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Abstract. LetB be a separable Banach space and letX = B∗ be separable. We prove that ifB has
finite Szlenk index (for allε > 0) thenB can be renormed to have the weak* uniform Kadec-Klee
property. Thus ifε > 0 there existsδ(ε) > 0 so that if(xn) is a sequence in the ball ofX converging
ω∗ to x so that lim infn→∞ ‖xn − x‖ > ε then‖x‖ 6 1− δ(ε). In addition we show that the norm
can be chosen so thatδ(ε) > cεp for somep <∞ andc > 0.
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0. Introduction

The asymptotic structure of a separable infinite dimensional Banach spaceX as
considered in [21] and [20] is a concept which merges the finite dimensional and
infinite dimensional structure ofX. One obtains for each integern a class of
normalized bases of lengthn which can each be found arbitrarily far out and
arbitrarily separated inX. Usually knowledge of the asymptotic structure does not
translate into global information aboutX. However sometimes it does and one such
occurrence is the focal point of this paper.

Our object of attention is the following problem. SupposeX is a space with
separable dual having finite Szlenk index for everyε > 0. This means that if one
starts with the ball ofX∗, BX∗ , and then forms the subset of allω∗ limits of ε-
separated sequences fromBX∗ and then forms the new subset of allω∗ limits of
ε-separated sequences from this subset and so on then after finitely many such
steps one is left with nothing. The question is canX be renormed so that the dual
X∗ has theω∗-UKK (weak* uniform Kadec-Klee) property? This latter property
involves a modulusδ(ε) > 0. It says that givenε > 0 and(x∗n) ⊆ BX∗ , a sequence
convergingω∗ to x∗ with lim inf n→∞ ‖x∗n − x∗‖ > ε then‖x∗‖ 6 1− δ(ε). We
show that this problem has an affirmative solution and moreover the modulusδ(ε)

is of power type.
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Our proof leads us into further study of the asymptotic structure ofX [20]. It
turns out that having finite Szlenk index just says that one does not have arbitrarily
long bases(eni )

n
1 amongst the asymptotic structure ofX∗ with supn ‖

∑n
1 e

n
i ‖ <∞,

and this in turn yields uniform lower̀p estimates for somep < ∞ on bases in
the asymptotic structure. We then carry this lower`p estimate back toX∗ (for a
differentp) in a certain manner and ultimately obtain the theorem.

A corollary of our result is a solution to a question raised by R. Huff [10] which
can be stated as: IfX is a reflexive separable space withX = B∗ and Szlenk index
S(B, ε) < ω for all ε > 0, canX be renormed so thatX∗ has the UKK (uniform
Kadec-Klee) property. This is defined like theω∗-UKK property except that one
uses weak convergence rather than weak* convergence. The nonreflexive version
of Huff’s problem remains open (see below).

A number of authors have written on theω∗-UKK and UKK properties and
the renorming problem [24], [18], [2], [4]. Prus [24] observed that a reflexiveX

with a basis has an equivalent UKK norm iff some blocking of the basis into an
FDD (finite dimensional decomposition) admits for somep < ∞ uniform lower
`p estimates on all block bases. The analogous result for theω∗-UKK property
is established for spaces with a shrinking basis in [4]. UKK properties in Banach
lattices are investigated in [2]. In [18] Lancien shows that ifX has finite Szlenk
index thenX∗ admits an equivalentω∗ lower semicontinuousecart satisfying the
ω∗-UKK and solves the renorming problem for the spacesLp(X) and certainC(K)
spaces.

Our result also bears some resemblance with the characterization of superreflex-
ive Banach spaces as those that can be renormed to be uniformly convex [6] and
moreover in such a manner as to have modulus of uniform convexity of power type
[23].

In Section 1 we recall the notion of asymptotic structure of a spaceX with an
FDD (En), generalize it, and connect it with certain blockings of the FDD (finite
dimensional decomposition). In particular we observe that givenεi ↓ 0 there exists
a blocking(Fn) of (En) so that for alln if (xi)n1 is any skipped normalized sequence
with respect to(Fi)∞n then (xi)n1 is (up to εn) an element of thenth-asymptotic
structure{X, (Ei)}n.

Section 3 concerns connections between our indices and lower`p estimates. In
Section 4 we solve our problem in the case whereX has a shrinking FDD. Section 5
handles the general case. Section 6 concerns some dual results and contains further
remarks. In the last section we discuss results concerning theω∗-UKK modulus
δ(ε).

Our notation is standard.X,B, Y,Z, . . . will be separable infinite dimensional
Banach spaces andF,G,H, . . . will be used for finite dimensional spaces.BX is
the unit ball ofX andSX is the unit sphere ofX. 〈·〉 denotes linear span and[·] is
the closed linear span.
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1. Asymptotic Structure

In this section we make a connection between the asymptotic structure of a Banach
spaceX with respect to an FDD(Ei) and finite sequences(xi)k1, in a certain skipped
blocking of (Ei). For example we show that givenk and ε > 0 we can find a
blocking (Fj ) of (Ei) so that, up toε, every normalized skipped sequence(xi)k1
with respect to(Fj ) belongs to{X, (Ei)}k.

We begin by recalling the precise meaning of this last creature [20]. Let(Ei)

be an FDD forX. We shall assume that(En) is monotone. This is not essential
but rather is for convenience, here and throughout. Givenk ∈ N andC > 1 we
let Mk(C) be the set of all normalizedC-basic sequences of lengthk. Mk(C) is a
compact metric space under the metric logdb(·, ·) where

db
(
(xi)

k
1, (yi)

k
1

) = inf

{
AB : ∀ (ai)k1 ⊆ R ,

A−1
∥∥∥ k∑

1

aiyi

∥∥∥ 6 ∥∥∥ k∑
1

aixi

∥∥∥ 6 B∥∥∥ k∑
1

aiyi

∥∥∥} .
SetMk =Mk(1).

DEFINITION 1.1. Let(ei)k1 ∈Mk. Then(ei)k1 ∈ {X, (Ei)}k if

∀ ε > 0 ∀ n1 ∃ x1 ∈ S〈Ei 〉i>n1

∀ n2 ∃ x2 ∈ S〈Ei 〉i>n2
· · ·

∀ nk ∃ xk ∈ S〈Ei 〉i>nk so thatdb
(
(ei)

k
1, (xi)

k
1

)
< 1+ ε.

We will now introduce a generalization of asymptotic structures. One advantage
of this generalization is a simplification of the proofs.

For this let(M, ρ) be a complete metric space andL : X → M be uniformly
continuous on bounded sets mapping bounded sets into relative compact sets. For
k ∈ N let C([−1,1]k,M) be the space of continuous mappings on[−1,1]k into
M equipped with the topology of uniform convergence, i.e. C([−1,1]k,M) is
equipped with the metricρk, where

ρk(f, g) = sup
|ai |61,i=1,..k

ρ(f (a1, . . . ak), g(a1, . . . ak)),

for f, g ∈ C([−1,1]k,M).
Forx1, x2, . . . xk ∈ X we denote byL(x1,x2,...xk) the map:

L(x1,x2,...xk) : [−1,1]k 3 (a1, a2, . . . , ak) 7→ L

(
k∑
i=1

aixi

)
.
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DEFINITION 1.2. Letf ∈ C([−1,1]k,M) Thenf ∈ L− {X, (Ei)}k if

∀ ε > 0 ∀ n1 ∃ x1 ∈ S〈Ei 〉i>n1

∀ n2 ∃ x2 ∈ S〈Ei 〉i>n2
· · ·

∀ nk ∃ xk ∈ S〈Ei 〉i>nk so thatρk(f, L(x1,x2,...xk)) < ε.

