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Abstract. Let B be a separable Banach space an&let B* be separable. We prove thatAfhas
finite Szlenk index (for alk > 0) thenB can be renormed to have the weak* uniform Kadec-Klee
property. Thus it > 0 there exist$(e) > 0 so that if(x;) is a sequence in the ball &f converging

w* to x so that liminf,— oo [|xn — x|l = e then|x|| < 1 — §(e). In addition we show that the norm
can be chosen so théts) > ce? for somep < oo andc > 0.

AMS subject classifications:Primary 46B03; Secondary 46B07, 46B10, 46B20

Key words: asymptotic structure, Szlenk index, uniform Kadec-Klee property

0. Introduction

The asymptotic structure of a separable infinite dimensional Banach &pase
considered in [21] and [20] is a concept which merges the finite dimensional and
infinite dimensional structure oK. One obtains for each integer a class of
normalized bases of lengthh which can each be found arbitrarily far out and
arbitrarily separated iX. Usually knowledge of the asymptotic structure does not
translate into global information abolt However sometimes it does and one such
occurrence is the focal point of this paper.

Our object of attention is the following problem. Suppd$das a space with
separable dual having finite Szlenk index for every 0. This means that if one
starts with the ball ofX*, By+, and then forms the subset of alf limits of ¢-
separated sequences frag« and then forms the new subset of alt limits of
e-separated sequences from this subset and so on then after finitely many such
steps one is left with nothing. The question is ¢ate renormed so that the dual
X* has thew*-UKK (weak* uniform Kadec-Klee) property? This latter property
involves a modulug(¢) > 0. It says that gives > 0 and(x}) € Bx+, a sequence
convergingw* to x* with liminf,_ o ||x} — x*|| > e then||x*|| < 1 — 48(¢). We
show that this problem has an affirmative solution and moreover the matiiglus
is of power type.
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Our proof leads us into further study of the asymptotic structur& §20]. It
turns out that having finite Szlenk index just says that one does not have arbitrarily
long basese); amongst the asymptotic structureXsf with sup, || Y7 €|l < oo,
and this in turn yields uniform lowef, estimates for somg@ < oo on bases in
the asymptotic structure. We then carry this lowgrestimate back td* (for a
different p) in a certain manner and ultimately obtain the theorem.

A corollary of our result is a solution to a question raised by R. Huff [10] which
can be stated as: X is a reflexive separable space wkh= B* and Szlenk index
S(B,¢) < w for all ¢ > 0, canX be renormed so tha* has the UKK (uniform
Kadec-Klee) property. This is defined like thg-UKK property except that one
uses weak convergence rather than weak* convergence. The nonreflexive version
of Huff’s problem remains open (see below).

A number of authors have written on the-UKK and UKK properties and
the renorming problem [24], [18], [2], [4]. Prus [24] observed that a refleXive
with a basis has an equivalent UKK norm iff some blocking of the basis into an
FDD (finite dimensional decomposition) admits for soge< oo uniform lower
¢, estimates on all block bases. The analogous result fowtRdKK property
is established for spaces with a shrinking basis in [4]. UKK properties in Banach
lattices are investigated in [2]. In [18] Lancien shows thaXihas finite Szlenk
index thenX* admits an equivalenb* lower semicontinuougcart satisfying the
w*-UKK and solves the renorming problem for the spatg&X) and certairC (K)
spaces.

Our result also bears some resemblance with the characterization of superreflex-
ive Banach spaces as those that can be renormed to be uniformly convex [6] and
moreover in such a manner as to have modulus of uniform convexity of power type
[23].

In Section 1 we recall the notion of asymptotic structure of a spagdth an
FDD (E,), generalize it, and connect it with certain blockings of the FDD (finite
dimensional decomposition). In particular we observe that givgn0 there exists
ablocking(F,) of (E,) so that for allu if (x;)] is any skipped normalized sequence
with respect to(F;)5° then (x;)] is (up toeg,) an element of theith-asymptotic
structure{ X, (E;)},.

Section 3 concerns connections between our indices and fgestimates. In
Section 4 we solve our problem in the case wheéteas a shrinking FDD. Section 5
handles the general case. Section 6 concerns some dual results and contains further
remarks. In the last section we discuss results concerningthékK modulus
6(¢).

Our notation is standard, B, Y, Z, ... will be separable infinite dimensional
Banach spaces and G, H, ... will be used for finite dimensional space®y is
the unit ball ofX andSy is the unit sphere oX. {-) denotes linear span afg is
the closed linear span.
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1. Asymptotic Structure

In this section we make a connection between the asymptotic structure of a Banach
spaceX with respect to an FDIDE;) and finite sequences; )X, in a certain skipped
blocking of (E;). For example we show that givédnandes > 0 we can find a
blocking (F;) of (E;) so that, up tce, every normalized skipped sequer(@e)’{
with respect ta(F;) belongs to{ X, (E;)}«.

We begin by recalling the precise meaning of this last creature [20](E@t
be an FDD forX. We shall assume thaf,) is monotone. This is not essential
but rather is for convenience, here and throughout. GivenN andC > 1 we
let M, (C) be the set of all normalize@-basic sequences of length.M, (C) is a
compact metric space under the metricdpg, -) where

db((xi)]i, (yi)'{) = inf{AB V(@) CR,

o] < | Sl < o] Sl

SetMy = My (D).

DEFINITION 1.1. Let(e;)} € My. Then(e;)s € {X, (E)} if
Ve>0Vnidx € Sk,

VI’le)CzGS<E)

ii}nz”’

Vn,dx, € S<E> SO thatdb((e,»)’{, (x,)]{) <1l+e.

ilizng

We will now introduce a generalization of asymptotic structures. One advantage
of this generalization is a simplification of the proofs.

For this let(M, p) be a complete metric space ahd X — M be uniformly
continuous on bounded sets mapping bounded sets into relative compact sets. For
k € Nlet C(—1, 1]%, M) be the space of continuous mappings[er, 1]¢ into
M equipped with the topology of uniform convergence, i.e([-Q, 1], M) is
equipped with the metrig,, where

p(fog) = sup  p(f(as...ap), gas. ...a),
lai|<1,i=1,..k

for f,g € C(—1, 1I*, M).

Forxi, xo, ... x, € X we denote by, ,. ) the map:

k
Liyogp - [=1, 1" 3 (a, a2, ... ,a) = L (Z am) :
i=1
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DEFINITION 1.2. Letf € C([—1, 1%, M) Thenf e L — {X, (E)}i if
Ve> OanEle € S(E;)

izng

Vnodx, e S(E,-)

i>ny

Vn,3dx; € S<Ei>i2nk so thatp, ( f, L(Xi,xz,...xk)) < E.

Note that{ X, (E;)}; of Definition 1.1 coincides with|-|| —{X, (E;)}; of Definition
1.2.

This notion can also be understood in terms of countably branching trees of
lengthk on Sx. We letT; be the treel;, = {(n1,...,n;) : 1 < j < k where
Vi, n; € N}ordered by(ny, ... ,n;) < (mq,...,my) if j < € andn; = m;
fori < j. Fortwo elements$ny, ...n,) and(mq, ... , m,) of the same length we
also introduce the ordex given by (nq,...n,) < (myq, ... ,my) if n; < m;, for
alli = 1,2...¢. ThenT(X) is the set of all trees 0§y indexed byT,. Thus
T eThX)it T ={x(ny, ... ,nj): (n1,...,n;) € T} € Sy where the order on
7 is that induced by,. We call such & ablock treewith respect tq E;) if for all
a € Tp_1 U {#} (x(a, n)),en is a block with respect toE;).

