the equation is obtained.
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1 Introduction

Classification of all possible solutions to nonlinear equations is one of the ma-
jor problems in qualitative theory of ordinary and partial differential equations.
There are no general methods for investigation of qualitative properties of solu-
tions to nonlinear differential equations. In this paper the asymptotic behavior
of all solutions to the fourth-order ordinary differential equation with singular
power nonlinearity is investigated.

Asymptotic classifications of solutions to the fourth-order Emden–Fowler
type differential equations

y(IV)(x) + p0 |y|k sgn y = 0, 0 < k < 1, p0 = const > 0, (1.1)

y(IV)(x)− p0 |y|k sgn y = 0, 0 < k < 1, p0 = const > 0 (1.2)

are presented.
For the regular case, k > 1, asymptotic classifications of all solutions to

such equations of orders three and four are presented in [3], [4], [6]. In [5]
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asymptotic properties of solutions to the third-order equations with singular
nonlinearity, 0 < k < 1, are described. Oscillatory problems for fourth-order
equations are investigated in [1], [2], [7], [8], [10], [11], [12], [13], [14], [15].

In the case of regular nonlinearity, k > 1, only maximally extended solutions
are usually considered, because solutions can behave in a special way only near
the boundaries of their domains. If k < 1, then special behavior can occur also
near internal points of the domains. This is why a notion of maximally unique
(MU) solutions is introduced.

Definition 1. A solution u : (a, b) → R with −∞ ≤ a < b ≤ +∞ to any
ordinary differential equation is called a MU-solution if the following conditions
hold: (i) the equation has no other solution equal to u on some subinterval of
(a, b); (ii) either there is no solution defined on another interval containing
(a, b) and equal to u on (a, b), or there exist at least two such solutions not
equal to each other at points arbitrary close to the boundary of (a, b).

Remark 1. If an equation has a locally unique solution to any initial value
problem, then the set of all its MU-solutions coincides with the set of all its
maximally extended solutions. They satisfy (i) due to the uniqueness property
and the first sub-condition of (ii) since they are maximally extended.

Remark 2. Consider the equation

u′′(x) = 6 3
√
u(x). (1.3)

1) The function u(x) = x3 defined on R is a solution to equation (1.3) but
not its MU-solution. Indeed, condition (i) does not hold since there is another
solution on R, namely |x|3, which coincides with u(x) on (0,+∞).

2) The function u(x) = x3 defined on (0; +∞) is a MU-solution to equation
(1.3). Indeed, condition (i) holds since the right-hand side of (1.3) is locally
Lipschitz continuous in the domain {(u0, u1) : u0 > 0} containing the set
{(u(x), u′(x)) : x > 0}. The second sub-condition of (ii) holds since x3 and |x|3
are two solutions defined on R ⊃ (0; +∞), coinciding with u on (0; +∞), and
having different values at the points x < 0 arbitrarily close to 0. Thus, u is
non-uniquely extensible outside of (0,+∞).

3) The function u(x) = x3 defined on (a; +∞) with a > 0 is not a MU-
solution to equation (1.3) since condition (ii) does not hold. Indeed, the first
sub-condition of (ii) does not hold since u is extensible outside of (a; +∞). The
second sub-condition does not hold since all extensions of u coincide at any
point x > 0 due to the Lipschitz continuity.

4) The zero function z(x) ≡ 0 defined on any interval I ⊂ R is a trivial
solution to (1.3) but not its MU-solution. Indeed, condition (i) does not hold
since for any a ∈ I the function ua defined on I by ua(x) = min{0, (x − a)3}
is another solution to (1.3) coinciding with z(x) on I ∩ (a,+∞). The trivial
solution may be considered as a “minimally unique” one.

In this article all MU-solutions to equations (1.1) and (1.2) are classified ac-
cording to their behavior near the boundaries of their domains. All maximally
extended solution can be classified through investigation of possible ways to
join several MU-solutions.

Math. Model. Anal., 21(4):502–521, 2016.
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2 Preliminary Results. Existence, uniqueness, and
continuous dependence of solutions on initial conditions

Consider the equation

y(n) + p(x, y, y′, . . . , y(n−1)) |y|k sgn y = 0, n ≥ 2, k ∈ R, 0 < k < 1.

Note that the conditions of the classical theorem on the uniqueness of so-
lutions to the Cauchy problem do not hold with such k. Nevertheless, the
following assertion holds (see [5], 7.3; [7]).

Theorem 1. Let the function p(x, y0, . . . , yn−1) be continuous in x and Lips-
chitz continuous in y0, . . . , yn−1. Then for any tuple of numbers x0, y

0
0 , . . . , y

0
n−1

with at least one y0i not equal to zero, the corresponding Cauchy problem
y(x0) = y00 , . . . , y

(n−1)(x0) = y0n−1 has a unique solution.

While the uniqueness conditions hold, the property of continuous depen-
dence of solution on initial data fulfils. (See [9], V, Theorem 2.1.)

3 Main Results. Asymptotic classification of solutions to
equations (1.1) and (1.2)

In this section an asymptotic classification of all solutions to equation (1.1)
is presented, the proof given in section 4. A result concerning asymptotic
classification of all solutions to equation (1.2) is presented without proof.

Previously obtained author’s results on the asymptotic behavior of solutions
to equations (1.1) and (1.2) with k > 1 are contained in [5], [6].

Definition 2. A function is called oscillatory near a point b ∈ [−∞,+∞] (or,
synonymously, as x → b) if it takes both positive and negative values in any
neighborhood of b. A function is called oscillatory (with no point specified) if
it is oscillatory near the both boundaries of its domain.

Theorem 2. Suppose 0 < k < 1 and p0 > 0. Then all MU-solutions to equa-
tion (1.1) are divided into the following three types according to their asymp-
totic behavior (see Fig. 1). There exist solutions of all these types with arbitrary
constants b if mentioned.