Note that{X, (Ei)}k of Definition 1.1 coincides with||·||−{X, (Ei)}k of Definition
1.2.

This notion can also be understood in terms of countably branching trees of
length k on SX. We let Tk be the treeTk = {(n1, . . . , nj ) : 1 6 j 6 k where
∀ i, ni ∈ N} ordered by(n1, . . . , nj ) 6 (m1, . . . , m`) if j 6 ` andni = mi
for i 6 j . For two elements(n1, . . . n`) and(m1, . . . , m`) of the same length we
also introduce the order� given by(n1, . . . n`) � (m1, . . . , m`) if ni 6 mi, for
all i = 1,2 . . . `. ThenTk(X) is the set of all trees onSX indexed byTk. Thus
T ∈ Tk(X) if T = {x(n1, . . . , nj ) : (n1, . . . , nj ) ∈ Tk} ⊆ SX where the order on
T is that induced byTk. We call such aT ablock treewith respect to(Ei) if for all
α ∈ Tk−1 ∪ {∅} (x(α, n))n∈N is a block with respect to(Ei).

A tree T ∈ Tk(X) is C-basic if all branches(x(n1, . . . , nj ))
k
j=1 areC-basic

sequences.

DEFINITION 1.3. LetT = (x(n1, . . . , nj ))j6k,n1,... ,nj∈N ∈ Tk(X). We say that
T L-convergesto f ∈ C([−1,1]k,M) if

lim
n1→∞

lim
n2→∞

. . . lim
nk→∞

ρk(L(x(n1,...nj ),j=1,...k), f ) = 0.

By a subtree of a treeT = (x(α))α∈Tk ∈ Tk(X) we mean a familyT ′ = (x(α))α∈T ′
with T ′ ⊂ Tk having the property that for anyα ∈ (T ′ ∩Tk−1)∪{∅} the set{n ∈ N :
(α, n) ∈ T ′} is infinite. Note thatT ′ can be order isomorphically reordered (with
respect to6 and�) in a unique way into a tree(x′(α) : α ∈ Tk). We will identify
T ′ with the tree(x′(α) : α ∈ Tk).

Note that if a treeT L-converges tof ∈ C([−1,1]k,M) andεk ↘ 0 then there
is a subtree so that for alln1, n2, . . . nk ∈ N it follows thatρk(L(x(n1,...nj ),j=1,...k), f )

< εn1.

The following proposition follows easily from the definitions above.

PROPOSITION 1.4.Let (En) be a monotone FDD forX. f ∈ L− {X, (Ei)}k iff
there existsT ∈ Tk(X), a block tree with respect to(Ei), whichL-converges tof .

The following proposition follows from an easy compactness argument by in-
duction on allk ∈ N.

PROPOSITION 1.5.Every tree inTk(X) has anL-convergent subtree.
Proof.From the Theorem of Arzela and Ascoli it follows that the set

Lk = {L(x1,x2,...xk) : x1, x2, . . . xk ∈ BX}
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is relatively compact in C([−1,1]k,M).
Fork = 1 the claim follows from the relative compactness ofL1. If the claim is

true fork − 1 and ifx(n1, n2, . . . nj )(n1,n2,...nj )∈Tk ∈ Tk(X), we first fixn ∈ N and
apply the induction hypothesis to the map

L(xn) : C([−1,1],M), y 7→ L(·)xn + y)
(M is replaced by the space C([−1,1],M)) and get a subtree(x′(n, α))α∈Tk of
(x(n, α))α∈Tk whichL(xn)-converges to somefn ∈ C([−1,1]k−1,C([−1,1],M)) ≡
C([−1,1]k,M). Since thefn’s are in the compact setLk

ρk they have a conver-
gent subsequence(fn)n∈N reordering now the family(x′(n, α))n∈N,α∈Tk gives the
answer to the claim. 2

Since we shall be concerned as well with subspaces ofX we relativize the above
definitions. For an intervalI ⊆ N, P〈Ei 〉I is the FDD projection ofX onto〈Ei〉i∈I .

Unless specified otherwise we letY be a subspace ofX, andL : Y → M be
uniformly continuous mapping bounded subsets ofY to relatively compact sets in
M.

DEFINITION 1.6. Let (En) be a monotone FDD forX and letY ⊆ X be a
subspace. Fork ∈ N andf ∈ C([−1,1]k,M) we sayf ∈ L − {Y, (Ei)}k if
∀ ε > 0

∀ n1 ∀ ε1 > 0 ∃ y1 ∈ SY with ‖P〈Ei 〉n1
1
y1‖ < ε1

∀ n2 ∀ ε2 > 0 ∃ y2 ∈ SY with ‖P〈Ei 〉n2
1
y2‖ < ε2

· · ·
∀ nk ∀ εk > 0 ∃ yk ∈ SY with ‖P〈Ei 〉nk1

yk‖ < εk
such thatρk(L(y1,y2,...yk), f ) < ε.

DEFINITION 1.7. Let(Ei) be an FDD forX and letY ⊆ X. LetT = (y(n1, . . . ,

nj ))Tk ∈ Tk(Y, (Ei)). T is an asymptotic block tree onY with respect to(Ei),
denotedT ∈ a − Tk(Y ), if for all s ∈ N, limn→∞ ‖P〈Ei 〉s1y(n)‖ = 0 and limn→∞
‖P〈Ei 〉s1(y(n1, . . . , nj , n))‖ = 0 for all (n1, . . . , nj ) ∈ Tk−1.

Proposition 1.4 becomes

PROPOSITION 1.8. Let (Ei) be an FDD forX and let Y ⊆ X and k ∈ N.
f ∈ L− {Y, (Ei)}k iff treeT ∈ a − Tk(Y ) whichL-converges tof .

Next we relate the asymptotic structure ofY to a certain blocking of the FDD
(Ei) for X. Recall that(Fj ) is ablockingof (Ei) if there exist integers 0= p0 <

p1 < · · · so that for allj , Fj = 〈Ei〉pji=pj−1+1. (Hj)∞1 is askipped blockingof (Fj )
if there exists integersr1 6 s1 < s1 + 1 < r2 6 s2 < s2 + 1 < r3 6 s3 < · · · so
thatHj = 〈Fi〉sji=rj for all j . (xj ) ⊆ X is a (skipped) block sequencewith respect
to (Fj ) if there exists a (skipped) blocking(Hj) of (Fj ) with xj ∈ Hj for all j .
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PROPOSITION 1.9.Assume thatL is defined onX. Let(En) be a monotone FDD
for X. Letεn ↓ 0. Then there exists a blocking(Fj ) of (En) so that for allk and all
skipped normalized sequences(xi)k1 with respect to(Fj )∞j=k,

ρk

(
L(x1,x2,...xk), L− {X, (Ei)}k

)
< εk .

Rather than prove this we give the proof of the relativized result. This will
require that(En) be boundedly complete and henceX is naturally a dual space, the
dual of[(E∗n)] ⊆ X∗. When we say here and in the sequel thatY ⊆ X is ω∗ closed
we mean with respect to theω∗ topology thus generated onX. Proposition 1.7 is
proved similarly to 1.8 but the boundedly complete hypothesis is never needed.ω∗
convergence of a bounded sequence inX is just coordinatewise convergence with
respect to(En).

