## ON ASYMPTOTIC STABILITY FOR LINEAR DELAY EQUATIONS

## WENZHANG HUANG†

Department of Mathematics, Claremont Graduate School, Claremont, California 91711 USA

(Submitted by: Kenneth L. Cooke)

1. Introduction. For a linear scalar delay equation

$$\dot{x}(t) + ax(t) + bx(t - r) = 0,$$

the stability of the zero solution can be determined by whether all roots of the characteristic equation

$$\lambda + a + be^{-\lambda r} = 0 \tag{1.1}$$

lie in the left half plane. And it is well known [1] that all roots of (1.1) lie in the left half plane if either

$$a > -b \ge -\frac{1}{r}$$

or

$$rb = \frac{\theta}{\sin \theta}$$
 and  $a > -b\cos \theta$  for some  $\theta \in (0, \pi)$ .

In this paper, we extend this result to a more general equation of the form

$$\lambda + a + \int_0^r d\eta(s)e^{-\lambda s} = 0, \tag{1.2}$$

where  $\eta$  is a function of bounded variation on [0, r] and  $\int_0^{0^+} d\eta(s) = 0$ , and then apply it to discuss the stability of some classes of delay equations, including a partial delay-differential equation studied by Green and Stech [2].

**2.** A main theorem. In this section we shall establish a theorem concerning the location of the roots of (1.2).

**Lemma 2.1.** Let  $\theta \in (0, \pi)$ , then  $\theta \cos \theta / \sin \theta < 1$ .

**Proof:** Since

$$\frac{d}{d\theta}(\cos\theta\sin\theta - \theta) = -2\sin^2\theta < 0, \qquad \theta \in (0,\pi),$$

and  $\cos\theta\sin\theta - \theta|_{\theta=0} = 0$ , it follows that  $\cos\theta\sin\theta - \theta < 0$ , for  $\theta \in (0,\pi)$ . Hence

$$\frac{d}{d\theta} \left( \frac{\theta \cos \theta}{\sin \theta} \right) = \frac{\cos \theta \sin \theta - \theta}{\sin^2 \theta} < 0, \qquad \theta \in (0, \pi).$$

Note that  $\theta \cos \theta \sin \theta \to 1$  as  $\theta \to 0^+$ , therefore,  $\frac{\theta \cos \theta}{\sin \theta} < 1$ ,  $\theta \in (0, \pi)$ .

Received for publication July 1989.

<sup>†</sup>This paper constitutes part of the author's Ph.D. dissertation at the Claremont Graduate School. AMS Subject Classifications: 34.

**Lemma 2.2.** For any  $\theta \in (0, \pi)$ , introduce

$$D_{\theta} = \left\{ x + iy : x \in \mathbb{R}, \ y \ge -\frac{\sin \theta - \theta \cos \theta}{\theta \sin \theta} x \right\},$$

a half plane of the complex plane  $\mathbb{C}$ . Then for any  $z_i \in D_\theta$ ,  $\alpha_i \geq 0$ , i = 1, 2, we have  $\alpha_1 z_1 + \alpha_2 z_2 \in D_\theta$ . Furthermore,

$$z_1 + z_2 = 0$$
 if and only if  $z_1, z_2 \in D_\theta$  and  $z_1 = -z_2$ .

**Proof:** The proof is trivial since  $D_{\theta}$  is a half plane and also a cone which contains  $0 \in \partial D_{\theta}$ .

**Lemma 2.3.** For each  $\theta \in (0,\pi)$ , let  $W_{\theta}:[0,\infty) \to \mathbb{C}$  be given by

$$W_{\theta}(v) = -\theta \cos \theta / \sin \theta + iv + \theta e^{-iv} / \sin \theta$$
$$= -\theta (\cos \theta - \cos v) / \sin \theta + i(v - \theta \sin v / \sin \theta),$$

then  $W_{\theta}([0,\infty)) \in D_{\theta}$ .

