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ABSTRACT. For iid observations X1, ..., Xy from a common distribution F' with regularly varying tail 1 — F'(z) ~
z~*L(z), z — oo, the most popular estimator of a is the Hill estimator. Regular variation of the distribution tail
is equivalent to weak consistency of the Hill estimator in a manner made precise in Mason (1983) but necessary and
sufficient conditions for asymptotic normality of this estimator are still somewhat shrouded in confusion. This is
in part due to the different possibilities for a centering in the asymptotic normality statement. We clarify the roles
played by smoothness conditions such as Von Mises conditions for the asymptotic normality and give a minimal
condition under which a non constant centering can be used.

1. Introduction.
Consider independent, identically distributed random variables {X,,, n > 1} with common distribution F
with a regularly varying tail

(1.1) PX;>z]=2"%L(z), z—o00, a>0

where L is a slowly varying function and « is the index of regular variation. Set ¥ = 1/«a. Such distributions
have been increasingly important as large data sets from telecommunications (file lengths, call holding
times, transmission times, packet interarrival times) and finance (returns, exchange rates) have been found
to exhibit heavy tail characteristics.

The goal is to estimate « or equivalently v and the most popular estimator for this purpose has been the
Hill estimator Hy , defined as follows: For a random sample Xy,..., X, of size n, let

Xy 2 Xy 22 Xy

be the order statistics in decreasing order. Then the Hill estimator Hy , based on k41 upper order statistics
and a sample of size n is

Xo)
Xy

Hkn—kzlo

=1

Concerning asymptotic behavior of this estimator, it is known that Hy , is consistent in the sense that

Hk,n i v
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provided n — oo, k — oo and n/k — oo as was proved by Mason (1983) and in fact Mason proved that in
a certain sense consistency of the Hill estimator is equivalent to regular variation of 1 — F'. Various authors
have considered asymptotic normality of Hill’s estimator and it is known that if 1 — F' satisfies a second
order refinement of (1.1) frequently phrased as a second order regular variation condition then

(1.2) VE(Hyn —v) = N(0,7%)

provided n — oo, k — o0, n/k — oo and an additional restriction on the sequence {k(n)} depending on the
second order condition is satisfied. See for example Hausler and Teugels (1985), Csorgo and Mason (1985),
Davis and Resnick (1984), Goldie and Smith (1987). Geluk de Haan, Resnick and Staricid (1995) have
shown that under a strengthening of (1.1) called the Von Mises conditions, second order regular variation is
equivalent to asymptotic normality of the Hill estimator. The Von Mises condition requires F' have a density
F' near oo which satisfies

zF'(x
(1.3) 1—715(91) —a, (2 — o).
We became curious about why it was necessary to suppose the Von Mises condition held, what role this

condition played in the asymptotic normality of the Hill estimator and if the condition could be weakened.
We also sought to clarify the different conditions sufficient for (1.2) and for the slightly weaker statement

(14) \/E(Hk,n - 7k,n) = N(Oa 72)

for some sequence of constants {vj,n}.

Section 2 gives a sequential condition on the inverse of the distribution tail which is equivalent to asymp-
totic normality of Hy , given in (1.4). Section 3 discusses this sequential condition in more detail and gives
several characterizations of distributions satisfying this condition. Concluding remarks and a summary are
given in Section 4.

2. Asymptotic normality of the Hill estimator.
Our starting point is the following basic random measure result.

Proposition 2.1. Suppose {X,,n > 1} are iid non-negative random variables with common distribution F
whose tall is regularly varying so that (1.1) holds. Let b(t) be the quantile function defined by

b(t) = (ﬁ)h ).

1 n
vn(s) = z Zle/b(n/k)(')
=1

so that kv, (A) is the cardinality of {i < n : X;/b(n/k) € A}. Then if k = k(n) satisfies k — oo and k/n — 0,
we have

Let the tail empirical measure be

(2.1) V(v ((z,00]) — Evp((z,00])) = W(z™%)

in D((0, c0]), where {W(t),t > 0} is a standard Brownian motion.

Note that

Bva((w,00))) = 7(1 = F(b(1)2)) = T(F(b(7)2)).