PROPOSITION 1.10.Let (En) be a monotone boundedly complete FDD forX
and let Y ⊆ X be ω∗ closed. Letεn ↓ 0. There existδk ↓ 0 and a blocking
(Fj ) of (En) with the following property. Givenk ∈ N if (yi)k1 ⊆ SY satisfies
∃ k 6 m0 < m1 < · · · < mk so that for16 j 6 k,

‖(I − P〈Fi 〉mj−1

mj−1+1

)yj‖ < δk

thenρk(L(y1,...yk), L− {Y, (Ei)}k) < εk.
In other words if(yi)k1 is almost a normalized skipped block sequence with

respect to(Fj )∞k thenL(y1,...yk) is close to being inL−{Y, (Ei)}k. Proposition 1.10
follows by iterating the following fixedk result.

PROPOSITION 1.11.Let (En) be a monotone boundedly complete FDD forX
and letY ⊆ X beω∗ closed. Then for allε > 0 and k ∈ N there existN1 ∈ N,
a blocking(Fj ) of (Ei)∞N1

and δ > 0 so that if (yi)k1 ⊆ SY satisfies there exists
0= m0 < m1 < · · · < mk with∥∥∥(I − P〈Fj 〉mj−1

mj−1+1

)yj

∥∥∥ < δ for j 6 k

thenρk(L(y1,y2,...yk), L − {Y, (Ei)}k) < ε.
Proof.We begin by showing how to deduce the proposition from the

Claim. ∃ δ > 0 ∃ N1 ∈ N ∀ y1 ∈ SY with ‖P〈Ei 〉N1
1
y1‖ < δ ∃ N2 ∈ N ∀ y2 ∈ SY

with ‖P〈Ei 〉N2
1
y2‖ < δ · · · ∃ Nk ∈ N ∀ yk ∈ SY with ‖P〈Ei 〉Nk1

yk‖ < δ one has

ρk(L(y1,y2,...yk), L− {Y, (Ei)}k) < ε/2.
Indeed assume the claim.
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Let δ′ > 0 be chosen so that for any two sequences(yi)
k
i=1 and(zi)ki=1 in SY

for which we assume that||yi − zi|| < δ′, i = 1, . . . k and thatρk(L(z1,z2,...zk), L−{Y, (Ei)}k) < ε/2 it follows thatρk(L(y1,y2,...yk), L− {Y, (Ei)}k) < ε. Without loss
of generality we can assume thatδ < δ′/3. Choosep1 > N1 so that{y ∈ SY :
‖(I −P〈Ei 〉p1

N1
)y‖ < δ} 6= ∅ and letS1 be a finiteδ′-net for this set. This can be done

as follows. First choose a finiteδ-netS̃ of P〈Ei 〉p1
N1
({y ∈ SY : ‖(I−P〈Ei 〉p1

N1
)y‖ < δ}),

then choose for each̃y ∈ S̃ a y in {y ∈ SY : ‖(I − P〈Ei 〉p1
N1
)y‖ < δ} so that

P〈Ei 〉p1
N1
(y) = ỹ. The set of all such elementsy has then the required property.

Choosep2 sufficiently large to satisfy the claim (“∃ N2, . . . ”) for all y ∈ S1.
DefineF1 = 〈Ei〉p1

N1
andF2 = 〈Ei〉p2

p1+1. We chooseS1,2, a finiteδ′-net for

{y ∈ SY : ‖(I − P〈F1,F2〉)y‖ < δ} .
Choosep3 sufficiently large to satisfy the claim (“∃ N2, . . . ”) for all y ∈ S1,2. Set
F3 = 〈Ei〉p3

p2+1.

Notation. If Fi have been defined for alli ∈ I , some interval inN, we letSI be a
finite δ′-net for

{y ∈ SY : ‖(I − P〈Fj 〉I )y‖ < δ} .
We shall say intervalsI1 < · · · < Ij of integers areskippedif

maxIi + 1< minIi+1 for i < j .

Suppose thatFj = 〈Ei〉pjpj−1+1 has been defined. Choosepj+1 large enough to
satisfy the claim for all skipped intervalsI1 < · · · < I` in {1, . . . , j} for any
y1, . . . , y` with yi ∈ SIi (using “∃ N`+1 . . . ”). DefineFj+1 = 〈Ei〉pj+1

pj+1.

Let (yi)k1 be as in the statement of Proposition 1.11 with respect to the blocking
(Fj ) of (Ei)∞N1

just constructed. Thus for some sequenceI1 < · · · < Ik of skipped
intervals we have

‖(I − P〈Fj 〉I` )y`‖ < δ for ` 6 k .

For ` 6 k choosez` ∈ SI` with ‖z` − y`‖ < δ′. From our construction using the
claim we have

ρk

(
L(z1,z2,...zk), L− {Y, (Ei)}k

)
< ε/2 .

The choice ofδ′ finally implies then that

ρk

(
L(y1,y2,...yk), L− {Y, (Ei)}k

)
< ε .
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Proof of the claim.If false then

∀ δ > 0 ∀ N1 ∃ y1 ∈ SY , ‖P〈Ei 〉N1
1
y1‖ < δ

∀ N2 ∃ y2 ∈ SY , ‖P〈Ei 〉N2
1
y2‖ < δ

· · ·
∀ Nk ∃ yk ∈ SY , ‖P〈Ei 〉Nk1

yk‖ < δ
yet

ρk

(
L(y1,y2,...yk), L− {Y, (Ei)}k

)
> ε/2 .

Fix δ > 0. By the above we can find a treeT = {y(n1, . . . , nj ) : (n1, . . . , nj ) ∈
Tk} ∈ Tk(Y ) so that for alls and all(n1, . . . , nj ), j < k

lim sup
n→∞

∥∥∥P〈Ei 〉s1y(n1, . . . , nj , n)

∥∥∥ 6 δ
and for all(n1, . . . , nk)

ρk

(
L
((y(ni))

j

i=1:j6k), L − {Y, (Ei)}k
)
> ε/2 .

Since for alls, lim supn→∞ ‖P〈Ei 〉s1y(n)‖ 6 δ using thatY is ω∗ closed we may

choosey(ni)
ω∗−→ y0 ∈ Y with ‖y0‖ 6 δ. We then repeat this argument at the

next level to the successors of eachy(ni) and so on. Ultimately thus pruning our
tree but leaving behind an isomorphic subtree we see that we may assume without
loss of generality eachy(n1, . . . , nj ) = y0(n1, . . . , nj−1)+ z(n1, . . . , nj ) where
‖y0(n1, . . . , nj−1)‖ 6 δ, bothy0(n1, . . . , nj−1) andz(n1, . . . , nj−1) belong toY
andω∗-limn→∞ z(n1, . . . , nj−1, n) = 0. Let

w(n1, . . . , nj ) = z(n1, . . . , nj )

‖z(n1, . . . , nj )‖ .

Then(w(n1, . . . , nj )Tk ∈ a − Tk(Y, (Ei)).
By Proposition 1.5 and passing to a subtree we may assume that this treeL-

converges to somef ∈ L − C([−1,1]k,M). From Proposition 1.8,f ∈ L −
{Y, (Ei)}k. From‖y(n1, . . . , nj )− z(n1, . . . , nj )‖ 6 δ we obtain that

‖y(n1, . . . , nj )− w(n1, . . . , nj )‖ 6 2δ

1− δ .

