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1. Introduction.

The proBlem of estimation of the parameters of the growth curve model
under Behrens-Fisher situation has been discussed in Chakravorti [3]. Here
we have considered the most general situation by violating the assumption of
normality of the underlying parent distribution.

Let us consider the observation vector gét>(lxq):(¥ét),§ét)), the o-th
(t)

o 1s Ixp

observation in t-th population (o=1,...,n, , t=1,...,m), where Y

t
vector and X(t)

X is 1xs, s=q-p.z.0. Then considering growth curve model as

MANOCOVA model (Rao [10]) we have

(t)y _ (t) (t) (t)
(1.1) Y, =nm +X,8+ €y

~

where n(t)(le), B(sxp) are the parameters involved in the model, gét), the
random error component, distributed with continuous distribution function

(t) (t) . . A (t)
Fp(ga ) ga (1xs), the concomitant vector variable distributed as Fs(ga ).
Our object, here, is to study the asymptotic properties of the maximum like-

lihood estimates (m.l.e.) of the parameters, if they exist. The asymptotic
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efficiencies of the estimates have been compared with those of the m.l.e.'s
obtained under the normality assumptions.

Inagaki [6] discussed these properties for independent not necessarily
identically distributed (i;n.i.d.) random variables with parameters 8(kx1)
in the line of Huber [4]. In the model (1.1), we consider observation vectors
Xét) as i.i.d. with respect to 0L=l,...,nt and i.n.i.d. with respect to
t=1,2,...,m. Then in line of Inagaki we have established the consistency and
asymﬁtotic normality of the estimates of the parameters of the model (1.1)
under less restrictive assumptions (that is, without the assumption (V) of

Inagaki [6]).

2. Notations and assumptions

Let us define 0, the parameter matrix of order (mt+s)xp, where
1 1] ]
2.1) o' = P, @Y

The likelihood function is given by

nt
AT AR CINOP

1 o=l o

=

(2.2) L

[}
§ =

t

General notations

(%,A,9): Probability space,

f?: a parameter space which is a subset of the k(=(mts)p) dimensional Euclidean
space RN such that for any M>0,@H]{”Q”§_M} is closed,

%" @ = 9105 £x (D@50 /09, 4 ) = a10g £(x{O D 5Oy 2,

(t=1,...,m, o=1,.. .,nt) are functions in ¥ x

the maximum norm of the matrix,

Qn: maximum likelihood estimate of 0 based on n observations,
T : any other estimator for 0,

~n



&KY), E(Y), Cov(Y), the distribution, mean and variance-covariance matrix
under probability measure P respectively.

SﬁY;P): distribution of Y under probability measure P which is specified.
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We shall make the following assumptions, similar to those of Inagaki [6].

o

Assumptions ‘
(i) ¢ét)(n(t)) and ¢§t)(§) are Rf-measurable, Where)g is the o-field

of Berel-subsets of 2 and separable when considered as a process of 0.

(11)
?ét) (Tl(t)) i\(t) ('J(t)
(2.3) B - 1P = = 9
for any fixed QOEQ.
{ 3
o L ®)
(2.4) 1= ™) = A(8) # 0 for 840,
m
RIEARE ()
(t=1 )

where n and n_ are large so that r, = nt/n finite and bounded away from 0

and 1.

(iii) There are two positive constants A, and H >0 and positive functions

b(t)(9)>0, t=1l,...,m such that

(2.5) E[Sup{¢§t)/b(t)<e>} < o,
uply

~

(2.6) Tin Tim {Max P (8)/ X F<a
: o Qe t n



(2.7) ' im Lm X | >, >0
e gl "
(2.8) E{ Iﬁa {u¢ét) -8 <1
of| >~
(2.9) E{ 1lim [ﬂgét)-g(t)ﬂlb(t)(e)} <H_,
o]

these last two convergences being uniform for t=1,...,m, a=l,...,nt.

