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Introduction
1. The present note was suggested by recent work of H. Davenport, [3],t

S. Bochner and B. Jessen, [2], and A. Wintner and B. Jessen, [6]. Davenport
established the existence of asymptotic distribution functions for a certain
class of arithmetical functions by an extension of a method previously used
by the author, [8], [9], in a similar investigation. This method was based
on the consideration of the moments of the distribution functions. In ques-
tions of asymptotic distribution, however, Bochner and Jessen have shown
the great advantage of dealing directly with the Fourier transforms of the
distribution functions. This advantage becomes again apparent if the method
of Fourier transforms, whose adaptation to sequences is fully developed in §1,
is applied to Davenport's problem. This is precisely what we shall do in §11;
the result thus obtained (Theorem 1) insures the existence of the asymptotic
distribution function for a very large class of (positive and multiplicative)
arithmetical functions. It includes Davenport's and the author's previous
results and yields readily (by suitable specializations of the arithmetical func-
tion involved) the frequencies of certain classes of integers investigated by
W. Feller and E. Tornier, [4], in an entirely different way.

The connection with the work of Wintner and Jessen, [6], is as follows.
The distribution function u(x) =x(e") of Theorem 1 is a special example of
the infinite convolutions of purely discontinuous distribution functions in-
vestigated by these authors. They have shown ([6], Theorem 35) that such
infinite convolutions can be only either purely discontinuous or else every-
where continuous, and in the latter case either singular functions or else ab-
solutely continuous functions. These general results apply immediately to
our special situation, but new and probably difficult problems arise which
may be mentioned here. Theorem 1 gives simple sufficient conditions to in-
sure continuity or discontinuity of u(x) ; the problem of finding similar neces-
sary and sufficient conditions for continuity remains unsolved. The more deli-
cate problem of deciding whether a continuous <a(x) is singular or absolutely

* Presented to the Society, March 31, 1934; received by the editors July 25, 1935.
t Numbers in brackets refer to the Bibliography at the end of this paper.
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continuous is likewise unsolved. It can be shown that a continuous co(x) is
necessarily singular if log f(p„) =0(k~n) (pn = nth prime, k>l). However, I
do not have any example of an absolutely continuous u>(x).

I. Asymptotic distributions of real sequences
2. Let us recall first a few well known definitions. A finite or infinite class

C of increasing positive integers mi, m2, m3, ■ • • is said to have a frequency (or
density) F{C) if

lim (l/n)£ 1 =F{C).
n—»w myèn

In case this limit does not exist then the upper limit of the same expression
is the upper frequency F {C} and the lower limit is the lower frequency F {C}
of the class C. A function u(x) defined for — oo <x< oo, which is monotonie
with co(— oo) =0, co(oo) = 1, is called a distribution function (d.i.). A real se-
quence Xi, x2, x3, ■ ■ ■ is said to have an asymptotic distribution function (ab-
breviated: a.d.f.) u(x) if for every point of continuity x = % of u(x) we have

(1) F{xniS} -«({).

In this relation F {xn ̂  £} means the frequency of the class of integers n for
which xn ̂  £. For example we have so called equi-distribution* in the inter-
val (0, 1) if the above definition holds with «(#) = 0 for x < 0, = x for 0 g x g 1,
= 1 for x>l.

Let N(k, ^x)n denote the number of those elements among the first n ele-
ments of the sequence {x,} which are ^ x. With our sequence we may con-
nect a sequence of distribution functions (step functions)

(¿nix) = (l/n)Nix, ^ x)n (— oo  < x < co ; n = 1, 2, 3, • • • ).

A comparison with our previous definition shows that the d.f. coix) is the a.d.f.
of our sequence {xn} if and only if the relation

(2) lim co^tt) = «({)
rt-*w

holds for every continuity point x = £ of u>(x). The limiting relation (2) is usu-
ally described by saying that the sequence of d.f. oinix) converges essentially
to the d.f. &ix).