Thus by a perturbation argument choosingδ = δ(ε) sufficiently small we obtain
that

ρk

(
L((y(n1,...nj ))

k
j=1)
, L− {Y, (Ei)}k

)
> ε/2
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for n1 < n2 < ...nk large. This is a contradiction. 2

2. Indices

We define the Szlenk index of a separable Banach spaceX and another index which
we call theH -index and make some connections between them. The latter index is
defined in terms of the asymptotic structure in the setting whereX has an FDD or
is a subspace of a space with an FDD.

DEFINITION 2.1. The Szlenk Index
LetB be a separable Banach space and letX = B∗. Thus(BX, ω∗) is a compact

metric space. Let 0< ε < 1. LetS0(B, ε) = BX. If Sα(B, ε) has been defined for
α < ω1 we let

Sα+1(B, ε) =
{
x : ∃ (xn) ⊆ Sα(B, ε) with

ω∗- lim
n→∞ xn = x and lim inf

n→∞ ‖xn − x‖ > ε
}
.

If α < ω1 is a limit ordinal we set

Sα(B, ε) =
⋂
β<α

Sβ(B, ε) .

Szlenk’s original index [26] was defined somewhat differently. However by
Rosenthal’s̀ 1 theorem [25] the two indices are equivalent ifB contains no iso-
morph of`1. Furthermore

sup
ε>0
{α : Sα(B, ε) 6= ∅} < ω1

if and only ifX = B∗ is separable.

We will say thatB hasfinite Szlenk indexif for all ε > 0 there existsk ∈ N with
Sk(B, ε) = ∅. There is a natural relation between this index and trees onX = B∗
(see also [1]).

PROPOSITION 2.2.LetB be a separable Banach space andX = B∗. Letε > 0,
k ∈ N andx0 ∈ Sk+1(B, ε).

Then there exists a tree{x(n1, . . . , nj ) : (n1, . . . , nj ) ∈ Tk} ⊆ X so that
(1) ω∗-lim x(n) = x0

(2) ω∗-limn→∞ x(n1, . . . , nj , n) = x(n1, . . . , nj ) for all (n1, . . . , nj ) ∈ Tk−1

(3) lim inf ‖x(n)− x0‖ > ε
(4) lim inf n→∞ ‖x(n1, . . . , nj , n)− x(n1, . . . , nj )‖ > ε for all (n1, . . . , nj ) ∈

Tk−1.
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By taking the difference tree of the above tree as we did in the proof of Propo-
sition 1.11 in the previous section we obtain the following.

PROPOSITION 2.3.LetX = B∗ be a separable dual,k ∈ N, ε > 0 and assume
Sk+1(B, ε) 6= ∅.

Then there exists a tree(z(n1, . . . , nj ))Tk ⊆ 2BX with for all (n1, . . . , nj ),
j < k,

(1) lim inf n→∞ ‖z(n1, . . . , nj , n)‖ > ε
(2) ω∗-limn→∞ z(n1, . . . , nj , n) = 0
(3) For all (n1, . . . , nk),∥∥∥ k∑

j=1

z(n1, . . . , nj )

∥∥∥ 6 2 .

This leads us to make the following definitions.

DEFINITION 2.4. Let (xi) be a basic sequence (of possibly finite length). Let
0< ε < 1. Thestrong indexof (xi) is

SI ((xi), ε) = sup{k : ∃ (ai)k1 with ε 6 |ai| 6 1 for i 6 k and a normalized
block basis(yi)k1 of (xi) so that‖∑k

1 aiyi‖ 6 1}.

We then use this to define an index based upon the strong index of the asymp-
totic structure of a space.

DEFINITION 2.5. LetX have a monotone FDD(En) and letY ⊆ X andε > 0.
H(Y, (Ei), ε) = sup{SI ((ei)k1, ε) : k ∈ N and(ei)k1 ∈ {Y, (Ei)}k}.

As noted in [20] it is easy to see that if(xi)n1 is a normalized block basis of
(ei)

k
1 ∈ {Y, (Ei)}k then(xi)n1 ∈ {Y, (Ei)}n. Thus we have

PROPOSITION 2.6. Let (En) be a monotone FDD forX and letY ⊆ X and
ε > 0. ThenH(Y, (Ei), ε) = sup{k : ∃ (ei)k1 ∈ {Y, (Ei)}k and (ai)k1 ⊆ [ε,1] with
‖∑k

1 aiei‖ 6 1}.

REMARK 2.7. Our next result yields that the Szlenk index of a spaceB with
separable dualY is finite iff theH -index ofY with respect to a certain FDD is finite
as well. Recall that ifB∗ = Y is separable thenB is a quotient of a space with a
shrinking basis [3]. It follows thatY is a subspace of a spaceX with a boundedly
complete basis and moreover theω∗ topology onY induced byB agrees with the
relativeω∗ topology onY obtained by regarding the spaceX as[(e∗n)]∗ where(en)
is the boundedly complete basis forX.ω∗-convergence in this setting of a bounded
sequence is just coordinatewise convergence. For convenience in calculations we
take the basis in question or more generally an FDD to be bimonotone.
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PROPOSITION 2.8.Let (En) be a bimonotone boundedly complete FDD forX

and letY = B∗ be aω∗ closed subspace. Letε > 0.
(a) Sk+1(B, ε) 6= ∅ H⇒ H(Y, (Ei), ε/2) > k
(b) H(Y, (Ei), ε) > k H⇒ Sk(B, ε/2) 6= ∅ .
Proof.Let ε > 0. Suppose thatSk+1(B, ε) 6= ∅. Let T = (z(n1, . . . , nj ))Tk ⊆

2BY be the tree given by Proposition 2.3. Definew(n1, . . . , nj ) = z(n1,... ,nj )

‖z(n1,... ,nj )‖
and letT = (w(n1, . . . , nj ) be the corresponding tree. ClearlyT ∈ a − Tk(Y )
and by pruning we may assume all branches are 2-basic. Thus we may assume
by Proposition 1.5 thatT converges to some(ei)k1 ∈ {Y, (Ei)}k. Note that for all
(n1, . . . , nk),∥∥∥ k∑

1

‖z(n1, . . . , nj )‖w(n1, . . . , nj )

∥∥∥ 6 2

by (3) of Proposition 2.3.
In other words for arbitrarily largen andε′ < ε we can find some branch of

T and coefficients all exceedingε′ so that the norm of the ensuing sum does not
exceed 2. It follows thatH(Y, (Ei), ε/2) > k which proves (a).

Next letH(Y, (Ei), ε) > k. Thus there exists(ei)k1 ∈ {Y, (Ei)}k and(ai)k1 ⊆
[ε,1]with ‖∑k

1 aiei‖ 6 1. By Proposition 1.8 there existsT = (w(n1, . . . , nj ))Tk ∈
a − Tk(Y ) which converges to(ei)k1.