1. Oscillatory solutions defined on (−∞, b). The distance between their
neighboring zeros infinitely increases near −∞ and tends to zero near b. All
their derivatives y(j) with j = 0, . . . , 3 satisfy the relations lim

x→b
y(j)(x) = 0,

lim
x→−∞

∣∣y(j)(x)
∣∣ = ∞. At the points of local extremum the following estimates

hold:
C1 |x− b|−

4
k−1 ≤ |y(x)| ≤ C2 |x− b|−

4
k−1 (3.1)

with positive constants C1 and C2 depending only on k and p0.
2. Oscillatory solutions defined on (b,+∞). The distance between their

neighboring zeros tends to zero near b and infinitely increases near +∞. All
their derivatives y(j) with j = 0, . . . , 3 satisfy the relations lim

x→b
y(j)(x) = 0,
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lim
x→+∞

∣∣y(j)(x)
∣∣ = ∞. At the points of local extremum estimates (3.1) hold

with positive constants C1 and C2 depending only on k and p0.
3. Oscillatory solutions defined on (−∞, +∞). All their derivatives y(j)

with j = 0, . . . , 4 satisfy

lim
x→−∞

∣∣∣y(j)(x)
∣∣∣ = lim

x→+∞

∣∣∣y(j)(x)
∣∣∣ =∞.

At the points of local extremum the estimates

C1 |x|−
4

k−1 ≤ |y(x)| ≤ C2 |x|−
4

k−1

hold near −∞ and +∞ with positive constants C1 and C2 depending only on
k and p0.

y

x

y   + |y|    sgn y = 0IV 1/2
1

2

3

Figure 1. MU-solutions to equation (1.1)

Theorem 3. Suppose 0 < k < 1 and p0 > 0. Then all MU-solutions to equa-
tion (1.2) are divided into the following thirteen types according to their asymp-
totic behavior (see Fig. 2). There exist solutions of all these types with arbitrary
constants b if mentioned.

1–2. Defined on semi-axes (−∞, b) solutions with the power asymptotic
behavior near the boundaries of the domain (with the same signs ±):

y(x) ∼ ±C4k |x|−
4

k−1 , x→ −∞,

y(x) ∼ ±C4k (b− x)−
4

k−1 , x→ b− 0,

where

C4k =

(
4(k + 3)(2k + 2)(3k + 1)

p0 (k − 1)4

) 1
k−1

.

3–4. Defined on (b,+∞) solutions with the power asymptotic behavior
near the boundaries of the domain (with the same signs ±):

y(x) ∼ ±C4k (x− b)−
4

k−1 , x→ b+ 0,

y(x) ∼ ±C4k x
− 4

k−1 , x→ +∞.

Math. Model. Anal., 21(4):502–521, 2016.
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5. Defined on the whole axis periodic oscillatory solutions. All of them can
be received from one solution, say z(x), by the relation

y(x) = λ4z(λk−1x+ x0)

with arbitrary λ > 0 and x0. So, there exists such a solution with any maximum
h > 0 and with any period T > 0, but not with any pair (h, T ).

6–9. Defined on (−∞,+∞) solutions having the power asymptotic be-
havior near −∞ and +∞ (with all sign combinations admitted):

y(x) ∼ ±C4k |x|−
4

k−1 , x→ ±∞.

10–11. Defined on (−∞,+∞) solutions which are oscillatory as x → −∞
and have the power asymptotic behavior near +∞:

y(x) ∼ ±C4k x
− 4

k−1 , x→ +∞.

Each solution has a finite limit of the absolute values of its local extrema as
x→ −∞.

12–13. Defined on (−∞,+∞) solutions which are oscillatory as x → +∞
and have the power asymptotic behavior near −∞:

y(x) ∼ ±C4k |x|−
4

k−1 , x→ −∞.

Each solution has a finite limit of the absolute values of its local extrema as
x→ +∞.

y

x

y   = |y|    sgn yIV 1/2
1

2

3

4

5

6

7

8 910

11

12

13

Figure 2. MU-solutions to equation (1.2)

4 Proof of The Main Results

4.1 Phase Sphere

Note that if a function y(x) is a solution to equation (1.1), the same is true for
the function

z(x) = Ay (Bx+ C), (4.1)
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where A 6= 0, B > 0, and C are any constants satisfying

|A|k−1 = B4. (4.2)

Indeed, we have

z(IV)(x) + p0 |z(x)|k sgn z(x)

= AB4y(IV)(Bx+ C) + p0 |Ay(Bx+ C)|k sgn(Ay(Bx+ C))

= Ay(IV)(Bx+ C)
(
B4 − |A|k−1

)
= 0.

Any non-trivial solution y(x) to equation (1.1) generates in R4 \{0} a curve
(y(x), y′(x), y′′(x), y′′′(x)) . Let us introduce in R4 \ {0} an equivalence relation
such that two solutions connected by (4.1)–(4.2) generate equivalent curves,
i.e. the curves passing through equivalent points (may be for different x).

We assume that points (y0, y1, y2, y3) and (z0, z1, z2, z3) in R4 \ {0} are
equivalent if there exists a positive constant λ such that

zj = λ4+j(k−1)yj , j = 0, 1, 2, 3.

The factor space obtained is homeomorphic to the three-dimensional sphere

S3 =
{
y ∈ R4 : y20 + y21 + y22 + y23 = 1

}
.

On this sphere there is exactly one representative of each equivalence class
because for any point (y0, y1, y2, y3) ∈ R4 \ {0} the equation

λ8y20 + λ2k+6y21 + λ4k+4y22 + λ6k+2y23 = 1

has exactly one positive root λ.
It is possible to construct another hyper-surface in R4 with a single repre-

sentative of each equivalence class, namely,

E =
{
y ∈ R4 :

3∑
j=0

|yj |
1

j(k−1)+4 = 1
}
. (4.3)

We define ΦS : R4\{0} → S3 and ΦE : R4\{0} → E as mappings taking each
point in R4 \ {0} to the equivalent point in S3 or E. Note that the restrictions

ΦS

∣∣∣
E

and ΦE

∣∣∣
S3

are inverse homeomorphisms.

