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1. Introduction. For a linear scalar delay equation
z(t) + ax(t) + bz(t —r) =0,

the stability of the zero solution can be determined by whether all roots of the
characteristic equation
Ada+be " =0 (1.1)

lie in the left half plane. And it is well known [1] that all roots of (1.1) lie in the

left half plane if either

1
a>-b>—-
r

or
rb=

- and a > —bcosf for some 6 € (0, 7).
sin
In this paper, we extend this result to a more general equation of the form

A—l—a-{—/ dn(s)e™* =0, (1.2)
0

where 7 is a function of bounded variation on [0,r] and f00+ dn(s) = 0, and then
apply it to discuss the stability of some classes of delay equations, including a partial
delay-differential equation studied by Green and Stech [2].

2. A main theorem. In this section we shall establish a theorem concerning
the location of the roots of (1.2).

Lemma 2.1. Let § € (0,7), then §cosf/sinf < 1.
Proof: Since
%(cos9sin9—0)=—25in29<0, 0 € (0,m),

~ and cosfsinfd — flg—o = 0, it follows that cosfsind — 6 < 0, for § € (0, 7). Hence
d ,0cosf cosfsinf — 6

@( sin 6 )= sin? @ <0 be@m.
Note that #cosfsinf — 1 as § — 0%, therefore, % <1,6¢€(0,nr).

Received for publication July 1989.
tThis paper constitutes part of the author’s Ph.D. dissertation at the Claremont Graduate School.
AMS Subject Classifications: 34.

An International Journal for Theory & Applications




1304 W. HUANG

Lemma 2.2. For any 6 € (0, ), introduce

Dp={z+iy:z€R, y> —sind=beosby}

a half plane of the complex plane C. Then for any z; € Dy, a; > 0, i = 1,2, we
have ayz; 4+ asz2 € Dy. Furthermore,

21+ 290=0 ifandonlyif 2z, 20 € Dg and 21 = —2.

Proof: The proof is trivial since Dy is a half plane and also a cone which contains
0 € 9Dy.

Lemma 2.3. For each § € (0,7), let Wy : [0,00) — C be given by
Wo(v) = —f cosf/sin 0 + iv + e /sin 6
= —f(cos® — cosv)/sinf + i(v — Osinv/sinb),
then Wy([0,00)) € Dy.
Proof: If we let z(v) = Re Wy(v), y(v) = Im Wy(v) for v € (0,7)U (7, 27), we have

dy _ y(v) _ —sinf+fcosv
dz  i(v) sinv

)

s0
d’y d y(v),dv _ sin®’8 6

dz? El;(x(v))ﬂ B 02sin3v(sin9 = cosv).
Since 6/sin 6 > 1, it follows that

d’y d’y

w>0, ’UE(O,W), Zlﬁ<0, U€(7I',27I').

This implies that Wy(v) is convex downward for v € (0,7) and convex for v €
(m,2m). Moreover note that z(4) = y(d) = 0 and

dy _ sinf —6cosd
& =000 = " gems

That is, the tangent line of Wy(v) at Wy(6) = 0 concides with the boundary of
Dg. This implies that Wy(v) € Dg, v € [0, 7] since Wy(v) is convex downward.
Furthermore, we have

Wo(2m) = 6(1 — cos§)/siné + i2w € Dy,
again the convexity of Wy(v) for v € (m,27] yields that Wy(v) € Dy, v € (7, 27].
Suppose v > 27, then there is an integer k and vg € [0, 27) such that v = vy + 2k7.
Since i2km € Dy, it follows from Lemma 2.2 that
We(v) = i2km + Wy(vo) € Dy.

This completes the proof of the lemma.
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Lemma 2.4. Suppose that 7 is increasing and there is § € (0, 7) such that

T 0 T
/0 sdn(s) = o a> —0080/0 dn(s).
Define -
go(u) = u+ a+ cos 0/ e~ "*dn(s),
0

then gg(u) > 0 for all u > 0.
Proof: It is obvious that g¢(0) > 0. Moreover by using Lemma 2.1 we obtain

dgo(v) _ 1- cos@/ se” " dn(s) > 1— cosO/ sdn(s)=1- fcos?
0 0

du sin 6
Hence go(u) > 0 for all u > 0.

By means of the previous lemmas it is now easy to prove our main

Theorem 2.5. Under the assumptions of Lemma 2.4, let
AN =X+a+ / e~ dn(s),
0

then
A(u+1iv) € D\ {0}, forallu>0,v>0.