Let y(n1, . . . , nj ) = ∑j

i=1 aiw(n1, . . . , ni). By the convergence ofT to (ei)k1
we may assume that‖y(n1, . . . , nj )‖ < 2 for all (n1, . . . , nj ) ∈ Tk. Moreover for
j < k,

lim inf
n→∞ ‖y(n1, . . . , nj )− y(n1, . . . , nj , n)‖ > ε

andω∗-limn→∞ y(n1, . . . , nj , n) = y(n1, . . . , nj ). It follows thatS(Y, ε/2) > k.
Indeedy(n1,... ,nj )

2 ∈ Sk−j (B, ε/2) for 16 j 6 k and so 0= ω∗-lim y(n)

2 belongs to
Sk(B, ε/2). 2
PROPOSITION 2.9.Let (Ei) be a bimonotone FDD forX and letY ⊆ X. Let
0< ε < 1. Then

(a) H(Y, (Ei), ε′) 6 H(Y, (Ei), ε) if ε′ > ε.
(b) H(Y, (Ei), ε2) 6 [H(Y, (Ei), ε)+ 1]2
Proof. We need only prove (b). LetH(Y, (Ei), ε) = k. Assume(ei)

(k+1)2

1 ∈
{Y, (Ei)}k+1 is such that there exist(ai)

(k+1)2

1 ⊆ [ε,1] with ‖∑(k+1)2

1 aiei‖ 6 1.
For 16 j 6 k + 1 definexj = 1

bj

∑j (k+1)
i=(j−1)(k+1)+1 aiei to be norm 1.

Since(Ei) is bimonotone we see thatbi 6 1 for i 6 k + 1. Alsobi > ε by the
definition ofH(Y, (Ei), ε) = k. This uses thatxi is formed as a sum ofk + 1 ej ’s
with coefficients at leastε2. Note that‖∑k+1

1 bjxj‖ 6 1. But this contradicts our
choice ofk. 2
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DEFINITION 2.10. LetX have a bimonotone FDD(Ei) and letY ⊆ X. We say
Y hasfiniteH -index if H(Y, (Ei), ε) < ω for some (and thus by Proposition 2.9
for all) 0< ε < 1.

In the terminology of [9] a spaceB with separable dualY has finite Szlenk
index for allε > 0 iff ‖ · ‖ : (BY , ω∗)→ R is Baire-1/2. See [9] and [16] for more
on the general theory of Baire-1/2 functions.

REMARK 2.11. One can define the previous concepts using the weak rather than
theω∗ topology. This was done by Huff [10] who attributes the idea to Bourgain.
Thus the weak index ofX would be given by

Wα+1(X, ε) = {x : ∃ (xn) ⊆ Wα(X, ε) , xn
ω→ x and lim inf

n→∞ ‖xn − x‖ > ε} .
Of course in the reflexive case,X = B∗ we get that for allε > 0, W(X, ε) ≡
sup{α : Wα(X, ε) 6= ∅} < ω iff B has finite Szlenk index.

The notion ofweak asymptotic structurecould also be defined in terms of
trees. ForY ⊆ X, X having an FDD(En), a normalized basic sequence(ei)k1 ∈
w − {Y, (Ei)})k if there existsT = (y(n1, . . . , nj ))Tk ∈ a − Tk(Y ) with respect
to (Ei) so thatT converges to(ei)k1 and so that for all(n1, . . . , nj ) ∈ Tk−1, ω-
limn y(n1, . . . , nj , n) = 0. Of course the weak asymptotic structure could differ
from the asymptotic structure but some of the properties of asymptotic structure do
still hold in this setting. We state one such result.

PROPOSITION 2.12.LetX have an FDD(Ei) and letY ⊆ X. Assume thatY
does not contain an isomorph of`1. Let (ei)k1 ∈ w − {Y, (Ei)}, and let(yi)m1 be a
normalized block basis of(ei)k1. Then(yi)m1 ∈ w − {Y, (Ei)}m.

This follows easily from the following

LEMMA 2.13. Let T be a tree inBY which is order isomorphic toTk. Assume
Y does not contaiǹ 1 and that the initial nodes ofT are weakly null and all
successors of a given node inT are weakly null. Then there exists a subtreeT ′ =
(y(n1, . . . , nj ))Tk of T which is order isomorphic toT and satisfiesω-limn ym =
0 wheneverym = ∑k

j=1 y(n
(m)

1 , . . . , n
(m)
j ) for some(n(m)1 , . . . , n

(m)
k ) ∈ Tk with

n
(m)

1 = m.
Proof. This can be deduced from ak-dimensional version of Corollary 3 in

[17]. 2



THE SZLENK INDEX AND UKK PROPERTIES IN BANACH SPACES 185

3. Lower `p Estimates

PROPOSITION 3.1.Let(ei) be a bimonotone basic sequence withSI ((ei),1/2) ≡
n0 < ∞. Then there existsp = p(n0) ∈ (1,∞) so that if(xi)m1 is any block basis
of (ei) then∥∥∥ m∑

1

xi

∥∥∥ > 1

2

( m∑
1

‖xi‖p
)1/p

.

REMARK 3.2. This lemma is known. It follows from proofs of similar results
given in [11] or in [13]. In the latter the result is presented in an unconditional
setting for disjoint blocks but the same proof works in our setting. We choose to
present our own proof. The idea of the proof is used for a later result.

Proof. The proof of Proposition 2.9 also yields thatSI ((ei),1/4) 6 [SI ((ei),
1/2)+ 1]2. Letn = 4n0+ 1 and choosep ∈ (1,∞) with 2p = n. We may assume
‖ei‖ = 1 for all i. If (xi) is a block basis of(ei) thenSI ((ei),1/2) > SI ((xi),1/2)
so it suffices to prove that for all(ai)m1 ∈ S`mp that‖∑m

1 aiei‖ > 1/2.
If this were false choose such an(ai)m1 ∈ S`mp with ‖∑m

1 aiei‖ < 1/2. Assume
m is minimal with this property, (i.e., that such a sequence(ai)

m
1 exists). By the fact

that(ei) is bimonotone,|ai | < 1/2 for i 6 m. Choosen1 minimal with
∑n1

1 |ai |p >
(1/2)p. Then choosen2 > n1 minimal so that

∑n2
n1+1 |ai |p > (1/2)p and so on until

obtainingnk < m with
∑m

nk+1 |ai |p 6 (1/2)p. It follows from the minimality of
nj+1 that(nj+1∑

nj+1

|ai |p
)1/p

∈
[1

2
,21/p · 1

2

]
for 06 j < k

(takingn0 = 0). Thus(1− (1
2)
p)1/p 6 1

221/pk1/p which implies thatk > 1
2(1−

1
n
)n > n

4. Setxj = ∑nj
nj−1+1 aiei for 1 6 j 6 k. By the minimality ofm and the

fact that(
∑nj

nj−1+1 |ai|p)1/p > 1
2 we have that‖xj‖ > 1

4. ThusSI ((ei),
1
4) > k >

n
4.

This contradictsn > 4SI ((ei),
1
4). 2

DEFINITION 3.3. Let(En) be an FDD andp <∞. (En) is blockp-Besselianif
there existsc > 0 so that whenever(xi) is a block sequence of(En),

‖
∑

xi‖ > c
(∑

‖xi‖p
)1/p

(En) is skipped blockp-Besselianif the above holds for all skipped sequences of
(En).

DEFINITION 3.4. Let(En) be an FDD and letp < ∞. (En) is asymptotically
blockp-Besselianif there existsc > 0 so that wheneverk ∈ N and(xi)ki=1 is a
block sequence of(En)∞n=k then‖∑k

1 xi‖ > c(
∑k

1 ‖xi‖p)1/p.
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(En) is asymptotically skippedblock p-Besselian if the above holds for all
skipped sequences(xi)ki=1 of (En)∞n=k.

PROPOSITION 3.5.Let(En) be an FDD which is asymptotically blockp-Besselian
for somep <∞. Then(En) is blockq-Besselian for allq > p.