Lemma 1. There is a dynamical system on the sphere S3 such that all its
trajectories can be obtained by the mapping ΦS from the curves generated in
R4 \ {0} by nontrivial solutions to equation (1.1). Conversely, any nontrivial
solution to equation (1.1) generates in R4 \ {0} a curve whose image under ΦS
is a trajectory of the above dynamical system.

Proof. First we define on the sphere S3 a smooth structure using an atlas
consisting of eight charts.

Math. Model. Anal., 21(4):502–521, 2016.
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The two semi-spheres defined by the inequalities y0 > 0 and y0 < 0 are
covered by the charts with the coordinate functions (respectively u+1 , u

+
2 , u

+
3

and u−1 , u
−
2 , u

−
3 ) defined by the formulae

u±j = yj |y0|−
4+j(k−1)

4 sgn y0, j = 1, 2, 3.

The semi-spheres defined by the inequalities y1 > 0 and y1 < 0 are covered
by the charts with the coordinate functions (respectively v+0 , v

+
2 , v

+
3 and v−0 ,

v−2 , v
−
3 ) defined as

v±j = yj |y1|−
4+j(k−1)

k+3 sgn y1, j = 0, 2, 3.

The semi-spheres defined by the inequalities y2 > 0 and y2 < 0 are covered
by the charts with the coordinate functions (respectively w+

0 , w
+
1 , w

+
3 and w−0 ,

w−1 , w
−
3 ) defined as

w±j = yj |y2|−
4+j(k−1)

2k+2 sgn y2, j = 0, 1, 3.

Finally, the semi-spheres defined by the inequalities y3 > 0 and y3 < 0 are
covered by the charts with the coordinate functions ( respectively g+0 , g

+
1 , g

+
2

and g−0 , g
−
1 , g

−
2 ) defined as

g±j = yj |y3|−
4+j(k−1)

3k+1 sgn y3, j = 0, 1, 2.

Note that each of these coordinate functions can be defined by its own
formula on the whole corresponding semi-space (yj ≷ 0) and it takes equivalent
points to the same value. This fact facilitates description of the trajectories
generated on S3 by solutions to equation (1.1). To be more precise, by their
restrictions on the intervals where some derivative has constant sign.

E. g., when a solution is positive, the trajectory generated can be described
by the following differential equations:

du+1
dx

= y′′ |y|−
k+3
4 sgn y − k+3

4 y′2 |y|−
k+7
4

= |y|
k−1
4

(
u+2 − k+3

4 u+1
2
)
,

du+2
dx

= y′′′ |y|−
2k+2

4 sgn y − 2k+2
4 y′y′′ |y|−

2k+6
4

= |y|
k−1
4
(
u+3 − 2k+2

4 u+1 u
+
2

)
,

du+3
dx

= −p0 |y|k−
3k+1

4 − 3k+1
4 y′y′′′ |y|−

3k+5
4

= |y|
k−1
4
(
−p0 − 3k+1

4 u+1 u
+
3

)
.

Parameterizing the trajectory by tu =
x∫
x0

|y|
k−1
4 dx, we obtain its internal de-
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scription in terms of u+j :

du+1
dtu

= u+2 − k+3
4 u+1

2
,

du+2
dtu

= u+3 − 2k+2
4 u+1 u

+
2 ,

du+3
dtu

= −p0 − 3k+1
4 u+1 u

+
3 .

The same equations appear for (u−1 , u
−
2 , u

−
3 ). Similar calculations yield equa-

tions for other charts:

dv±0
dtv

= 1− 4
k+3 v

±
0 v
±
2 ,

dv±2
dtv

= v±3 − 2k+2
k+3 v

±
2

2
,

dv±3
dtv

= −p0
∣∣v±0 ∣∣k sgn v±0 − 3k+1

k+3 v
±
2 v
±
3 ,

dw±0
dtw

= w±1 − 4
2k+2 w

±
0 w
±
3 ,

dw±1
dtw

= 1− k+3
2k+2 w

±
1 w
±
3 ,

dw±3
dtw

= −p0
∣∣w±0 ∣∣k sgnw±0 − 3k+1

2k+2 w
±
3

2
,

dg±0
dtq

= g±1 + 4
3k+1 p0

∣∣g±0 ∣∣k+1
,

dg±1
dtq

= g±2 + k+3
3k+1 p0 g

±
1

∣∣g±0 ∣∣k sgn g±0 ,

dg±2
dtq

= 1 + 2k+2
3k+1 p0 g

±
2

∣∣g±0 ∣∣k sgn g±0 .

Using a partition of unity one can obtain a dynamical system on the whole
sphere S3 to describe all trajectories generated by nontrivial solutions to equa-
tion (1.1). ut

4.2 Typical and Non-Typical solutions

Now we consider the space R4 as the union of its 16 = 24 closed subsets defined
according to different combinations of signs of the four coordinates. Denote

these sets by

[±
±
±
±

]
⊂ R4, where each sign ± can be substituted by +, or −, or

0 (for boundary points). For example,[
+
+
0
−

]
=
{
y ∈ R4 : y0 ≥ 0, y1 ≥ 0, y2 = 0, y3 ≤ 0,

}
.

Besides, let Ω− and Ω+ denote respectively[+
−
+
−

]
∪
[+
−
+
+

]
∪
[+
−
−
+

]
∪
[+
+
−
+

]
∪
[−
+
−
+

]
∪
[−
+
−
−

]
∪
[−
+
+
−

]
∪
[−
−
+
−

]
Math. Model. Anal., 21(4):502–521, 2016.
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and [+
+
+
+

]
∪
[+
+
+
−

]
∪
[+
+
−
−

]
∪
[+
−
−
−

]
∪
[−
−
−
−

]
∪
[−
−
−
+

]
∪
[−
−
+
+

]
∪
[−
+
+
+

]
.

Note, that the sets Ω− and Ω+ cover the whole space R4, intersect only
along their common boundary, and can be obtained from each other using the
mapping

(y0, y1, y2, y3) ∈ R4 7→ (y0,−y1, y2,−y3) ∈ R4,

which corresponds to changing the sign of the independent variable (x 7→ −x).

Lemma 2. The sets Ω−∩S3, Ω+∩S3, Ω−∩E, and Ω+∩E are homeomorphic
to the solid torus.