**Proof:** If we let  $x(v) = \operatorname{Re} W_{\theta}(v), y(v) = \operatorname{Im} W_{\theta}(v)$  for  $v \in (0, \pi) \cup (\pi, 2\pi)$ , we have

$$\frac{dy}{dx} = \frac{\dot{y}(v)}{\dot{x}(v)} = \frac{-\sin\theta + \theta\cos v}{\theta\sin v},$$

so

$$\frac{d^2y}{dx^2} = \frac{d}{dv} \left( \frac{\dot{y}(v)}{\dot{x}(v)} \right) \frac{dv}{dx} = \frac{\sin^2 \theta}{\theta^2 \sin^3 v} \left( \frac{\theta}{\sin \theta} - \cos v \right).$$

Since  $\theta / \sin \theta > 1$ , it follows that

$$\frac{d^2y}{dx^2} > 0$$
,  $v \in (0,\pi)$ ;  $\frac{d^2y}{dx^2} < 0$ ,  $v \in (\pi, 2\pi)$ .

This implies that  $W_{\theta}(v)$  is convex downward for  $v \in (0,\pi)$  and convex for  $v \in (\pi, 2\pi)$ . Moreover note that  $x(\theta) = y(\theta) = 0$  and

$$\frac{dy}{dx}\big|_{(x(\theta),y(\theta))} = -\frac{\sin\theta - \theta\cos\theta}{\theta\sin\theta}.$$

That is, the tangent line of  $W_{\theta}(v)$  at  $W_{\theta}(\theta) = 0$  concides with the boundary of  $D_{\theta}$ . This implies that  $W_{\theta}(v) \in D_{\theta}$ ,  $v \in [0, \pi]$  since  $W_{\theta}(v)$  is convex downward. Furthermore, we have

$$W_{\theta}(2\pi) = \theta(1-\cos\theta)/\sin\theta + i2\pi \in D_{\theta},$$

again the convexity of  $W_{\theta}(v)$  for  $v \in (\pi, 2\pi]$  yields that  $W_{\theta}(v) \in D_{\theta}$ ,  $v \in (\pi, 2\pi]$ . Suppose  $v > 2\pi$ , then there is an integer k and  $v_0 \in [0, 2\pi)$  such that  $v = v_0 + 2k\pi$ . Since  $i2k\pi \in D_{\theta}$ , it follows from Lemma 2.2 that

$$W_{\theta}(v) = i2k\pi + W_{\theta}(v_0) \in D_{\theta}.$$

This completes the proof of the lemma.

**Lemma 2.4.** Suppose that  $\eta$  is increasing and there is  $\theta \in (0, \pi)$  such that

$$\int_0^r s \, d\eta(s) = \frac{\theta}{\sin \theta}, \qquad a > -\cos \theta \int_0^r d\eta(s).$$

Define

$$g_{\theta}(u) = u + a + \cos \theta \int_0^r e^{-us} d\eta(s),$$

then  $g_{\theta}(u) > 0$  for all  $u \geq 0$ .

**Proof:** It is obvious that  $g_{\theta}(0) > 0$ . Moreover by using Lemma 2.1 we obtain

$$\frac{dg_{\theta}(u)}{du} = 1 - \cos\theta \int_0^r se^{-us} d\eta(s) \ge 1 - \cos\theta \int_0^r s d\eta(s) = 1 - \frac{\theta\cos\theta}{\sin\theta} > 0.$$

Hence  $g_{\theta}(u) > 0$  for all  $u \geq 0$ .

By means of the previous lemmas it is now easy to prove our main

**Theorem 2.5.** Under the assumptions of Lemma 2.4, let

$$\Delta(\lambda) = \lambda + a + \int_0^r e^{-\lambda s} d\eta(s),$$

then

$$\Delta(u+iv) \in D_{\theta} \setminus \{0\}, \quad \text{for all } u \ge 0, v \ge 0.$$

**Proof:** An easy calculation shows that

$$\Delta(u+iv) = u + a + \cos\theta \int_0^r e^{-us} d\eta(s) + iv \left[ 1 - \frac{\sin\theta}{\theta} \int_0^r s e^{-us} d\eta(s) \right]$$

$$+ \frac{\sin\theta}{\theta} \int_0^r e^{-us} \left[ -\frac{\theta\cos\theta}{\sin\theta} + ivs + \frac{\theta}{\sin\theta} e^{-ivs} \right] d\eta(s)$$

$$= g_{\theta}(u) + z_{\theta} + \frac{\sin\theta}{\theta} \int_0^r e^{-us} W_{\theta}(vs) d\eta(s),$$
(2.1)

where

$$z_{\theta} = iv \left[ 1 - \frac{\sin \theta}{\theta} \int_{0}^{r} s e^{-us} d\eta(s) \right].$$