EII
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Here and throughout we follow the convention that ' = 1 — F. The proof of Proposition 2.1 is based on
the Lindeberg—Feller central limit theorem and does not differ much from the classical proof in Billingsley
(1968). See de Haan and Resnick (1993), Resnick and Staricd (1995), Mason (1988). The result is also used
in Geluk de Haan, Resnick and Staricd (1995).
We now modify (2.1) by writing

(2.2) V(v (™7, c]) —

in D[0, c0) and letting

(so that V,(z) — z and V7~ (z) — z locally uniformly as n — co) we have
(2.3) VE (ra((V ()77, 00l = ) = W(y)

in D[0, c0). Applying Vervaat’s lemma (Vervaat, 1972) we get by inversion
(2.4) Vi ((va(V ()77 00]) ™ —y) = —W(y)

in D[0, c0). Evaluating the left side of (2.4) yields
n _
(2.5) VE (R F(X(ap) - 2) = —W(2)

in D[0, c0) and in fact the convergence in (2.1) and (2.5) are joint in D(0, co] x D[0, c0). Observe that (2.5)
implies that
F(X([kx])) ==z

in D[0, c0) and regular variation yields

X([ka]) .
b(n/k)

Note that (2.1) and (2.6) hold jointly. Set z = 1 in (2.6) and apply the composition map

(2(1),y(t)) — z(ty(t))

(2.6)

to get

n

vk (%Z €X i/ X oy (5 00] = % (X(k)r)) = W(z™®)

i=1
o]
.CL‘I—>/I
1

and after a truncation argument as in Resnick and Stéarica (1995)) we get

(2.7) \/E<Hk’”_/xi) —) / W ()2,

3

and now apply the map

?rlﬁ
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The convergence in (2.7) is a consequence of Proposition 2.1 and supposes only that F is regularly

ds

varying. We now attempt to replace this random centering f;;zk) %F(s)? with a deterministic centering.

n

Since X1)/b(n/k) L1 we hope we can use fbc;;/k) % F(s)% in place of the random centering. In order to
replace the random centering by this deterministic one we thus need

*® n_, .ds « _ ds
2.8 vk —F(s)— — F(s)— v,
(2.8) (/X(k)kms /b(n/k)<>5):>

for some non-degenerate random variable V. If the Von Mises condition (1.3) holds, it is not hard to verify
that (2.8) indeed holds since

ZF(s)= ~X2
X(k) k S « X(k) k

b(n/k) b(n /)
x/E/ m st LY o

VB (% p(Xqy) - ZPb(n/0))
=4 (rove )
(2.9) == W)

from (2.5).
We summarize this discussion so far (Davis and Resnick, 1988; Mason, 1988).

Proposition 2.2. If F' has a regularly varying tail as in (1.1) and the Von Mises condition (1.3) holds, we

have
_ *®  n_ .ds 1
Fs——/ —F(s)— | = ——W(1),
O [ <)5) Lwa)

(2.10) Vi (

S
= 8
>~ 3
Q,
Cn

and

VE (H;m - /OO EF(s)d—s) = [Cwesa® - Lway

(n/k) k S S «
and thus Hy, , is asymptotically normal with asymptotic mean fbcz;/k) %F(s)s‘lds and variance v? = 1/a?.

Proof. The result follows because (2.9) holds jointly with (2.7). The variance of the limit can be calculated
easily from the covariance function of Brownian motion. O

Remark. In the presence of the regular variation condition (1.1) and the Von Mises condition (1.3), the
function of a second order regular variation condition is to allow the replacement of fbc?;/k) %F(S)s_lds by

the centering 7. See for example Geluk, de Haan, Resnick and Starica(1995).
We now seek minimal conditions for (2.8) which replace the Von Mises condition. For this purpose set

1

vw=s0= (=)

and rewrite (2.8) as

nfk
(2.11) \/E/ Es_ldlog U(s) = V.
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From (2.5) and the delta method we get

or equivalently

Observe that

n Wk
U™ (X =——=+1
Kl =% <\/E i )
and thus (2.11) can be rewritten as
2(1+Wr/VE)
(2.12) \/E/k %S_ldlog U(s) = —V.
nflk

Define the nondecreasing, right continuous function

—s 1dlogUl(s)