Proof: An easy calculation shows that

Alutiv)=u+a+ cosG/ e~ *dn(s) + v [1 _ sind / se‘“sdn(s)]
0 0

0

sinf (" _, .. Ocosf . 0 _ivs
+ 0 /‘;e [- sin 0 +“’s+me Jdn(s) 21)

sin 6

go(w) + 20+ 5= [ e Wa(us)d(s),
0

2 = v [1 - M/ se_”sdn(s)].
0 Jo

Since Wy(vs) € Dy and 7 is increasing, it is obvious that

where

sin 8

/ e “*Wy(vs)dn(s) € Dy.
0 Jo

Moreover,

1_sm0/ se_usdn(s)21_sm0/ sdn(s) = 0,
6 Jo 6 Jo

so zg € Dg. It follows from Lemma 2.3 and 2.4 that gg(u)+29 € Dg\ODy. Therefore,
as a consequence of Lemma 2.2 and (2.1) we have

A(u + iv) € Dy \ 8D9.

3. On stability of delay equations. We now turn to discuss the stability
of some classes of delay equations by using Theorem 2.5. As a first application
consider the delay equation

z(t) = —az(t) — /Or z(t — s)dn(s), (3.1)

where 7 satisfies the assumption of Section 1.
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Theorem 3.1. Suppose that n is monotone. If either

[sane <t as- [Can)

or

T 0 T
1</0 sdn(s)—m, a>—cos()/0 dn(s)

for some 6 € (0, ), then the zero solution of equation (3.1) is asymptotically stable.

Proof: It is enough to show that all eigenvalues of the characteristic equation
AN)=A+a +/ e *dn(s) =0
0

have negative real parts. This is equivalent to proving that
A(u+iv) #0, foralu>0,v>0.

It is trivial if [J dn(s) = O (this implies that f; sdn(s) = 0 ), so we suppose that

R* = [} sdn(s) #0.
First suppose R* < 1, and a > — [ dn(s). then

AN =a+ /Or dn(s) + % /Or Asdn(s) — /Or dn(s) + /Or e~ dn(s)
=a+ /OT dn(s) + /Or(% — 14 e72%)dn(s).

If R* > 0, then for dn(s) > 0. For any u > 0, v > 0,

ImA(u +iv) = /OT(;}—;: — e “sin(vs))dn(s) > /OT(% — |sinwvs|)dn(s) > 0, (3.2)

for vs/R* — |sinws| > 0, s € (0,r]. And if v = 0, we have
r LI _
sw=at [ dne)+ [ (G =1+ ns)
0 o R

ince
S us

F—1+e‘“52us—1+6_“520, s>0,

and a + [ dn(s) > 0, therefore
A(u) >0 for all u>0. (3.3)

If R* <0, then [ dn(s) < 0. For any u > 0, we have

%ﬁ——l+e'“scosvs§—1+e_“§0» s2>20, veR.
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/ (%i— — 14 e * cosvs)dn(s) > 0.
0

Hence

ReA(u+iv) = a+/ dn(3)+/ (% —14+e ™ cosvs)dn(s) >0, u>0,veR.
0 0
(3.4)

(3.2)—(3.4) conclude our first assertion.
Now suppose

1< /OT sdn(s) =

sin 6

, a> —cosG/ dn(s).
0

(Note that f(0) = 6/sinf, 6 € (0, 7) is a strictly increasing function and limy_ ¢+ f(6)
= 1, limg_, f(#) = +oo. Hence for any R* > 1, there is a unique 6 € (0, 7) such
that R* = 6/sin6.) Applying Theorem 2.5 we find that A(u + ) # 0, for u > 0,
v > 0. Thus the proof is completed.

As an immediate consequence of Theorem 3.1 we have

Corollary 3.2. For the equation
2(t) = —ax(t) — Zaix(t -r;), 1i>0, i=1,--- n, (3.5)
=1

ifa; >0,i=1,--- ,n and there is § € (0,7) such that
n 9 n
it = <, - 0 1y
;ar ond a > — Ccos ;a

then the zero solution of (3.5) is asymptotically stable.

Next we consider a population model with diffusion effect:

9 T
6Ng:,t) _ 59 ];S’t) +7rN(z,t) [1 —/0 N(z,t— S)dn(S)] (3.6)

with the boundary and initial conditions

N(0,t) = N(r,t) =0, t>0

N(z,s) = ¢(z,s), -T<s<0,0<z<m,

here K > 0,7 > 0 and T > 0 are constants and 7(s) is non decreasing with

/OTdn(S) = 1.
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Our interest is to discuss the stability of the positive equilibrium solution N(z) of
(3.6), which is determined by

d’N(z)

K
< dz?