Since  $W_{\theta}(vs) \in D_{\theta}$  and  $\eta$  is increasing, it is obvious that

$$\frac{\sin \theta}{\theta} \int_0^r e^{-us} W_{\theta}(vs) \, d\eta(s) \in D_{\theta}.$$

Moreover,

$$1 - \frac{\sin \theta}{\theta} \int_0^r s e^{-us} d\eta(s) \ge 1 - \frac{\sin \theta}{\theta} \int_0^r s d\eta(s) = 0,$$

so  $z_{\theta} \in D_{\theta}$ . It follows from Lemma 2.3 and 2.4 that  $g_{\theta}(u) + z_{\theta} \in D_{\theta} \setminus \partial D_{\theta}$ . Therefore, as a consequence of Lemma 2.2 and (2.1) we have

$$\Delta(u+iv) \in D_{\theta} \setminus \partial D_{\theta}.$$

3. On stability of delay equations. We now turn to discuss the stability of some classes of delay equations by using Theorem 2.5. As a first application consider the delay equation

$$\dot{x}(t) = -ax(t) - \int_0^r x(t-s) \, d\eta(s), \tag{3.1}$$

where  $\eta$  satisfies the assumption of Section 1.

**Theorem 3.1.** Suppose that  $\eta$  is monotone. If either

$$\int_0^r s \, d\eta(s) \le 1, \qquad a > -\int_0^r \, d\eta(s)$$

or

$$1 < \int_0^r s \, d\eta(s) = \frac{\theta}{\sin \theta}, \quad a > -\cos \theta \int_0^r d\eta(s)$$

for some  $\theta \in (0, \pi)$ , then the zero solution of equation (3.1) is asymptotically stable.

**Proof:** It is enough to show that all eigenvalues of the characteristic equation

$$\Delta(\lambda) = \lambda + a + \int_0^r e^{-\lambda s} d\eta(s) = 0$$

have negative real parts. This is equivalent to proving that

$$\Delta(u+iv) \neq 0$$
, for all  $u > 0$ ,  $v > 0$ .

It is trivial if  $\int_0^r d\eta(s) = 0$  (this implies that  $\int_0^r s d\eta(s) = 0$ ), so we suppose that  $R^* = \int_0^r s d\eta(s) \neq 0$ .

First suppose  $R^* \leq 1$ , and  $a > -\int_0^r d\eta(s)$ . then

$$\begin{split} \Delta(\lambda) &= a + \int_0^r d\eta(s) + \frac{1}{R^*} \int_0^r \lambda s d\eta(s) - \int_0^r d\eta(s) + \int_0^r e^{-\lambda s} d\eta(s) \\ &= a + \int_0^r d\eta(s) + \int_0^r (\frac{\lambda}{R^*} - 1 + e^{-\lambda s}) d\eta(s). \end{split}$$

If  $R^* > 0$ , then  $\int_0^r d\eta(s) > 0$ . For any  $u \ge 0$ , v > 0,

$$\operatorname{Im} \Delta(u+iv) = \int_0^r (\frac{vs}{R^*} - e^{-us}\sin(vs))d\eta(s) \ge \int_0^r (\frac{vs}{R^*} - |\sin vs|)d\eta(s) > 0, (3.2)$$

for  $vs/R^* - |\sin vs| > 0$ ,  $s \in (0, r]$ . And if v = 0, we have

$$\Delta(u) = a + \int_0^r d\eta(s) + \int_0^r (\frac{us}{R^*} - 1 + e^{-us}) d\eta(s).$$

Since

$$\frac{us}{R^*} - 1 + e^{-us} \ge us - 1 + e^{-us} \ge 0, \quad s \ge 0,$$

and  $a + \int_0^r d\eta(s) > 0$ , therefore

$$\Delta(u) > 0 \quad \text{for all } u \ge 0.$$
 (3.3)