Atree T € Ty (X) is C-basicif all branches(x(nq, ... ,nj))’;:l are C-basic
sequences.

DEFINITION 1.3. LetT = (x(n1, ... , 7)) j<km,..njen € Tx(X). We say that
T L-convergeso f € C([—1, 1]%, M) if

lim Ilim ... lim pk(L(x(nl.,...nj),jzl,...k)a )= 0.
n1—00 np—00 ng— 00
By a subtree of atre® = (x(a))ger, € Tx(X) we mean afamilyy’ = (x(«))ger
with T’ C T} having the property that for any e (T'NT;_1)U{#} the sef{n € N :
(a,n) € T'} is infinite. Note that7”’ can be order isomorphically reordered (with
respect to< and <) in a unique way into a treec’(«) : a € T;). We will identify
T’ with the tree(x’'(a) : a € Ty).

Note that if a tre¢” L-converges tof € C([—1, 1]¥, M) ande; \, O then there
is a subtree so that for alh, n, ... n; € Nitfollows thato (L (xy...n)).j=1...0)> )
< &yy-

The following proposition follows easily from the definitions above.

PROPOSITION 1.4.Let(E,) be a monotone FDD foK. f € L — {X, (E;)}; iff
there existy € T, (X), a block tree with respect t@E;), which L-converges tqf .

The following proposition follows from an easy compactness argument by in-
duction on allk € N.

PROPOSITION 1.5.Every tree inT, (X) has anL-convergent subtree.
Proof. From the Theorem of Arzela and Ascoli it follows that the set

L ={Lxy,xp..x0) © X1, X2, ... X € By}
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is relatively compact in G—1, 1]%, M).

Fork = 1 the claim follows from the relative compactness@f If the claim is
true fork — 1 and ifx(ny, n2, ... 1) (ny.np...nppem € Ti(X), we first fixn € N and
apply the induction hypothesis to the map

LG . C(-11, M), y— L Ox,+Yy)

(M is replaced by the space([G-1, 1], M)) and get a subtreéx'(n, «))yeq, Of
(x(n, @))ger, Which L@ -converges to somg, € C([—1, 1]*1, C([-1, 1], M)) =
C([—1, 1]*, M). Since thef,’s are in the compact set,” they have a conver-
gent subsequenag’;,),cn reordering now the familyx’'(n, «)),en ae, gives the
answer to the claim. O

Since we shall be concerned as well with subspacéswé relativize the above
definitions. For an interval C N, P, is the FDD projection o onto(E;);¢;.

Unless specified otherwise we [Btbe a subspace df, andL : Y — M be
uniformly continuous mapping bounded subset¥ @b relatively compact sets in
M.

DEFINITION 1.6. Let(E,) be a monotone FDD foX and letY € X be a
subspace. Fot € Nand f € C(—1,1], M) we sayf € L — {Y, (E;)}; if
Ve>0

VniVer>03y €Sy with ||P(Ei>;1y1|| < &1
VnoVer, > 013 Y2 € Sy with ||P<Ei>;2y2|| < &

VnVe,>03y, €Sy with ||P<El_)»ikyk|| < &
such thatoi (L y,,y,,..y), f) < €.

DEFINITION 1.7. Let(E;) bean FDD forX andlety C X. LetT = (y(ny, ...,
nj)n € T (Y, (E;)). T is anasymptotic block tree ol with respect to(E;),
denoted’” € a — Ti(Y), if forall s € N, lim,_,  [| Pig,3 y(m) || = 0 and lim,_,
||P(Ei)i(y(7l1, ..., Ny, n))|| =0 for all (ng, ..., I’lj) e Ti_,.

Proposition 1.4 becomes

PROPOSITION 1.8. Let (E;) be an FDD forX and letY € X andk € N.
feL—-1{Y, (E)}ifftreeT € a — T;(Y) which L-converges tqf .

Next we relate the asymptotic structureloto a certain blocking of the FDD
(E;) for X. Recall that(F;) is ablockingof (E;) if there exist integers 8= py <
p1 < --- sothatforallj, F; = <Ei>f;p/_1+l' (H;){° is askipped blockingf (F;)
if there exists integerg, < sy <s1+l<rm<so<sos+1l<rg<sz3<--- SO
that H; = (F,»)f;rj forall j. (x;) € X is a Skipped block sequencwith respect
to (F;) if there exists a (skipped) blocking?;) of (F;) with x; € H; for all ;.
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PROPOSITION 1.9.Assume thak is defined orX. Let(E,) be a monotone FDD
for X. Lete, | 0. Then there exists a blocking’;) of (E,) so that for allk and all
skipped normalized sequendes)! with respect taF)52,,

pk(L(xl,xz,...xk)’ L —{X, (Ei)}k) < & .

Rather than prove this we give the proof of the relativized result. This will
require thal E,)) be boundedly complete and henXes naturally a dual space, the
dual of[(E})] € X*. When we say here and in the sequel that X is »* closed
we mean with respect to the* topology thus generated ox. Proposition 1.7 is
proved similarly to 1.8 but the boundedly complete hypothesis is hever neetled.
convergence of a bounded sequenc iis just coordinatewise convergence with
respect ta E,).

PROPOSITION 1.10.Let (E,) be a monotone boundedly complete FDD Jor
and letY € X be o* closed. Lets, | 0. There exists, | 0 and a blocking
(F;) of (E,) with the following property. Givert € N if (y,»)’i C Sy satisfies
Jk <mg<my <--- <mysothatforl < j <k,

I =P, Iyl <

i m];]ﬂ’l
thenpy (L(y,,..yo L — Y, (ED)}i) < &.

In other words if(y;)% is almost a normalized skipped block sequence with
respect ta F;);° thenL,, ., is close to being i —{Y, (E;)};. Proposition 1.10
follows by iterating the following fixed result.

PROPOSITION 1.11.Let (E,) be a monotone boundedly complete FDD for
and letY € X bew* closed. Then for alt > 0andk € N there existNV; € N,
a blocking (F;) of (E;)¥, andé > 0 so that if (y)k < Sy satisfies there exists
O0=mg <mq < -+ < my With

H(I =P, e )Y H <8 for j<k

F]'>mj,1+l

thenpi(Lyy, y,..p0» L — Y, (ED) i) < €.
Proof. We begin by showing how to deduce the proposition from the

Claim. 36 > 03 N, €e NV y; € Sy with ”P(E-)lel” <383IN,e NV y, € Sy
L
with ||P(E.>N2y2|| <é&--- AN, e NV y; € Sy with ||P<E_)Nkyk|| < é one has
il LR

Pe(Lyyyz..y0s L — Y, (ED ) < e/2.

Indeed assume the claim.
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Let 8’ > O be chosen so that for any two sequenges’_, and (z;)*_, in Sy
for which we assume thalty, — z;|| < 8',i = 1,...k and thatog (L, 5. z0), L —
{Y, (EN}) < g/2itfollows thatpi(Ly, y,,..y), L — Y, (E)}k) < e. Without loss
of generality we can assume that< §'/3. Choosep; > N; so that{y € Sy :
(I — P<Ei>5;11)y|| < 8} # @ and letS; be a finited’-net for this set. This can be done

as follows. First choose a finitenet$ of P<E_>Zl {y e Sy: ||(I—P<E_)§1)y|| < 8},
- HINg HNy
then choose for each € Sayin{y € Sy : |(I — P(E->‘;,1)Y|| < &} so that
HiNg
P<E_)Zl (y) = y. The set of all such elemengshas then the required property.
1INy

Choosep, sufficiently large to satisfy the claim{‘N,,...”) for all y € ;.

