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ON ASYMPTOTIC NORMALITY IN STOCHASTIC APPROXIMATION!
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1. Summary and introduction. A new method, simpler than previous methods
due to Chung (1954) and Sacks (1958), is used to prove Theorem 2.2 below,
which implies in a simple way all known results on asymptotic normality in
various cases of stochastic approximation. Two examples of application are con-
cerned with Venter’s (1967) extension of the RM method and Fabian’s (1967)
modification of the KW process. Previously, although there was no difficulty in
adopting one or the other method, the proofs in various cases had to be done
almost ab initio or skipped leaving a gap (see Venter (1967)).

The new proof is similar to that of Chung except that the basic recurrence
relation is used to obtain the asymptotic characteristic function rather than
limits of all moments. We remark that Lemma 2.1, a simple corollary to Chung’s
lemma is used only to obtain condition (2.2.4) which is weaker than (2.2.3)
if « = 1 and which corresponds to the usual Lindeberg condition. Both con-
ditions (2.2.3) and (2.2.4) are weaker than the corresponding condition (3.4)
in Sacks (1958).

In what follows (Q, 8, P) will be a probability space, relations between and
convergence of random variables, vectors, and matrices will be meant with
probability one unless specified otherwise.

We shall write X, ~ £ if X,, is asymptotically £-distributed and X, ~ ¥,
for two sequences of random vectors, if for any £, X, ~ £ if and only if ¥, ~ £.

The indicator function of a set A will be denoted by x4, the expectation and
conditional expectation by E and Er, respectively. R* is the k-dimensional
Euclidean space the elements of which are considered to be column vectors,
R = R', R®®* is the space of all real k¥ X & matrices. The symbols R, R, R®%,
denote sets of all measurable transformations from (Q, 8) to R, R* R
respectively. The unit matrix in R*®* is denoted by I and || || is the Euclidean
norm. With A, a sequence of numbers, 0(hs), O(hs), 0.(hs), Ou(h,) denote
sequences g» , Gu , gn , @n , 52y, of elements in one of the sets R, R”*, R®* such that
hagn— 0, |k 'G,|| < ffor an f ¢ R and all n, k', — 0 uniformly on a set of
probability one, ||k, '@.|| < K for a K ¢ R and all n. In special cases o(h,) may
be constant on © and considered as a sequence with elements in R, R* or R*.
Similarly in other cases.

For Chung’s lemma, which will be frequently referred to, or used later without
reference, see Fabian ((1967), Lemma 4.2); note that it holds with 8 = 0, too.
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1328 VACLAV FABIAN

2. The result.
2.1. LemMAa. Suppose A > 0, by, b, ¢ R,

(2.1.1) bppr = (1 — An"by + 27 hs .

Then b, — 0 3f and only if n™" D j=1 h; — 0.
Proor. From (2.1.1), n(bpyy — bs) + Ab, = h, and so

Diahi = 2iai(bia — b)) + A2 Fab; = (A — 1) 27ab; + nbasa.

This shows the necessity of n™ ) ;= h; — 0. To show the sufficiency, let
Bn =N 11bj, en = 0 D hj — 0. Then by = (1 — A)Bs + e and it
suffices to show that 8, — 0. But ﬂ,.+1 ==+ DN+ 4+ 1) b

= (1 — A(n + 1)™B, + (n + 1), so that the desired conclusion follows
from Chung’s lemma.

2.2. TarorEM. Suppose k s a positive integer, Fn non-decreasmg sequence of
o-fields, §, C 8; suppose Un , Vo, Tn e R*, T ¢ R*, T, , &, e R"* 3, T, &, P ¢ ¥,
T 4s positive definite, P is orthogonal and P'TP = A diagonal. Suppose T'n , Bt
Voo are F,-measurable, C, o, B e R and

22.1) T, —->T, & — & T, — T or E|T. — T|| » 0,

(2.2.2) EsV.=0, C>|EsV.V. —Z|—0,

and, with of, = Ex{|Vil* = w*}\V;ll’, let either

(2.2.3) limj,wof, = 0 for every r > 0,
or

(2.2.4) a=1, liMpaeo ™ D g oie = 0 for every r > 0.
Suppose that, with A\ = min; A%, 8, = Bifa = 1,84 = 04f a 5= 1,

(2.2.5) 0<a=1 058 B+<2x

and

(2.2.6) Upn = (I — 0T U, + n %, V, + 27T, .