Proof.We may assume that(En) is bimonotone. Suppose thatc > 0 is such that
for all k and all block sequences(xi)k1 of (En)∞k ,

∥∥∥ k∑
1

xi

∥∥∥ > c( k∑
1

‖xi‖p
)1/p

.

Let q > p. ChooseK so large that

cK−1
(Kq

2
− 1

)1/p
> 1 . (*)

Let n0 ∈ N with n0 > K
q + 1.

Claim If (xi)s1 is a block sequence of(Ej )∞n0
then‖∑s

1 xi‖ > K−1(
∑s

1 ‖xi‖q)1/q.
If the claim is true the result follows. Assume the claim is false. Then there ex-

ists a normalized block sequence(ei)s1 of (Ej )∞n0
and scalars(ai)s1 with

∑s
1 |ai|q =

1 and‖x‖ < K−1 for x = ∑s
1 aiei. Furthermore we may assumes is minimal

so that such a situation arises. As in the proof of Proposition 3.1 we may write
x = ∑N+1

i=1 xi wherexi = ∑ni
j=ni−1+1 aj ej is the shortest vector (afterxi−1) with

‖xi‖`q > K−1 for i 6 N and‖xN+1‖`q < K−1. Note that‖xi‖`q 6 K−121/q for
i 6 N since|aj | < 1

K
by the bimonotone property and the fact that‖x‖ 6 K−1.

Also

1>
( N∑
i=1

‖xi‖q`q
)1/q

> K−1N1/q

and soN 6 Kq . Furthermore

N+1∑
i=1

(K−121/q)q >
N+1∑
i=1

‖xi‖q`q = 1

and so 2(N + 1)K−q > 1 which yields that

N1/p >
(Kq

2
− 1

)1/p
.

By the minimality ofs we have that

‖xi‖ > K−1‖xi‖`q > K−2 for i 6 N .
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Combining these with our hypothesis and(∗) we have that

‖x‖ > c
( N∑
i=1

‖xi‖p
)1/p

> cK−2N1/p

> K−1

[
cK−1

(Kq

2
− 1

)1/p
]
> K−1

which is a contradiction. 2

4. Blockings in Spaces of Finite Index

In this section we focus on spacesX having an FDD and finiteH -index. We prove
that the FDD can be blocked to yield certain lower`p estimates for somep <∞.

THEOREM 4.1. Let (En) be an FDD forX.
(a) If X is of finiteH -index with respect to(En) then there existsp ∈ [1,∞)

and a blocking(Fj ) of (En) which is skipped blockp-Besselian.
(b) IfX is of finiteH -index with respect to(En) and(En) is boundedly complete

then there exists a blocking(Hj) of (En) andp ∈ [1,∞) so that(Hj) is
blockp-Besselian.

Proof. (a) follows directly from our work thus far. Let(Fn) be the blocking of
(En) given by Proposition 1.9 for a suitableεn ↓ 0 rapidly. It follows that there
existsn0 ∈ N so that if for allk if (xi)k1 is a normalized skipped sequence of(Fn)

∞
k

thenSI ((xi)k1,1/2) 6 n0. Hence by Propositions 3.1 and 3.5 there existp <∞ so
that(Fn) is skipped blockp-Besselian.

To prove part (b) we need a trick of W.B. Johnson [14]. We give the proof
because we need a generalization in the next section.

LEMMA 4.2. Let (En) be a boundedly complete FDD forX. Let εn ↓ 0. Then
there exist integers0 = n0 < n1 < · · · so that ifx = ∑ xj ∈ SX, xj ∈ Ej for all
j , then for allj there existsij ∈ (nj−1, nj ] so that‖xij ‖ < εj .

Proof. It suffices to show that∀ m ∀ ε > 0 ∃ n > m so that ifx = ∑ xi ∈ SX
with xi ∈ Ei then there existsj ∈ (m, n] with ‖xj‖ < ε. If not then∀ n ∃ xn =∑
xnj ∈ SX with xnj ∈ Ej and‖xnj ‖ > ε for all j ∈ (m, n]. Choose a subsequence

(xnk ) of (xn) with xnkj
k→∞−→ xj ∈ Ej for all j . Thus‖xj‖ > ε for j > m and

sup̀ ‖∑`
1 xi‖ <∞. This contradicts that(Ej ) is boundedly complete. 2

Proof of (b).Let εn ↓ 0 rapidly. Let(Fj ) andp be as in (a). Let 0= n0 < n1 <

· · · be given by Lemma 4.2 and defineHj = 〈Fi〉njnj−1+1. Let x = ∑
xi = ∑

yi

with x ∈ SX, xi ∈ Fi andyi ∈ Hj for all i, j . For eachj chooseij ∈ (nj−1, nj ]
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with ‖xij ‖ < εj . Set

zj =
ij∑

i=ij−1+1

xi (i0 = 0) .

Then (xj ) is a skipped sequence with respect to(Fj ) and so ‖∑ zj‖ >
1
2(
∑ ‖zj‖p)1/p. Furthermore‖∑ zj‖ 6 ‖x‖ +∑j ‖xij ‖ < 2 (for suitably small

εj ’s). Also for all j , ‖yj‖ 6 ‖zj‖ + ‖xij ‖ + ‖zj+1‖. Thus(∑
‖yj‖p

)1/p
6
(∑

j

(‖zj‖ + ‖zj+1‖ + εj )p
)1/p

6 9 ,

for suitably smallεj ’s. 2
COROLLARY 4.3. Let (En) be a boundedly complete FDD forX and assume
thatX is of finiteH -index with respect to(En). Then there exist1 6 p < ∞, a
blocking (Hj) of (En) and an equivalent norm| · | on X so that if (xj ) ⊆ X is
any block sequence of(Hj) then |∑ xj | > (

∑ |xj |p)1/p. In particular X can be
renormed to have theω∗-UKK property.

Proof.Let (Hj) andp be as in (b). Define forx ∈ X, |x| = sup{(∑ ‖xi‖p)1/p :
x =∑ xi where(xi) is a block sequence with respect to(Hj)}. 2

This result partially solves the problem raised by Huff [10]. IfX = B∗ is
reflexive andB has an FDD and is of finite Szlenk index thenX can be renormed
to have the UKK. Thus givenε > 0 there existsδ(ε) > 0 so that if(xn) ⊆ BX,
ω-limn xn = x and‖xn − xm‖ > ε for n 6= m then‖x‖ 6 1− δ(ε). In the next
section we remove the assumption thatX have an FDD.

5. Blockings and Subspaces of Finite Index

We relativize the results of the previous section to subspaces ofX. First we need
an extension of Lemma 4.2.

LEMMA 5.1. LetX have a bimonotone boundedly complete FDD(Fn) and let
Y ⊆ X beω∗ closed.∀ ε > 0 ∀ m ∈ N ∃ n > m such that ify = ∑∞

1 yi ∈ BY
with yi ∈ Fi for all i then∃ k ∈ (m, n] with

(a) ‖yk‖ < ε
(b) dist(

∑k−1
i=1 yi, Y ) < ε.

