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ON ASYMPTOTIC NORMALITY OF HILL’S ESTIMATOR FOR
THE EXPONENT OF REGULAR VARIATION

By E. HAEUSLER AND J. L. TEUGELS

University of Munich and Katholieke Universiteit te Leuven

It is shown that Hill’s estimator (1975) for the exponent of regular
variation is asymptotically normal if the number &, of extreme order statistics
used to construct it tends to infinity appropriately with the sample size n. As
our main result, we derive a general condition which can be used to determine
the optimal k, explicitly, provided that some prior knowledge is available on
the underlying distribution function with regularly varying upper tail. This
condition is simplified under appropriate assumptions and then applied to
several examples. .

1. Introduction. Consider a distribution function F with regularly varying
upper tail, i.e. assume without loss of generality, F(0) = 0 and

(1) 1—F(x) =x"L(x), x>0,

where o > 0 and L is slowly varying at infinity. In recent years the problem of
estimating the exponent a (or equivalently «™!) from an independent sample
£, -+, &, distributed according to F has received increasing attention; see, for
example, de Haan and Resnick (1980), Teugels (1981a) and Hall (1982). Since
by (1) only the tail behaviour of F is specified, it is intuitively clear that good
estimators should be based on the extreme part of the sample. One important
estimator of this kind was proposed by Hill (1975). If £,.,, * - -, £n:n denote the
order statistics pertaining to &, - - -, £,, the estimator H{™ for o' is defined by

HM =k Yk, log Ep-is1n — lOg £npen, 1<k<n, n€EN.

Averages of the k + 1 largest observations like H{™ occur in practice for example
in insurance mathematics in connection with the ECOMOR reinsurance policy
(cf. Teugels, 1981b).

Originally Hill obtained H{® as a conditional maximum likelihood estimator
in the case where L is equal to a constant for large x. Assuming only (1) Weissman
(1978) derived H{™ for fixed k as the maximum likelihcod estimator based on the
limiting jeoint distribution of the k largest order statistics. To give another
motivation for H{™ being an appropriate estimator under the general model (1)

observe that
T 1-F() _f‘”l—Foct)gg f e
J; y(l—F(x))dy_ 1 1= F(x) : J, t dt=a1 as x>

by regular variation of 1 — F and dominated convergence. If F is replaced by its
empirical counterpart, i.e. by the empirical distribution function F, based on
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&1, - -+, £n, and if x equals £,_.,, then an easy calculation shows

” 1- Fn(y) = (n)
‘I;n—h:n y(l - Fn(En—k:n)) dy Hk )

This relation between H{" and F, suggests H{™ is a good estimator for ! under
the general model (1), too.

If k is held fixed as n increases, then H{™ converges in law to a gamma
distribution (cf. Section 2). Consequently, to get a consistent estimator one has
to increase k with n. Mason (1982) proved weak consistency of HY ™ for any
sequence k, — o with k, = o(n) as n — « and strong consistency for k. = [n?],
0 < a < 1. Quite recently, Hall and Welsh (1984) showed that H{ is optimal
w.r.t. rates of convergence provided that %, is chosen properly (at least for some
subclass of the class of all distribution functions defined by (1)).