B (14e/VE)
(z) " %

and then at continuity points of the limit
Plxa(Wi) < 2] = P[Wy < x;7 (2)] — P[-V < 2]

and since Wy = W(1) we get there must exist a nondecreasing function yoo(z) with more than one point of
increase such that that

(2.13) X () = Xool(z) and  xn(2) 2 Yeo (2)

and with N(z) denoting the standard normal distribution function, we have
(2.14) N(xS(x) = P[-V <2] and —V 2 yoo(W(1)).
Since for z > 0

log U(nk=1(1+ :c/\/];)) —log U(nk~1)

Xoo(2) <liminf

n—eo (1+2/VE)1/VE

. log U(nk='(1 + z/Vk)) —log U(nk™1)
< fimeup 1/Vk
oo (%)

with similar inequalities holding for z < 0, we have as a consequence of 1+ zk~'/? ~ 1 that (2.13) is
equivalent to

. logU(nk=(1 4 2/Vk)) — log U(nk~1)
(2.15) Jim. 1k

= Xoo ().

We summarize.
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Proposition 2.3. For a sequence k satisfying k — oo and k/n — 0 we have (2.8) holding with a non-
degenerate limit random variable V' iff there exists a nondecreasing function Y, with more than one point
of increase such that

log U(nk=Y(1 + 1/\/%)) —logU(nk=1) .

(2.15) lim. vk = Xoo(®)
weakly, in which case
(2.14) NOG(@) = PV <a] and —V &y (W)
and
o o dr
(2.16) Vi (H;m - /(n/k) F ) —) / W (™) — = xeo(W(1)).

Furthermore, there exist constants v , and a normal random variable N such that
(2.17) VE(Hg o — 5n) = N

iff (2.8) and hence (2.15) hold in which case

(2.18) Vk (/:/k) %F( )ﬁ - w,n) e,

for some ¢ € R and

«E(Hk,n— /:/k)%ms)‘i—s) = [ W T - e +e

Proof. Given (2.17), write

Vi(Hen —yom) =V (Hom— [ °F vk "p)® o [ stﬁ)
(i = 720) ( oo FFOT )+ (/ka OF = [ TS

+x/1€</:°/k)%F< )ﬁ—m)

where

and

nk~ 1(1+:L'/\/_)
Pn(2) = xn(2) 4 6, = \/E/ k s 'dlogU(s) + 6.
nfk
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The function 1, (-) is nondecreasing. We know that first of all
(2.19) On + n(Win)) = N,
in R and secondly that
(2.20) (©n, Wi(n)) = (N1, N2)

in R? where (N1, N3) is a normal random vector. By the selection theorem, v, has weak subsequential limits.
If two subsequential limits were different, (2.19) and (2.20) would be contradicted. Thus 1, — te. The
function oo (2) must be finite for all z; otherwise, N would not be R-valued. Also 1 must be continuous
since otherwise N1 + 9o (N2) 4 N would not have a continuous distribution. Thus 0 is in the continuity set
of ¥, and

and therefore
w

Yn(l) - YOO(:E) = 1/’00(33) - 1/)00(0)' O

The next section contains a more detailed discussion of (2.15). Here we note two elementary facts. First,
observe that if the Von Mises condition (1.3) holds then

. z2U'(x)

and so (2.15) becomes

log U(nk='(1 + z/Vk)) —log U(nk=") \/E/”k_l(l‘l'x/ﬁ) sU'(s) ds

1/Vk Ik U(s) s
nk_1(1+1:/\/z)
~E / ds
nflk s
=Vklog(1 + z/Vk) ~ 'NE%
=vz

and so (2.16) yields a limit of floo W(a:_o‘)d?“7 — yW(1). We will see in Section 3 that under very mild
restrictions on {k(n)}, the limit in (2.15) has to be x«(z) = yz. Second, we note that in inverted form,
(2.15) seems to be a kind of local second order condition:

(2.21) VE(1= 3P0+ 220 x50

3. Analytic condition.

We now explore in more depth the significance of the condition (2.15). To make progress in analyzing
(2.15) it is necessary to impose a mild restriction on the sequence k(n) and in this section we suppose the
sequence k(n) is related to a self neglecting (SN) function. An eventually positive function a(t) is called self
neglecting (written a(-) € SN) if

a(t + za(t))

lim =2 =
me  a(t) ’
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locally uniformly in z € R. A convenient sufficient condition for a function a(-) to be SN is that the derivative
a'(+) exist and lim;_, a’(t) = 0. See for instance Bingham, Goldie and Teugels, (1987); Geluk and de Haan
(1987), Section I.4. Throughout, we will also assume that

A(t) = /Ot a(l—s)ds

is finite for all ¢.