Proof. It is sufficient to consider Ω+ ∩ S3. The set Ω+ is the union of its two
homeomorphic subsets

Ω++ =

[+
+
+
+

]
∪
[+
+
+
−

]
∪
[+
+
−
−

]
∪
[+
−
−
−

]
Ω+− =

[−
−
−
−

]
∪
[−
−
−
+

]
∪
[−
−
+
+

]
∪
[−
+
+
+

]
.

In order to describe the set Ω++ ∩ S3, we use the stereographic projection
mapping S3 \ {(−1, 0, 0, 0)} onto R3 (See Figure 3).

0

y

y
y
y

0

y

y

y

0

3

2

1 3

1

2

Figure 3. Stereographic projection and its image of Ω++ ∩ S3

The image of Ω++ ∩ S3 under this projection is contained in the ball of
radius 2 and is equal to the union of its two quarters, which is homeomorphic
to the 3-dimensional ball. The same is true for Ω+− ∩ S3.

The intersection
(
Ω++ ∩ S3

)
∩
(
Ω+− ∩ S3

)
=

([
0
+
+
+

]
∪
[

0
−
−
−

])
∩S3 maps to

the disjoint union of two spherical triangles (2-dimensional figures, not their
boundaries). Thus, the set Ω+ ∩ S3 is homeomorphic to the pair of two balls
glued along two disjoint triangles, which is equivalent to the solid torus. ut

Lemma 3. Any trajectory in R4 generated by a non-trivial solution to (1.1)
either completely lies inside one of the sets Ω− and Ω+ (i. e., in their interior),
or consists of two parts, first inside Ω− and another inside Ω+ with a single
point in their common boundary.
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Proof. For the trajectories generated by solutions to equation (1.1), consider

all possible passages between the sets

[±
±
±
±

]
.

Inside Ω+ the only possible passages are[+
+
+
+

]
→

[+
+
+
−

]
→

[+
+
−
−

]
→

[+
−
−
−

]
↑ ↓[−
+
+
+

]
←

[−
−
+
+

]
←

[−
−
−
+

]
←

[−
−
−
−

]
,

(4.4)

inside Ω− they are[+
−
+
−

]
←

[+
−
+
+

]
←

[+
−
−
+

]
←

[+
+
−
+

]
↓ ↑[−
−
+
−

]
→

[−
+
+
−

]
→

[−
+
−
−

]
→

[−
+
−
+

]
,

(4.5)

and the only possible passages between Ω− and Ω+ are[+
+
+
−

]
←
[+
−
+
−

]
→
[+
−
−
−

]
,

[−
−
+
+

]
←
[+
−
+
+

]
→
[+
+
+
+

]
,[−

−
−
+

]
←
[+
−
−
+

]
→
[+
−
−
−

]
,

[+
+
+
+

]
←
[+
+
−
+

]
→
[+
+
−
−

]
,[−

−
−
+

]
←
[−
+
−
+

]
→
[−
+
+
+

]
,

[+
+
−
−

]
←
[−
+
−
−

]
→
[−
−
−
−

]
,[+

+
+
−

]
←
[−
+
+
−

]
→
[−
+
+
+

]
,

[−
−
−
−

]
←
[−
−
+
−

]
→
[−
−
+
+

]
,

always from Ω− to Ω+.
So, any trajectory generated by a non-trivial solution can perform only one

passage between Ω− and Ω+, which can be only from Ω− to Ω+. ut

Lemma 4. There exist trajectories of all three types mentioned in Lemma 3,
namely: (i) trajectories lying completely in Ω−, (ii) trajectories lying com-
pletely in Ω+, (iii) trajectories with a single passage Ω− → Ω+.

Proof. Any solution to (1.1) with initial data corresponding to a point from
Ω− ∩Ω+ generates a trajectory of the 3rd type. E. g., the solution with initial
data y′(0) = 0, y(0) = y′′(0) = y′′′(0) = 1 generates a trajectory with the
passage [+

−
+
+

]
⊂ Ω− →

[+
+
+
+

]
⊂ Ω+ .

If there exists a solution y(x) to (1.1) generating a trajectory lying com-
pletely in Ω−, then the function z(x) = y(−x) is also a solution to (1.1) and

Math. Model. Anal., 21(4):502–521, 2016.
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generates a trajectory completely lying in Ω+. So, we have to prove existence
of a trajectory of the first type.

Assume the converse. Then any trajectory passing through a point s ∈
Ω− ∩ S3 must reach the boundary ∂Ω− ∩ S3. Thus we obtain the mapping
Ω− ∩ S3 → ∂Ω− ∩ S3. To prove its continuity we represent it as

s ∈ Ω− ∩ S3 7→ Trajp0(s, ξ(s)) ∈ ∂Ω− ∩ S3.

Here Trajp0(s, t) is the point in S3 reached at the time t by the trajectory of
the dynamical system on the sphere that passed s at the time 0. The mapping
Trajp0 : S3 × R → S3 is continuous according to the general properties of
differential equations.

The function ξ : Ω− ∩ S3 → R gives the time t at which the trajectory
passing through the given point of Ω− at t0 = 0 reaches ∂Ω−. Now we prove
continuity of ξ.

Suppose ξ(s1) = t1 and ε > 0. Then, since Trajp0(s1, t1 + ε) is inside
Ω+, there exists a neighborhood U+ of s1 such that for any s ∈ U+ the point
Trajp0(s, t1 + ε) is also inside Ω+. So, we have ξ(s) < t1 + ε for all s ∈ U+.

Similarly, since Trajp0(s1, t1− ε) is inside Ω−, there exists a neighborhood
U− of s1 such that for any s ∈ U− the point Trajp0(s, t1− ε) is also inside Ω−,
whence ξ(s) > t1 − ε.

