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1. Introduction. For a linear scalar delay equation 

i:(t) + ax(t) + bx(t- r) = 0, 

the stability of the zero solution can be determined by whether all roots of the 
characteristic equation 

>.+a+ be->.r = 0 (1.1) 

lie in the left half plane. And it is well known [1] that all roots of (1.1) lie in the 
left half plane if either 

or 

1 
a> -b > -­- r 

e 
rb=-- and a>-bcose forsomeeE(0,7r). 

sine 
In this paper, we extend this result to a more general equation of the form 

>.+a+ lr drJ(s)e->.s = 0, (1.2) 

where TJ is a function of bounded variation on [0, r] and J0°+ dTJ( s) = 0, and then 
apply it to discuss the stability of some classes of delay equations, including a partial 
delay-differential equation studied by Green and Stech [2]. 

2. A main theorem. In this section we shall establish a theorem concerning 
the location of the roots of (1.2). 

Lemma 2.1. Let e E (0,1r), then ecosejsine < 1. 

Proof: Since 

dde(cosBsinB- B)= -2sin2 e < 0, e E (o, 1r), 

and cos e sine- elo=O = 0, it follows that cos e sine - e < 0, for e E (0, 7f ). Hence 

.!!:_ ( e cos e ) = cos e sin e - e < 0 
de sin e sin 2 e ' 

e E (o, 1r). 

Note that ecosesine--+ 1 as e--+ o+, therefore, 0.~~·0° < 1, e E (0,1r). 
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Lemma 2.2. For any() E (0, 1r), introduce 

Do= {x + iy: x E IR y > _sinO-_OcosOx} 
' - 0 sm 0 ' 

a half plane of the complex plane C. Then for any z; E Do, o:; 2: 0, i = 1, 2, we 
have o:1z1 + O:zZz E Do. Furthermore, 

z1 + z2 = 0 if and only if z1, Zz E Do and z1 = -z2. 

Proof: The proof is trivial since Do is a half plane and also a cone which contains 
0 E aDo. 

Lemma 2.3. For each() E (0,1r), let W 0 : [O,oo) _, C be given by 

Wo( v) = -e cos() I sin()+ iv + ee-iv I sin() 

= -B(cos()- cosv)l sin()+ i(v- Bsinvl sin B), 

then Wo([O, oo)) E Do. 

Proof: If we let x( v) = Re Wo( v ), y( v) = Im W 0 ( v) for v E (0, 1r) U ( 1r, 21r ), we have 

dy iJ(v) -sinB+Bcosv 
dx x( v) ()sin v 

so 
d2 y d iJ( v) dv sin2 () () 

dx 2 = dv ( x( v)) dx = ()2 sin3 v (sin() - cos v). 

Since ()I sin() > 1, it follows that 

This implies that Wo ( v) is convex downward for v E ( 0, 7r) and convex for v E 
(1r, 21r). Moreover note that x(B) = y(B) = 0 and 

dy sin () - () cos () 
dx l(x(O),y(O)) = - ()sin() . 

That is, the tangent line of Wo ( v) at Wo (B) = 0 concides with the boundary of 
Do. This implies that Wo(v) E Do, v E [0, 1r] since Wo(v) is convex downward. 
Furthermore, we have 

Wo(27r) = 8(1- cos 8)1 sin 8 + i27r E Do, 

again the convexity of Wo(v) for v E (1r, 21r] yields that Wo(v) E Do, v E (1r, 21r]. 
Suppose v > 21r, then there is an integer k and v0 E [0, 21r) such that v = v0 + 2k7r. 
Since i2k7r E Do, it follows from Lemma 2.2 that 

Wo(v) = i2k7r + Wo(vo) E Do. 

This completes the proof of the lemma. 
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Lemma 2.4. Suppose that TJ is increasing and there is 0 E (0, 1r) such that 

1r 0 1r sdry(s) = -.-, a>- cosO dry(s). 
0 sillO 0 

Define 

go(u) = u +a+ cosO 1r e-usdry(s), 

then go(u) > 0 for all u 2:: 0. 

Proof: It is obvious that go(O) > 0. Moreover by using Lemma 2.1 we obtain 

1305 

dgo(u) 1r 1r OcosO -- = 1- cosO se-us dry(s) 2:: 1- cosO sdry(s) = 1- -.- > 0. 
du 0 0 SillO 

Hence go(u) > 0 for all u 2:: 0. 

By means of the previous lemmas it is now easy to prove our main 

Theorem 2.5. Under the assumptions of Lemma 2.4, let 

~(.\)=A+ a+ 1r e->.sdry(s), 

then 
~(u + iv) E Do\ {0}, for all u 2:: 0, v 2:: 0. 