We now describe the way the function k() needs to be related to a self neglecting function. Since n/k — oo,
we set (n) = n/k and suppose that n(-) is nondecreasing and there is a SN function a(-) such that a(t) — 0
and

(3.1) 7 (s) = s/a*(log s).

This is not very restrictive. For instance, if k(n) = n?, for some 0 < 6 < 1, then = (s) = /(=% and we
find 62
a(u) = exp{— T Bu}

which is SN since a'(u) — 0 as v — co. More generally, if k(-) is regularly varying with some index é € [0, 1)
(written k(-) € RV;) then n(-) € RV1_s and n~ € RV (1_s) and thus

ao log S RV_@/(z(l_g)).
Note a(logs) — 0 and

a(t + za(t)) . a(logetteal®))

lim ——————== =
P a(t) % a(loget)
za(logs)
— im a(log se )
s—00 a(log s)
=1,

locally uniformly by the regular variation of a(-).
We now suppose the limit in (2.15) is continuous so that convergence in (2.15) holds locally uniformly.
Suppose (3.1) holds and set n/k(n) = n(n) and

PR TR e
=n(n) + L2

n/n(n)
=n(n) (1 + 33\/77(71)/71) .
Define the function
V = logolU oexp

and the local uniformity in (2.15) implies

V(logn(n) + +/n(n)/nz) — V(logn(n))
n(n)/n

— Xoo(Z).
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We suppose we may switch from the discrete variable n to the continuous variable ¢ and set s = logn(¢).
(This transition is non-trivial and we give more detail at the end of the section.) jFrom (3.1) we have

a(s) = v/n(t)/t

and hence (2.15) becomes

52 Vo=V

locally uniformly in z. Section 3 is devoted to studying the limit relation (3.2). This relation appears in a
study of Tauberian theorems by Bingham (1981), Bingham and Goldie (1983, 1988).
We first identify the limit in (3.2).

Proposition 3.1. Suppose a(-) € SN and that A(t) = fot 1/a(s)ds < oo for allt and that (3.2) holds for V
a nondecreasing function. Then for some ¢ > 0 we have

(3.3) Xoo(Z) = cx.

In addition, if a(t) — 0, V =logoU oexp and U € RV,, v >0, then ¢ = 7.

Proof. As in de Haan (1974) or Bingham and Goldie (1983) or Bingham, Goldie and Teugels (1987, page
126) A(t) = fot ﬁds has the following properties:

(1) A(t) — oo as t — oo. This is true for any SN function a(-) since a(-) € SN implies a(t)/t — 0.
(2) A has the variational property

(3.4) tlgg) At + za(t)) — A(t) = z,
locally uniformly, or equivalently by inversion

A= (s+y) = A= (s)

3.5 li =
( ) sl»rgo ao A‘_(s) Y
locally uniformly. We can also write (3.5) as
A~ (logty) — A= (logt
(3.5 lim (logy) (log?) = logy,
t—00 ao A= (logt)

so that A< olog is in the function class IT (Geluk and de Haan, 1987) with auxiliary function
g:=ao A" olog
and hence g € RVy. Properties (3.4), (3.5) and (3.5') follow from the fact that a(-) € SN since

t+za(t)
At + va(t)) — A(t) = /t %ds

e,
iAaa+mmﬂ

—r

from the definition of a self neglecting function.
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Now consider the function

H(z)=VoA ()
and we claim that (3.2) implies that H satisfies

(3.6) lim M

e ao A—(1) = Xeo(2):

To check we write

V(AT ([t +2)) - V(AT (1))

lim ——————~ = lim
t—o0 ao A= (1)) t—o00 ao A (1)
o VAT( 4 2) = A(0) 4 47 (0) = V(A= (1)
t—o0 ao A= (1)
and applying (3.5) this is
V(@ A= (e + )+ A1) ~ V(A~()
t—o0 ao A= (1)

where €; — 0 locally uniformly. Hence changing variables the limit is the same as

lim V(s + za(s)) — V(s)