So, for all s ∈ U− ∩ U+ we have |ξ(s)− t1| < ε. Thus ξ(s) is continuous on
Ω− ∩ S3 and we have the continuous mapping Ω− ∩ S3 → ∂Ω− ∩ S3 whose
restriction to ∂Ω− ∩ S3 is the identity map. In other words, we have the
composition

∂Ω− ∩ S3 ↪→ Ω− ∩ S3 → ∂Ω− ∩ S3,

which is the identity map, inducing the identity map on the homology groups:

H2(∂Ω− ∩ S3)→ H2(Ω− ∩ S3)→ H2(∂Ω− ∩ S3).

Since Ω− ∩ S3 and ∂Ω− ∩ S3 are homeomorphic to the solid torus and the
torus surface respectively, the above composition can be written as Z→ 0→ Z,
which cannot be the identity mapping. This contradiction proves the lemma.
ut

Lemma 5. Suppose y(x) is a MU-solution to equation (1.1). Then neither
y(x) nor any of its derivatives y′(x), y′′(x), y′′′(x) can have constant sign near
any boundary of their domain.

Proof. We prove it for y(x). For the derivatives the proof is just similar. We’ll
consider the right boundary. For the left boundary the proof is the same
because if y(x) is a solution of equation (1.1) then x 7→ y(−x) is also its
solution. Suppose y(x) is defined on an interval (x−, x+), bounded or not, and
is positive in a neighborhood of x+. Then y′′′(x), due to (1.1), is monotonically
decreasing to a finite or infinite limit as x→ x+. Then y′′′(x) ultimately has a
constant sign. In the same way, y′′(x), y′(x), and y(x) itself are all ultimately
monotone and have finite or infinite limits as x→ x+.
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If all these limits are zero, then y(x), which is ultimately positive, is de-
creasing to 0. Hence, y′(x) is ultimately negative and increasing to 0. Similarly,
y′′(x) is ultimately positive and decreasing to 0, y′′′(x) is ultimately negative
and increasing to 0. This contradicts to equation (1.1), since y(x) is ultimately
positive, whence y(IV)(x) is ultimately negative and y′′′(x) is decreasing. So,
at least one of the limits mentioned is non-zero.

Suppose x+ = +∞. Then all limits must be infinite and have the same sign,
which contradicts to equation (1.1).

Now suppose x+ < +∞. If all limits mentioned are infinite, they must have
the same sign, which contradicts to equation (1.1). If either one of the limits is
finite, then all other limits are finite, too. This is impossible for a MU-solution
since at least one of the limits is non-zero.

These contradictions prove the lemma. ut

Thus, no trajectory generated in R4 by a non-trivial solution to (1.1) can

ultimately rest in one of the sets

[±
±
±
±

]
.

Corollary 1. All MU-solutions to equation (1.1), as well as their derivatives, are
oscillatory near both boundaries of their domains.

Note that according to Lemma 3 we can distinguish two types of asymptotic
behavior of oscillatory MU-solutions to equation (1.1), near the right bound-
aries of their domains.

Definition 3. An oscillatory MU-solution to equation (1.1) is called typical
(to the right) if ultimately this solution and its derivatives change their signs
according to scheme (4.4), and non-typical if according to (4.5).

4.3 Asymptotic behavior of typical solutions

This section is devoted to the asymptotic behavior of typical (to the right)
solutions to equation (1.1), i. e. those generating trajectories ultimately lying
inside Ω+.

Since such a trajectory ultimately admits only the passages shown in (4.4),
there exists an increasing sequence of the points x′′′0 < x′′0 < x′0 < x0 < x′′′1 <
x′′1 < x′1 < x1 < . . . such that y(xj) = y′(x′j) = y′′(x′′j ) = y′′′(x′′′j ) = 0
(j = 0, 1, 2, . . . ), and each point is a zero only for one of the functions y(x),
y′(x), y′′(x), y′′′(x) (see Fig. 4). The points xj , x

′
j , x

′′
j , x

′′′
j will be called the

nodes of the solution y(x).
For solutions generating trajectories completely lying inside Ω+, the se-

quences of their nodes can be indexed by all integers (negative ones, too).

Lemma 6. Any typical solution y(x) to equation (1.1) satisfies at its nodes the
following inequalities:∣∣y(x′j)

∣∣< ∣∣y(x′′′j+1)
∣∣< ∣∣y(x′′j+1)

∣∣ < ∣∣y(x′j+1)
∣∣ , (4.6)∣∣y′(x′′j )

∣∣< |y′(xj)|< ∣∣y′(x′′′j+1)
∣∣ < ∣∣y′(x′′j+1)

∣∣ , (4.7)∣∣y′′(x′′′j )
∣∣< ∣∣y′′(x′j)∣∣< |y′′(xj)| < ∣∣y′′(x′′′j+1)

∣∣ , (4.8)

|y′′′(xj)|<
∣∣y′′′(x′′j+1)

∣∣< ∣∣y′′′(x′j+1)
∣∣< |y′′′(xj+1)| . (4.9)
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y

x

y   + |y|    sgn y = 0IV 0.9

x x’’’ x’’ x’

x x’’’ x’’ x’ x

j-1 j j j

j j+1 j+1 j+1 j+1

Figure 4. Nodes of a solution

Proof.

p0
k + 1

(∣∣y(x′j)
∣∣k+1 −

∣∣y(x′′′j+1)
∣∣k+1

)
= −p0

∫ x′′′j+1

x′j

y′(x) |y(x)|k sgn y(x) dx

=

∫ x′′′j+1

x′j

y′(x) y(IV)(x) dx = y′(x) y′′′(x)

∣∣∣∣x′′′j+1

x′j

−
∫ x′′′j+1

x′j

y′′(x) y′′′(x) dx,

which is negative since y′′(x)y′′′(x) > 0 for all x ∈
[
x′j , x

′′′
j+1

)
and y′(x′j) =

y′′′(x′′′j+1) = 0. This gives the first of inequalities (4.6), whereas the rest of

them follow from y(x)y′(x) > 0 on the interval
[
x′′′j+1, x

′
j+1

)
.