The problem of asymptotic normality has been studied by Hall (1982) for
slowly varying functions which converge to a constant at a polynomial rate.
Under appropriate conditions, Hall established the existence of an optimal
sequence k, such that EY*(H ;;"'" — «7') is asymptotically normal where
k. is optimal in the sense that a, (H i:) — a™!) for any norming constants a, never
converges in distribution to a nondegenerate limit if k, tends to infinity faster
than k,. Other recent approaches to asymptotic normality of H L’n" are developed
by Csorgd and Mason (1985) and Davis and Resnick (1984). They show that
H{” (centered and normalized suitably) is asymptotically normal for any F
satisfying (1) and for all sequences k, — o such that k, = o(n). The centering
depends on F and n and may even be by random quantities. For statistical
purposes, however, it is of importance to center H }z':’ by the exponent o~ which
is aimed to be estimated, i.e. one is interested in results obtained by Hall for his
special case of (1). From the asymptotic behaviour of H{™ for fixed % it follows
immediately that for any F satisfying (1) the sequence k1/2 (HP - a‘l), n €N,
converges in law to a centered normal distribution with variance a2 provided
that &, tends to infinity slowly enough. Hall’s (1982) result shows that for
sequences k, tending to infinity too fast it is impossible in general to normalize
H{ — a~!in such a way that it converges in distribution. The problem addressed
in the present paper is to find conditions for the general model (1) from which
all the sequences k, which make kY/?(H{” — a™"') asymptotically normal can be
computed if some prior knowledge about the slowly varying function L is
available. This complements the probabilistic results of Csorgo and Mason (1985)
and Davis and Resnick (1984) from a statistical point of view. Our basic condition
is derived in Section 3. In Section 4 it is simplified into rather manageable forms
under appropriate assumptions on L, and concrete examples are considered in
Section 5.

For further results on asymptotic normality of Hill’s estimator we refer to
Goldie and Smith (1984) where a slightly differently constructed version is
studied.

2. Preliminary results for fixed k. As a starting point we consider the
asymptotic behaviour of H™ for fixed k. To simplify the notation and the
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calculations, it is convenient to get rid of the logarithms in the definition
of H™ by means of a time scale transformation. So put G(x) = F(e*). Accord-
ing to Lemma 1.8 in Seneta (1976) the generalized inverse function G™!(u) =
inf{x € R:G(x) = u} of G is given by

2) G'1l-—u)=-allogu+log L' (1/u), 0<u<l,

where L’ is slowly varying at infinity. Let U;, U,, - -- be i.i.d. uniform (0, 1)
r.v.’s, and let Uy.,, - -, U,., denote the order statistics pertaining to U, -,
U,. For

HM =fF13h, G711 = Uip) — G1 = Upsrn)

we have H{ =5 H{” for all 1 < k< n and n € N. From now on we shall always
deal with the versions H{, denoting them with H{™ for convenience. From (2)
one obtains the representation

3) HP=a'X,—R,, for 1=sk<n and n€N
with
X, =k Xk, (108 Upsiin — log Usn)

and
Uk+l:n 1
Rnix = nk™ f G.(u) d log L’<-l;)
1]

where G, is the left continuous empirical distribution function based on Uy, - - -,
U.. All our Riemann-Stieltjes integrals are to be understood in the sense of
Apostol (1974), Chapter VII, possibly in the usual improper sense.

As shown in Mason (1982), for each k& and n the variable kX, is distributed as
the sum of k ii.d. exponential r.v.’s with mean 1, i.e. a™*X; has a gamma
distribution with parameters ok and k; especially, the distribution is independent
of n which therefore is suppressed in the notation. The Karamata-Representa-
tion-Theorem, cf., for example, Seneta (1976), Theorem 1.2, implies

(1) 2 (2 f’ﬂ
(4) logL<u)—n<u>+ . ” dt, O0<u<1i,

for some bounded function 7: [1, ®) — R with 5(x) — ¢ € R as x — » and some
continuous function &: {1, ©) — IR with e(x) — 0 as x — . Hence

Uks1:n Ugerin
(6)  Rnp=nk™ f G (u) dn<-1-) — nk™ f Gnlw) e<l> du.
0 u 0 u u

Tchebycheff’s inequality yields
6) Uktin = kn™ + 0p(n™') as n — o,

Using this fact and ¢(x) — 0 as x — «, one obtains by standard arguments that
the second summand on the r.h.s. of (5) converges to zero in probability. The
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first one is equal to

_ Upsrin 1 1
nk 1 L Gn(u) d[ﬂ(;) - n(Uk+l:n):|
Uh+l:n
= —nk™! J; [ﬂ(i) - n<U’:'1‘") ] e

by an integration by parts. Now convergence to zero in probability is easily
deduced from (6) and 5(x) — ¢ as x — . Thus we have shown that R, is
asymptotically negligible and arrive at the following:

THEOREM 1. Assume (1) holds. Then for fixed k EN
HP -5 Y, as n— oo,

where Y, has a gamma distribution with parameters ak and k and where —g
denotes convergence in distribution.

