ON ASYMPTOTIC STABILITY FOR LINEAR DELAY EQUATIONS

Wenzhang Huang \dagger
Department of Mathematics, Claremont Graduate School, Claremont, California 91711 USA
(Submitted by: Kenneth L. Cooke)

1. Introduction. For a linear scalar delay equation

$$
\dot{x}(t)+a x(t)+b x(t-r)=0
$$

the stability of the zero solution can be determined by whether all roots of the characteristic equation

$$
\begin{equation*}
\lambda+a+b e^{-\lambda r}=0 \tag{1.1}
\end{equation*}
$$

lie in the left half plane. And it is well known [1] that all roots of (1.1) lie in the left half plane if either

$$
a>-b \geq-\frac{1}{r}
$$

or

$$
r b=\frac{\theta}{\sin \theta} \quad \text { and } \quad a>-b \cos \theta \text { for some } \theta \in(0, \pi)
$$

In this paper, we extend this result to a more general equation of the form

$$
\begin{equation*}
\lambda+a+\int_{0}^{r} d \eta(s) e^{-\lambda s}=0 \tag{1.2}
\end{equation*}
$$

where η is a function of bounded variation on $[0, r]$ and $\int_{0}^{0^{+}} d \eta(s)=0$, and then apply it to discuss the stability of some classes of delay equations, including a partial delay-differential equation studied by Green and Stech [2].
2. A main theorem. In this section we shall establish a theorem concerning the location of the roots of (1.2).
Lemma 2.1. Let $\theta \in(0, \pi)$, then $\theta \cos \theta / \sin \theta<1$.
Proof: Since

$$
\frac{d}{d \theta}(\cos \theta \sin \theta-\theta)=-2 \sin ^{2} \theta<0, \quad \theta \in(0, \pi)
$$

and $\cos \theta \sin \theta-\left.\theta\right|_{\theta=0}=0$, it follows that $\cos \theta \sin \theta-\theta<0$, for $\theta \in(0, \pi)$. Hence

$$
\frac{d}{d \theta}\left(\frac{\theta \cos \theta}{\sin \theta}\right)=\frac{\cos \theta \sin \theta-\theta}{\sin ^{2} \theta}<0, \quad \theta \in(0, \pi)
$$

Note that $\theta \cos \theta \sin \theta \rightarrow 1$ as $\theta \rightarrow 0^{+}$, therefore, $\frac{\theta \cos \theta}{\sin \theta}<1, \theta \in(0, \pi)$.

[^0]Lemma 2.2. For any $\theta \in(0, \pi)$, introduce

$$
D_{\theta}=\left\{x+i y: x \in \mathbb{R}, y \geq-\frac{\sin \theta-\theta \cos \theta}{\theta \sin \theta} x\right\},
$$

a half plane of the complex plane \mathbb{C}. Then for any $z_{i} \in D_{\theta}, \alpha_{i} \geq 0, i=1,2$, we have $\alpha_{1} z_{1}+\alpha_{2} z_{2} \in D_{\theta}$. Furthermore,

$$
z_{1}+z_{2}=0 \quad \text { if and only if } z_{1}, z_{2} \in D_{\theta} \text { and } z_{1}=-z_{2} .
$$

Proof: The proof is trivial since D_{θ} is a half plane and also a cone which contains $0 \in \partial D_{\theta}$.

Lemma 2.3. For each $\theta \in(0, \pi)$, let $W_{\theta}:[0, \infty) \rightarrow \mathbb{C}$ be given by

$$
\begin{aligned}
W_{\theta}(v) & =-\theta \cos \theta / \sin \theta+i v+\theta e^{-i v} / \sin \theta \\
& =-\theta(\cos \theta-\cos v) / \sin \theta+i(v-\theta \sin v / \sin \theta)
\end{aligned}
$$

then $W_{\theta}([0, \infty)) \in D_{\theta}$.
Proof: If we let $x(v)=\operatorname{Re} W_{\theta}(v), y(v)=\operatorname{Im} W_{\theta}(v)$ for $v \in(0, \pi) \cup(\pi, 2 \pi)$, we have

$$
\frac{d y}{d x}=\frac{\dot{y}(v)}{\dot{x}(v)}=\frac{-\sin \theta+\theta \cos v}{\theta \sin v}
$$

so

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d v}\left(\frac{\dot{y}(v)}{\dot{x}(v)}\right) \frac{d v}{d x}=\frac{\sin ^{2} \theta}{\theta^{2} \sin ^{3} v}\left(\frac{\theta}{\sin \theta}-\cos v\right)
$$