Proof: An easy calculation shows that 

~(u + iv) = u +a+ cosO 1r e-usdry(s) + iv [ 1- si:O 1r se-u8 dry(s)] 

sin 0 1r -us [ 0 cos 0 . 0 -ivs] d ( ) + -- e - -. - + ws + -.-e TJ s 
0 0 Sill 0 Sill 0 

= go(u) + zo + si:O 1r e-uswo(vs) dry(s), 

where 

zo = iv[1- si:O 1r se-usdry(s)]. 

Since Wo(vs) E Do and TJ is increasing, it is obvious that 

si:O 1r e-uswo(vs) dry(s) E Do. 

Moreover, 
sin 0 r us sin 0 r 

1- - 0-Jo se- d"l(s) ~ 1- - 0- Jo sd.,(s) = 0, 

(2.1) 

so zoE Do. It follows from Lemma 2.3 and 2.4 that go(u)+zo E Do \8D0 • Therefore, 
as a consequence of Lemma 2.2 and (2.1) we have 

~(u + iv) E Do\ 8Do. 

3. On stability of delay equations. We now turn to discuss the stability 
of some classes of delay equations by using Theorem 2.5. As a first application 
consider the delay equation 

x(t) = -ax(t) -1r x(t- s) d"l(s), (3.1) 

where TJ satisfies the assumption of Section 1. 
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Theorem 3.1. Suppose that ry is monotone. If either 

1r sdry(s) ::=; 1, a> -1r dry(s) 

or 1r O 
1 < sdry(s) = -;--0 , 

0 sm 
a>- cosO 1r dry(s) 

for some 0 E (0, 1r), then the zero solution of equation (3.1) is asymptotically stable. 

Proof: It is enough to show that all eigenvalues of the characteristic equation 

have negative real parts. This is equivalent to proving that 

~(u + iv) =1- 0, for all u 2': 0, v 2': 0. 

It is trivial if J; dry( s) = 0 (this implies that J; sdry( s) = 0 ) , so we suppose that 

R* = J; sdry(s) =1- 0. 
First suppose R* ::=; 1, and a > - J; dry( s). then 

~(.-\)=a+ dry(s) + -. >.sdry(s)- dry(s) + e->-.sdry(s) 1r 1 1r 1r 1r 
o R o o o 

1r 1r A =a+ 
0 

dry(s) + 
0 

( R* - 1 + e->-.s)dry(s). 

If R* > 0, then J; dry(s) > 0. For any u 2': 0, v > 0, 

for vsf R* - I sin vsi > 0, s E (0, r]. And if v = 0, we have 

1r 1r US 
~(u) =a+ 

0 
dry(s) + 

0 
( R* - 1 + e-us)dry(s). 

Since 
us us us - - 1 + e- > us- 1 + e- > 0, s >_ 0, R* - -

and a + J; dry( s) > 0, therefore 

~(u) > 0 for all u 2': 0. (3.3) 

If R* < 0, then J; dry(s) < 0. For any u 2': 0, we have 

us 
R* -1 + e-us cosvs::::; -1 + e-us::::; 0, s 2': 0, v E IR. 
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So r us Jo (R* -1+e-u8 cosvs)dry(s)~O. 

Hence 

r r us 
Re~(u+iv) =a+ Jo dry(s)+ Jo (R* -1+e-uscosvs)dry(s) > 0, u ~ 0, v E IR. 

(3.4) 
(3.2)-(3.4) conclude our first assertion. 

Now suppose 

lr () 

1 < sdry( s) = -=--o' 
0 sm 

a> -cosO 1r dry(s). 

(Note that f ( 0) = ()I sin(), () E (0, 1r) is a strictly increasing function and limo ..... o+ f ( 0) 
= 1, limo ..... ,. f(O) = +oo. Hence for any R* > 1, there is a unique () E (0, 1r) such 
that R* = ()I sin 0.) Applying Theorem 2.5 we find that ~( u + iv) =f 0, for u ~ 0, 
v ~ 0. Thus the proof is completed. 

As an immediate consequence of Theorem 3.1 we have 

Corollary 3.2. For the equation 

n 

x(t) = -ax(t)- 2:: a;x(t- r;), r; > o, i = 1, ... , n, (3.5) 
i=l 

if a; ~ 0, i = 1, · · · , n and there is() E (0, 1r) such that 

n 

a> -cosO La;, 
i=l 

then the zero solution of (3.5) is asymptotically stable. 