5—00 a(s) = Xoo(2)-

This proves (3.6).
We now modify (3.6) by the change of variables ¢ = logs, # = logy and setting h = H o log and
g =ao A olog we get (3.6) in the form

h(sy) — h(s)

(3.7) lim o0s) = Xoo(logy)

§— 00

and it is well known (Geluk and de Haan, 1987) that the limit function must be of the form

for some p € R. Since g € RVp, we must have p = 0 and xoo(2) = cz. This proves (3.3).
Now suppose a(t) — 0, U € RV,, v > 0 and V = logoU o exp. We write (3.6) as

H(logty) — H(logt)
ao A+ olog(t)

(3.8) —clogy

so that h = H olog is in the function class IT with auxiliary function ca o A~ olog. This means (Geluk and
de Haan, 1987; Bingham and Goldie, 1982)) that there exists

p(t) ~ cao A olog(t) € RV
and a constant ¢; such that

(3.9) h(t) = H(logt) = p(t) + /lt p(s—s)ds + 1.
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Since H o A =V we have from (3.9)

exp{AE))
V() =plexn (4@ + [ 25 45 4 e,

S

e dw
=resp{A@Y + [ lexpl () T+

(3.10) =Vi(z) + Va(x),
where V] = poexpoA. Note

Vi(z) =p(exp{A(z)})/a(z)

~cao A7 ologoexpoA(z)/a(z) ~ ¢,
that is,
(3.11) Vi (z) — .
For ¢ = 1, 2 define U; by
V; =logolU; oexp.
Since U € RV,
U t.z

(3.12) % =exp{V(logtz) — V(logt)} — 2", x>0

as t — oo. Since Vj(z) — ¢ we have Uy € RV, since Uj satisfies the Von Mises condition for membership in
RV,. Since U = U; - Uy we have

U(te) Uy(tx) Us(tx) . Uy(tz)
0~ ) B
=z exp{Vi(logtz) — Vi(logt)}
(3.13) =z° eXp{p(eA(m)) - p(eA(t))}.

Now

p(e®)) ~ca o A~ ologoexpoA(te)
=ca(tz) — 0

for & > 0 and hence (3.13) leads to the conclusion

(3.14)

Comparing (3.14) with (3.12) yields e = . O

We now offer the following characterizations of (3.2).
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Theorem 3.2. Suppose V is nondecreasing, a(-) € SN, a(t) — 0, and V = logoU o exp with U € RV,,
v > 0. Suppose A(t) = fot 1/a(s)ds is finite for all t. The following are equivalent.
(i) For any z € R,

(3.15) lim

(ii) V has the representation
(3.16) V=HoA
where h = H olog € Il with auxiliary function
(3.17) yao A” olog.

(iii) V satisfies

as) i VO eXp{_A(t)}af(i)V(s) A6ty

(iv) V has the representation
(3.19) V=W+W
where V, is differentiable with derivative V, and
(3.20) V;(s) — v, and Vi(z) ~ ya(z).
Equivalently, U has the product representation
(3.21) U = exp{y(z)a(log z)}Ua(x),

where U, is differentiable with derivative U} which satisfies the Von Mises condition

zUy(z)
3.22 —
(3.22) ACE
and y(z) — 7.
(v) V has the representation
(3.23) V=Vst Vs

where V, Is differentiable with derivative V; and V,(z) — v and Va(z) = o(a(z)). Equivalently, U
has the product representation

U = exp{e(z)a(logz)}U,

where Uy is differentiable with derivative U} satisfying the Von Mises condition (3.22) and e(z) — 0.
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Proof. The equivalence of (i) and (ii) is covered in Proposition 3.1 and in Bingham and Goldie (1988). Also
from Proposition 3.1 we have h = Holog = V o A~ olog € Il with auxiliary function ya o A~ olog and this
is equivalent to

_h(t) =t [ h(u)du
1= lim -
t—co  yao A~ olog(t)

VoA~ olog(t)—t~! flt Vo A~ olog(u)du

= lim

t—o0 ya o A= olog(t)
. V(s) —exp{—A(s)} fleXp{A(s)} Vo A< log(u)du
= m, ~a(s)
V) (A fy V() el A()
~ % ~a(s) '

This shows the equivalence of (i), (ii), (iii).
The proof that (3.19) follows from (3.15) was given as part of Proposition 3.1. To see that (3.19) implies
(3.15), note that V; satisfies (3.15) by the argument given after (2.16) and V; satisfies

lim Vi(t + za(t)) — Vi(t) — lim Vi(t + za(t)) a(t + za(t)) 3 Va(t)
t—00 a(t) t—oo a(t + za(t)) a(t) a(t)
=yl —v=0.