Since $\theta / \sin \theta>1$, it follows that

$$
\frac{d^{2} y}{d x^{2}}>0, \quad v \in(0, \pi) ; \quad \frac{d^{2} y}{d x^{2}}<0, \quad v \in(\pi, 2 \pi)
$$

This implies that $W_{\theta}(v)$ is convex downward for $v \in(0, \pi)$ and convex for $v \in$ $(\pi, 2 \pi)$. Moreover note that $x(\theta)=y(\theta)=0$ and

$$
\left.\frac{d y}{d x}\right|_{(x(\theta), y(\theta))}=-\frac{\sin \theta-\theta \cos \theta}{\theta \sin \theta}
$$

That is, the tangent line of $W_{\theta}(v)$ at $W_{\theta}(\theta)=0$ concides with the boundary of D_{θ}. This implies that $W_{\theta}(v) \in D_{\theta}, v \in[0, \pi]$ since $W_{\theta}(v)$ is convex downward. Furthermore, we have

$$
W_{\theta}(2 \pi)=\theta(1-\cos \theta) / \sin \theta+i 2 \pi \in D_{\theta},
$$

again the convexity of $W_{\theta}(v)$ for $v \in(\pi, 2 \pi]$ yields that $W_{\theta}(v) \in D_{\theta}, v \in(\pi, 2 \pi]$. Suppose $v>2 \pi$, then there is an integer k and $v_{0} \in[0,2 \pi)$ such that $v=v_{0}+2 k \pi$. Since $i 2 k \pi \in D_{\theta}$, it follows from Lemma 2.2 that

$$
W_{\theta}(v)=i 2 k \pi+W_{\theta}\left(v_{0}\right) \in D_{\theta} .
$$

This completes the proof of the lemma.

Lemma 2.4. Suppose that η is increasing and there is $\theta \in(0, \pi)$ such that

$$
\int_{0}^{r} s d \eta(s)=\frac{\theta}{\sin \theta}, \quad a>-\cos \theta \int_{0}^{r} d \eta(s)
$$

Define

$$
g_{\theta}(u)=u+a+\cos \theta \int_{0}^{r} e^{-u s} d \eta(s)
$$

then $g_{\theta}(u)>0$ for all $u \geq 0$.
Proof: It is obvious that $g_{\theta}(0)>0$. Moreover by using Lemma 2.1 we obtain

$$
\frac{d g_{\theta}(u)}{d u}=1-\cos \theta \int_{0}^{r} s e^{-u s} d \eta(s) \geq 1-\cos \theta \int_{0}^{r} s d \eta(s)=1-\frac{\theta \cos \theta}{\sin \theta}>0
$$

Hence $g_{\theta}(u)>0$ for all $u \geq 0$.
By means of the previous lemmas it is now easy to prove our main
Theorem 2.5. Under the assumptions of Lemma 2.4, let

$$
\Delta(\lambda)=\lambda+a+\int_{0}^{r} e^{-\lambda s} d \eta(s)
$$

then

$$
\Delta(u+i v) \in D_{\theta} \backslash\{0\}, \quad \text { for all } u \geq 0, v \geq 0
$$

Proof: An easy calculation shows that

$$
\begin{align*}
\Delta(u+i v)= & u+a+\cos \theta \int_{0}^{r} e^{-u s} d \eta(s)+i v\left[1-\frac{\sin \theta}{\theta} \int_{0}^{r} s e^{-u s} d \eta(s)\right] \\
& +\frac{\sin \theta}{\theta} \int_{0}^{r} e^{-u s}\left[-\frac{\theta \cos \theta}{\sin \theta}+i v s+\frac{\theta}{\sin \theta} e^{-i v s}\right] d \eta(s) \tag{2.1}\\
= & g_{\theta}(u)+z_{\theta}+\frac{\sin \theta}{\theta} \int_{0}^{r} e^{-u s} W_{\theta}(v s) d \eta(s)
\end{align*}
$$

where

$$
z_{\theta}=i v\left[1-\frac{\sin \theta}{\theta} \int_{0}^{r} s e^{-u s} d \eta(s)\right]
$$

Since $W_{\theta}(v s) \in D_{\theta}$ and η is increasing, it is obvious that

$$
\frac{\sin \theta}{\theta} \int_{0}^{r} e^{-u s} W_{\theta}(v s) d \eta(s) \in D_{\theta}
$$