Proof. We proved (a) in Lemma 4.2. In particular we can findm = n0 <

n1 < n2 < · · · so that ifx = ∑∞
1 xi ∈ BX, xi ∈ Fi for all i, then for allj

there existskj ∈ (nj−1, nj ] with ‖xj‖ < ε. Thus if (b) fails then for allj there
existsy(j) = ∑j

i y
(j)

i ∈ BX, y(j)i ∈ Fi for all i, so that for alls < j there exists
k(j, s) ∈ (ns−1, ns] with ‖y(j)k(j,s)‖ < ε and dist(

∑k(j,s)−1
i=1 y

(j)

i , Y ) > ε. Passing to
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a subsequence of(y(j)) we may assume that limj→∞ y
(j)

i ≡ xi ∈ Fi exists for alli
and thatk(j, s) ≡ k(s) for s 6 j . By the fact that‖∑`

1 xi‖ 6 1 for all ` and the

boundedly complete property of(En) we havex = ∑∞1 xi ∈ BX. Also y(j)
ω∗−→x

and sox ∈ Y . Thus

dist

(
Y,

k(s)−1∑
i=1

xi

)
s→∞−→ 0 , a contradiction. (2)

THEOREM 5.2. Let (En) be a bimonotone boundedly complete FDD forX and
let Y be aω∗ closed subspace whose predual has finite Szlenk index. There exists
a blocking(Hj) of (En) andp = p(H(Y, (Ei),1/2) ∈ [1,∞) so that| · | is an
equivalent norm onY where forx ∈ X,

|x| = sup

{( ∞∑
1

‖xi‖p
)1/p

: ∃ a blocking(Gi) of (Hi)

with xi ∈ Gi for all i andx =
∞∑
1

xi

}
Of course|x| could be infinite for somex ∈ X. We are only claiming it is an

equivalent norm onY . Before proving the theorem we give some corollaries.

COROLLARY 5.3. Let Y be a separable dual space whose predual has finite
Szlenk index. Then there exist a Banach spaceZ with a boundedly complete FDD
(Hj) andp ∈ [1,∞) so thatY embeds isomorphically (norm andω∗) into Z and
‖∑ zj‖ > (∑ ‖zj‖p)1/p for all block bases(zj ) of (Hj).

Proof. As discussed earlier we may assume thatY is aω∗ closed subspace of
a spaceX having a boundedly complete FDD [3]. We let(Hj) and | · | be as in
Theorem 5.2. DefineZ to be the completion of〈(Hj)〉 under| · |. Y embeds intoZ
by the theorem. 2
COROLLARY 5.4. Let B be a separable Banach space of finite Szlenk index
(S(B, ε) <∞ for all ε > 0). ThenB admits an equivalentω∗-UKK norm.

Proof.Let Y = B∗. By [3] there exists a spaceW having a shrinking basis and
a quotient mapQ : W → B. ThusQ∗ : Y → W ∗ embedsY as aω∗ closed
subspace ofW ∗. MoreoverQ∗ is aω∗ isomorphism as well.Q∗Y has finite index
with respect to the dual basis ofW , a boundedly complete basis forW ∗. We then
apply Corollary 5.3 obtainingZ, (Hj) andp as in the conclusion of Corollary 5.3.
Thus we have renormedY by ‖·‖ so as to preserve itsω∗ topology as the dual space
ofX in such a manner thatY has aω∗-UKK norm. The latter comes from the lower
`p estimate forZ. This then defines an equivalent norm onB by regardingY as the
dual ofB. Thus forx ∈ B,

‖x‖ = sup{〈x, y〉 : y ∈ BY } .
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So(Y, ‖ · ‖) = (B, ‖ · ‖)∗ and(B, ‖ · ‖) has theω∗-UKK. 2
Proof of Theorem 5.2.It will suffice to produce such ap and a blocking(Hj)

of (Fj ) so that if(Gj ) is any further blocking of(Hj) andy = ∑
yj ∈ Y with

yj ∈ Gj for all j then

‖y‖ > 1

13

(∑
‖yj‖p

)1/p
.

Let H(Y, (Ei),1/4) ≡ n0 < ∞. Let ε > 0 be small (specified below). By
Proposition 1.9 there existδ > 0 and a blocking(Fj ) of (Ei) so that if(yi)

n0+1
1 ⊆

SY satisfies: there exists a skipped blocking(Gj)
n0+1
1 of (Fj )∞2 so that

‖(I − PGj )yj‖ < δ for j 6 n0+ 1

thendb((yi)
n0+1
1 , {Y, (Ei)}n0+1) < 1+ ε/2.

LEMMA 5.5. There existp = p(n0) and ε̄n ↓ 0 so that if(Gj) is any skipped
blocking of(Fj ) and(yj ) ⊆ Y satisfies‖(I − PGj )yj‖ 6 ε̄j‖yj‖ for all j then∥∥∥∑ yj

∥∥∥ > 1

4

(∑
‖yj‖p

)1/p
.

Proof. We may assume that eachyj 6= 0. By taking ε̄j sufficiently small this
will insure that(yj /‖yj‖) is 1+ ε-close to being bimonotone. We claim that

SI ((yi),1/2) 6 n0+ 1 .

Indeed if (zi)
n0+2
1 is any normalized block basis of(yi) then, db((zi)

n0+2
2 ,

{Y, (Ei)}n0+1) < 1+ ε from our initial assumptions on(Fj ) and standard perturba-
tion arguments which of course impose restrictions on(ε̄n). ThusSI ((zi)

n0+1
2 ,1/2) 6

n0 which gives the claim. If(yi) were bimonotone we would have the desired
estimate by Proposition 3.1, with a lower constant of 1/2. Since(yi) is only nearly
bimonotone the 1/2 becomes 1/4 by takingε sufficiently small. 2

Continuing with the proof of 5.2 we let̄̄εn ↓ 0 rapidly (specified below) and
choose, using Lemma 5.1, integers 0= m0 < m1 < · · · so that for ally =∑ yi ∈
BY with yi ∈ Fi for all i, givenj ∈ N there existsij ∈ (mj−1,mj ] with ‖yij ‖ < ¯̄εj
andd(

∑ij−1
1 yi, Y ) < ¯̄εj . DefineHj = 〈Fi〉(mj−1,mj ] for j ∈ N. Let (Gj) be any

further blocking ofHj , sayGj = 〈Hi〉(ki−1,ki ] for some 0= k0 < k1 < · · · . Let
y =∑ yi ∈ SY with yi ∈ Fi for all i.

For eachj chooseij ∈ (mj−1,mj ] with ‖yij ‖ < ¯̄εj andd(
∑ij−1

1 yi, Y ) < ¯̄εj .
Takei0 = 0 andzj =∑ij−1

i=ij−1+1 yi. Thend(z1, Y ) < ¯̄ε1 and forj > 1

d(zj , Y ) < ¯̄εj + ¯̄εj−1+ ¯̄εj−1 < 3 ¯̄εj−1 .
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Choosewj ∈ Y with ‖zj − wj‖ < 3 ¯̄εj−1 for j > 1 and‖z1− w1‖ < ¯̄ε1.
We claim that(

∑ ‖wj‖p)1/p 6 5 and so (̄̄εj sufficiently small)(
∑ ‖zj‖p)1/p 6

6. Indeed set̄ε1 = ε̄0 = ε̄−1 and letI = {i : ‖zi‖ > 2 ¯̄εi−2}. If j /∈ I then
‖wj‖ 6 3 ¯̄εj−1+ 2 ¯̄εj−2. If j ∈ I then (̄̄εj suitably small)

‖(I − P〈Fi 〉(ij−1,ij )
)wj‖ < ε̄j‖wj‖ .

Thus by Lemma 5.5(∑
I

‖wi‖p
)1/p

6 4
∥∥∥∑

I

wi

∥∥∥ 6 4

(
1+

∑
(3 ¯̄εj−1 + 2 ¯̄εj−2)

)
< 5

if ¯̄εj are suitably small. The claim follows.
Finally let y = ∑ bj wherebj ∈ Gj . Then‖bj‖ 6 ‖zj−1 + yij−1 + zj + yij ‖.