If  $R^* < 0$ , then  $\int_0^r d\eta(s) < 0$ . For any  $u \ge 0$ , we have

$$\frac{us}{R^*} - 1 + e^{-us}\cos vs \le -1 + e^{-us} \le 0, \quad s \ge 0, \quad v \in \mathbb{R}.$$

So

$$\int_0^r (\frac{us}{R^*} - 1 + e^{-us}\cos vs)d\eta(s) \ge 0.$$

Hence

$$\operatorname{Re} \Delta(u+iv) = a + \int_0^r d\eta(s) + \int_0^r (\frac{us}{R^*} - 1 + e^{-us}\cos vs)d\eta(s) > 0, \quad u \ge 0, \ v \in \mathbb{R}.$$
(3.4)

(3.2)-(3.4) conclude our first assertion.

Now suppose

$$1 < \int_0^r s d\eta(s) = \frac{\theta}{\sin \theta}, \qquad a > -\cos \theta \int_0^r d\eta(s).$$

(Note that  $f(\theta) = \theta/\sin\theta$ ,  $\theta \in (0, \pi)$  is a strictly increasing function and  $\lim_{\theta \to 0^+} f(\theta) = 1$ ,  $\lim_{\theta \to \pi} f(\theta) = +\infty$ . Hence for any  $R^* > 1$ , there is a unique  $\theta \in (0, \pi)$  such that  $R^* = \theta/\sin\theta$ .) Applying Theorem 2.5 we find that  $\Delta(u+iv) \neq 0$ , for  $u \geq 0$ ,  $v \geq 0$ . Thus the proof is completed.

As an immediate consequence of Theorem 3.1 we have

Corollary 3.2. For the equation

$$\dot{x}(t) = -ax(t) - \sum_{i=1}^{n} a_i x(t - r_i), \quad r_i > 0, \quad i = 1, \dots, n,$$
(3.5)

if  $a_i \geq 0$ ,  $i = 1, \dots, n$  and there is  $\theta \in (0, \pi)$  such that

$$\sum_{i=1}^{n} a_i r_i = \frac{\theta}{\sin \theta}, \quad a > -\cos \theta \sum_{i=1}^{n} a_i,$$

then the zero solution of (3.5) is asymptotically stable.

Next we consider a population model with diffusion effect:

$$\frac{\partial N(x,t)}{\partial t} = K \frac{\partial^2 N(x,t)}{\partial x^2} + rN(x,t) \left[ 1 - \int_0^T N(x,t-s) d\eta(s) \right]$$
(3.6)

with the boundary and initial conditions

$$N(0,t) = N(\pi,t) = 0,$$
  $t \ge 0$   $N(x,s) = \phi(x,s),$   $-T \le s \le 0, 0 \le x \le \pi,$ 

here K > 0, r > 0 and T > 0 are constants and  $\eta(s)$  is non decreasing with

$$\int_0^T d\eta(s) = 1.$$

Our interest is to discuss the stability of the positive equilibrium solution  $\tilde{N}(x)$  of (3.6), which is determined by

$$K\frac{d^2N(x)}{dx^2} + rN(x)[1 - N(x)] = 0, \quad x \in I = (0, \pi)$$
(3.7)

$$N(0) = N(\pi) = 0, \quad N(x) > 0, \quad x \in (0, \pi).$$
 (3.8)

Green and Stech in [2] have shown that:

- 1. If  $r/K \le 1$ , then the only solution of (3.7)–(3.8) is  $N \equiv 0$ .
- 2. If r/K > 1, (3.7)–(3.8) have a unique solution

$$\tilde{N}(x) = \tilde{N}(x; r, K)$$
 with  $0 < \tilde{N}(x) < 1, x \in I$ .

3. Let  $M(r,K) = \max \tilde{N}(x;r,K)$ , then the equilibrium solution  $\tilde{N}(x;r,K)$  is asymptotically stable if

$$rM(r,k)\int_0^T sd\eta(s) < 1.$$

By using Theorem 2.5, we can improve this estimate and obtain

**Theorem 3.3.** If r/K > 1 and

$$rM(r,K)\int_0^T sd\eta(s) < \frac{\pi}{2},$$

then the equilibrium solution  $\tilde{N}(x;r,K)$  is asymptotically stable.