Then the asymptotic distribution of n**U,, is normal with mean (T — (8+/2)1 YT
and covariance matriz PM P’ where

(2'2'7) M(’U) = (P’@z@'P)(‘&J)(A(H) _|_ A(jj) _ B-l—)—l-

Proor. Let 9(m, S) be the normal distribution with mean m and covariance
matrix S, let 9t = ((T — (B+/2)I)7*T, PMP'). As the first step we shall show
that we may, without loss of generality, assume that

(228) T=AP=1I8=8:=0, |[Tn—Al =o0.(1), &=, =1,
T,=U, =0.
As for the first three parts of (8), it suffices to observe that
U. = (n — 1)"P'U,
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again satisfy the assumptions of the theorem, but with I' = A = A — (8,/2)1,
P=1,%&=P%& T = P'T. Next we can assume that (i) T, = A + o0,(1),
&, = ® 4 0,(1). Indeed, suppose the theorem holds under the additional assump-
tion (i). Then for every e > 0 we can, using Egorov theorem, construct a new
process U, which differs from U, only on a set of probability less than e and for
which all assumptions of the theorem together with (i) hold, with =, ®, T, A un-
changed. Then U, ~ 9t and because ¢ was arbitrary, U, ~ 9. Similarly we can as-
sume T, — T uniformly if T, — T and, because of (1), we may assume that
E||T, — T|| — 0. With &, = & + 0,(1), and because (2) implies Eg, | V.| =
0,(1), we can change V, to ®,V, and assume ®, = & = [. °

Note that if U, satisfy (6) with Z, subtracted from the right hand side then
A = U, — U, satisfy Appy = (I — 0 °T,)A, + Z, and
(2.2.9) lAnall £ (1 — 27\ 4+ ou(1)D 1AM + [1Za]].
Setting Z, = 0, U, = 0 gives ((9) and Chung’s lemma) [A.]| — 0. If
Z, = 0 *(Ta — T) then E ||Z,|| = o(n™®) and E ||A,]| — 0. In both cases
U. ~ U, and we may assume U; = 0, T, = T. Setting Z, = n T gives first
|Aa|l = O(1); then Ay = (I — 2 "A)A, + 0 T 4+ n~*(A — T,)A, with the
last term being o(n™*). A coordinatewise application of Chung’s lemma gives
An— A7'T. Thus U, ~ 9 if and only if U, ~ 91(0, M) and we can assume T = 0
and accept the whole assumption (8).

Using (2) and the measurability of I, and U, with respect to F, , we obtain
easily E ||U.|* = O(1); setting then Z, = n *(Tn — A)U. we get E || Z,]| =
o(n™%) and E ||A4|| — 0, and we may assume

(2.2.10) Unpn = (I — 0 A Un + 0V,
Next we choose a sequence 8, — 0 such that (3) or (4) holds with §; substi-

tuted for r. Choosing a 7 > 0 and restricting ¢ to {¢; ||¢]| = 7} we obtain from a
standard relation (see, e.g., Feller (1966), proof of Theorem 1, XV.6)

(2.2.11) E |Bse™ """ — 1 4+ n~¢'2t| = ||t] n "ha
with
“t” n_ah” = E l%n_at,(z - EEFnVnVn/)tl
+ En (V) ([l 62" + xdn *((Va)® 2z [t 8a})
A < [l o(n™) + [ltI° o(n™™) + 07 [l¢]* o7s,
so that k, < o(1) + 705 5, and either h; — 0 or a = 1and w7 Y h;— 0.
Now let us denote B, = I — n A, ¢u(t) = Ee"", ¢a(t) = 1, ¢ua(t) =
Ya(Bat) (1 — 3n™°'2t). Then a rearrangement of terms, (11) and F,-measura-
bility of U, gives
lenr1(t) — Ynaa(t)| = [B{[e" """ — $u(Bat)](1 — 3n""¢'Z1)
+ eit'BnU,,[eitn_a/?V,, -1+ %n--atlzt]}l
= [1 - %n_ t,ztl IS"n(Bnt) - %(Bnt)l + “t” 7"k .
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If |ea(t) — ¥u(8)| = A, ||¢]| then an analogous relation holds for n + 1, with
Apyr = ||Bull Aw + 77 %R, = (1 — n7*\)A, + n "R, for sufficiently large n. Lemma
2.1 or Chung’s lemma imply A, — 0, and this implies ¢,(¢) — ¥,(¢) — O for
every t.

Hence the asymptotic distribution of U, is completely determined by «, A, =.
The proof is completed by observing that U, ~ 9 in the particular case when
Vi, Vs, -+ are independent and 97(0, Z). In this case U, is normal, EU, = 0
and EUniUni = (I — 0 A)EULU,'(I — n™"A) + n°C — M, the conver-
gence following from a coordinatewise application of Chung’s lemma.

3. Examples of application. First we shall state (with slight changes) the
assumptions for the modification of the Robbins-Monro method, proposed by
Venter (1967). In this procedure the goal is to approximate a zero point 6 of a
function A, using estimates of 2’ (6) to achieve the best asymptotic speed. For the
original proof, motivation and comments see Venter (1967). Note that (4) is
much less restrictive than Venter’s analogous condition which requires a knowl-
edge of an interval containing d and not containing 0, and that the slight change
in the definition of A4, simplifies considerations by making Y, conditionally
(%.) independent of d, .