(iV) For all nt and n, E"QO(Lt)(Q(t)) - Z,\<t) (D(t))uz’ E"(Bét) (g) - A(t)('@)HZ

exist and
nt
ﬁ%' Z Enfét)(Q(t))"é(t)(g(t))"2+0 as n e
t o=1 .
o ) EIIng(@) N @2 > 0 as .
ta
(v) Let Uét) =  Su "¢ét)(~) ?ét)(9>"’ t=1,...,m. Then for some

lz-6l<¢ "~

constants H., H, and d ;d:'and for d < d
1 2 o — 0

d, v<u§t)) <H.d

(t) _
E(Ua ) <H 9

1

RRTISIUNS L

) (t) tdg, (0 =, (t) t (t)

i) I () =-E| ) —F=v—|; ") =—L>1(n'Y)
oy~ [ =1 ag(t) ~ o, ~

(t)

0 ® _ L®
Zn(§)=—E[ZZ-‘§§—r—]; LB = ——~>T(®

Za¢ét)'(g(t))
T = ~E H
W®e T Tl o

~

‘ niformly in the neighbourhood of QO. Let E(Qo) be the information matrix
L (m)
no

corresponding to the parameters 7 se e

o ’Bo and it is finite and non-singular.



s (t) .. (t) (") '
It may be noted that derivatives of ¢a M) w.r.t. n for t#t' are null
matrices so that submatrices in the information matrix corresponding to n(t),
(t") .
n are all null matrices.

(vii) Since the derivatives of the log likelihood function w.r.t. n(t)

and B involve the random vector §(t)

o implicitly, in general, we consider all

the expectations as unconditional taking into consideration the following
facts:
t
E(gé )) = 0, a=l,...,nt, t=1,...,m
1
E(gét) gét)) = gt, finite and positive definite.

3. Consistency and asymptotic normality of the maximum likelihood estimates

Under the set up in Sec. 2 we consider the estimating function EH(Q) as

follows. Let

n
(t) 1 o), (o)
(3-1) A (n ) = ¢ (n )’ t=1,---9m
e /i uzl ~a
1 n nt (t)
(3.2) A (B) = = ) B
"o~ v tZl azl ~

Then the estimating function gn(g) is given by

- 1 — 1 1]
(3.3) gn(g) - (é& :'-°sén aén)
1 m
~r o) ~(m)' 2, . 1 .
Let Qn = (n sesesN »B8') be the maximum likelihood estimates of
) 1
g' = (n(l) ,...,n(m) ,B'). Then we must have
(3.4 P{lim [£ (8 )] = 0} = 1
n=>w

LEMMA 3.1. Under the assumptions (i), (ii), (iv), (vi) and (vii),




L )y

@ [t G TR
1
e o €

®) [g, (8 )]~ N@Q,I() in law.
PROOF.
, . , . 1 (t)
(a) From the assumptions (i), (ii), (iv) and (vii) each of = A (n ),
/ﬁ; *n,"~0
t=l, ,m, converges to zero in probability and since m is finite, r. bounded,
(t) o 1

/F_ z ¢a (QO) converges to zero, it implies that /ﬁ én(go) converges to
zero in probability by W.L.L. NS. (loeve [9], page 274). Hence the result

follows immediately.

(b) We consider a matrix:ﬁeRk, where k=(m+s)p, such that

Ji,l = [Ij',- Hl H' ]_]

where Et is of order 1xp, t=1l,...,m and H

B of order sxp. Then let us con-

sider the linear function

H
1

= trg! Q0¥

tr 2 A' H_ + trA'H
te] Bt ~mt1

v 1 (£) ,. (£, 1 (t)
- e ] —r‘aél% P e e 1T 0P @),

D¢
I U (t) . (E)y, (t) '
= % /Ay trazl{?a (g ) H + Vrg 9y B Hyyy )
n
Loyt ()
= ) = U
E /E; uzl o



where
(t) _ (£) . (t)y, (t) oo Tt
Uy~ = tT(0q " (g ' Ve 0.7 (BI(G T
1
Now from assumptions (ii) and (vi) we have
(t) _
E Ua = 0
Var(UO(Lt)) - tr E(t)lj(t)ﬂ(t)' = ¢ (say)
where g(t)' (~t’ $+1) and
( (t) \' AN )
L) C AN
I‘(t) = )

'7‘(") ) rt E(t) (QO)

~ \cc,

. J

is finite. Hence {Uét)} satisfies the Lindeberg-Levy's condition for C.L.T.,

so that
Be
L3 T U7 5 80,6®) in 1aw.
n o
t o=1
CF LSt L
Hence it follows that T = ‘L_(;;:- ZL o ) is asymptotically distributed
ke e o

as N(0,G), where G is the variance of T, given by tr«&'[(@o)qg, where E(QO)
is the variance-covariance matrix of gn(Qo).

Since for any ~ERk this result holds we have the result (b). Hence the
lemma is completely proved.

Consistency of the m.l.e. Qn.

§n being the maximum likelihood estimate for 8, it follows from (3.4)

that



+ 0 in P.

Hence in the line of Huber [4] and under the assumptions (i)-(v) and (vii),
{6 1 converges to © in P.
~n ~0

Asymptotic normality

To obtain the asymptotic distribution of the m.l.e.'s én in the line of
Inagaki [6] let us define the concept of relative compactness (See LeCam [8])
in the following sense.