Define F1 = (E;)y: andF, = (E;)72, ;. We chooseS », a finites’-net for

{yeSy: I = Pr )yl <8}

Chooseps sufficiently large to satisfy the claim{*N,, ...”) forall y € S1,. Set

F3 = (Ei>£g+]_'

Notation If F; have been defined for alle I, some interval irN, we letS; be a
finite §’-net for

{y €Sy :IId— Pgry)yll <é}.
We shall say intervalg; < --- < I; of integers arskippedif
max/l; +1 <minl; ., for i < j.

Suppose that; = (E;)Y has been defined. Choope, ; large enough to

pj-1t1
satisfy the claim for all sk/ipped intervalg < --- < I, in {1,..., j} for any
Viseev s Yo with Vi € Sli (USing ‘9 Nei1. .. ”). Define Fj+1 = (E,)Z]/:_ll

Let (y,-)’i be as in the statement of Proposition 1.11 with respect to the blocking
(F)) of (EDY, just constructed. Thus for some sequefice: --- < I, of skipped
intervals we have

||(I — P(F,-),K))’EH < § for ¢ < k.

For¢ < k choosez, € S, with ||z — y¢|| < &'. From our construction using the
claim we have

pr(Leszsa L= Vs (El) < /2.

The choice ob’ finally implies then that

Pk (L(yl,yz-,---yk)’ L—{Yy, (Ez)}k) <Ee.
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Proof of the claim!f false then

V6 >0V N1y €Sy, [P, myll <38
i/

VN23y2 €8y, 1Py myall <
il

VY Ny Ay, € Sy, ”P(E_)Nkyk” )
il
yet
Pk (L(}'l,yz-,---yk)’ L -1y, (Ez)}k> >e¢e/2.

Fix§ > 0. By the above we canfind atrée= {y(ns,... ,n;) : (n1,... ,nj) €
Ty} € T (Y) so that for alls and all(ny, ... ,n;), j <k

lim SUpH P<E,.)iy(n1, cee s N, I’l)” <46
n—00
and for all(nq, ... , ng)

pk(L((}'(ni)){:l:,/Sk)’ L— {Y’ (El)}k) = 8/2 .

Since for alls, limsup,_, o, | Pi,);y(n)|| < & using thatt is w* closed we may

choosey(n;) <, yo € Y with ||yl < 8. We then repeat this argument at the
next level to the successors of eagtr;) and so on. Ultimately thus pruning our
tree but leaving behind an isomorphic subtree we see that we may assume without

loss of generality each(ny, ... ,n;) = yo(n1, ... ,nj_1) + z(n1, ... ,n;) where
lyo(ni, ... ,nj—0)|l <6, bothyo(ny, ... ,n;_1) andz(ny, ... ,n;_1) belong toyY
ando*-lim,_, o z(n1, ... ,nj_1,n) = 0. Let
z(ng, ... ,n;)
wny,...,nj) = I
lz(ng, ... 0l

Then(U)(l’l]_, e, nj)Tk ea—T,(Y, (E))).

By Proposition 1.5 and passing to a subtree we may assume that this-tree
converges to som¢ € L — C([—1, 1], M). From Proposition 1.8f € L —
{Y, (E)}k. From|ly(ny, ... ,nj) —z(ng, ... ,n;)|| < 8 we obtain that

28
1-6°
Thus by a perturbation argument choosihg= 3(¢) sufficiently small we obtain
that

Iy, ... .n;) —wna, ... ,n)| <

Pk (L((y(nl.,---nj))];-:l)’ L— {Ya (El)}k) P 8/2
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forny < n, < ...ng large. This is a contradiction. O

2. Indices

We define the Szlenk index of a separable Banach spaoel another index which

we call theH -index and make some connections between them. The latter index is
defined in terms of the asymptotic structure in the setting wiehas an FDD or

is a subspace of a space with an FDD.

DEFINITION 2.1. The Szlenk Index

Let B be a separable Banach space an&let B*. Thus(By, w*) is a compact
metric space. Let & ¢ < 1. LetSy(B, ¢) = By. If S,(B, ¢) has been defined for
o < wq We let

Sar1(B, &) = {x -3 (x,) € S, (B, ¢) with

n— oo

w*- lim x, = x and liminf|x, — x| > g} .
n—o0
If « < wqis a limit ordinal we set

Sa(B.e) =[] Sp(B. ).

B<a

Szlenk’s original index [26] was defined somewhat differently. However by
Rosenthal’s?; theorem [25] the two indices are equivalentBifcontains no iso-
morph of¢;. Furthermore

Supla : Sy(B,¢&) 0} < wy

e>0

if and only if X = B* is separable.

We will say thatB hasfinite Szlenk indeit for all ¢ > 0 there exist¢ € N with
Sy (B, ¢) = . There is a natural relation between this index and tree¥ en B*
(see also [1]).

PROPOSITION 2.2.Let B be a separable Banach space akid= B*. Lete > 0,
ke Nandxg € Sr+1(B, €).

Then there exists atrdg (n1, ... ,n;) : (n1,...,n;) € Ty} € X sothat

Q) w*-limx() = xq

(2) w*lim, oo x(n1,... ,nj,n) =x(ny, ... ,n;)forall (n1,... ,n;) e Tr1
) liminf ||x(n) — xoll > ¢

4) liminf,_,  lx(n4, ... ,nj,n) —x(na, ... ,n;)|| > eforall (ng,...,n;) e

Ti_1.
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By taking the difference tree of the above tree as we did in the proof of Propo-
sition 1.11 in the previous section we obtain the following.

PROPOSITION 2.3.Let X = B* be a separable duak € N, ¢ > 0and assume
Siv1(B, &) #0.

Then there exists a tre@(n1, ... ,n;)), S 2Bx with for all (nq,...,n;),
Jj <k,

(1) liminf,_  llz(n1, ... ,nj,n)|| > ¢

(2) w*lim,_ o z(ny,... ,nj,n) =0

(3) For all (nq,...,ng),

k
|$ w0 ] <2
Jj=1

This leads us to make the following definitions.

DEFINITION 2.4. Let(x;) be a basic sequence (of possibly finite length). Let
0 < ¢ < 1. Thestrong indexof (x;) is
SI((x;), &) = supk : 3 (a;)} with & < |a;| < 1fori < k and a normalized
block basis(y,) of (x;) so that| Y5 a; ;|| < 1}.

We then use this to define an index based upon the strong index of the asymp-
totic structure of a space.

DEFINITION 2.5. LetX have a monotone FDDE,) and letY € X ande > 0.
H(Y,(E;), €) = supSI((e)}. ¢) - k e Nand(e))} € (Y, (E)l)-

As noted in [20] it is easy to see that(if;)] is a normalized block basis of
(e € {Y, (E)}i then(x;)1 € {Y, (E;)},. Thus we have

PROPOSITION 2.6. Let (E,) be a monotone FDD foX and letY € X and
e > 0. ThenH (Y, (E;), &) = supk : 3 (et € {Y, (E)}x and (a;)% C [e, 1] with

I8 el < 1.