Throughout this note we write

g(xi) + g(x2)-{-+g(xn)        ..,.., ..      ,, <   , vl ,,(   ,  v»
- = Mn\g(x)\, hm Mn\g(x)\ = M\g(x)\,

♦H.Weyl, [10].
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provided the last limit exists. An important property of asymptotic distribu-
tions of sequences is contained in the following

Lemma 1. Let the sequence {xn} admit the a.d.f. u(x) and let g(x) be a
bounded continuous complex-valued function for — » <x< oo. Then

(3) M[g(x)} =  f   gix)Mx).
J -OO

Since

/OO

gix)d03nix) ,

the relation (3) is a special case of a theorem of P. Levy.*
3. The following theorem gives a criterion for asymptotic distributions of

sequences.

Lemma 2. Necessary and sufficient conditions that a sequence [xn\ shall
have an asymptotic distribution are as follows: The mean value

,      i 1(4) M{e"x} = lim — ieitx> + ■ • • + e***) = Lit)
n->°o  n

shall exist for every real t and be an everywhere continuous function of t. If these
conditions hold then Lit) is of the form

t% CO

(5) Lit) =   I    eitxdù>ix)
J -m

where co(x) is the a.d.f. of our sequence {xn}.

The necessity of these conditions is a consequence of Lemma 1. In view
of (4) we have

E Lit, - Qpji, =  21 M{e^-Vx)pj>, = M i 22 e'^-V'pJf,}

= A7 j   £ e^'p, |=0,

hence Lit) is a positive-definite function which, being assumed continuous,

Levy's theorem is as follows: If s

J   g(x)dun(x) -> J   g(x)du(x),

*P. Levy, [7], pp. 195-196. Levy's theorem is as follows: If a sequence of d.f. un(x) converges
essentially to a d.f. a(x), then

for every bounded continuous g(x).
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is of the form (5) with a non-decreasing uix) uniquely defined by «( — oo ) = 0.*
For i = 0we get «(+ oo) =L(0) = 1, hence uix) is a d.f. From (4) we infer

/oo eitxdu>nix) =
-OO

and a theorem of P. Lévyf insures the relation (2), i.e., uix) is the a.d.f. of
our sequence.

II. Asymptotic distributions of multiplicative
arithmetical functions

4. Let f(n) be a multiplicative arithmetical function, that is, a function
defined for w = l, 2, 3, • • • and satisfying the relations

(7) /(«») = f(m)f(n) if im, n) = l,        /(l) = 1.

As an immediate consequence of the unique factorization of integers into
powers of primes, a multiplicative function is completely defined by prescrib-
ing arbitrarily the values of fip") for all primes p and integers a^l. In de-
scribing such functions we therefore need to consider only the fip").

Our problem is as follows: Under what assumptions does the sequence
un =/(«) have an asymptotic distribution function, and how is this function
connected with the fip") ? The results of this .note in this direction are con-
tained in the following

Theorem 1. Let a multiplicative arithmetical function /(») satisfy the condi-
tions

(Í) fir) >0,
(ii) the series

* This follows from an important theorem of Bochner: A continuous positive-definite function
is of the form (5) with a non-decreasing u(x). The converse is obviously true. See Bochner [l],p. 76.

f In fact Levy, [7], p. 197, in deriving (2) from (6), assumes that (6) holds uniformly in every
finite ¿-interval. That this additional assumption is not necessary was shown by Bochner, [l ], p. 72,
Theorem 21. Bochner's statement proves that we can add suitable constants to our functions an(x)
so as to make them tend essentially to u(x), i.e., there is a sequence of constants c„ and a sequence of
functions tn(x) such that

ü)»W + c„ = u(x) + <pn(x)   and   lim \j/n(,x) = 0
»—»00

at every point of continuity of w(x). From cn=a{x) — an(x)+*p„(x) we derive for every point of con-
tinuity of u(x) the inequalities

w(x) — la u(x) — lim sup üi„(x) á lim inf c„ g lim sup c„ á u(x) — lim inf w„(x) iS a(x) ;

allowing here *—> °° and x—» — oo, we derive the result lim inf c„ = lim sup cn = 0, hence (2) holds. For
our particular purpose (Theorem 1) Levy's restricted statement would suffice, for without more
trouble we can prove that (16) (the analogue of (4)) holds uniformly in every finite ¿-interval.