Definition. In order that {gizn)} is said to be relatively compact it is
necessary and sufficient that for any €>0 there exists a positive number M>0

such that

(3.5) P{ly_| > M} < e, for all n

Now §n being m.l.e. of Qo,the relation (3.4) implies that {&(gn(én)} is
relatively compact. Hence from theorem 3.2 of Inagaki [6], {&[VEY@H—QO)]}

is relatively compact. Hence we have the following.

THEOREM 3.1. . Under the assumptions (i)~-(iii) if {&[/E-(ﬁn—go)]} is relatively

compact then
(3.6) 8, (@ -0 = £ B - g (8) + /a( -9 )L > 0 in P

where



* am)__(m)
(3.7) a(8_-0_) = Yo, -0 ™)
L/I-l— (é B §O> J

PROOF. Following Lemma 3.2 of Inagaki [6], page 7, it can be easily shown
that, under the assumptions (i), (ii), (v) and (vi), for any M>0 and large n

(putting T = VEKI—QO)),

T
(3.8) sup |8 (D] = sup e (8 +-2)-£ (6 )-I[(® )] 0 dn P
Il ™0 e RO /BT et o

This shows that gn(g) is '"weakly asymptotically differentiable" (in the sense
of Inagaki [6]). Now since {&[VEYQn—QO)]} is relatively compact, the result
(3.6) follows from (3.8) in the line of Theorem 3.1 of Inagaki [6]. Hence
the theorem. Thus we have

THEOREM 3.2. Under the assumptions (i)-(vii)
A -1 .
S/ 001 > (0, I77(8)) in law.
PROOF. Since (3.4) holds for m.l.e.'s §n of Qo’ we have from Theorem 3.1 that
LV (-00T@ )1 ~ UE_(8)]

Hence from Lemma 3.1(b) we have the desired result and the theorem is completely

proved.

4. Asymptotic efficiency of §n'

A
Qn being m.l.e.'s of the parameter matrix Qo’ is complete sufficient for

P » s Where
ﬂ~_
8%
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\
£ 1 ., 1 ., 1
(-1 /s G B i e R )

so that ] .
DR
~0 ,/Hi

¥ _ |-

(4.2) | 8, * % @, H
~0 /n—m

B +_I~{.2‘1"'_1
| St A

Then any other estimator T which is location invariant is independent of Qn
(See Basu [1,2]).
Now In will be said to be asymptotically location invariant at Qo if

for any-.ﬁ‘f;Rk
(4.3) trr -0+, p ] > L in law
. ~n Yo Ja’ QJ%‘/

where L is independent ofé?. The necessary and sufficient condition for this

is that En(Tn) is location invariant at Qo. That is

(4.4) LI (T ); Po + % 1> G in law

where G is independent of #.
Under this set up, following Theorem 5.1 of Inagaki [6]7it can be shown
that the limiting distribution L can be expressed as a convolution of those

of gn(Qo) and —gn(zn) under PQO’ N(O, Z(Qo)) and G(Z) = 1-G(-Z), that is
(4.5) L =G * N(O, I)
Hence it follows from the corrollary 5.1 of Inagaki [6] that

(4.6) Lim[Va(T -8 )] = lim[/a(Z -6 )] * Lim[/n(§ -6 )]
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Since §n is sufficient statistic for Qo it follows from K?ufman [7] that
(zn-én) and én are independently distributed. Hence if Y(l) and Y(z) be the
dispersion matrices corresponding to In and én’ then it follows from (4.6)
that Y(l)—y(z) must be at least positive semi definite. This proves that
§n is asymptotically efficient as compared with the estimator which is
asymptotically f-invariant.

5. Relative efficiency of §n compared with m.l.e. when parent distribution

is multinormal

The m.1l. estimators of the parameters of the growth curve model under
Behrens-Fisher situation have been considered in [3], so that when the under-
lying distribution is multinormal the asymptotic distribution of /Elgn_go)’
defined by (3.7), has been shown to be N(o, %—l) where Q is the information
matrix with off-diagonal submatrices zero.

To compare the relative efficiency of the estimates én with that under
normality we are only to compare the corresponding dispersion matrices,

Y(l)(Qo) = E_l(Qo) and y(z)(eo) = %—l(go), so that relative efficiency is

given by
lv(2)l 1/p
(5.1) e = T;?IYT

This e < 1 provided Y(l)—y(z) is at least positive semidefinite.
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