Before the proof of this theorem, we first establish the following

## Lemma 3.4. Let

$$C_0^2 = \left\{ y \in C^2(I) \cap C(\bar{I}), \ y(0) = y(\pi) = 0 \right\}$$
  
$$L: C_0^2 \to C_0^2, \ L = KD^2 + r[1 - \tilde{N}(x)].$$

where  $D^2 = d^2/dx^2$  and  $\tilde{N}(x) = \tilde{N}(x; r, K)$  is the positive equilibrium. Then all eigenvalues of L are real and non positive.

**Proof:** Obviously, L is a self-adjoint operator, that is

$$\int_0^\pi (L\phi)\psi dx = \int_0^\pi (L\psi)\phi dx \quad \text{for all} \quad \phi, \ \psi \in C_0^2,$$

so all eigenvalues of L are real. Suppose L has some eigenvalue  $\lambda > 0$ , and let y be the corresponding eigenfunction, we have

$$K\frac{d^{2}y(x)}{dx^{2}} + (r[1 - \tilde{N}(x)] - \lambda)y(x) = 0.$$

Note that

$$K\frac{d^{2}\tilde{N}(x)}{dx^{2}} + r[1 - \tilde{N}(x)]\tilde{N}(x) = 0$$

and

$$r[1 - \tilde{N}(x)] > r[1 - \tilde{N}(x)] - \lambda.$$

The Sturm comparison theorem [3] implies that  $\tilde{N}(x)$  has at least one zero in I, which contradicts the positivity of  $\tilde{N}$  on I.

Corollary 3.5. For all  $\psi \in C_0^2$ 

$$\int_0^\pi (L\psi)\bar{\psi}dx \le 0. \tag{3.9}$$

**Proof:** Since L is self-adjoint, the collection  $\{\psi\}$  of all eigenfunctions with  $\int_0^{\pi} \psi^2 dx = 1$  form an orthonormal basis of  $C_0^2$  ([4], p.374). Inequality (3.9) follows from Lemma 3.4 and Parseval's equation.

Now we prove Theorem 3.3. First, one can verify that the linearized equation with respect to equilibrium  $\tilde{N}(x)$  is

$$\frac{\partial u}{\partial t} = K \frac{\partial^2 u}{\partial x^2} + r[1 - \tilde{N}]u - r\tilde{N} \int_0^T u(x, t - s) d\eta(s).$$

So the eigenvalue problem is

$$\Delta(\lambda, \psi) \stackrel{\text{def}}{=} \left[ \lambda + r\tilde{N} \int_0^T e^{-\lambda s} d\eta(s) \right] \psi - L\psi = 0, \quad \lambda \in C, \ \psi \in C_0^2, \ \psi \neq 0. \quad (3.10)$$

We claim that (3.10) does not have eigenvalue  $\lambda$  with Re  $\lambda \geq 0$ . To see this, for  $\lambda = u + iv$ , multiplying  $\Delta(\lambda, \psi)$  by  $\bar{\psi}$  and integrating over I we obtain

$$\int_{0}^{\pi} \Delta(\lambda, \psi) \bar{\psi} dx = \int_{0}^{\pi} \left[ u + iv + r\tilde{N} \int_{0}^{T} e^{-us} e^{-ivs} d\eta(s) \right] |\psi|^{2} dx - \int_{0}^{\pi} (L\psi) \bar{\psi} dx. \quad (3.11)$$

Since  $\tilde{N}(x) > 0$ ,  $x \in (0, \pi)$  and  $\int_0^T d\eta(s) = 1$ , it follows from (3.9) that for all  $0 \neq \psi \in C_0^2$ ,

$$\int_{0}^{\pi} \Delta(0, \psi) \bar{\psi} dx \ge r \int_{0}^{T} d\eta(s) \int_{0}^{\pi} \tilde{N}(x) |\psi|^{2} dx > 0.$$

Hence

$$\Delta(0,\psi) \neq 0$$
, for all  $0 \neq \psi \in C_0^2$ .