REMARK 2.7. Our next result yields that the Szlenk index of a spBocwith
separable dud is finite iff the H-index of Y with respect to a certain FDD is finite

as well. Recall that iB* = Y is separable the® is a quotient of a space with a
shrinking basis [3]. It follows thaY is a subspace of a spa&ewith a boundedly
complete basis and moreover & topology onY induced byB agrees with the
relativew* topology onY obtained by regarding the spa&eas[(e})]* where(e,)

is the boundedly complete basis f6r w*-convergence in this setting of a bounded
sequence is just coordinatewise convergence. For convenience in calculations we
take the basis in question or more generally an FDD to be bimonotone.
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PROPOSITION 2.8.Let (E,) be a bimonotone boundedly complete FDD for
and letY = B* be aw* closed subspace. Let> 0.

(@) Sita(B,e) #0 = H(Y,(Ei),&/2) 2 k

(b) H(Y, (E)), &) > k = Si(B,e/2) #0.

Proof.Lete > 0. Suppose tha$;1(B, &) # 0. LetT = (z(ny,... ,n;))g, C
2By be the tree given by Proposition 2.3. Defingny, ... . n;) = k)

21, n )l

and let7 = (w(ny, ... ,n;) be the corresponding tree. Cleafly € a — Tk(]Y)

and by pruning we may assume all branches are 2-basic. Thus we may assume
by Proposition 1.5 thaf™ converges to some;)% € {Y, (E;)};. Note that for all

(nl,... ,I’lk),
k
>z, 0| <2
1

by (3) of Proposition 2.3.

In other words for arbitrarily large ande’ < ¢ we can find some branch of
T and coefficients all exceedirg so that the norm of the ensuing sum does not
exceed 2. It follows thatf (Y, (E;), ¢/2) > k which proves (a).

Next let H(Y, (E;), ) > k. Thus there existge;)% € (Y, (E)} and (@)} C
[, 1] with || Z’; aie;|| < 1. By Proposition 1.8 there exisis = (w(ny, ... ,n;)y €
a — T (Y) which converges tge;)%.

Lety(ny,...,n;) = Y./_jaw(n, ..., n;). By the convergence of to (e,»)’i
we may assume thdity(nq, ... ,n;)|| < 2forall (ny, ... ,n;) € T,. Moreover for
Jj <k,

liminf |y(na, ... ,n;) =y, ... ,nj,n)|| > ¢

n—0o0
andw*-lim, .o y(n1, ... ,nj,n) = y(ny, ... ,n;). It follows thatS(Y, e/2) > k.
IndeedLi’”” € Si_j(B,g/2) for 1 < j < k and so 0= »*-lim X2 belongs to
Si(B,e/2). O

PROPOSITION 2.9.Let (E;) be a bimonotone FDD foX and letY C X. Let
O<e <1 Then

@) H(Y,(E), ) < H(Y, (E),¢)if ¢ > .

(b) H(Y, (E:), ) <[H(Y, (E)), &) + 1]

Proof. We need only prove (b). Lel (Y, (E;), &) = k. Assume(e)) ™" e
{Y, (En}is1 is such that there exigt) ™ € [e, 1] with | S0 ger|) < 1.
For 1< j <k + Ldefinex; = £ /077 11,1 aiei to be norm 1.

Since(E;) is bimonotone we see that < 1 fori < k + 1. Alsob; > ¢ by the
definition of H (Y, (E;), ¢) = k. This uses that; is formed as asum df + 1e;’s
with coefficients at least?. Note that| >%** b, x;|| < 1. But this contradicts our
choice ofk. O
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DEFINITION 2.10. LetX have a bimonotone FDDE;) and letY € X. We say
Y hasfinite H-indexif H(Y, (E;), ) < » for some (and thus by Proposition 2.9
forall)0 < e < 1.

In the terminology of [9] a spac® with separable dual’ has finite Szlenk
index foralle > Qiff || - || : (By, *) — R is Baire-1/2. See [9] and [16] for more
on the general theory of Baire-1/2 functions.

REMARK 2.11. One can define the previous concepts using the weak rather than
the w* topology. This was done by Huff [10] who attributes the idea to Bourgain.
Thus the weak index o would be given by

Woit(X,8) = {x : 3 (x,) € Wo(X, &), x, — x and liminf||x, — x|| > &} .
n—0o0

Of course in the reflexive cas&, = B* we get that for alle > 0, W(X,¢) =
supa : W, (X, ) # 0} < wiff B has finite Szlenk index.

The notion ofweak asymptotic structureould also be defined in terms of
trees. Fory C X, X having an FDD(E,), a nhormalized basic sequen@e)’; €
w —{Y, (E)Dk if there existsT = (y(n1, ... ,n;))y, € a — Ti(Y) with respect
to (E;) so thatT converges tc(ei)’i and so that for allny, ... ,n;) € Ti_1, w-
lim, y(n1,...,n;,n) = 0. Of course the weak asymptotic structure could differ
from the asymptotic structure but some of the properties of asymptotic structure do
still hold in this setting. We state one such result.

PROPOSITION 2.12.Let X have an FDD(E;) and letY C X. Assume that
does not contain an isomorph 6f. Let (e,»)’i e w —{Y, (E))}, and let(y,)T be a
normalized block basis @#;)%. Then(y,))s € w — {Y, (E)}n.

This follows easily from the following

LEMMA 2.13. LetJ be a tree inBy which is order isomorphic td}. Assume
Y does not contairg,; and that the initial nodes of” are weakly null and all
successors of a given nodedinare weakly null. Then there exists a subtEe=

(y(ny, ... ,nj))g, of T which is order isomorphic t6~ and satisfiego-lim,, y,, =

0 whenevery,, = Z’;zly(ng’”), .. ,nE””) for somen"”, ... ,n{") € T; with
(m) _

I’ll =m.

Proof. This can be deduced from &adimensional version of Corollary 3 in
[17]. o
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3. Lower ¢, Estimates

PROPOSITION 3.1.Let(e;) be a bimonotone basic sequence wift{(¢;), 1/2) =
no < oo. Then there exists = p(no) € (1, oo) so that if(x;)7' is any block basis
of (¢;) then

H i’“‘ | > %(i ||x,~||P>l/p |

REMARK 3.2. This lemma is known. It follows from proofs of similar results
given in [11] or in [13]. In the latter the result is presented in an unconditional
setting for disjoint blocks but the same proof works in our setting. We choose to
present our own proof. The idea of the proof is used for a later result.

Proof. The proof of Proposition 2.9 also yields th&k((e;), 1/4) < [SI((e;),
1/2) 4+ 1)%. Letn = 4ng + 1 and choose € (1, co) with 27 = n. We may assume
lle;|| = 1foralli.If (x;) is a block basis ofe;) thenS1((e;), 1/2) > SI((x;),1/2)
so it suffices to prove that for all;);' € Sen that|| 3°7 aie; || > 1/2.

If this were false choose such &n)] € Sem with || 37 a;e;|| < 1/2. Assume
m is minimal with this property, (i.e., that such a seque@gg' exists). By the fact
that(e;) is bimonotoneja;| < 1/2 fori < m.Chooser; minimal with»"7* |a;|” >
(1/2)?. Then choosea, > n1 minimal so thaQZiH la;|? > (1/2)? and so on until
obtainingn; < m with kaﬂ la;|? < (1/2)7. It follows from the minimality of
nj+1 that

njt+1 1/p 1 1
(Z Iai|”) c [5,21/1’-5] for 0< j <k

nj+1

(takingng = 0). Thus(1 — (3)")¥? < 32%7kY? which implies thatt > (1 —
hn > 2. Setx; = ZZ-]’;Hlaiei for 1 < j < k. By the minimality ofm and the
fact that(ZZ:;_l 1 lai|”)¥? > 2 we have thallx; || > ;. ThusSI((e;), 3) > k > 4.
This contradicts: > 4S1((e;), ). O

DEFINITION 3.3. Let(E,) be an FDD ang < oo. (E,) is block p-Besseliarif
there existg: > 0 so that wheneve;) is a block sequence 6E,,),

DITET OO

(E,) is skipped blockp-Besselianf the above holds for all skipped sequences of
(En).