Similarly, for the first of inequalities (4.7) we have

y′(x′′j )2 − y′(xj)2 = −2

∫ xj

x′′j

y′(x)y′′(x) dx

= −2y(x)y′′(x)

∣∣∣∣xj

x′′j

+ 2

∫ xj

x′′j

y(x)y′′′(x) dx < 0,

since y(xj) = y′′(x′′j ) = 0 and y(x)y′′′(x) < 0 on
[
x′′j , xj

)
. The rest ones follow

from the inequality y′(x)y′′(x) > 0 on
[
xj , x

′′
j+1

)
.

In the same way, for the first of (4.8) we have

y′′(x′′′j )2 − y′′(x′j)2 = −2

∫ x′j

x′′′j

y′′(x)y′′′(x) dx

= −2y′(x)y′′′(x)

∣∣∣∣∣
x′j

x′′′j

+ 2

∫ x′j

x′′′j

y′(x)y(IV)(x) dx < 0,

since y′(x)y(IV)(x) = −p0y′(x) |y|k sgn y(x) < 0 on
[
x′′′j , x

′
j

)
and y′(x′j) =

y′′′(x′′′j ) = 0. The rest ones follow from y′′(x)y′′′(x) > 0 on
[
x′j , x

′′′
j+1

)
.
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Finally, for the first inequality of (4.9) we have

y′′′(xj)
2 − y′′′(x′′j+1)2 = −2

∫ x′′j+1

xj

y′′′(x)y(IV)(x) dx

= 2p0

∫ x′′j+1

xj

y′′′(x) |y(x)|k sgn y(x) dx = 2p0 y
′′(x) |y(x)|k sgn y(x)

∣∣∣∣x′′j+1

xj

− 2kp0

∫ x′′j+1

xj

y′′(x) y′(x) |y(x)|k−1 dx < 0,

since y′(x)y′′(x) > 0 on
[
xj , x

′′
j+1

)
and y(xj) = y′′(x′′j+1) = 0, whereas the rest

inequalities follow from y′′′(x)y(IV)(x) > 0 on
[
x′′j+1, xj+1

)
.

Note that the function y(x) on [xj , x
′′
j+1] vanishes only at the point xj and

y′(xj) 6= 0. Hence,
∫ x′′j+1

xj
y′′(x) y′(x) |y(x)|k−1 dx with k − 1 > −1 converges.

ut

So, the absolute values of the local extrema of any typical solution to equa-
tion (1.1) form a strictly increasing sequence. The same holds for its first,
second, and third derivatives.

Hereafter we need some extra notations. Put

Ω1
+ = Traj1(Ω+ ∩ S3, 1) ⊂ S3.

This is a compact subset of the interior of Ω+ containing ultimate parts of all
trajectories generated by typical solutions to equation (1.1) with p0 = 1. As for
solutions generating the curves in R4 completely lying in Ω+, the trajectories
related completely lie in Ω1

+.
Besides, we define the compact sets

Ki =
{
a ∈ Ω1

+ : ai = 0
}

and the functions ξj : R4 \ {0} → R, j = 0, 1, 2, 3, taking each a ∈ R4 \ {0} to
the minimal positive zero of the derivative y(j)(x) of the solution to the initial
data problem {

y(IV)(x) + |y(x)|k sgn y(x) = 0,

y(j)(0) = aj , j = 0, 1, 2, 3.
(4.10)

Further, to each solution y(x) to equation (1.1) we associate the function

Fy(x) =

3∑
j=0

∣∣∣ρy(j)(x)
∣∣∣ 1
j(k−1)+4

with ρ = p
1

k−1

0 . (4.11)

The notation Fy does not use p0, since non-trivial functions cannot be solutions
to equation (1.1) with different values of p0.

Lemma 7. The restrictions ξi
∣∣
Kj
, i, j = 0, 1, 2, 3, are continuous.
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Proof. First we prove continuity of ξi at a ∈ Ω+ with ai > 0. Suppose ξi(a) =
xi and ε > 0.

We can assume that ε is sufficiently small to be less than xi and to provide,
for the solution y(x) to (4.10), the inequalities y(i)(x − ε) > 0 on [0, xi − ε]
and y(i)(xi + ε) < 0. In this case the point a has a neighborhood U ⊂ Ω+ such
that the above inequalities are satisfied for all solutions to (4.10) with initial
data a′ ∈ U. Hence, |ξi(a′)− xi| < ε. Continuity of ξi at a ∈ Ω+ with ai > 0 is
proved.

In the same way it is proved at a ∈ Ω+ with ai < 0. Since ai 6= 0 if
a ∈ Kj , i 6= j, we have proved continuity of the restriction ξi

∣∣
Kj

in the case

i 6= j. As for ξi
∣∣
Ki
, note that between two zeros of y(i)(x) there exists a zero xj of

another derivative y(j)(x). The values y(m)(xj), m = 0, 1, 2, 3, due to continuity
of ξj

∣∣
Ki
, depend continuously on a ∈ Ki, whereas the restriction ξi

∣∣
Kj

depends

continuously on these values. This proves continuity of the restriction ξi
∣∣
Ki
.

ut

Lemma 8. For any k ∈ (0; 1) there exist Q > q > 1 such that for any typical
solution y(x) to equation (1.1) the values of all expressions

∣∣∣y(x′′′j+1)

y(x′j)

∣∣∣ 14 , ∣∣∣ y(x′′j )y(x′′′j )

∣∣∣ 14 , ∣∣∣ y(x′j)y(x′′j )

∣∣∣ 14 ,∣∣∣ y′(xj)
y′(x′′j )

∣∣∣ 1
k+3

,
∣∣∣y′(x′′′j+1)

y′(xj)

∣∣∣ 1
k+3

,
∣∣∣ y′(x′′j )y′(x′′′j )

∣∣∣ 1
k+3

,∣∣∣ y′′(x′j)y′′(x′′′j )

∣∣∣ 1
2k+2

,
∣∣∣y′′(xj)
y′′(x′j)

∣∣∣ 1
2k+2

,
∣∣∣y′′(x′′′j+1)

y′′(xj)

∣∣∣ 1
2k+2

,∣∣∣y′′′(x′′j+1)

y′′′(xj)

∣∣∣ 1
3k+1

,
∣∣∣y′′′(x′j)y′′′(xj)

∣∣∣ 1
3k+1

,
∣∣∣y′′′(xj)
y′′′(x′j)

∣∣∣ 1
3k+1

with sufficiently large j are contained in the segment [q,Q].