Next we consider a population model with diffusion effect: 

with the boundary and initial conditions 

N(O,t) = N(1r,t) = 0, t ~ 0 

N(x,s) = ¢(x,s), -T ~ s ~ 0, 0 ~ x ~ 1r, 

here K > 0, r > 0 and T > 0 are constants and ry( s) is non decreasing with 

1T dry(s) = 1. 
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Our interest is to discuss the stability of the positive equilibrium solution N(x) of 
(3.6), which is determined by 

d2N(x) 
I< dx2 +rN(x)[1-N(x)]=O, xEI=(0,1r) (3.7) 

N(O) = N(1r) = 0, N(x) > 0, x E (0, 1r). (3.8) 

Green and Stech in [2] have shown that: 

1. If rii< ~ 1, then the only solution of (3.7)-(3.8) is N = 0. 

2. If rii< > 1, (3.7)-(3.8) have a unique solution 

N(x) = N(x;r,I<) with 0 < N(x) < 1, x E I. 

3. Let M(r,I<) = maxN(x;r,K), then the equilibrium solution N(x;r,K) is 
asymptotically stable if 

rM(r, k) 1T sdrJ(s) < 1. 

By using Theorem 2.5, we can improve this estimate and obtain 

Theorem 3.3. If r I K > 1 and 

rM(r, K) {T sdrJ(s) < ~. Jo 2 

then the equilibrium solution N(x; r, K) is asymptotically stable. 

Before the proof of this theorem, we first establish the following 

Lemma 3.4. Let 

C5 = {y E C2 (I) n C(l), y(O) = y(1r) = 0} 

L: C5 ~ C5, L = KD2 +r[1- N(x)]. 

where D 2 = d2 I dx2 and N ( x) = N ( x; r, K) is the positive equilibrium. Then all 
eigenvalues of L are real and non positive. 

Proof: Obviously, L is a self-adjoint operator, that is 

11r(L¢)1j;dx = 11r(LtjJ)¢dx for all ¢, 1/J E C5, 
so all eigenvalues of L are real. Suppose L has some eigenvalue >. > 0, and let y be 
the corresponding eigenfunction, we have 

J(d~~) + (r[l- N(x)]- >.)y(x) = 0. 

Note that 
d2 N(x) - -

I< dx2 + r[l- N(x)]N(x) = 0 

and 
r[1- N(x)] > r[1- N(x)]- >.. 

The Sturm comparison theorem [3] implies that N(x) has at least one zero in I, 
which contradicts the positivity of N on I. 
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Corollary 3.5. For all '1jJ E C6 

(3.9) 

Proof: Since Lis self-adjoint, the collection { 'ljJ} of all eigenfunctions with j 07r 'lj; 2 dx 
= 1 form an orthonormal basis of cg ([4], p.374). Inequality (3.9) follows from 
Lemma 3.4 and Parseval's equation. 

Now we prove Theorem 3.3. First, one can verify that the linearized equation 
with respect to equilibrium N(x) is 

~ ~u - _1T 
Bt = J( Bx2 + r[1- N]u- rN 

0 
u(x, t- s)dry(s). 

So the eigenvalue problem is 

We claim that (3.10) does not have eigenvalue >. with Re >. ~ 0. To see this, for 
>. = u + iv, multiplying f:l(>., '1/J) by if; and integrating over I we obtain 

Since N(x) > 0, x E (0, 1r) and j;{ dry(s) = 1, it follows from (3.9) that for all 

O=/:'I/JEC6, 

Hence 
!:l(O, '1/J) =/: 0, for all 0 =/: 'ljJ E CJ. 

If u ~ 0, v ~ 0 and u + v > 0, then (3.11) yields that 

By the assumption of rM(r,K) j;{ sdry(s) < Jr/2 we have 

2r - 1T 2r 1T def 1- -N(x) se-usdry(s) ~ 1- -M(r, k) sdry(s) = IJ > 0. 
7r 0 7r 0 
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So r 2 rT r 
v Jo [1- : N(x) Jo se-usdry(s)] l'l/'l2 dx ~ va Jo 11fl2 dx. 

Moreover it follows from (3.9) that 

Thus 

def -1,. 1,. 
z1 = u 

0 
l'l/'l 2dx-

0 
(L'l/')1/'dx 

where D!!. is defined as in Lemma 2.2. Furthermore, since 1J is increasing, we have 
2 

def 2r 1T 7r · 1,. -
Z2 = - e-us(ivs + -e-•vs)dry(s) N(x)i1f(x)i 2 dx 

7r 0 2 0 

2r 1,. _ 1T 
=- N(x)i'l/'i 2 dx e-usw!!.(vs)dry(s) ED!!., 

7r 0 0 2 2 

where W!!. is defined as in Lemma 2.2. By using Lemma 2.2 we get 
2 

Therefore 
.6.(-X,'l/') # 0, for all u ~ 0, v ~ 0, 0 # 1/' E C6. 

Finally notice that for u ~ 0, v ~ 0 and 0 # 1{1 E C6, 

6.( u + iv, 1{1) = LS.( u- iv, {ij) # 0, 

which completes the proof. 
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