DEFINITION 3.4. Let(E,) be an FDD and lep < oo. (E,) is asymptotically
block p-Besselianf there existsc > 0 so that whenevet € N and(x,»)ﬁ.‘:1 is a

block sequence aff,)22, then|| 4 x; || > ¢(37% Il 1)
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(E,) is asymptotically skippedblock p-Besselian if the above holds for all
skipped sequences;)*_, of (E,)>,.

PROPOSITION 3.5.Let(E,) be an FDD which is asymptotically blogkBesselian
for somep < oo. Then(E,) is blockg-Besselian for aly > p.

Proof.We may assume th@E,) is bimonotone. Suppose that- 0 is such that
for all kK and all block sequences,»)’{ of (E,)°,

k k 1/p
PHEES> uxw) .
1 1

Letg > p. ChooseK so large that

cK*l(— - 1)”” -1, *

Letng € Nwith ng > K9 + 1.
ClaimIf (x;)] is a block sequence 6 ;)7 then|| Y1 x; || > K1) [l 1),
If the claim is true the result follows. Assume the claim is false. Then there ex-
ists a normalized block sequengg); of (E;);- and scalarsga;); with Yoilailt =
1 and|x|| < K=t for x = Y a;e;. Furthermore we may assunds minimal
so that such a situation arises. As in the proof of Proposition 3.1 we may write

x = YMhx wherex; = > il r1aje; is the shortest vector (afteg_;) with

lxille, = K-t fori < N and|lxy1ll, < K~*. Note that||x;|l,, < K124 for
i < N sincela;| < % by the bimonotone property and the fact thaf < K.
Also

N 1/q
1> (Z ||x,~||2,> > K INYa
i=1

and soN < K4. Furthermore

N+1 N+1

D KTV =Y x|l =1
i=1 i=1
and so 2N + 1)K ¢ > 1 which yields that
K1 1/p
1/p — _
NP > ( > l) .
By the minimality ofs we have that

Ixi 1l = K~ Hixille, > K2 for i <N
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Combining these with our hypothesis afsd we have that

N 1/p
Ix]l > c(Z ||x,-||”> > cK2NYP
i=1

> K_;[CK_l(%q — l)l/p:| > K1

which is a contradiction. O

4. Blockings in Spaces of Finite Index

In this section we focus on spacEshaving an FDD and finité/-index. We prove
that the FDD can be blocked to yield certain lowgrestimates for somg < oo.

THEOREM 4.1. Let(E,) be an FDD forX.

(@) If X is of finite H-index with respect t@E,) then there existp € [1, co)
and a blocking(F;) of (E,) which is skipped block-Besselian.

(b) If X is of finite H-index with respect toE,) and(E,) is boundedly complete
then there exists a blockingd;) of (E,) and p € [1, c0) so that(H;) is
block p-Besselian.

Proof. (a) follows directly from our work thus far. L&tF;,,) be the blocking of
(E,) given by Proposition 1.9 for a suitabtg | O rapidly. It follows that there
existsng € N so that if for allk if (x,»)’{ is a normalized skipped sequence 6f):°
thenS1((x;)%, 1/2) < no. Hence by Propositions 3.1 and 3.5 there epist co SO
that(F,,) is skipped blockp-Besselian.

To prove part (b) we need a trick of W.B. Johnson [14]. We give the proof
because we need a generalization in the next section.

LEMMA 4.2. Let(E,) be a boundedly complete FDD fof. Lete, | 0. Then
there exist integer® = ng < n1 < --- sothatifx = ) x; € Sx, x; € E; for all
J, then for allj there exists; € (n;_y, n;] so that||x; || < ¢;.

Proof. It suffices to show that m Ve > 03 n > m so thatifx = ) x; € Sx
with x; € E; then there existg € (m, n] with ||x;|| < e. If notthenV n 3 x" =
Zx;’ € Sy with x} € E; and||x;?|| > e forall j € (m,n]. Choose a subsequence

(x") of (x™) with x;’k ]H—oij e E; forall j. Thus|x;|| > ¢ for j > m and
sup || Zi x;|| < oo. This contradicts thatE ;) is boundedly complete. a

Proof of (b).Lete, | Orapidly. Let(F;) andp be asin (a). Let @=ng < ny <
- be given by Lemma 4.2 and defitig; = (F.),’ . Letx = Y x = Yy
with x € Sy, x; € F; andy; € H; for all i, j. For eachj choosei; € (nj_1,n;]
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with [|x;, || < &;. Set

= Y. x (0=0).

i:i/'_l-‘rl

Then (x;) is a skipped sequence with respect (B;) and so| ) z;|| >
%(Z iz 17)Y7. Furthermore| 3"z, < llx|l + > Ilxi; I < 2 (for suitably small
g;'s). Also for all j, |ly;II < liz;ll + llxi; Il + llzj+all- Thus

1/p

<Z ||)’j||p)l/p < (Z(”Z,” + llzjqall + 8.,')p> <9,
J

for suitably smalk;’s. O

COROLLARY 4.3. Let (E,) be a boundedly complete FDD fof and assume
that X is of finite H-index with respect tgE,). Then there exist < p < o0, a
blocking (H,) of (E,) and an equivalent norm- | on X so that if(x;) € X is
any block sequence ¢f{;) then| > x;| = (O |x;|")¥?. In particular X can be
renormed to have the*-UKK property.

Proof. Let (H;) andp be as in (b). Define far € X, |x| = sup{(}_ [lx: [17)Y7 :
x =Y x; where(x;) is a block sequence with respect(id;)}. a

This result partially solves the problem raised by Huff [10].Xf = B* is
reflexive andB has an FDD and is of finite Szlenk index th&ncan be renormed
to have the UKK. Thus givea > 0 there exist$(¢) > 0 so that if(x,) € By,
w-lim, x, = x and||x, — x,,]| = € for n # m then|x| < 1— 8(¢). In the next
section we remove the assumption tiahave an FDD.

5. Blockings and Subspaces of Finite Index

We relativize the results of the previous section to subspacés Bfrst we need
an extension of Lemma 4.2.

LEMMAS.1. Let X have a bimonotone boundedly complete FDE)) and let
Y C X bew* closedYe >0Vm € N3n > msuchthatify = > 7"y, € By
with y; € F; for all i then3 k € (m, n] with

@ lyll <e

(b) dist(> "1y, Y) <.

Proof. We proved (a) in Lemma 4.2. In particular we can find= no <
ng < ny < --- sothatifx = Y .°x; € By, x; € F, for all i, then for all j
there existsk; € (n;_1,n;] with |lx;|| < e. Thus if (b) fails then for allj there

existsy) = Y/ v € B,y € F; for all i, so that for alls < j there exists

k(j.s) € (ng_y, nwith [y} || < e and disty (%" v, ¥) > e. Passing to
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a subsequence ¢§) we may assume that lim. ., y’ = x; € F; exists for all;
and thatk(j, s) = k(s) for s < j. By the fact thatj| Z‘ix,»n < 1 for all £ and the

boundedly complete property ¢f,) we havex = > °x; € Bx. Also y(/')ﬁm
and sax € Y. Thus
k(s)—1

dist(Y, > xi) 220, acontradiction. )

i=1

THEOREM 5.2. Let (E,) be a bimonotone boundedly complete FDD #&and

let Y be aw™* closed subspace whose predual has finite Szlenk index. There exists
a blocking(H;) of (E,) and p = p(H(Y, (E;), 1/2) € [1, 00) so that| - | is an
equivalent norm orY where forx € X,

0 1/p
x| = sup{ (Z [l x; ||”) : 3 a blocking(G;) of (H;)
1

o0
with x; € G, for all i andx = in}
1

Of course|x| could be infinite for some € X. We are only claiming it is an
equivalent norm oY . Before proving the theorem we give some corollaries.