Moreover,

$$
1-\frac{\sin \theta}{\theta} \int_{0}^{r} s e^{-u s} d \eta(s) \geq 1-\frac{\sin \theta}{\theta} \int_{0}^{r} s d \eta(s)=0
$$

so $z_{\theta} \in D_{\theta}$. It follows from Lemma 2.3 and 2.4 that $g_{\theta}(u)+z_{\theta} \in D_{\theta} \backslash \partial D_{\theta}$. Therefore, as a consequence of Lemma 2.2 and (2.1) we have

$$
\Delta(u+i v) \in D_{\theta} \backslash \partial D_{\theta}
$$

3. On stability of delay equations. We now turn to discuss the stability of some classes of delay equations by using Theorem 2.5. As a first application consider the delay equation

$$
\begin{equation*}
\dot{x}(t)=-a x(t)-\int_{0}^{r} x(t-s) d \eta(s) \tag{3.1}
\end{equation*}
$$

where η satisfies the assumption of Section 1 .

Theorem 3.1. Suppose that η is monotone. If either

$$
\int_{0}^{r} s d \eta(s) \leq 1, \quad a>-\int_{0}^{r} d \eta(s)
$$

or

$$
1<\int_{0}^{r} s d \eta(s)=\frac{\theta}{\sin \theta}, \quad a>-\cos \theta \int_{0}^{r} d \eta(s)
$$

for some $\theta \in(0, \pi)$, then the zero solution of equation (3.1) is asymptotically stable.
Proof: It is enough to show that all eigenvalues of the characteristic equation

$$
\Delta(\lambda)=\lambda+a+\int_{0}^{r} e^{-\lambda s} d \eta(s)=0
$$

have negative real parts. This is equivalent to proving that

$$
\Delta(u+i v) \neq 0, \quad \text { for all } u \geq 0, v \geq 0
$$

It is trivial if $\int_{0}^{r} d \eta(s)=0$ (this implies that $\int_{0}^{r} s d \eta(s)=0$), so we suppose that $R^{*}=\int_{0}^{r} s d \eta(s) \neq 0$.

First suppose $R^{*} \leq 1$, and $a>-\int_{0}^{r} d \eta(s)$. then

$$
\begin{aligned}
\Delta(\lambda) & =a+\int_{0}^{r} d \eta(s)+\frac{1}{R^{*}} \int_{0}^{r} \lambda s d \eta(s)-\int_{0}^{r} d \eta(s)+\int_{0}^{r} e^{-\lambda s} d \eta(s) \\
& =a+\int_{0}^{r} d \eta(s)+\int_{0}^{r}\left(\frac{\lambda}{R^{*}}-1+e^{-\lambda s}\right) d \eta(s)
\end{aligned}
$$

If $R^{*}>0$, then $\int_{0}^{r} d \eta(s)>0$. For any $u \geq 0, v>0$,

$$
\begin{equation*}
\operatorname{Im} \Delta(u+i v)=\int_{0}^{r}\left(\frac{v s}{R^{*}}-e^{-u s} \sin (v s)\right) d \eta(s) \geq \int_{0}^{r}\left(\frac{v s}{R^{*}}-|\sin v s|\right) d \eta(s)>0 \tag{3.2}
\end{equation*}
$$

for $v s / R^{*}-|\sin v s|>0, s \in(0, r]$. And if $v=0$, we have

$$
\Delta(u)=a+\int_{0}^{r} d \eta(s)+\int_{0}^{r}\left(\frac{u s}{R^{*}}-1+e^{-u s}\right) d \eta(s)
$$

Since

$$
\frac{u s}{R^{*}}-1+e^{-u s} \geq u s-1+e^{-u s} \geq 0, \quad s \geq 0
$$

and $a+\int_{0}^{r} d \eta(s)>0$, therefore

$$
\begin{equation*}
\Delta(u)>0 \text { for all } u \geq 0 \tag{3.3}
\end{equation*}
$$

If $R^{*}<0$, then $\int_{0}^{r} d \eta(s)<0$. For any $u \geq 0$, we have

$$
\frac{u s}{R^{*}}-1+e^{-u s} \cos v s \leq-1+e^{-u s} \leq 0, \quad s \geq 0, \quad v \in \mathbb{R}
$$

So

$$
\int_{0}^{r}\left(\frac{u s}{R^{*}}-1+e^{-u s} \cos v s\right) d \eta(s) \geq 0
$$

Hence
$\operatorname{Re} \Delta(u+i v)=a+\int_{0}^{r} d \eta(s)+\int_{0}^{r}\left(\frac{u s}{R^{*}}-1+e^{-u s} \cos v s\right) d \eta(s)>0, \quad u \geq 0, v \in \mathbb{R}$.
(3.2)-(3.4) conclude our first assertion.