Condition (v) is discussed in Bingham and Goldie (1988). O

The results of Theorem 3.2 can be re-expressed in terms of V~. Suppose V = logoUoexp and U = (1/(1—
F))~ € RV,, where 1 — F is a distribution tail. Then results in terms of V*~ will give us characterizations
in terms of 1 — F. Begin by observing that V satisfies (3.15) iff V'~ satisfies

(t+zaoV=(1)-V—(t) — v e =ax,
aoV=(t)

locally uniformly in 2 as t — oco. This is the same type of limit relation as (3.15) with V= in place of V and
a o V* in place of a(-). To make the parallel exact, we must check that a(-) € SN impliesa o V= (-) € SN.
This is readily verified: We write

- - a (V= (t) + a(V—(t)) (LkeaoV () -V ()
limaoV (t+zaoV (t)):hm ( ( V(1) ))

t—o0 ao V’_(t) t—o0 ao V‘_(t)

and because (3.29) holds locally uniformly and because (a(s + ya(s)) ~ a(s), s — oo, locally uniformly in y,
we get the above limit the same as

= slggo a(s + v tza(s))/a(s) = 1

locally uniformly, showing that ao V= € SN.
We may now apply Theorem 3.2 to V= and the self neglecting function @ o V< yielding conditions in
terms of 1 — F'. We do not bother reformulating all parts of Theorem 3.2 in terms of V=~ or F.
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Corollary 3.3. Suppose the conditions of Theorem 3.2 hold and in addition suppose F' is a distribution
function satisfying 1 — F(z) ~ 2=“L(z), * — oo with o =71 > 0. Set

1 —
V=l U U=|——=
ogol o exp, <1—F>
so that U € RV,,. Suppose further that a(-) € SN and lim;_., a(t) = 0. The following are equivalent.
(i) V= satisfies
Vot +zao V(1) — V(¥)
aoV<—(t)

— az,

locally uniformly in x € R ast — oo.
(ii) F satisfies
1— F(z) = eV {os) (] _ Fy(z))

where 1 — F5 is a Von Mises function and F> has a density Fj satisfying

lim —2F2(@)
c—oo 1 — Fy(x)

:O[’

and a(z) — a.
(iii) F satisfies
1— F(I‘) — e—e(x)ath(logx)(l _ F4(I‘))

where 1 — Fy is a Von Mises function and Fy has a density Fj satisfying

/
lim M —a
r—oco | — F4(éL‘)

and e(z) — 0.
Proof. Tf (i) holds then we apply Theorem 3.2 (iv) to conclude
Vo=V 4V
where V5~ is differentiable with derivative satisfying
(3.30) ;7)) (z) —a, z— o0

and
Vit (z) ~aao V™ (z).

Define Uy~ and 1 — Fy by
1

1—F

V,~ =logolU; oexp and Us.

Then

1— F(z) ~exp{V;" (logz) + V," (logz)}
=exp{V;~ (log 2)}(1 — F(z))
:6—a(z‘)ao‘«"—(logz‘)(1 _ FQ(I))
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We note that (3.30) is equivalent to

(Zm) @ e

oy B
i T O AR |

1— Fz(S)

which shows that 1 — Fy satisfies the Von Mises conditions.
The rest is similar. O

We close this section by discussing what is involved in justifying a transition from the sequential limit
relation (2.15) to the limit relation taken on a continuous variable in (3.2). (Obviously (3.2) implies (2.15).)
We start with the relation (see just prior to (3.2))

(3.31) V(logn(n) + zv/n(n)/n) — V(logn(n))
n(n)/n
as n — oo where the limit y., is assumed continuous, and the convergence is therefore locally uniform. We

investigate what conditions yield (3.2). Recall V =logoU oexp, U € RV, and U is nondecreasing.
Note that if