/oo eitzdwix) for all real /,
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(8) 21 —\\loëf(P)\\ converges,
P    P

where, as a matter of notation, \\x\\ =min (1, \x\). Then fin) has the following
properties :

1. The sequence w„=/(«) has an asymptotic distribution function x(w) with

x(u) = x(+0) = 0/of u = 0,

ciwd the Fourier transform of x(ex)(— <*> <x< <x>) is

j   e¡'*dx(e*) = L(t) = II {(l-) (l + — exp [it log f(p)]

+ --exp[it\ogf(p2)]+---y¡,
(9)

the infinite product being absolutely and uniformly convergent in every finite t-
interval.

2. The set of points of increase of the distribution function x(u) ¿s identical
with the sequence of points un =/(«) together with the limit points of this se-
quence.

3. The distribution function x(«) is purely discontinuous if the series

(10) 22 — converges.
/(p)*i P

The function x(w) is everywhere continuous if there exists a sequence of increasing
primes, qx, q2, q3, ■ ■ ■ , with

(11) f(q>)*f(qi) for p^v,
and such that

oo J

(12) 22 — diverges.*
»-1   çv

* Davenport's conditions (see [3], p. 10) for the existence of %{u) are as follows:
(i') 0</(«)Sl,
(ii') there are two positive constants C and c such that

(8') 0 S /(/.*-') - f{p") á Cp~m
for aï 1 and all primes p.

One should remark first that Theorem 1 imposes no conditions whatever on the values of f(pa)
íor a > 1, except condition (i). Moreover, for a = 1 (ii') gives 0 S 1 —/(/>) â Cp~c and this implies al-
ready the convergence of our series (8). Hence all of the inequalities (8') for a> 1 are superfluous as
far as the existence of the d.f. x(«) is concerned.
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5. In order to prove the first part of Theorem 1 let us consider the infi-
nite product

Lit) = II{1 + rHexp [it log/(/>)] - 1)
(13) "

+ r2(exp [it\ogf(p2)] - exp [itlogf(p)]) + •••}- Ü (1 + a,).
V

By means of the inequalities

| sin x\ ^ ||*|| = min (1, | x \ ), \\xt\\ S \\x\\ max (1, | t \ ),

we have

|«, | ¿ r'lexp [¿Hog /(/>)] - l|
+ />-2| exp [it log f(p2)] - exp [¿ log f(p)] | + • • ■

/ log f(p) I

g 2p~l

sin + 2(/.-2 + rl + ■ ■ • )

jlogf(pÚ + 2p-i(p- 1)-'

< 2H|log/(/>)|| max (i,~) + UP ~ D"1

= HK/^II max (2, | t\ ) + 2(p - l)~2.
For | /| gr, the seriesEap is therefore dominated by the convergent series

E (p-l\\log f(p)\\ max (2, 7) + 2(p - 1)~2)
r

and the infinite product (13) converges absolutely and uniformly in every
finite /-interval. As a further consequence of the last result we have

Il{l + E p-"\ exp [it log f(p«)] - exp [it log/(p-1)] I >  = E     ' "*
,>    V. a-1 / m-1 m

with

pt(m) = II (exp [i/ log f(p")] - exp [¿/ log f(p°-1)})
(14)

= E^(d) exp lit log /(y)]>

where />a are the powers of different primes in the canonical decomposition
of m and where p(m) is the Möbius function. From the convergence of the
last series one readily derives the relation
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1    "(15) lim — E|p«(*0| =0.
»->»   «  m-l

By the inversion formula of Möbius, (14) implies

exp [if log/(m)] = 21pt(d),
d\m

and therefore

- ¿exp [itlogfim)] = - 22 E Ptid) - — ¿ |~—~L(»)
W  m-l » m-l d\m «   i»-l L «J

m=l      W »  m-l   l_W \m/) m=.i

m=l      W n  m_i        \ W/ m-n+l

Pt(m)

Pt(m)

-n+X   m

where R(x)=x—[x]. Using (15) we derive

(16) lim — 22 e,,to«'<") = 22 P— = 7(0,
I»-»«   »  m-l m-l      »Í

where Z(¿) is the infinite product (13). Since L(t) is continuous, (16) and
Lemma 2 show that the sequence {log/(w)| admits an a.d.f. u(x) whose
Fourier transform is (5), hence the original sequence {/(«)} admits the a.d.f.
x(u) defined as follows:

(      0x(u) = {
I.C0 (log U

for « _ 0,
(log u) for u > 0,

with x(+0) =co( — oo ) =0. The remark that w(x) =x(eI) completes the proof
of the first part of Theorem 1.