Theorem 1 also follows from the results in Smid and Stam (1975) and in
Weissman (1978); cf. also Hall (1978).

As mentioned in the introduction, our main interest is in the asymptotic
behaviour of H{" if k, tends to infinity with n. A first result following from
Theorem 1 by a standard diagonalization argument is:

COROLLARY 1. If (1) holds, then there exists a sequence of integers k, —
such that for any sequence of integers k, — ® with k, < k, for each n one has
k}./2(H§:;’ —al) 54 (0,a?) asn— x,

3. Main limit theorem. Theorem 1 explains where asymptotic normality
of k2 (HY — a™?), for k, — o slowly enough, comes from, but it yields a mere
existence result only. To get results useful in practice, one has to find conditions
on F from which it is possible to determine explicitly all sequences k, for which
asymptotic normality holds true. Such a condition is presented in this section.
To simplify the formulation we introduce some notation. For each n and %k, and
any real x, write I(n, k., x) = (k./n)(1 + x/k¥?), and for each distribution
function F satisfying (1) and each n, &, and x put

*| _  1=F[F*Q1 - In, ky, x))y]| dy
= pl/2 @ __ pC A
J(F, n, k,, x) = ky J: {y T(n ko, 7) V'

THEOREM 2, Assume (1) holds and k, — © and k, = o(n) as n — .
(i) If J(F, n, k,, x}) = A € R uniformly in x on compact sets as n — o, then
k},/Z(Hfz:) —a )5 (A, a?) as n—o»,

(i1} If a, is a sequence of constants such that J(F, n, k,, x) ~ a, — t% uniformly
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in x on compact sets as n — «, then
a;lk}/z(Hz) —al)—,-1 as n—o o,

where —, denotes convergence in probability.

PrRoOOF. For the sake of notational simplicity, we write k instead of k,.
Starting from representation (3), we have kV2(H{® — a™') = a 'kY2(X, — 1) —
k2R, . where o 'kY%(X, — 1) converges in distribution to .#'(0, a~2) by the
classical central limit theorem. For the remainder term, we write using (4)

kl/ank
k/n 1 UlM-l:n 1
= nk~2 f (Ga(u) — ) dn(—) + nk~ 2 f o Gaw) - w) dn(—)
0 u / u

k/n
kin - Uk+1:n —_
—npe | GelW) —u e<l) du — nk™? f Gul) — u e(l) du
0 u u k/n u u

UMl:n
+ nk™V2 f udlog L’(-l-)
0 u

=L +I1,+1I,+ IV, + V,,

say. Now I,,, ---, IV, converge to zero in probability for each sequence k with
k— o and k = o(n). As an example we consider II, in some detail. An integration
by parts yields

ka+l:n 1 1
= -1/2 -— Y
II, = nk i/ (Gn(u) u) d[n(u) n(Uk+l:n):|
= o) - o) - )
Up+1:n
— nk-12 J; ) [n(i) - "<Uk:-';-1- )] dG,(u)
_ Uk+1:n 1 1
+ nk~1/2 J;/n [n<;;) - n<Uk+l:n):| .