+rN(z)[1 - N(z)]=0, ze€lI=(0,7) (3.7

N(@©)=N(r)=0, N(z)>0, z€(0,7). (3.8)
Green and Stech in [2] have shown that:
1. If r/K < 1, then the only solution of (3.7)-(3.8) is N = 0.
2. If r/K > 1, (3.7)—(3.8) have a unique solution

N(z) = N(z;r,K) with 0<N(z)<1, z¢€l.
3. Let M(r,K) = max N(z;r, K), then the equilibrium solution N(z;r, K) is
asymptotically stable if

T
M(r,k)/0 sdn(s) < 1.

By using Theorem 2.5, we can improve this estimate and obtain
Theorem 3.3. Ifr/K > 1 and

T m

rM(r, K)/ sdn(s) < =,
0 2

then the equilibrium solution N(z;r, K) is asymptotically stable.

Before the proof of this theorem, we first establish the following
Lemma 3.4. Let
={yec*(I)nc(), y(0) =0}
L:C2—-CZ L=KD?>+r]1- ~(a:)].

where D? = d?/dz? and N(z) = N(z;r, K) is the positive equilibrium. Then all
eigenvalues of L are real and non positive.

Proof: Obviously, L is a self-adjoint operator, that is

/ "(Lé)wds = / (L)pds forall o, b e CE,
0 0

so all eigenvalues of L are real. Suppose L has some eigenvalue A > 0, and let y be
the corresponding eigenfunction, we have

@ | (r[1 = N(z)] = \y(z) = 0.

dz?
Note that -
d*N(z) - -
K T +7[1-=N(@)]N(z)=0
and

r[l = N(z)] > r[1 = N(z)] = A

The Sturm comparison theorem [3] implies that N(z) has at least one zero in I,
which contradicts the positivity of NV on I.
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Corollary 3.5. For all ¢y € C?
/ (Ly)ddz < 0. (3.9)
0

Proof: Since L is self-adjoint, the collection {¢'} of all eigenfunctions with f Yidx
= 1 form an orthonormal basis of C3 ([4], p.374). Inequality (3.9) follows from
Lemma 3.4 and Parseval’s equation.

Now we prove Theorem 3.3. First, one can verify that the linearized equation
with respect to equilibrium N (z) is

Ou %u
i K82+r[1—N]u—rN/ u(z,t — s)dn(s).

So the eigenvalue problem is

T
A E [+ rN/ ()| - Ly =0, AeC, veCq b0 (3.10)
0

We claim that (3.10) does not have eigenvalue A with Re X > 0. To see this, for
A\ = u + v, multiplying A(X, ) by ¥ and integrating over I we obtain

g ™ N T . T
/A(A,d))t[_)dmzf [u+iv+rN e_“se"'”sdn(s)]lz/)lzd:c—-/(Lw)d—)d:c. (3.11)
0 0 0 0

Since N(z) > 0, z € (0,7) and fOT dn(s) = 1, it follows from (3.9) that for all
0# 4y eCq,

™ T kg
| a0wyidazr [ ants) [ S@lwpds >0
0 0 0
Hence
A0,4) #0, forall 0+#y € C2.
If u>0,v>0and u+v >0, then (3.11) yields that

[ a0uyide=u [ wpas - [ (Loyiis

+iv /07r [1 - M/o e~ “sdn(s )] |¢(x)|?da

s

T ™
+_2_r e " (ivs + —g-e_i”s)dn(s) / N(w)|1/)(z)|2d1:
0

T Jo
By the assumption of rM(r, K) fOT sdn(s) < m/2 we have

2r T 2r T def
1- ?N(I)/ se™*dn(s) > 1 - ?M(r,k)/ sdn(s) = o > 0.
0 0
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So
1)/07r [1 - 2—r]\~/'(a:) /OT se—"sdn(s)] [¥|*dz > vo /07r [¥|?dz.

s

Moreover it follows from (3.9) that

T 5 B ™ _ s 2
w [[wlde = [ (Loyide 2 u [ wpa
Thus

2 % [ whde- [ (@i

siv | - N /Te—ussdn(s)] é(a)Pde € D \ D3,

™ 0

where Dz is defined as in Lemma 2.2. Furthermore, since 7 is increasing, we have

det 2r [T _.o . T _; T 9

2L [N e ivs + Femants) [ M@)o
T Jo 2 0

2r " 2 T —us

=— [ N@)yl'de [ e Wg(vs)dn(s) € D,

0 0

where Wi is defined as in Lemma 2.2. By using Lemma 2.2 we get

/WA(A,¢)1de=z1+z2 #0.
0

Therefore
AN ) #0, forallu>0,v>0,0#¢€C2

Finally notice that for u > 0, v < 0 and 0 # ¢ € C3?,
Alu+iv,9) = A(u — iv,9) # 0,

which completes the proof.
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