COROLLARY 5.3. LetY be a separable dual space whose predual has finite
Szlenk index. Then there exist a Banach spaedth a boundedly complete FDD
(H;) and p € [1, c0) so thatY embeds isomorphically (norm amg) into Z and
1>zl = iz IIP)Y? for all block basesz;) of (H;).

Proof. As discussed earlier we may assume thas aw* closed subspace of
a spaceX having a boundedly complete FDD [3]. We Ig/;) and| - | be as in
Theorem 5.2. Defin€ to be the completion of(H;)) under| - |. Y embeds int&Z
by the theorem. O

COROLLARY 5.4. Let B be a separable Banach space of finite Szlenk index
(S(B, ¢) < oo forall ¢ > 0). ThenB admits an equivalent*-UKK norm.

Proof.Let Y = B*. By [3] there exists a spad® having a shrinking basis and
a quotient mapQ : W — B. ThusQ* : Y — W* embedsY as aw™* closed
subspace ofV*. MoreoverQ* is aw* isomorphism as wellQ*Y has finite index
with respect to the dual basis 8f, a boundedly complete basis féf*. We then
apply Corollary 5.3 obtaining, (H;) andp as in the conclusion of Corollary 5.3.
Thus we have renormedby || -|| so as to preserve its* topology as the dual space
of X in such a manner that has aw*-UKK norm. The latter comes from the lower
¢, estimate forZ. This then defines an equivalent normBiby regardingl’ as the
dual of B. Thus forx € B,

lxll = sup({x,y) : y € By} .
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So(Y,[I- )= (B, -ID*and(B, || - [I) has thew*-UKK. O

Proof of Theorem 5.2t will suffice to produce such @ and a blocking(H)
of (F;) so that if (G) is any further blocking of H;) andy = ) y; € Y with
y;j € Gj forall j then

1 1
HESTONID R

Let H(Y, (E;),1/4) = ng < oo. Lete > 0 be small (specified below). By
Proposition 1.9 there exist> 0 and a blocking F;) of (E;) so that if(y,~)’1’0+l -

Sy satisfies: there exists a skipped blockit@;);°** of (F;)3° so that
(I = Pg)yjll <8 for j <no+1
thend, ()" Y. (Elagr) < 1+ /2.

LEMMAS5.5. There existp = p(no) andé, | 0 so that if(G;) is any skipped
blocking of(F;) and(y;) C Y satisfies|(I — Pg,)y;|l < &;lly;ll forall j then

| 3 (Zmn)™

Proof. We may assume that eagh # 0. By takinge; sufficiently small this
will insure that(y;/|ly;l|) is 1+ e-close to being bimonotone. We claim that

SI((y:),1/2) <no+1.

Indeed if (zi)'1’°+2 is any normalized block basis ofy;) then, db((z,»)'z"’*z,

{Y, (E)}no+1) < 14¢ from our initial assumptions of¥;) and standard perturba-
tion arguments which of course impose restrictiongain. ThusS’ ((zi)';’*l, 1/2) <
no Which gives the claim. If(y;) were bimonotone we would have the desired
estimate by Proposition 3.1, with a lower constant (&£.1Since(y;) is only nearly
bimonotone the A2 becomes 24 by takinge sufficiently small. O

Continuing with the proof of 5.2 we let, | 0 rapidly (specified below) and
choose, using Lemma 5.1, integers-Ong < m; < --- sothatforally =)y, €
By with y; € F; forall i, given € Nthere exists; € (m;_1, m;] with |ly;, || <&,
andd(Z’l’flyi, Y) < é_j. DefineH; = (Fi)(m,_,.m;) for j € N. Let(G;) be any
further blocking ofH;, sayG; = (H;)u, ,.i, for some O= ko < k1 < ---. Let
y=>Y yi € Sywith y; € F; foralli.

For eachj choosei; € (m;_1, m;] with [y, || < &; andd(¥; " v, ¥) < &;.

Takeip = 0andz; = f-’;jlfﬁl y;. Thend(z1, Y) < &, and forj > 1

d(Zj,Y) <§j+gjfl+gjfl < 35_‘]',1.
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Choosew; € Y with [lz; — w;| < 35, 1forj > land|zy —wyf < £1.

We clalm that}_ lw;1”)*? < 5 and so§; sufficiently small)>_ ||z, 17)*? <
6. Indeed sef; = gy = &1 and letl = {i : ||z;|| > 2&;_5). If j ¢ I then
lwill <381+ 28,5 If j € I then §; suitably small)

I = Py, il < Bl ]

Thus by Lemma 5.5

(Z ||w,»||”)l/p <4 Y wi < 4(1+ > @+ 25/—2>> <5

if £; are suitably small. The claim follows.
Finally lety = > b; whereb; € G;. Then||b;|| < llzj-1+ yi;_; +2z; + ;-
This yields

(T is1r) <2( T hear)" +2( X t)”
3

<1

for suitably smalk;’s. O
In the case wher¥ is reflexive we obtain the following:

THEOREM 5.6. LetY be a reflexive space whose predual has finite Szlenk index.
ThenY can be renormed to have the UKK property. Moreover the UKK modulus
is of power type.

Indeed by a result of Zippin [27] we can rega¥dC X whereX is reflexive
and has a basis. The result then follows from our previous results and the following
proposition.

PROPOSITION 5.7.Let Z be the space constructed in Corollary 5.3.
(&) If X has a basis the& has a basis.
(b) If X is reflexive ther¥ is reflexive.

Proof. (a) is clear. To see (b) we first recall that the lowgestimate on blocks
of (H;) gave that(H;) was boundedly complete. It remains to show t¥d}) is
shrinking. If not there exists - | normalized block basiéx;) of (H;) so that for
all (@;) € Rt with > a; = 1 we have )" a;x;| > 1/2.

Chooses > 0 so thats”! < 677. Let (¢;) € [0,8) with > a; = 1 and
using the definition of the norm- | choose a blockingG ;) of (H;) so that for
X =) ax;, ﬁ < Z | Pg;x|I”. We assume’;  x # 0 for all j. We consider each
block G; and if necessary split it into at most 3 blocks as followsPdf x; # 0
for at most one we do nothing. Otherwise létbe maximal so thaPG xi #0
and Pg . ,x; # 0 as well. (If no suchx; exists we do nothing.) We spI(F into

Jj+1
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two blocks, the first acting ofx,, ... , x;,_1) and the second ar}. We also make a
corresponding split if necessary according to the miniivsal thatPs,x; # 0 and
PG_,'_1xi 7'é 0.