Now by Tchebycheff’s inequality
) Uis1:n = k/n + O,(R"%/n) as n — x;

hence n(n/k) — 3(Uziin) —p 0 since n(x) — ¢ as x — . In view of
nk™/2(G,(kn™') — kn~') = 0,(1), the first summand on the right-hand side of
the above equation converges to zero in probability. The absolute value of the
third one is bounded by

sup{| n(u™?) — n(Urt1:n) | u < max(Bn™, Ups1:n)ink ™2 | Upsr:n — kn7'|,
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which converges to zero in probability because of (7) and 5(x) — ¢ as x — . The
second summand is handled the same way so that II, —, 0. Similar arguments
hold for I,,, III,, and IV, so that

E2R, ;. = V. + 0,(1).
Dealing with V, we employ (2) and a change of variable to get for 0 <a <1

f u d log L’<l) =2 f ud(-G(1 — u))
0 U 24 0

(8) w 4
=2- f [1- FEF(1 - oy 2.
o 1 y

Assume now that the condition in (i) is satisfied. An application of (8) yields
I(n,k,x)
™ 1
nk™/? f udlog L'<;) —> A uniformly in x on compact sets.
0

Combining with (7) one easily derives V, —, A which proves part (i) of the
theorem. If the condition in (ii) is satisfied, then by (8)

I(n,k,x) 1 )
nk™/? f udlog L’<L—‘) ~ a, uniformly in x on compact sets,
0

which together with (7) implies a;* V, —, 1. Since a;'kY%(X — 1) = 0,(1), this
concludes the proof of the theorem. [

If F has a continuous tail, i.e. if it is continuous on (xp, «) for some finite xo,
then it is possible to formulate the conditions of Theorem 1 without explicitly
referring to the generalized inverse function. For this, let z = z(F, n, k,, x) be
any solution of the equation

9) 1 — F(2) = I(n, k,, x).

For x varying in a fixed compact set, 2 is well defined uniformly in x if n is large.
Furthermore, put

. | . 1-F(zy)]|dy

= pl/2 o _ A

J(F’ n’ kn, x) kn I l:y 1 — F(Z)] y d

Since z = F~1(1 — I(n, k., x)) satisfies (9) for n large enough, we obtain from
Theorem 2:

COROLLARY 2. Assume (1) and continuity of F on (xo, ) for some finite xo.
Let k, — o such that k, = o(n). Then the assertions of Theorem 2 remain valid if
J(F, n, k., x) is replaced by J(F, n, k,, x).

The conditions in Theorem 2 and Corollary 2 seem to be clumsy since the
convergence involved is assumed to be uniform in x on compact sets. A more
appealing theorem would emerge if convergence was required for x = 0 only. It
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can be shown by examples, however, that such a result does not hold; some
dependency on additional parameters such as x cannot be avoided. On the other
hand, our condition clearly reflects the influence of the slowly varying function
L. This is most easily seen if J (F, n, kn, x) is rewritten, substituting the tail of F
given by (1). From

. c L(zy)
- bl/2 a=1 — A
J(F, n, k,, x) =k j: y <1 L(z)) dy

it becomes clear that the behaviour of kY2(1 — L(zy)/L(z)) determines the
possible values of k, in the results on asymptotic normality of H ﬁ:).

4. Some special cases. In this section we shall show that the basic con-
ditions of Theorem 2 and Corollary 2 simplify considerably under appropriate
assumptions on the slowly varying function L occurring in (1).

To begin with, observe that in the proof of Theorem 2 uniformity in x of the
asymptotic behaviour of J(F, n, k,, x) was needed only when dealing with V,,. If
L is a normalized slowly varying function, i.e. if the function 7 in its Karamata
representation, L(x) = exp{n(x) + [{e(t)t™ dt} with n and ¢ as in (4), is constant
(in a neighbourhood of infinity at least), then the same is true for the slowly
varying function L’ occurring in (2), i.e. the 5 in the representation (4) is constant
(in a neighbourhood of infinity), too. Then for any sequence k, with k&, — o and
k. = o(n) we obtain V, = J(F, n, k,, 0) + 0,(1) as n — o from (7) and (8).
Consequently, it is not necessary to check uniformity in x in the conditions on J
and J, and we have:

COROLLARY 3. If the slowly varying function L occurring in (1) is normalized,
then the J(F, n, k,, x) in Theo~rem 2 and the J (F, n, k., x) in Corollary 2 can be
replaced by J (F, n, k,, 0) and J (F, n, k,, 0), respectively.