Proof. Let us define the continuous functions ψijl : Ki → R (all indices i, j, l
are from 0 to 3 and pairwise different) taking each point a ∈ Ki to the ratio of
the absolute values of the j-th derivative of the solution y(x) to (4.10) at 0 and

at the next point where the l-th derivative vanishes, i. e. ψijl(a) =

∣∣∣∣ aj
y(j)(ξl(a))

∣∣∣∣
(both the numerator and the denominator are non-zero if a ∈ Ki).

Due to Lemma 6, each function ψijl at all points of the compact set Ki is
positive and less than 1. Hence 0 < inf

Ki

ψijl(a) ≤ sup
Ki

ψijl(a) < 1.

Now consider an arbitrary typical solution y(x) to (1.1) and two its nodes,
say x′j and x′′′j+1, with sufficiently large numbers such that the related points

in S3 belong to Ω1
+. In this case we can choose constants A 6= 0 and B > 0

such that the function z(x) = Ay(Bx+x′j) is a solution to (4.10) with a ∈ K1.
Indeed, this is equivalent to existence of A 6= 0 and B > 0 such that{

|A|k−1 = B4p0,∑
m=0,2,3

(
ABmy(m)(x′j)

)2
= 1,
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which follows from existence of a root A to the equation(
y(x′j)

)2
A2 +

(
y′′(x′j)

)2
p−10 |A|k+1

+
(
y′′′(x′j)

)2
p
− 3

2
0 |A|

3k+1
2 = 1.

The value
∣∣y(x′′′j+1)/y(x′j)

∣∣ 14 is equal to this for z(x) at ξ3(a) and 0, where

a0 = |A| , a1 = 0, a2 = |A|B2, a3 = |A|B3, i. e. equal to ψ103(a)−
1
4 . Put

q =

(
sup
K1

ψ103(a)

)− 1
4

, Q =

(
inf
K1

ψ103(a)

)− 1
4

and obtain the statement of the

lemma for the first ratio. The same procedure can be used for others. Then
we just choose the minimum of 12 values of q and the maximum of 12 values
of Q. ut

Lemma 9. The domain of any typical (to the right) solution y(x) to equation
(1.1) is right-unbounded and

lim
x→+∞

∣∣∣y(n)(x)
∣∣∣ = +∞, n = 0, 1, 2, 3.

Proof. It follows from Lemma 8 that the absolute values of the neighboring
local extrema of any typical solution for sufficiently large number, say for j ≥ J,
satisfy the inequality

∣∣y(x′j+1)
∣∣ ≥ q12 ∣∣y(x′j)

∣∣ with some q > 1, whence∣∣y(x′j)
∣∣ ≥ q12(j−J) |y(x′J)| and lim

j→∞

∣∣y(x′j)
∣∣ = +∞. (4.12)

In particular, for n = 0 this yields lim
∣∣y(n)(x)

∣∣ = +∞ as x tends to the right
boundary of the domain. Other n are treated similarly.

In order to prove that the domain of the typical (to the right) solution y(x)
is right-unbounded, consider the function

Y (x) =

3∑
j=0

∣∣∣y(j)(x)
∣∣∣βj

with βj =
5

4− j(1− k)
> 1.

It is a positive C1 function. Its derivative can be estimated by using the
inequality

∣∣y(j)(x)
∣∣ < Y (x)1/βj as follows.

|Y ′(x)| ≤
2∑
j=0

βj

∣∣∣y(j)(x)
∣∣∣βj−1 ∣∣∣y(j+1)(x)

∣∣∣+ β3 |y′′′(x)|β3−1 |y(x)|k

<

2∑
j=0

βjY (x)1−1/βj+1/βj+1 + β3Y (x)1−1/β3+k/β0 .

Since both 1− 1

βj
+

1

βj+1
and 1− 1

β3
+

k

β0
are equal to

4 + k

5
, we have

∣∣∣∣ ddxY (x)(1−k)/5
∣∣∣∣ =

1− k
5

Y (x)−(4+k)/5 |Y ′(x)| < 1− k
5

3∑
j=0

βj ,

whence both Y (x)(1−k)/5 and Y (x) are bounded on any bounded interval. Now
it follows from (4.12) that the domain is right-unbounded. ut
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Lemma 10. For any k ∈ (0; 1) there exist positive constants m ≤ M such
that for any typical solution y(x) to equation (1.1) the distance between its
neighboring points of local extremum, x′j and x′j+1, ultimately satisfies the
estimates

m ≤ (x′j+1 − x′j)Fy(x′j)
k−1 ≤M (4.13)

with the function Fy(x) defined by (4.11).

Proof. Put E+ = ΦE
(
Ω1

+

)
. It is a compact subset of the set E defined by

(4.3) and lying inside Ω+. Put

m = inf {ξ1(a) : a ∈ E+, a1 = 0 } > 0,

M = sup {ξ1(a) : a ∈ E+, a1 = 0 } <∞.

Let y(x) be a typical solution to equation (1.1), x′j and x′j+1 be neighboring
points of its local extremum. We can choose positive constants A and B such
that the function z(x) = Ay(Bx + x′j) is a solution to equation (1.1) with
p0 = 1 and its data at zero correspond to some point in E, i. e. Fz(0) = 1. It
is sufficient for this to find a positive solution to the systemA

k−1 = B4p0,
3∑
i=0

∣∣ABiy(i)(x′j)∣∣ 1
i(k−1)+4 = 1,

namely

A =

(
3∑
i=0

∣∣∣∣∣y(i)(x′j)p
i/4
0

∣∣∣∣∣
r)−4

, B =

(
3∑
i=0

∣∣∣ρy(i)(x′j)∣∣∣r
)1−k

= Fy(xj)
1−k,

where r = 1/(i(k − 1) + 4). Moreover, for local extrema with sufficiently large
numbers, the point defined in R4 by the data of the function z(x) at zero belongs
to E+. Hence the first positive point L of local extremum of z(x) belongs to
[m,M ], whence the difference x′j+1−x′j is equal to LB and satisfies (4.13). ut

Lemma 11. For any k ∈ (0; 1) there exists a constant θ > 0 such that for
any p0 > 0 the local extrema of any typical solution y(x) to equation (1.1),
ultimately satisfy the inequality∣∣y(x′j)

∣∣ ≥ θp 1
1−k

0 Fy(x′j)
4 . (4.14)

Proof. Let y(x) be a typical solution to equation (1.1) with p0 = 1 and x′j be
its local extremum point with sufficiently large number.