We let(R;) be the new blocking. It follows that P, x; # O for more than one
i, then for any such Pg,x; = 0 for j # j'. Also for suchj, || Pg,x|| < Z,j a;
wherel; = {i : Pg,x; # 0}. Due the the splitting ofG;) our above estimate
becomes

1

— P p

o <3 2 1Pl
J

Let J = {j : Pg;x; # O for more than one} then}_ .., [ Prx|I” <}, 4Ul, al
since|x;| =1 for all ;. Now we claim that for somg < J, ||PR x| = 8 In deed if
not we have

= <Y PRI+ Y NP x]”

jeJ JjéJ

<8Py Prxll+ Y al

jel i¢ul;

<6p_1|:2a,~+2ai:|:8”_1.

iEU]j i¢U1j

But this is impossible by our choice 6f

Hence for such am, |lx|| > || Pg,x|| > §. But this contradicts thatx;) is
necessarily weakly null foff - ||. Indeed one can always find;) < [0, §) with
||Zaix,~|| <6and2a,» =1 O

6. Dual Results and Further Remarks

We next explore dual concepts to those above which will ultimately lead to upper
¢, estimates for some > 1.

To say that a basic sequen@e) has finite strong index is equivalent to saying
that we have uniform lowet, estimates on all block bases for some< oo.
Thus givenk there exists: so that if(y;)] is a normalized block basis ¢f;) then
Y1 v1 > K. In other words(x;) does not admit (what might be called) +
uniformly as block bases.

The dual notion is a4 index.
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DEFINITION 6.1. Let(x;) be a basic sequence and- O.

IT((x;), ¢) = sup{k : 3 a normalized block bas'@i)’{ of (x;) satisfying

k
H Zaiyi
1

k
’ 2 EZLZ,' if (a,»)]{ QR+} .
1

Itis easy to see thdt" (x;) < oo iff there existsig € N so that for all normalized
block basesy;);° of (x;) we have|| > 1° y: || < no/2. Also by James’ result thdj
is not distortable [12] adapted to ti¢ situation,/ ™ ((x;), &) < oo for somes < 1
iff 17((x;), &) < oo forall e < 1. See [1] for more on thét index.

The analog of Proposition 3.1 is

PROPOSITION 6.2. ([11], [13]Let (x;) be a monotone basis. Suppose that
I7((x;),1/2) = ng < oo. Then there existg = g(ng) > 1 so that|| > a;x;|| <
6(>_ |a;|17)Y4 for all (a;) C R.

The same sort of arguments used to prove Theorems 4.1 and 5.2 yield the
following. We shall say that i € X where X has an FDIXE,) thenY is of
finite asymptotid *-indexwith respect ta E,) if for some 0< ¢ < 1 (hence all
e <1)

sup{l*((e,»)’i, &)1 (e e (Y, (E)l. k € N} <00.

THEOREM 6.3. Let(E,) be an FDD forX

() If X is of finite asymptotid "-index with respect tqE,) then there exist
g > 1, K < oo and a blocking(F;) of (E,) so that for all block sequences;)
with respect ta F)), | > x; | < KX [lx:[|9)4.

(b) If (E,) is boundedly complete anid C X is w* closed of finite asymptotic
I*-index with respect tQE,) then there exisy > 1, a blocking(H;) of (E,) and
K < oo sothatify € Y withy = ) y; where(y;) is a block sequence with
respect to(H;) then|ly|| < K (X [ly:l|9)"“.

In this theorem we do not need to require skipped sequences in (a) because the
upper estimate results from the separate estimates applfeddpand " xy; ;.

The H-index is a sort of¢} -index. Thus it is natural to ask the following
question. SupposkE has infiniteH -index with respect tQE,). Is cg block finitely
representable iNE,)? The answer is not necessarily.

EXAMPLE 6.4. There exists a spack with a bimonotone basi&;) so that for
all n there existde;)] € {X, (b))}, with | Y] e;|| = 1 yetco is not block finitely
representable irib;).



194 H. KNAUST ET AL.

T, is the countably branching tree eflevels, i.e.,
T,={(ny,...,nj): jeN, ny, ... ,n; €N}

ordered by extensiorX will be the completion otoo(7,) ={f : T, > R : f has
finite suppor} under a suitable norm. The node basis) <z, given bye, (B) = up
will be a normalized bimonotone basis f&rwhen linearly ordered in any manner
that is compatible with the tree order @). Thus ifa < g in T, thene, < eg in
the basis order.
In addition we will have the following properties.
(1) There exists a bas{s;) so that if(«;)] is any initial segment of a branch in
T, then(e,,)] is 1-equivalent tde;)’}. Moreover|| > 7 ¢;|| = 1.
(2) If (x;)] is any normalized block basis ©¢,) then| Y ] &;x;|| > n/3 for
some choice of; = +1.
Because of the tree structure (1) yields thaf] € {X, (e,)}, for alln. (2) yields
thatco is not block finitely representable ixi.
We shall specify a sat C cqo(7,,) and define fox € cqo(7,,),

[xll = sup(f.x) : f €T}.

f e Tiff f is finitely supported,f(«) € {0, 1} for all « and on any branch of
T,, f does not take on successive nonzero values of the same sign. thusgf
inT,andf(a¢) =1andf(y) =0fora <y < Bthenf(8) = —1or0.

All the properties ofX are now easily verified except for (2) which requires
some effort. Let(x;)] be a normalized block basis ¢,). Choosef; € I' with
(fi, x;) = 1fori < n. We may suppose that rangie = rangex; with respect to
the linearly ordered basig,); the range ofc € cqo(T,,) is the smallest interval of
a’s (in the basis ordering) containing the supportof

Let I; be the set of initial nodes with respect to the tree order in gupy/e
shall partitionZ; into 3 sets/?, I? andI¢ and write f; = f* + £+ £ wheref; is
fi restricted to{g € T, : @ < g for somea € I} and so on. We begin with= 2.
Let A; be the set of terminal nodes (in the tree order) of sfipp

L={Belh:3ac A witha < g andfi(a) = f2(B)}
IF={Bel:3a e Awitha < gandfi(ae) = — f2(B)}
If =L\ (I3U1).

The letterss, o, d represent same, opposite and disjoint.

Chooseg € {fs, f5, £} sothat(g, x2) > 1/3.If g = f2 or £ lete; = L and
f@2) = fitglfg=filete; =—-1landf(2) = f1—g.Itfollows thatf(2) e I'
and

1
(f(2D), x1+e2x2) =2 1+ 3

We continue in this manner usinfi(2) to partition I3 into 3 sets and ultimately
determinefs, f2, f4 andes etc. The construction yields (2). O
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The analogous question for the -index has a similar answer. (£;) is the
summing basis forg = X then¢]* belongs to{X, (e;)}, for all n but ¢; is not
block finitely represented ite;).

We do not know how to find reflexive examples with these properties.

PROBLEM 6.5. Does there exist a reflexive space with a b@sjshaving infi-
nite H-index (respectively, infinitd -index) yetc (respectivelyf,) is not block
finitely represented inge;)?

The H-index was defined for a fixed > 0. One can vary the at each level
and obtain a variabl&/-index. If (E,) is an FDD forX, (x,) € X is bounded and
x € X we writex, — x if (x,) converges ta coordinatewise with respect {&,,).
Let ()4 € (0, 1). Ho(X, (E;), (¢))}) = Bx. Fork < n let

Hi1(X, (E)), (e0)]) = {x 1 3 (x)) € Hi(X, (Ep), (&;)7) With
x; — x and liminf|x; — x|l > &1} -
j—oo

In this notation having finited -index just says that for ai > 0 there exists
n € Nwith H,(X, (E;), (¢)]) = 0.