Let us briefly relate this result to some of the results in Csorgd and Mason (1985)
and Davis and Resnick (1984). For this, consider G(x) = F(e*), x € R. Since L
is assumed to be normalized, G belongs to the class &7/, introduced by Csorgd
and Mason, and it satisfies condition (2.6) of Davis and Resnick (in fact, (2.6)
for G is equivalent to L being normalized with possibly discontinuous ¢ in the
Karamata representation). Using the notation

b(t)=G'(1—-1/t) and a(t) =t J;() (1-G(s))ds

from Davis and Resnick (1984) an elementary calculation yields

) -1 dy _kn (1
I [1 - F(F (]- - kn/n)y)] _y_ - n a<kn>,

hence J(F, n, k,, 0) = kY*(a™! — a(n/k,)) for large n. Theorem 1.7 of Cs6rgd and
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Mason (1985) as well as Theorem 4.1 of Davis and Resnick (1984) shows that
k}/z[er';)/a(n/k,,) — 1] > #(0,1) as n— o,

and this, combined with a(n/k,) — 1/a and J(F, n, k,, 0) — A or J(F, n, k,, 0)
— A as n — o, is tantamount to Corollary 3. A sufficient condition for L
being normalized is that F satisfies the following classical condition due to
von Mises: F has a strictly positive derivative F’ on [xo, ) for some x, < % and
xF'(x)/(1 — F(x)) — a as x — o; then obviously for x > x,

1-Fx)=(01 - F(xo))x(‘i‘x"”exp{j;0 i—[a - #%] du}.

Goldie and Smith (1984) consider their version of Hill’s estimator under the
assumption that the slowly varying function L satisfies one of the following
asymptotic relations (cf. Smith, 1982):

SR1 L(xy)/L(x) =1 + O(g(x)) as x — o for each y > 0,

SR2 L(xy)/L(x) = 1 + k(y)g(x) + o(g(x)) as x — o for each y > 0 and some
real-valued function k. ‘

If g is positive and g (x) — 0 as x — » (which will always be assumed henceforth),
then L is slowly varying with a specified remainder term. We shall discuss how
Theorem 2 and Corollary 2 appear under these conditions. Propositions 2.5.1 and
2.5.2 of Goldie and Smith (1984) are crucial for that purpose.

Suppose first that (1) holds and that L fulfills SR1 with g nonincreasing or
g(yx)/g(x) < Cy* for all y = 1, x = x, and some x5, C <  and p <0. Fix k, — «
with k, = o(n). If F is continuous and z = z(F, n, k,, x) is defined by (9), then
applying Proposition 2.5.1 of Goldie and Smith (1984) yields

(10) f yo! Uz) dy = f y e ldy+ 0.(g(z)) as n— o,
1 L(2) 1

where here and henceforth the subscript x is used to indicate that an order
relation holds uniformly in x on compact sets. From (10) one gets J(F, n, kn, x)
= 0,(kY?g(z)) as n — . Therefore, if kY?*g(z) — 0 as n — o uniformly in x
on compact sets, the hypotheses of Corollary 2 hold with A = 0. For the case
that F is possibly discontinuous, we put z = F~'(1 — I(F, n, k,, x)). The
argument leading up to equation (2.2) of Smith (1982) shows that 1 — F(z) =
I(n, k,, x)[1 + 0,(g(2))] and, consequently, for ally = 1

1-F(zy)  1-F(z) _, Llzy) _ — L(2y) o
Tk ) Ik, Le LT O8Iy ey as n

where the O, is independent of y. Again (10) is true and implies J(F, n, k,, x) =
0.(kY?g(z)) as n — o, i.e. kY%g(z) — 0 as n —  uniformly in x on compact sets
suffices for Theorem 2 as well as Corollary 2. Moreover, if g is even regularly
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varying, then it is easy to see that
8(2(F, n, kn, x)) ~ g(2(F, n, ky, 0))

(11)
as n — o uniformly in x on compact sets

so that it suffices to check the case x = 0 only. Summarising we obtain:

COROLLARY 4. Under the foregoing assumptions k¥?g(z) — 0 as n — o
uniformly in x on compact sets implies

k}/z(Hg"“) —a™) 55 #(0,a7%) as n— oo,

If g is regularly varying, then ki/*g(z(F, n, ks, 0)) — 0 as n —. « is already
sufficient.