- Xoo('r)a

logn(n + 1) — logn(n)
n(n)/n

as n — oo, then (3.31) implies (3.2). The reason is that for any ¢

V(logn(t) +zy/n(t)/t) — V(logn(t))

(3.32)

—0and n(n+ 1) ~ n(n)

n(t)/t
V(logn([t]) + =+/1t]/ ([t + 1)+/n([t]) /11]) — V(logn([])) V(log n([t]) — V(logn([t] + 1))
- V(i) it/ n([t] n([t])
V(logn([t] + 1)) — V(logn([t]))

~ Xoo(Z) —

?

n([t)/ 1]

where we have used (3.32). Now the second term on the right without the minus sign and replacing [¢] by n
becomes

V(loga(n) + /() (USRI )  (log(n)

n(n)/n
V(logn(n) + e(n)/n(n)/n) — V(logn(n))
n(n)/n

— Xoo(O) =0

where €(n) — 0. A similar upper bound can be constructed and so we see that (3.32) is a sufficient condition
for (3.31) to imply (3.2).
What conditions guarantee (3.32)? Tt is enough that n(-) be differentiable and

(3.33) lim YO

= (1)
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We claim that (3.33) implies

(3.34) lim 1+ 6)

=1
n—o0 77(”) !

locally uniformly in 6. Note that (3.34) certainly implies the second asymptotic relation in (3.32) and for
the first we have for some |0,,| < 1 that

logn(n + 1) —logn(n) _n'(n+6,)/n(n +65)
n(n)/n n(n)/n
_ (4020 (n + 6,)
(n(n + 6,))/*

— 0

from (3.34) and (3.33). So the proof that (3.33) implies (3.32) will be complete if we verify that (3.33)
implies (3.34).
Since

n+6
lim M = lim exp{ (log n)’(v)dv},

we have (3.34) following from (logn)'(v) — 0 as v — co. But

n'(t)

n(t)

(logn)'(t) =

and from (3.33)
n') [t

= (1) 00 ~

so it is enough to show ¢/n(t) — co. However

lim — = Jim )
t— 00 n(t) §—00 s
2(]
= tim o008y 1
§— 00 S u—0o0 @ (u)

since a(u) — 0.

So we conclude that if (3.33) holds, we may make the transition from the sequential limit (2.15) to the
continuous limit (3.2).

It is possible to express (3.33) in terms of the SN function a(-). We have (3.33) equivalent to

d 1 _ () =
0= dt ( 77(#)) B 773/2(t2) 0

as t — oco. Hence the derivative of the inverse function of 1/4/7(¢?) tends to —oo; that is,

%\/77‘_(1/52) — —oc0 (s]0),
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and changing variables t = s™1 — oo we get

22

pn n—(t?) — oo (t — o0).

Using the definition of a(-)
N~ (s) = s/a’(log s)
we find that (3.33) is equivalent to

P £ _d ¢
dt\[ a2(logt?)  dt \a(2logt)
_p (a(?logt) —ta’(?logt)2/t)

a?(2logt)
12 2a’(2logt)
=l -] =
a(2logt) a(2logt)

So a sufficient condition for (3.33) is that the SN function a(-) satisfy a’ — 0, @ — 0 and

. a(t) 1
lim su < -.
t—»oop Cl(t) 2

This would also be sufficient for the transition from the sequential condition (2.15) to the continuous relation
(3.2).

4. Concluding remarks and summary. Mason (1982) showed that consistency of the Hill estimator is
equivalent to regular variation of the underlying distribution tail. Asymptotic normality of the Hill estimator
requires more than the assumption of a regularly varying tail. Regular variation only implies asymptotic
normality of H} , with a random centering. In order to have asymptotic normality with a non-random and
non-constant asymptotic mean, the Von Mises condition for the distribution tail is stronger than necessary
and Corollary 3.3 or Theorem 3.2 give the minimal conditions on the distribution. In order to be able to
replace the non-constant asymptotic mean by a constant centering, a somewhat stronger assumption like
second order regular variation (Geluk de Haan, Resnick and Starica, 1995) is necessary.
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