DEFINITION 6.6. X hassummableH-indexwith respect to(E,) if 3 K < o
VnV(e); € (0,1

Hy (X, (E), ()} #0 =) & <K.
1

Again there is a connection with trees and the asymptotic structuXe of

PROPOSITION 6.7.Let (E,) be an FDD forX. The following are equivalent.
(&) X has summablé-index.
(b) There existX < oo so that for alln and for all (¢;)] € {X, (E;)},

(e;)] is K-equivalent to the unit vector basis 6f

(c) There exists a blockingd;) of (E;) which is skipped asymptotig; i.e., for
somek < oo if (x;)] is a skipped block sequence(df;):° then

DI )BT

Proof. The equivalence of (b) and (c) follows from Proposition 1.9. The equiva-
lence with (a) comes from the following connection between the varilbiedex
and trees.

Suppose thati (X, (E;), (&;)5) # 9. Then, as in the proof of Proposition 2.8,
there existsi” € a — T,(X, (E;)) which converges tde;)] € {X, (E;)}, and
satisfies| Y 7 ele; || < 1 for somes; /2 < ¢/ < 1. If (b) holds then) | ¢/ < K.
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Finally assume (a) and I€¢;)’] € {X, (E;)},. Assume the variable index of
is< K. Let(g)] € (0,1) with > 7&; > K. Suppose| Y ] &;¢;]| < 1. Choose
T e€a—T,(X, (E))) that converges t¢e;)]. It follows that H (X, (E;), (&)}) #
¢ which is a contradiction. Thug > ] e;e;| < 1 implies) je; < K. Since
(te;)] € {X, (Ei)}, we have|| > ] teie;]| < 1impliesd ] e < K. Thus(e)]
is K-equivalent to the unit vector basis @f. O

These results can also be generalized to*aclosed subspace of a spake
with a boundedly complete FDD. By Proposition 6.7 Tsirelson’s sga¢é] has
summableH -index. There is a (formally) weaker notion than summable index.

DEFINITION 6.8. Let(E,) be an FDD forX. We sayX hasproportional H-
index with respect to(E,) if there existsK < oo so that for all 0< ¢ < 1,
H(X, (E,), ¢) < K/e. ltis clear that summable index implies proportional index.

PROPOSITION 6.9.Let (E,) be a monotone FDD foK and suppose thaX has
proportional H-index with respect t@E,). ThenX has summablé?-index with
respect ta(E,,).

Proof. If not then for alle > 0 there exisk € N and a block tree with respect to
(E)), T = (x(nyg, ... ,n;)g, € Tr(X), which converges toe;)t € (X, (E/)} and
such that there existg;)% C [0, co) with Y% a; = 1 and|| Y- aie; || < &. Without
loss of generality we may assume that for soMe= N eacha; = 7 for some
n; € N. Write N asN = n;m; + k;, wherem; andk; are integers with & k; < n;.

Using Proposition 1.9 and prunirij we may assume that every collection of
J < kN elements of7, suitably ordered, is essentially {X, (E,)};. We form
a seminormalized block basis 6f as follows. The order will be{xi, oo, xt

s pgr

X2 x2 ko xk ).Thefirstklofthex}’swill be a sum ofm;+1x(n)’'s

> ¥np? nk
with weighta;. The remainingc}’s will be a sum ofn, x(n)’s with the same weight
ay. All together thex}’s will involve N of thex(n)'s. The firstks sz.’s will each be
a sum ofm, + 1 x(n, m)'s with weighta, and the remainingjz.’s will be a sum of
my x(n, m)'s with the same weight,. Moreover, eackx(n, m) in the support of
one of thex,?’s will be a successor to one of th&n)’s in the support of the}’s
and so on.
It follows sinceX has proportional index that for some fixed- O,

k n;i k
[S3 ]z e m=en.
i=1 j=1 i=1
However if m1, ... ,my) € Ty is such thate(my, ... ,m;) € suppx-e’(j) for some

¢, ..., e(k) then

” Zk:%xw(l),... ,Z(j))H ~ H Xk:aiei
Jj=1 1

<E€.
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Since there ar&/ such “columns” in the tree we obtain from the triangle inequality
that

<eN .

nj

>

i
Xj
i=1 j=1

This yields a contradiction. O

The nonreflexive version of our main theorem remains open when one replaces
w* convergence by convergence.

PROBLEM 6.10. [10] If W (X, ¢) < oo forall ¢ > OcanX be given an equivalent
UKK norm?

If the answer is no it still may be true in the case whErdoes not contair;.

7. Thew*-UKK Modulus

Let us redefine the modulus foreg-UKK dual spaceX as follows. Givere > 0
there exist$ = §(¢) > 0 sothatif(x,) C X,x € X, ||x +x,|| < 1land|x,| > ¢
for all n with w*-lim,,_, », x, = O then|x| < 1-3.

We have proved that ik (or more properlyB whereX = B*) has finite Szlenk
index then there exists an equivalent ngrm|| on X (andB) andp < oo so that
for x as above

1
Ixll < (1—e”)¥YP ~1— ZgP for smalle .
P

So068(g) > ceP for somec.
We examine what can be said abautrom knowledge of they*-UKK modulus
8(g). We begin with an easy observation.

PROPOSITION 7.1.

(@) £1 = cjisw*-UKK with é(¢) = «.

(b) LetX bew*-UKK with §(¢) > ce for somec > 0and alle > 0. Then every
normalizedw*-null sequence irX admits a subsequence equivalent to the
unit vector basis of;.

Proof. (a) is obvious.

(b) The hypothesis yields that é*-limx, = 0 andix = lim ||x + x,]| with

lim, ||x,]| = & then|x|| < A — ce.

Let (y,) be normalizedw*-null in X. Lete, | O rapidly. By passing to a

subsequence we may assume that fok aihd(ai)li+l C[-11],¢ >k,

k k+1
’ ” Zaiyi + ap11ye “ - H Zaiyi “
1 1

< Ek+1 -
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Let Y51 a;| = 1. Since

k k
i [ S+ > | S

it follows that

k+1 k
” Zaiyi = H Zaiyi
1 1

Iterating the argument we obtain

+ clag4al

+ clagsa| — Exta -

k+1 k+1 k+1 c
Hzaiyi >CZ|ai|—ZSi>§
1 1 1
if Y & <c/2. O

Actually more can be said.

REMARK 7.2. (1) It follows from [15] that ifX = B* is as in (b) themB embeds
into co.

(2) Tsirelson’s spac& can be renormed fogp > 1 to haves(e) > c,e” but of
course cannot be renormed to havye) > cs.

(3) SupposeX is as in (b) andX has a boundedly complete FDL¥,). Then
(E,) can be blocked into afy FDD for X. This can be deduced either from (1) or
from our arguments. More generally Xf is aw* closed subspace of a space with
a boundedly complete FDIE,) then there exists a blocking{;) of (E,) so that
setting|x| = > |lx;|| forx = > x;, x; € H; thenX embeds inta(H;), | - |), a
space with arf,-FDD.

PROPOSITION 7.3.LetY be aw* closed subspace df, a space with a bound-
edly complete FDD(E,,). Assume’ is w*-UKK with §(g) > ce? for somec > 0,
1 < p < oo. Then there exists a blockind?;) of (E,) and a norm| - | on ((H;))
that makeg(H,), | - |) 1-block p-Besselian and so that | ~ || - | onY.
Proof. We may assuméek,) is bimonotone. From our previous work it suffices
to prove that for some’ > Qif ||y,|| > &, *-lim y, = 0 and lim|ly + y, || = A for
¥, (3a) S Y then|ly||? < AP — c'e”.
We present the argument fpr= 2 where the calculations are simpler.
Froms(e) > ce? we have|| 2| < 1—c(£)?and sofly|| < A — Ci—z Thus

e\2
Iyl < A2 — 2c8? + 2 <X> g2
< A2 — ce?

sinces < A. O
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