Let L occurring in (1) now satisfy SR2. Then under some mild additional
restrictions on k& the function g is regularly varying with index p <0, and k(y) =
Kh,(y), y > 0, for some finite K and h, defined by k,(y) = [{ t*! dt; cf. Goldie
and Smith (1984) and references therein. Therefore, from now on we shall assume
that SR2 is satisfied in this form with K # 0. If p = 0, then we also suppose g to
be nonincreasing. Fix k, — o such that k&, = o(n). If F is continuous and z is
defined by (9), then Proposition 2.5.2 of Goldie and Smith (1984) gives

(12) J(F, n, ko, x) ~ —(K/a(a - p))k¥?g(2)

as n — o uniformly in x on compact sets. Thus Corollary 2 is greatly simplified
in the present situation.

To bring Theorem 2 into this framework, consider again z = F~1(1 — I(n, k,,
x)) for possibly discontinuous F. Now the argument leading up to equation (3.1)
of Smith (1982) is appropriate to obtain 1 — F(z) = I(n, k,, x)[1 + 0.(g(2))]
which leads to (12) again (with J replaced by J), and Theorem 2 is simplified in
the same manner as is Corollary 2. Moreover, because g is regularly varying, (11)
is true, and we arrive at:

COROLLARY 5. Under the assumptions described before, k/*g(2(F, n, k,, 0))

— A ERas n— x implies
kP HY — a™') g #(KA/(ale = p)), @) as n— o,
and kg (2(F, n, k,, 0)) — + as n — o implies
g(z(F, n, ky, 0)HH — a™') =, K/(a(a — p)) as n— o,

5. Examples. In this final section, we shall demonstrate the applicability
of the previous results by discussing several examples.

ExAMPLE 1 (Hall, 1982).
(a) 1-Fx)=Cx™[1+0(x*)] as x—>w; C,a 8>0.
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For L(x) = C[1 + O(x™®)] one has for all y > 0 as x —
L(xy)/L(x) = [1 + O((xy)™®))/[1 + O(x™®)] =1 + O(x™*)

so that SR1 is satisfied with the regularly varying function g(x) = x™*. Conse-
quently, Corollary 4 applies, and one has to examine kY2g(z) = kY?z7° for z =
F1(1 —k,/n). Now F(y) = CY*(1 — y)™Y2[1 + O((1 — y)?/*)] as y — 1 implies
z ~ CY*(k,/n)"V* and kY?27F ~ C*/kY%(k,/n)?* as n — o, and this converges
to zero if and only if k, = 0(n?/@**)), Thus we obtain from Corollary 4 for each
k., — o such that k, = o(n?/?8+)

EAHY — a™) 5 #(0,a7?) as n— o
(b) 1-F(x)=Cx*[1+Dx?+0(x?)] as x—w; C,a,8>0, DER.
For L(x) = C[1 + Dx™® + o(x®)] one has for all y > O‘as X — 00
L(xy)/L(x) = [1 + Dy~x~* + o(x™®)][1 — Dx™? + o(x™%)]

Y
=1-8D f tP 1 dt + o(x7F).
1

Thus SR2 is satisfied with K = —8D, p = —f and g(x) = x™*, and Corollary 5
applies. As in part (a) one has kY%g(z) ~ C™#°kY*(k,/n)"* as n — o for z =
F7'(1 — k,/n), whence according to Corollary 5

(i) if k, — o and k, = o(n?/?®*9), then
EHPY — a™) =g (0, a7?);
(i) if k, ~ An%/@6+a) for 0 < A\ < o, then
k2HL) — a7') —o H(—a7 (o + BT BCTHADNEEI 2 o7,
(iii) if D # 0, k, = o(n) and k,,/n?/?%+*) _; oo, then
(n/k,.)ﬁ/“(Hi':‘) - a™) -, —a"(a + B)'BCF/D.