6. Let us pass to the proof of the second part of Theorem 1. Jessen and
Wintner ([6], Theorem 3) have proved the following general result. Let
cti(x), a2(x), a3(x),- • • be a sequence of d.f. such that the convolution
un(x) =ox(x) *a2(x) * ■ ■ ■ *(r„(x) converges essentially to a d.f. u(x); this
d.f. w(x) is called the infinite convolution of the sequence |a„(x)}, and we
write

(17) Cü(*)   =   (Tx(x) » 0-2(x) * <r3(x) * ■   ■   ■   .

Let generally S((p) denote the set of points of increase of a d.f. c6. Then S(<a„)
is the vectorial sum of sets (in the sense of Bohr)

(18) SM = Si*x) + Sic) + • • • + Sio-n),
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and S(u) is the limit of S(u„) in the following sense : A point £ belongs to S(u)
if and only if it is the limit of a sequence of points xn with xn c 5(w„).

If the origin 0 belongs to all 5(<r„), then S(ui) cS(u2) cS(u3) c •• • in
virtue of (18), and now S(u) is identical with the closure of the ordinary
limit of S(un), i.e., a point belongs to S(u) if it belongs to some S(un) or else
is a limit of such points. Formula (9) shows that our d.f. u(x) =x(ex) is the
infinite convolution of the sequence of d.f. a,(x) of Fourier transforms

/oo eitxd<r,(x) = (1 - P7l)(l + P7l exp [ü log f(p,)]
^00

+ P72exp [it log f(p,2)] + ■■■)

where p, stands for the yth prime; hence 5(«„) is identical with the set of
points logf(piaip2a* • • • pn"n) (a,^0) and the second part of Theorem 1 is es-
tablished.

7. Passing to the third part of Theorem 1 we remark that (10) implies (8).
However, if (10) converges we need not consider (8) at all, for now the series

ErKexptiHog/^)]-!)
p

is dominated by the convergent series

E %rx
/(p)*i

for all values of /, which implies the uniform convergence of product (13) for
all real /. The transform L(t) is therefore almost periodic and the d.f. u(x)
is necessarily purely discontinuous.

Let us now assume (8), (11) and (12) to hold. By (17) and (19) we have

u = o-i *<r2* <t¡ * ■ • ■  = i<Ti • ■ ■ ■ * <7„_i» <r„+i •■■■)• (Tn = 4>n* (Tn.

Denoting by w(£), 4>niE), >?„(£) the set functions corresponding to the point
functions u, </>„, r/n, we have

■>(E)= J*<?„CE-y)?„(dy).t
If u(x) is not everywhere continuous, there is a point x with u(x)=c>0.
Now by (19), writing log fipn) =X„,

ûix) =  I 4>nix — y)ènidy)

= $nix)(l-) + 4>Áx -Xn)(- ) + • • • = C> 0.
_ \ PJ \pn        Pi)

f A Lebesgue-Radon integral. For notation and references see [6], §2.
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Since 0 = $„(7s) 2= 1, we may infer that

4>nix)>c/2 for n sufficiently large,

hence

«(* + K) = 0n(* + X„) ( 1-) + &,(*) f- ] + ■ •
\ PJ \p» Pn2/

(---)■\pn Pn2/

c
>

2   \pn

This result, however, leads to a contradiction, for ^«(x+X,,), summed over
all different X„ (with n large), is on one hand ál, on the other hand it is
>(c/2)22(pn1 — pr2), and this last series diverges by our assumptions (11)
and (12).*

III. Frequencies of certain classes of integers

8. Theorem 1 applies with great ease to the multiplicative arithmetical
functions

f(n) = Hn)ln        (Hn) is the Euler function),!

fin) = n/crin) (c(«) = sum of divisors of n),%

iorfip) = 1 — l/p and p/il +p) respectively, and both series

?7K*-7)J-  ?>K)
are convergent. Moreover both functions are everywhere dense in the interval
(0, 1), as even their values of the form

s     / 1 \        / 1 \ ?i ?»f(qm • • • a™) = I 1-1 • • • I 1-) and-• • •-respectively,
\ qx/ \        a™/ 1 + qx        1 + ?m

where qx,---,qm are different primes, have this property. § Since the f(p)
are all different, the distribution functions are continuous. We can therefore
conclude that the frequency F{a(n)>kn} of ¿-abundant numbers]| is con-
tinuous and strictly decreasing for increasing k ^ 1.