Put θ = inf {|a0| : a ∈ E+, a1 = 0 } > 0 and choose a constant λ > 0 such
that the data at zero for the solution z(x) = λ4y(λk−1x + x′j) correspond to

some point in E+. Then |z(0)| ≥ θ and Fz(0) = 1, whence |z(0)| ≥ θFz(0)4.
Since z(0) = λ4y(x′j) and Fz(0) = λFy(x′j), we have also

∣∣y(x′j)
∣∣ ≥ θFy(x′j)

4.
So, the lemma is proved for the case p0 = 1.
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If y(x) is a typical solution to equation (1.1) with arbitrary p0 > 0, then the

function Y (x) = p
1

k−1

0 y(x) is a typical solution to equation (1.1) with p0 = 1
and hence ultimately satisfies the inequality

∣∣Y (x′j)
∣∣ ≥ θFY (x′j)

4. The functions

FY (x) and Fy(x) are defined by (4.11) with ρ equal to 1 and p
1

k−1

0 , respectively.
So, they equal each other providing inequality (4.14). ut

Remark 3. For typical solutions to (1.1) with their corresponding curves lying
completely in Ω+, the statements of Lemmas 8, 10, and 11 hold in the whole
domain, not only ultimately.

Theorem 4. For any real k ∈ (0; 1) and p0 > 0 there exist constants C1 > 0
and C2 > 0 such that for any typical (to the right) solution y(x) to equation
(1.1) there exists x′ such that all local extrema of y(x) at points x′j > x′ satisfy
the inequalities

C1 (x′j − x′)
4

1−k <
∣∣y(x′j)

∣∣ < C2 (x′j − x′)
4

1−k .

Proof. Let x′J and x′J+1 be two neighboring points of local extremum of a
solution y(x) such that the statements of Lemmas 8, 10, and 11 hold for all
j ≥ J.

According to these Lemmas, for all j > l > J we have

(x′l+1 − x′l)Fy(x′l)
k−1 ≤M,∣∣y(x′j)

∣∣ 14 ≥ q3(j−l) |y(x′l)|
1
4 ≥ q3(j−l)θ 1

4Fy(x′l)p
1

4(1−k)

0

with some M > 0, q > 1, θ > 0, whence∣∣y(x′j)
∣∣− 1−k

4 (x′l+1 − x′l) ≤ q−3(1−k)(j−l) θ−
1−k
4 Fy(x′l)

k−1(x′l+1 − x′l)

≤ q−3(1−k)(j−l) θ−
1−k
4 M.

Therefore,

∣∣y(x′j)
∣∣− 1−k

4 (x′j − x′J) ≤ θ−
1−k
4 M

j−1∑
l=J

q−3(1−k)(j−l)

= θ−
1−k
4 M

j−J∑
s=1

q−3(1−k)s <
θ−

1−k
4 M q−3(1−k)

1− q−3(1−k)
.

From the other hand,

(x′l+1 − x′l)Fy(x′l)
k−1 ≥ m,∣∣y(x′j)

∣∣ 14 ≤ Q3(j−l) |y(x′l)|
1
4 ≤ Q3(j−l)p

1
4(1−k)

0 Fy(x′l)

with some m > 0, Q > 1, whence∣∣y(x′j)
∣∣− 1−k

4 (x′l+1 − x′l) ≥ Q−3(1−k)(j−l)p
− 1

4
0 Fy(x′l)

k−1(x′l+1 − x′l)

≥ Q−3(1−k)(j−l)p−
1
4

0 m.
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Therefore,

∣∣y(x′j)
∣∣− 1−k

4 (x′j − x′J) ≥ p−
1
4

0 m

j−1∑
l=J

Q−3(1−k)(j−l) ≥ p−
1
4

0 mQ−3(1−k)

and there exist some constants c1 > 0 and c2 > 0 such that

c1 <
∣∣y(x′j)

∣∣− 1−k
4 (x′j − x′J) < c2,

whence

c
− 4

1−k

2 (x′j − x′J)
4

1−k <
∣∣y(x′j)

∣∣ < c
− 4

1−k

1 (x′j − x′J)
4

1−k ,

which completes the proof. ut

With the help of these results we can describe the asymptotic behavior of
nontrivial solutions to equation (1.1) and prove Theorem 2.

First, for solutions to equation (1.1) generating in R4 curves lying entirely
in Ω+, we describe their asymptotic behavior near the left boundary of the
domain.

Lemma 12. Suppose y(x) is a typical to the left solution to equation (1.1) with
derivatives changing their signs according to scheme (4.4). Then the domain
of y(x) is left-bounded and the functions y(x), y′(x), y′′(x), y′′′(x) tend to zero
as x tends to the left boundary.

Using the substitution x 7→ −x we can describe the asymptotic behavior of
non-typical solutions near the right boundaries of their domains. Combining
these results we obtain Theorem 2.

Remark 4. The proof of Theorem 3 is based on the method used to obtain the
asymptotic classification of solutions to equation (1.2) for k > 1 (see [5], Ch. 7),
but is more complicated.

Remark 5. The existence of solutions of some types mentioned in Theorem 2
and Theorem 3 is known also for equations (1.1) and (1.2) with the constant
p0 replaced by a function p(x) satisfying some conditions. See for example [10],
Ch. IV, §15–16. However, for the constant coefficient it becomes now possible
to describe the asymptotic behavior of all MU-solutions, thus obtaining their
complete qualitative picture.
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