Obviously in case (iii) the sequence a,(H}” — o™") does not converge in distri-
bution for any norming sequence a,. The framework of Example 1 covers i.a.
Pareto distributions, stable distributions and the extreme value distribution

F(x) = exp(—x7).

EXAMPLE 2,
1 — F(x) = Cx=(log x)?, xlarge, C, a >0, B €& R\{0}.
For L(x) = C(log x)® we have for ally > 0 as x —

L(xy)/L(x) = 1 + ﬁf t~! dt/log x + o(1/log x).

Thus SR2 is satisfied with K = 8, p = 0 and g(x) = 1/log x, and Corollary 5
applies. Let z be defined by (9) for x =.0, i.e. k,/n =1 — F(z) = Cz~*(log 2)°.
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Then log z ~ —a~tlog(k,/n) and k%g(z) ~ —akY?/log(k./n) as n — . From
this and Corollary 5 we infer

(i) if k, — o and k, = o((log n)?), then
RPHP = a7 =g #(0, «72);
(i) if k, ~ A(log n)?, 0 < A\ < o, then
EAHD — a7) = (@782, a7?);
(iii) if k, = o(n) and k,/(log n)* — o, then
[log(kn/n) | (HY — ™) —p a8,

EXAMPLE 3.
(a) 1-F(x)=Cx[1+ O((log x)™®)] as x—>o; C,a 8>0.
For L(x) = C[1 + O((log x)~#)] we have for all y >0 as x >
L(xy)/L(x) = 1 + O((log x)7*).

Thus SR1 is satisfied with the slowly varying function g(x) = (log x)~*, and
Corollary 4 applies. Since F~'(y) ~ CV/*(1 — y)™"* as y — 1, we obtain

log z ~ —a'log(k,/n) as n—o for z=F'(1-k,/n),

whence kY/%g (z) —a®kY?/(log(k,/n))? which converges to zero if and only if k, =
o((log n)?). Thus for k, — « with k, = o((log n)?*) Corollary 4 implies

EAHP — a™) —o #(0, a™?) as n— .

Let us construct an example showing that the exponent 28 in our condition on
k., cannot be increased. For this, consider

1—F(x) =x7*[1 + U(x)(og x)™*], x large,

where U(x) = sin(log x). By elementary calculus, it is easy to see that F is strictly
increasing for large x so that 1 — F is the tail of a continuous distribution
function belonging to the class under consideration. For n € N put /, =
[(27a)™ (—log n + 28 log log n)] and k, = [ne?"*»] where [x] denotes the integer
part of x. Then one has

(13) lim inf,_.k,(log n)™% = e and lim sup,_..k.(log n) % = 1.
Define z as in (9). Then an elementary calculation shows

J(F, n, ku, x)
(14)

= kY%(log 2)P[(a(1 + «?)) 'sin(log 2) — (1 + a?)'cos(log 2) + 0.(1)]

whereas log z = o'} log(k,/n)| + 0.(1) = —2x/, + 0,(1) from the definitions of
2, /, and k,,. Substituting into (14) we arrive at

J(F, n, kn, x) = —a?(1 + a?)'kY2(log n)™*[1 + 0.(1)].
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Because of (13) we have k,-(log n’ )% — e 2 as n’ — o for some subsequence
n’ of the positive integers. Consequently, J(F, n’, k., x) » —a’(1 + a?)"le™™
as n’ — o uniformly in x on compact sets, and Corollary 2, applied along the
sequence n’, yields

k,l,/'Z(er::) —a ) 5o AP+ a?)e™ a?) as n’ — .
In the same way, (13) implies the existence of another subsequence n” with
kl/nz(H("") —a ) oo #M(PQ+ ) a?) as n”" >

so that the whole sequence k;?(H{Y — a™'), n € N, does not converge in
distribution. On the other hand, we have k, = O((log n)z“’ ) by (13). This shows
that k. = o((log n)*) is the optimal condition on k&, in the present case.