Now suppose

$$
1<\int_{0}^{r} s d \eta(s)=\frac{\theta}{\sin \theta}, \quad a>-\cos \theta \int_{0}^{r} d \eta(s)
$$

(Note that $f(\theta)=\theta / \sin \theta, \theta \in(0, \pi)$ is a strictly increasing function and $\lim _{\theta \rightarrow 0^{+}} f(\theta)$ $=1, \lim _{\theta \rightarrow \pi} f(\theta)=+\infty$. Hence for any $R^{*}>1$, there is a unique $\theta \in(0, \pi)$ such that $R^{*}=\theta / \sin \theta$.) Applying Theorem 2.5 we find that $\Delta(u+i v) \neq 0$, for $u \geq 0$, $v \geq 0$. Thus the proof is completed.

As an immediate consequence of Theorem 3.1 we have
Corollary 3.2. For the equation

$$
\begin{equation*}
\dot{x}(t)=-a x(t)-\sum_{i=1}^{n} a_{i} x\left(t-r_{i}\right), \quad r_{i}>0, \quad i=1, \cdots, n \tag{3.5}
\end{equation*}
$$

if $a_{i} \geq 0, i=1, \cdots, n$ and there is $\theta \in(0, \pi)$ such that

$$
\sum_{i=1}^{n} a_{i} r_{i}=\frac{\theta}{\sin \theta}, \quad a>-\cos \theta \sum_{i=1}^{n} a_{i},
$$

then the zero solution of (3.5) is asymptotically stable.
Next we consider a population model with diffusion effect:

$$
\begin{equation*}
\frac{\partial N(x, t)}{\partial t}=K \frac{\partial^{2} N(x, t)}{\partial x^{2}}+r N(x, t)\left[1-\int_{0}^{T} N(x, t-s) d \eta(s)\right] \tag{3.6}
\end{equation*}
$$

with the boundary and initial conditions

$$
\begin{aligned}
& N(0, t)=N(\pi, t)=0, \quad t \geq 0 \\
& N(x, s)=\phi(x, s), \quad-T \leq s \leq 0,0 \leq x \leq \pi
\end{aligned}
$$

here $K>0, r>0$ and $T>0$ are constants and $\eta(s)$ is non decreasing with

$$
\int_{0}^{T} d \eta(s)=1
$$

Our interest is to discuss the stability of the positive equilibrium solution $\tilde{N}(x)$ of (3.6), which is determined by

$$
\begin{align*}
K \frac{d^{2} N(x)}{d x^{2}}+r N(x)[1-N(x)]=0, & x \in I=(0, \pi) \tag{3.7}\\
N(0)=N(\pi)=0, & N(x)>0, \quad x \in(0, \pi) \tag{3.8}
\end{align*}
$$

Green and Stech in [2] have shown that:

1. If $r / K \leq 1$, then the only solution of (3.7)-(3.8) is $N \equiv 0$.
2. If $r / K>1$, (3.7)-(3.8) have a unique solution

$$
\tilde{N}(x)=\tilde{N}(x ; r, K) \quad \text { with } \quad 0<\tilde{N}(x)<1, x \in I
$$

3. Let $M(r, K)=\max \tilde{N}(x ; r, K)$, then the equilibrium solution $\tilde{N}(x ; r, K)$ is asymptotically stable if

$$
r M(r, k) \int_{0}^{T} s d \eta(s)<1
$$

By using Theorem 2.5, we can improve this estimate and obtain
Theorem 3.3. If $r / K>1$ and

$$
r M(r, K) \int_{0}^{T} s d \eta(s)<\frac{\pi}{2}
$$

then the equilibrium solution $\tilde{N}(x ; r, K)$ is asymptotically stable.
Before the proof of this theorem, we first establish the following
Lemma 3.4. Let

$$
\begin{gathered}
C_{0}^{2}=\left\{y \in C^{2}(I) \cap C(\bar{I}), \quad y(0)=y(\pi)=0\right\} \\
L: C_{0}^{2} \rightarrow C_{0}^{2}, \quad L=K D^{2}+r[1-\tilde{N}(x)] .
\end{gathered}
$$