* The conditions (11), (12), and the above proof of their sufficiency are due to Dr. Jessen. My
original conditions were more stringent,

t Schoenberg [8].
X Davenport [3].
§See [8], p. 194.
|| Davenport [3], p. 830.
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These results may be extended to various generalizations of Euler's func-
tion as well as to the function

fin) = n>/o-,in) = n"/ 22 d" (s > 0).
din

For 0 <s g 1, this last function is everywhere dense in (0, 1) ; if s > 1 we have

lim inf fin) = l/f(s),        lim sup/(w) = l.t.

9. We now shall apply Theorem 1 to certain arithmetical functions lead-
ing to purely discontinuous distribution functions. A few preliminary consid-
erations are necessary.

Let xx, x2, x3, ■ ■ ■ be a sequence of real elements. Let Xi, X2, X3, • • • be all
the different values of the elements of the sequence {xn}, i.e., X^X,. if p^v
while any xn is equal to some X^ and vice versa. Let us further assume that
the sequence {x„} has an a.d.f. co(x) whose Fourier transform is

eitxdo>ix) = 22A«-itKm,
-oo m-l

hence
00

(21) Am ̂  0,        22Am=l.

We shall need the following
Lemma 3. If the sequence {X„} has no finite limit point, then

(22) F{xv = \m\ = Am,

\¿3) r \ Xy   =   r<m„ Aijij, Auijj  .  ».    }   am  Jxmi -f- /imj ~T~ ̂ ma    1"

(«i < m2 < m3 < • ■ ■ ).

For if the interval Xm — e • • • Xm + e is free of values X„ ip^m), thenXm + e
are points of continuity (in fact points of constancy) of co(x), hence

1
lim — Nix, ^ Xm + «)„ = coQ^m ± «) = <o(Xm ± 0)
»t—»m n

and therefore

lim —{Nix, ^ Xm + e)„ — Nix, ^ Xm — ()„} = lim — Nixp = \m)n
B->» n n->» n

= co(Xm + 0) - co(Xm - 0) =Am,
which proves (22).

f Gronwall [5]; presumably/(n) is everywhere dense in (p'CO, 1).
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Let Cm be the class of integers v for which x,=Xm. The totality T of all
positive integers is thus decomposed as a sum of classes

T = Ci + C2 + C3 + • • • , with F{Cm\ = Am,

and (23) is equivalent to

(24) F{Cmi + Cmi + ■ ■ ■ } = F{Cmi} + F{Cm,} + ■ ■ ■ .f
From

C' C^mi  -p t^m2  *T~   '   '   "    T~  ^mk—,  ~~\-   ^CWi     I"  tmj^!  ~~J~   '   '   '   )
we get

(25) F{C} ^^{Cmi} + • • • +F{C„4_1} +F{Cmk + Cmk+l+ ■    • }.

On the other hand

F\Cmk + Cmit+l +   •   •   •    }    ̂   F\Cmk + Cmk+1 + Cmk+2 +  •  •  •   J

= 1 -F{Ci + C2+ ■■■ +Cmk-i\
= l-F{Ci}--.F{Cmi_i}-+0as¿-><»

in view of (21). Hence, as k—>oo, (25) gives

F{C} ^F{Cmi} +F{Cm,} + ■■■ .

This together with the obvious relation

F{C] ^F{Cmi\ +F{Cm2} + •••

proves (24).
10. Let us dévide the totality T of positive integers into various classes

as follows. Call C(l) the class of square-free numbers. If n is not square-free
let qfiqf*- ■ ■ q?' (c*i>l, • • • , ar>l) be the product of all the powers of
primes in its canonical decomposition and call Ciq?iq2a* ■ ■ ■ q?T) the class of
all numbers « having the same product <7r"i • • • q?r of powers of primes in
their canonical decomposition.

Whatis the frequency F {Ciq? i qf* ■ ■ ■ q?r)} of the class Ciqfiqfi ■ ■ ■ q?')?
It can be immediately computed from (9) by specializing conveniently the
function fin). For all primes p let

(26) fip) = l,fip°) = p*iora>l.