If  $u \ge 0$ ,  $v \ge 0$  and u + v > 0, then (3.11) yields that

$$\begin{split} \int_0^\pi \Delta(\lambda,\psi)\bar{\psi}dx &= u\int_0^\pi |\psi|^2 dx - \int_0^\pi (L\psi)\bar{\psi}dx \\ &+ iv\int_0^\pi \left[1 - \frac{\tilde{N}(x)2r}{\pi}\int_0^T e^{-us}sd\eta(s)\right]|\psi(x)|^2 dx \\ &+ \frac{2r}{\pi}\int_0^T e^{-us}(ivs + \frac{\pi}{2}e^{-ivs})d\eta(s)\int_0^\pi \tilde{N}(x)|\psi(x)|^2 dx. \end{split}$$

By the assumption of  $rM(r,K)\int_0^T sd\eta(s) < \pi/2$  we have

$$1 - \frac{2r}{\pi} \tilde{N}(x) \int_0^T se^{-us} d\eta(s) \ge 1 - \frac{2r}{\pi} M(r,k) \int_0^T s d\eta(s) \stackrel{\text{def}}{=} \sigma > 0.$$

So

$$v\int_0^\pi \left[1-\frac{2r}{\pi}\tilde{N}(x)\int_0^T se^{-us}d\eta(s)\right]|\psi|^2dx \geq v\sigma\int_0^\pi |\psi|^2dx.$$

Moreover it follows from (3.9) that

$$u \int_0^{\pi} |\psi|^2 dx - \int_0^{\pi} (L\psi) \bar{\psi} dx \ge u \int_0^{\pi} |\psi|^2 dx.$$

Thus

$$\begin{split} z_1 &\stackrel{\mathrm{def}}{=} u \int_0^\pi |\psi|^2 dx - \int_0^\pi (L\psi) \bar{\psi} dx \\ &+ iv \int_0^\pi \left[ 1 - \frac{\tilde{N}(x) 2r}{\pi} \int_0^T e^{-us} s d\eta(s) \right] |\psi(x)|^2 dx \in D_{\frac{\pi}{2}} \setminus \partial D_{\frac{\pi}{2}}, \end{split}$$

where  $D_{\frac{\pi}{2}}$  is defined as in Lemma 2.2. Furthermore, since  $\eta$  is increasing, we have

$$z_{2} \stackrel{\text{def}}{=} \frac{2r}{\pi} \int_{0}^{T} e^{-us} (ivs + \frac{\pi}{2} e^{-ivs}) d\eta(s) \int_{0}^{\pi} \tilde{N}(x) |\psi(x)|^{2} dx$$
$$= \frac{2r}{\pi} \int_{0}^{\pi} \tilde{N}(x) |\psi|^{2} dx \int_{0}^{T} e^{-us} W_{\frac{\pi}{2}}(vs) d\eta(s) \in D_{\frac{\pi}{2}},$$

where  $W_{\frac{\pi}{2}}$  is defined as in Lemma 2.2. By using Lemma 2.2 we get

$$\int_0^{\pi} \Delta(\lambda, \psi) \bar{\psi} \, dx = z_1 + z_2 \neq 0.$$

Therefore

$$\Delta(\lambda, \psi) \neq 0$$
, for all  $u \geq 0$ ,  $v \geq 0$ ,  $0 \neq \psi \in C_0^2$ .

Finally notice that for  $u \geq 0$ ,  $v \leq 0$  and  $0 \neq \psi \in C_0^2$ ,

$$\Delta(u+iv,\psi) = \bar{\Delta}(u-iv,\bar{\psi}) \neq 0,$$

which completes the proof.

**Acknowledgment.** The author would like to thank Professor Kenneth L. Cooke for his helpful suggestions in preparing this paper.

## REFERENCES

- [1] R. Bellman and K.L. Cooke, "Differential-Difference Equations," Academic Press, 1963.
- [2] D. Green, Jr and H.W. Stech, Diffusion and hereditary effects in a class of population models, Differential Equations and Applications in Ecology, Epidemics, and Population Problems (eds. S.N. Busenberg and K.L. Cooke), p. 19-28, Academic Press, 1981.
- [3] G. Birkhoff and G.C. Rota, "Ordinary Differential Equations," John Wiley & Sons, New York, 1981, Third edition, p. 268.
- [4] I. Stakgold, "Green's Functions and Boundary Value Problems," John Wiley & Sons, New York, 1979.