where $D^{2}=d^{2} / d x^{2}$ and $\tilde{N}(x)=\tilde{N}(x ; r, K)$ is the positive equilibrium. Then all eigenvalues of L are real and non positive.
Proof: Obviously, L is a self-adjoint operator, that is

$$
\int_{0}^{\pi}(L \phi) \psi d x=\int_{0}^{\pi}(L \psi) \phi d x \quad \text { for all } \quad \phi, \psi \in C_{0}^{2}
$$

so all eigenvalues of L are real. Suppose L has some eigenvalue $\lambda>0$, and let y be the corresponding eigenfunction, we have

$$
K \frac{d^{2} y(x)}{d x^{2}}+(r[1-\tilde{N}(x)]-\lambda) y(x)=0
$$

Note that

$$
K \frac{d^{2} \tilde{N}(x)}{d x^{2}}+r[1-\tilde{N}(x)] \tilde{N}(x)=0
$$

and

$$
r[1-\tilde{N}(x)]>r[1-\tilde{N}(x)]-\lambda .
$$

The Sturm comparison theorem [3] implies that $\tilde{N}(x)$ has at least one zero in I, which contradicts the positivity of \tilde{N} on I.

Corollary 3.5. For all $\psi \in C_{0}^{2}$

$$
\begin{equation*}
\int_{0}^{\pi}(L \psi) \bar{\psi} d x \leq 0 \tag{3.9}
\end{equation*}
$$

Proof: Since L is self-adjoint, the collection $\{\psi\}$ of all eigenfunctions with $\int_{0}^{\pi} \psi^{2} d x$ $=1$ form an orthonormal basis of C_{0}^{2} ([4], p.374). Inequality (3.9) follows from Lemma 3.4 and Parseval's equation.

Now we prove Theorem 3.3. First, one can verify that the linearized equation with respect to equilibrium $\tilde{N}(x)$ is

$$
\frac{\partial u}{\partial t}=K \frac{\partial^{2} u}{\partial x^{2}}+r[1-\tilde{N}] u-r \tilde{N} \int_{0}^{T} u(x, t-s) d \eta(s)
$$

So the eigenvalue problem is

$$
\begin{equation*}
\Delta(\lambda, \psi) \stackrel{\text { def }}{=}\left[\lambda+r \tilde{N} \int_{0}^{T} e^{-\lambda s} d \eta(s)\right] \psi-L \psi=0, \quad \lambda \in C, \psi \in C_{0}^{2}, \psi \neq 0 \tag{3.10}
\end{equation*}
$$

We claim that (3.10) does not have eigenvalue λ with $\operatorname{Re} \lambda \geq 0$. To see this, for $\lambda=u+i v$, multiplying $\Delta(\lambda, \psi)$ by $\bar{\psi}$ and integrating over I we obtain

$$
\begin{equation*}
\int_{0}^{\pi} \Delta(\lambda, \psi) \bar{\psi} d x=\int_{0}^{\pi}\left[u+i v+r \tilde{N} \int_{0}^{T} e^{-u s} e^{-i v s} d \eta(s)\right]|\psi|^{2} d x-\int_{0}^{\pi}(L \psi) \bar{\psi} d x \tag{3.11}
\end{equation*}
$$

Since $\tilde{N}(x)>0, x \in(0, \pi)$ and $\int_{0}^{T} d \eta(s)=1$, it follows from (3.9) that for all $0 \neq \psi \in C_{0}^{2}$,

$$
\int_{0}^{\pi} \Delta(0, \psi) \bar{\psi} d x \geq r \int_{0}^{T} d \eta(s) \int_{0}^{\pi} \tilde{N}(x)|\psi|^{2} d x>0
$$

Hence

$$
\Delta(0, \psi) \neq 0, \quad \text { for all } 0 \neq \psi \in C_{0}^{2}
$$

If $u \geq 0, v \geq 0$ and $u+v>0$, then (3.11) yields that

$$
\begin{aligned}
\int_{0}^{\pi} \Delta(\lambda, \psi) \bar{\psi} d x & =u \int_{0}^{\pi}|\psi|^{2} d x-\int_{0}^{\pi}(L \psi) \bar{\psi} d x \\
& +i v \int_{0}^{\pi}\left[1-\frac{\tilde{N}(x) 2 r}{\pi} \int_{0}^{T} e^{-u s} s d \eta(s)\right]|\psi(x)|^{2} d x \\
& +\frac{2 r}{\pi} \int_{0}^{T} e^{-u s}\left(i v s+\frac{\pi}{2} e^{-i v s}\right) d \eta(s) \int_{0}^{\pi} \tilde{N}(x)|\psi(x)|^{2} d x
\end{aligned}
$$