The series (10) is void and the a.d.f. u(x) of the sequence {log/(w)} is purely
discontinuous. Sincen(l — p~2) =f (2)_1 = 6/ir2, its Fourier transform given by
(9) becomes

t This relation, which I owe to Dr. Jessen, is not true for every decomposition T=Ci+C,+ • • • ,
for even the relation F{Ci+C2-|- • • • } =F{Ci}+F{C2} + • • • breaks down in the case of the de-
composition r=(l)+(2)+(3)-|-.
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f   ea'M«) = L(t) = — Il {l + r2(l + — )    exp [it log p2]

+ p-Hl + — J     exp [it log ¿3] + • • • )•

(27) V        ^ '6 ( <«>'> / l\->
« -;A 1 + .    E    .qraiqr- • ■ • ?rM 1 + — )

it2 ( (s?i---ä?r) \ qx/

••ÍH-J    exp [it log (ffx ' • • • q"r)]> .

Since log/(w)=log (qxaiq2a*- ■ ■ q?r) (o;>l) if and only if n belongs to the
class C(qxaiq°* • • ■ q?') and since the various values of log (qx". ■ ■ ■ q?r) have
no finite limit point (as logarithms of different integers) Lemma 3 shows that

(2g) F{C(q"xlqa2' ■ ■ ■ q"rr))

— qra>qf" ■ ■ ■ qr°r (l + — J     ■ ■ ■ ( 1 + — J    .
7T2

By the same lemma we obtain the frequency of a sum of classes C(qx". ■ ■ ■ q?)
by simply adding the frequencies of the individual classes.f Feller and Tornier
determine the frequency of the class of numbers n which have an even num-
ber of powers of primes in their canonical decomposition (loc. cit., p. 229).
We may obtain their result directly from (28), for

Fi    21C(q?---qa/)} = ̂     22     ,   ,        ■■     l     .   ,        ..
\    reven / X2   r even     (?C   —   1)  •  •  •   (t?/   ~   1)

= ¿{n('^)+?(.-^)}

-J + jll(l-2t-).
11. The derivation of (28) was essentially based on the fact that the se-

quence |log/(w)} defined by (26) has an a.d.f. u(x) with the transform (27).
It is of some interest to point out that this result may be derived by means of
elementary properties of trigonometric polynomials only, without reference
to Stielt jes integrals or the more refined theorems used in §1. To discuss a

f This is Theorem 19 of Feller and Tornier, [4], p. 228.
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somewhat more general situation than (26) let us assume (a) that the series
(10) converges, (b) that the sequence {Xm} of the different values of the ele-
ments of the sequence {log f(n)} has + oo as its only limiting point, in which
case by renumbering the Xm we may assume Xi<X2<X3< • • •  <Xm—»oo.

We know that (10) implies that Lit) is an almost periodic function with
a Fourier expansion of the type

OO / 00 \

(29) Lit) = E^-«i,x" M^O, E¿«= 1).
m—l \ 1 /

Another immediate consequence of (10) is that the limiting relation (16) holds
uniformly for all real /. Hence if we write

1   "
_ \* giflog/tm)   =   y*a(n)gi'X„,
n m_! "*

we know that these polynomials converge uniformly to Lit). From
Am = 3Jtt{L(t)e~i^m} and the similar formulas for our polynomials we get

lim am   = Am (m = 1,2, 3, ■ ■ ■ ),
ff—»00

and therefore (in the notation of §1)

«»(*) = Ea>» —*^,Am = u(x)

for every rc^Xi, X2, • ■ • , for both of the sums involved in the last relation
contain a finite number of terms only. But this relation means precisely that
uix) is the a.d.f. of the sequence jlog/(«)}.

12. A great number of examples of classes of integers could be indicated
whose frequencies can be computed by the method used above. We shall
discuss only two more examples already considered by Feller and Tornier
([4], pp. 215 and 224).

Let T be the class of numbers of the form n = qiaiq2"i ■ ■ ■ q?r (a>l), i.e.,
if p\ n then also p2\n. To compute F{T} let Tm be the class of numbers for
which the above property ip | n implies p2 \ n) is required only for the first m
primes pi, p2, ■ ■ ■ , pm. Obviously Y c rm. Consider the multiplicative func-
tion f(n) defined by

f(Pl)   = Pi, f(Pi)   "Pi,"   ,f(pm)   = pm, f(pm+l)  = f(pm+2)   =   ■  • •   =   1,
f(p") = 1 for a > 1.