3.1. ASSUMPTION. A is a function defined on R, there is a § € B such that for any
closed finite intervals I € (—«,0),J C (0, + ») we have sup A(I) < 0 and
inf A(J) > 0. The function A has a bounded second derivative in a neighborhood
of 6,d = h'(8) > 0 and there are 4, B ¢ R such that

(3.1.1) |h(z)| < Az — 6] + B.
3.2. TeEOREM. Let Assumption 3.1 hold, let X, , Y., Z, be random variables’
Fn=0(X1,Y1,- ,Yuu,Zy, -+, Zua) (i.e. the smallest o-field with respect to

which the indicated variables are measurable), M, = Es,Y, , N, = E5Z,,
Vn = Yn - Mn,let

(3.2.1) Xn+1 = Xn - dnn_lyn 3

(3.2.2) M. = 3 Xa + ¢a) + WX — ca)l,

No = (26)7A(Xn + ) — h(Xn — €a)]
with
(3.2.3) cn = cn ", <y <3

Let Ap = (n — 1) D75 Z; , and, with v, A denoting maximum and minimum,
respectively,

(3.2.4) dn = (Cy(log (n + 1)) v 4,71 A Cn®

with0 < €1 < 0,0 < a < 3.
Let foraec > 0anda C > 0

' (3.2.5) Bs(Zo — N < Ce™, Es Va2 < C,
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and Es,x{Va: = m} V., = s (X,) with
(3.2.6) sno(2n) = 30, n7 Dt st (2,) — 0

for every sequence x, — 6 and every r > 0.

Then X, — 0, dp, — d " and n* (X, — 6) 3s asymptotically normal (0, ¢” d™%).

Proor. That X, — 6 can be established easily, either as in Venter (1967),
using a modification of Blum’s (1954) argument, or Dvoretzky’s (1956) proof
for the RM method can be applied almost without any change when we note that
assumption X,43 = 7T, + Y, in Dvoretzky’s theorem can be weakened to
|Xn41| = |Tn 4 Ya| (see relation (6) in Derman and Sacks (1959) and the proof
there). The only assumption concerning d, which is needed for this part of proof
is that d, lie in bounds given implicitly by (4).

Setting £, = Z, — N, we get from (3) and (5) that D sy (logf)% Bt < + 0,
¢; are uncorrelated and (e.g. by Theorem 5.2, IV in Doob (1953))
n™ D 71 £ — 0. Thus the limit of 4, is that of n™ D_j—y N;, which by (2) is d.
Hence d, — d .

Assuming for simplicity § = 0, using (2), and expanding % up to the second
derivative, we obtain that M, = m,X, 4+ O(c.’) and m, — d. This makes it
possible to rewrite (1) as

(827) Xon = (1 = 07T X, + 078V, 4 0T,

where Ty = mad, = 1, &, = —d, — —d ™, T, = n'0(c.?) — 0. We may then
apply Theorem 2.2 with U, = X,,k = l,a = 1,8 =1, = 1,% = —d,
P =1,2 = 3’ T = 0. We verify easily the measurability assumption and
(2.2.1). Condition (2.2.2) follows from the definition of V,, from (5) and the
first part of (6). The second part of (6) implies (2.2.4). Hence n'X, is
asymptotically normal with asymptotic mean 0 and variance
1d7%(2 — 1) = §d7%

3.3. Remark. Next we shall show the application to the multidimensional KW
procedure in its modified form proposed by Fabian (1967), (1968); we shall
refer for a moment to the first paper by the symbol I. Suppose the assumptions
of Theorem 1.5.3 hold. Then we can choose ¥ so as to have (3.4.1), (3.4.2) and
X, converges to 6. The rest in (3.4.3) will follow under assumptions analogous
to (3.2.6). Relation (3.4.4) follows from (1.3.1.4) and from the expression for
Q. preceding Remark 1.3.2, if we assume continuity of D, at § and if

(3.3.1) A =H®),m =2((s+ 1)) D2 uiw'D,1(0).

3.4. TuEOREM. Let k be a positive integer, X, , Y, e R, =, A, Pe R, A positive
definite, P orthogonal, P’AP = A diagonal, N = min A“?, let m, 0¢R",
0 < B < 2,

(3.4.1) Xn+1 = Xn - anYn )

Fy = o(X1, Y1, Ys, o, Yuu), My = EgY,, V, = (Y, — M,), a > 0,
c>0,C>0
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(34.2) an = an”’, e = cn’’, v =3(1-8);

(34.3) X,—0, C>|EVaVi —Z[—0, 2> iu0i,—0

for every r > 0, with o} , as in Theorem 2.2; and let for X, tn a nesghborhood of 6
(344) |M, — A(X, — 6) — n | £ o)™ + || X. — 0|l

Then the asymptotic distribution of n**(X, — 0) ¢s normal with mean
—alad — (8/2)I)"'m and covariance matrix PMP’ with

M(ii) — aZC—Z[PIEP](ii)/(aA(zi) + aA(J'J') _ ﬁ)-

Proor. Suppose § = 0. From (4), M, = A.X, + n"m, with A, , m, being
F,.-measurable and uniformly converging to A, m, respectively. Then

(84.5)  Xpu = (I —an'4n) X, — ac”n PV, — an iy,

and Theorem 2.2 may be applied with T' = ad, ® = —ac I, T = —am,
U, = X,, giving the desired result.
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