By the assumption of $r M(r, K) \int_{0}^{T} s d \eta(s)<\pi / 2$ we have

$$
1-\frac{2 r}{\pi} \tilde{N}(x) \int_{0}^{T} s e^{-u s} d \eta(s) \geq 1-\frac{2 r}{\pi} M(r, k) \int_{0}^{T} s d \eta(s) \stackrel{\text { def }}{=} \sigma>0
$$

So

$$
v \int_{0}^{\pi}\left[1-\frac{2 r}{\pi} \tilde{N}(x) \int_{0}^{T} s e^{-u s} d \eta(s)\right]|\psi|^{2} d x \geq v \sigma \int_{0}^{\pi}|\psi|^{2} d x
$$

Moreover it follows from (3.9) that

$$
u \int_{0}^{\pi}|\psi|^{2} d x-\int_{0}^{\pi}(L \psi) \bar{\psi} d x \geq u \int_{0}^{\pi}|\psi|^{2} d x
$$

Thus

$$
\begin{aligned}
z_{1} & \stackrel{\text { def }}{=} u \int_{0}^{\pi}|\psi|^{2} d x-\int_{0}^{\pi}(L \psi) \bar{\psi} d x \\
& +i v \int_{0}^{\pi}\left[1-\frac{\tilde{N}(x) 2 r}{\pi} \int_{0}^{T} e^{-u s} s d \eta(s)\right]|\psi(x)|^{2} d x \in D_{\frac{\pi}{2}} \backslash \partial D_{\frac{\pi}{2}}
\end{aligned}
$$

where $D_{\frac{\pi}{2}}$ is defined as in Lemma 2.2. Furthermore, since η is increasing, we have

$$
\begin{aligned}
z_{2} & \stackrel{\text { def }}{=} \frac{2 r}{\pi} \int_{0}^{T} e^{-u s}\left(i v s+\frac{\pi}{2} e^{-i v s}\right) d \eta(s) \int_{0}^{\pi} \tilde{N}(x)|\psi(x)|^{2} d x \\
& =\frac{2 r}{\pi} \int_{0}^{\pi} \tilde{N}(x)|\psi|^{2} d x \int_{0}^{T} e^{-u s} W_{\frac{\pi}{2}}(v s) d \eta(s) \in D_{\frac{\pi}{2}}
\end{aligned}
$$

where $W_{\frac{\pi}{2}}$ is defined as in Lemma 2.2. By using Lemma 2.2 we get

$$
\int_{0}^{\pi} \Delta(\lambda, \psi) \bar{\psi} d x=z_{1}+z_{2} \neq 0
$$

Therefore

$$
\Delta(\lambda, \psi) \neq 0, \quad \text { for all } u \geq 0, v \geq 0,0 \neq \psi \in C_{0}^{2}
$$

Finally notice that for $u \geq 0, v \leq 0$ and $0 \neq \psi \in C_{0}^{2}$,

$$
\Delta(u+i v, \psi)=\bar{\Delta}(u-i v, \bar{\psi}) \neq 0
$$

which completes the proof.
Acknowledgment. The author would like to thank Professor Kenneth L. Cooke for his helpful suggestions in preparing this paper.

REFERENCES

[1] R. Bellman and K.L. Cooke, "Differential-Difference Equations," Academic Press, 1963.
[2] D. Green, Jr and H.W. Stech, Diffusion and hereditary effects in a class of population models, Differential Equations and Applications in Ecology, Epidemics, and Population Problems (eds. S.N. Busenberg and K.L. Cooke), p. 19-28, Academic Press, 1981.
[3] G. Birkhoff and G.C. Rota, "Ordinary Differential Equations," John Wiley \& Sons, New York, 1981, Third edition, p. 268.
[4] I. Stakgold, "Green's Functions and Boundary Value Problems," John Wiley \& Sons, New York, 1979.

[^0]: Received for publication July 1989.
 \dagger This paper constitutes part of the author's Ph.D. dissertation at the Claremont Graduate School. AMS Subject Classifications: 34.