(10) is fulfilled and (9) becomes
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m

L(t) = IT {l - Pr* + p72 + P7l(l - P7l) exp [tí log pv]\.
y=X

Since log/(«) =0 if and only if n c rm, (22) gives
TO

F[y] úF{Ym] =T[(l - p7l + p72) which -»0 as »-» »,
»-i

hence F{r}=0.
Let ¿i, ¿2, k3,.- ■ ■ be a sequence of positive integers some of which may be

infinite and let K be the class of integers not divisible by any of the prime
powers pi1, p22, p3s, ■ ■ ■ (km = » means that there is no restriction at all
with respect to pm). To determine F [ K} let us assume first that the series

(30) ¿ P7*>
r-1

converges. Define a multiplicative function/(n) by

f(pi) = fip?) = • • • = f(p,k'-i) = 1, f(p?) = p? for a 2: k,
(v= 1, 2,3, •■•).

Since

Efl= 22P7lá ¿pr*>
/(P)^l (A„-l) >•=1

converges, the a.d.f. of {log f(n)} is a step function with the transform
CO

L(t) = LI {(1 - P7l)(l + P71 + ■ ■ ■ + P7(k^
+ p7k* exp [it log p,k>] + •••)}•

Since log/(«) =0 if and only if n c K, we have

(31) F{K] = II {(1 - ¿T»)(l + P71 + ■ ■ ■ + P7<*>-»)\ = ñ (1 - P7*>).
y=X >•-1

If (30) diverges let Km be the class of integers similar to K but for the new
sequence of exponents kx, k2, ■ ■ ■ , km, °°, <», • • • ; then K c Km and (31) ap-
plied for the new sequence gives

m

7{k} £F{Km\ = II (1 - P7k>) which -> 0 as m -> » .
i—i

Hence T7{X} =0 and the formula (31) is again valid.
Obviously our last two examples are also particular cases of the elemen-

tary scheme discussed above.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1936] ASYMPTOTIC DISTRIBUTIONS 329

Added in proof, January, 1936. In a recent note On the density of some
sequences of numbers, Journal of the London Mathematical Society, vol. 10
(1935), pp. 120-125, P. Erdös proves without using Fourier analysis two
theorems which in our notation are as follows.

1. If f(n) is a multiplicative function satisfying the conditions

(32) f(n) è 1,
(33) lLW0Zf(P)\\/P converges,

p
(34) f(pi) ?¿ f(p2) if pi, p2 are different primes,

the sequence {fin)} has a continuous asymptotic distribution function.

2. If the multiplicative function f(n) satisfying (32) is such that

(35) T\\iogfip)\\/p diverges,
p

then

(36) F\f(n) èr)"l for any real r j£ 1.

The first theorem of Erdös is obviously a consequence of Theorem 1.
This is not true for the second theorem; I want to show, however, how it can
be derived from Theorem 1 by a simple additional argument involving
moments rather than Fourier transforms.

Let/fc(w) be an auxiliary multiplicative function defined as follows:

Mp?) = f(p?) (p - 1, 2, • • • , k),
fk(p?) = l    (p- A + l, k + 2, ••• ;«è 1).

The sequence {logfk(n)} has an a.d.f. uk(x) and the a.d.f. of the sequence
{/*-1(w)} (contained within 0 </^ 1) is therefore x*(/) =uk(—log /). For s>0
we have

TIKI - P7l)(l + Prl exp [- s log f(p,)} + ■■■)}
(38)

/» 00 pi

=   I     e-'zdoik(x) =   I   t'dXk(t).
J n J n

The product (38) tends to zero as k—><x> on account of (35). But

'dXk(t) =0,  for í > 0,

implies (see [8], pp. 175-176) x*W^l for 0</^l. Hence

lim   J   t'a
k~»oo    J o
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F\f(n) ^ T] -F{/-»(«) ^ r-»} ^ Ff/rK») ^ f1}
= Xkir'1) -* 1 as * -> co

and   (36)   is  proved.  The  last  inequality  for  frequencies  follows   from
/-l(w) úfklin) which is due to (32) and (37).
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