(b) In contrast to Example 1, within the class
15) 1 - F(x) = Cx~*[1 + D(log x)™® + o((log x)™®)] as x—

where C, a, 8 > 0 and D # 0 the sequences k, ~ A(log n)? need not be optimal.
To demonstrate this, we consider

(16) 1 - F(x) = Cx™[1 + D(log x)™*], 'xlarge, C,a, 8>0, D#0.

For L(x) = C[1 + D(log x)~*] an elementary calculation shows that for ally >0
as x —

L(xy)/L(x) = 1 — 8D log y(log x)™*~" + o((log x)™*")

so that SR2 is satisfied with K = —8D, p = 0 and g (x) = (log x) ™", and Corollary
5 applies again. From log z ~ —a'log(k,/n) for z defined as before, we obtain
kY?g(2) ~ —af* kY?/(log(k,/n))?*!, whence by Corollary 5

(i) if k, — % and k, = o((log n)**?), then
k2(HE) — a7') —o #(0, a7%);
(ii) if k. ~ A(log n)%*2, 0 < \ < 0, then
B2 (HP — a™') g #(=Da’ 1A, a7?);
(iii) if D # 0, k, = o(n) and k,/(log n)**? — o, then
|log(kn/n) |#* (H — a™') —, — Da®7'8.

So we see that within the class (16) the sequences k, ~ A (log n)?**? are optimal.

The difference between the classes (15) and (16) seems to be explained by the
fact that the L occurring in (16) satisfies SR2 with g(x) = (log x)™*~! whereas
the one occurring in (15) in general does not.

Distribution functions satisfying (1) with slowly varying functions converging
to a constant at a logarithmic rate occur in connection with certain transforma-
tions of the standard normal distribution (cf. Smith, 1982).

In our final example, we consider a case for which the results of Section 4 do
not apply, so that one has to rely upon Theorem 2 itself.
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EXAMPLE 4.
(a) 1-F(x)=Cx[1+0(?)] as x—>»; C,a 8>0.

Then F~1(y) = CY*(1 — y)~V*[1 + O(exp(—BCY*(1 — y)"¥*))] as y — 1. Writing
R(x) and S(1 — y) for the remainder terms in 1 — F(x) and F~(y), respectively,
it is easy to see that for any sequence k, — o such that k, = o(n) as n —» =

a7 JE n, ke, x) = k2SI, kay )L + 0:(1)] — U(F, n, ka, 2),

where
UG, 7, by ) = B [ 5 R0 = I, By 2)3) .
1

In the present case, one gets
O.(exp(Va(n/k,)"*[(kn/n)"*log k, — 2B8C"* + 0,(1)]))

as a bound for kY2S(I(n, k,, x)) and U(F, n, k,, x). In view of n/k, — o, this
bound is 0,(1) if (k,/n)"*log k. = 0(1), being equivalent to k, = o(n(log n)~%), or
if (k,/n)"log k, — N € (0, 28C¥%) being equivalent to k, ~ A*n(log n)™=.
Consequently, in these cases we have ky/*(H” — a™') =g #(0, a7?).

(b) The case
1—F(x)=Cx[1+ De? +o0(e?)] as x—>»; C,a,8>0, D#0

can also be treated via (17) by a detailed examination of the asymptotic behaviour
of S(I(n, k,, x)) and U(F, n, k,, x). It turns out that for k,/n(log n)™ — «
or k, ~ An(log n)~ with A > (28)C the sequence a,(H}” — a™") does not con-
verge in distribution for any norming sequence a,. The remaining case k, ~
(28)*Cn(log n)~™ is more complicated. It splits up into several subcases which
can be further investigated.
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