This yields(∑
‖bj‖p

)1/p
6 2

(∑
‖zj‖p

)1/p + 2
(∑

ε̄
p

j

)1/p

6 13

for suitably small̄εj ’s. 2
In the case whereY is reflexive we obtain the following:

THEOREM 5.6. LetY be a reflexive space whose predual has finite Szlenk index.
ThenY can be renormed to have the UKK property. Moreover the UKK modulus
is of power type.

Indeed by a result of Zippin [27] we can regardY ⊆ X whereX is reflexive
and has a basis. The result then follows from our previous results and the following
proposition.

PROPOSITION 5.7.LetZ be the space constructed in Corollary 5.3.
(a) If X has a basis thenZ has a basis.
(b) If X is reflexive thenZ is reflexive.

Proof. (a) is clear. To see (b) we first recall that the lower`p estimate on blocks
of (Hj) gave that(Hj) was boundedly complete. It remains to show that(Hj) is
shrinking. If not there exists a| · | normalized block basis(xj ) of (Hj) so that for
all (ai) ⊆ R+ with

∑
ai = 1 we have|∑ aixi | > 1/2.

Chooseδ > 0 so thatδp−1 < 6−p. Let (ai) ⊆ [0, δ) with
∑
ai = 1 and

using the definition of the norm| · | choose a blocking(Gj) of (Hj) so that for
x =∑ aixi ,

1
2p <

∑
j ‖PGj x‖p. We assumePGj x 6= 0 for all j . We consider each

blockGj and if necessary split it into at most 3 blocks as follows. IfPGj xi 6= 0
for at most onei we do nothing. Otherwise leti be maximal so thatPGj xi 6= 0
andPGj+1xi 6= 0 as well. (If no suchxi exists we do nothing.) We splitGj into
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two blocks, the first acting on〈x1, . . . , xi−1〉 and the second onxi . We also make a
corresponding split if necessary according to the minimali so thatPGj xi 6= 0 and
PGj−1xi 6= 0.

We let(Rj ) be the new blocking. It follows that ifPRj xi 6= 0 for more than one
i, then for any suchi PRj ′ xi = 0 for j 6= j ′. Also for suchj , ‖PRj x‖ 6

∑
Ij
ai

whereIj = {i : PRj xi 6= 0}. Due the the splitting of(Gj ) our above estimate
becomes

1

2p
6 3p

∑
j

‖PRj x‖p .

Let J = {j : PRj xi 6= 0 for more than onei} then
∑

j /∈J ‖PRj x‖p 6
∑

i /∈∪Ij a
p

i

since|xi | = 1 for all i. Now we claim that for somej ∈ J , ‖PRj x‖ > δ. Indeed if
not we have

1

6p
6
∑
j∈J
‖PRj x‖p +

∑
j /∈J
‖PRj x‖p

< δp−1
∑
j∈J
‖PRj x‖ +

∑
i /∈∪Ij

a
p

i

< δp−1

[∑
i∈∪Ij

ai +
∑
i /∈∪Ij

ai

]
= δp−1 .

But this is impossible by our choice ofδ.
Hence for such anx, ‖x‖ > ‖PRj x‖ > δ. But this contradicts that(xi) is

necessarily weakly null for‖ · ‖. Indeed one can always find(ai) ⊆ [0, δ) with
‖∑ aixi‖ < δ and

∑
ai = 1. 2

6. Dual Results and Further Remarks

We next explore dual concepts to those above which will ultimately lead to upper
`q estimates for someq > 1.

To say that a basic sequence(xi) has finite strong index is equivalent to saying
that we have uniform lower̀p estimates on all block bases for somep < ∞.
Thus givenK there existsn so that if(yi)n1 is a normalized block basis of(xi) then
‖∑n

1 yi‖ > K. In other words(xi) does not admit (what might be called)`n∞+
uniformly as block bases.

The dual notion is aǹn1+ index.
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DEFINITION 6.1. Let(xi) be a basic sequence andε > 0.

I+((xi), ε) = sup

{
k : ∃ a normalized block basis(yi)

k
1 of (xi) satisfying

∥∥∥ k∑
1

aiyi

∥∥∥ > ε k∑
1

ai if (ai)
k
1 ⊆ R+

}
.

It is easy to see thatI+(xi) <∞ iff there existsn0 ∈ N so that for all normalized
block bases(yi)

n0
1 of (xi) we have‖∑n0

1 yi‖ < n0/2. Also by James’ result that`1

is not distortable [12] adapted to the`+1 situation,I+((xi), ε) <∞ for someε < 1
iff I+((xi), ε) <∞ for all ε < 1. See [1] for more on theI+ index.

The analog of Proposition 3.1 is

PROPOSITION 6.2. ([11], [13])Let (xi) be a monotone basis. Suppose that
I+((xi),1/2) = n0 < ∞. Then there existsq = q(n0) > 1 so that‖∑ aixi‖ 6
6(
∑ |ai |q)1/q for all (ai) ⊂ R.

The same sort of arguments used to prove Theorems 4.1 and 5.2 yield the
following. We shall say that ifY ⊆ X whereX has an FDD(En) thenY is of
finite asymptoticI+-indexwith respect to(En) if for some 0< ε < 1 (hence all
ε < 1)

sup
{
I+((ei)k1, ε) : (ei)k1 ∈ {Y, (Ei)}k, k ∈ N

}
<∞ .

THEOREM 6.3. Let (En) be an FDD forX
(a) If X is of finite asymptoticI+-index with respect to(En) then there exist

q > 1, K < ∞ and a blocking(Fj ) of (En) so that for all block sequences(xi)
with respect to(Fj ), ‖∑ xi‖ 6 K(∑ ‖xi‖q)1/q.

(b) If (En) is boundedly complete andY ⊆ X is ω∗ closed of finite asymptotic
I+-index with respect to(En) then there existq > 1, a blocking(Hj) of (En) and
K < ∞ so that ify ∈ Y with y = ∑

yj where(yj ) is a block sequence with
respect to(Hj) then‖y‖ 6 K(∑ ‖yi‖q)1/q.

In this theorem we do not need to require skipped sequences in (a) because the
upper estimate results from the separate estimates applied to

∑
x2i and

∑
x2i−1.

The H -index is a sort of̀ +∞-index. Thus it is natural to ask the following
question. SupposeX has infiniteH -index with respect to(En). Is c0 block finitely
representable in(En)? The answer is not necessarily.

EXAMPLE 6.4. There exists a spaceX with a bimonotone basis(bi) so that for
all n there exists(ei)n1 ∈ {X, (bi)}n with ‖∑n

1 ei‖ = 1 yet c0 is not block finitely
representable in(bi).
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Tω is the countably branching tree ofω levels, i.e.,

Tω = {(n1, . . . , nj ) : j ∈ N , n1, . . . , nj ∈ N}
ordered by extension.X will be the completion ofc00(Tω) ≡ {f : Tω → R : f has
finite support} under a suitable norm. The node basis(eα)α∈Tω given byeα(β) = δαβ
will be a normalized bimonotone basis forX when linearly ordered in any manner
that is compatible with the tree order onTω. Thus ifα < β in Tω theneα < eβ in
the basis order.

In addition we will have the following properties.
(1) There exists a basis(ei) so that if(αi)n1 is any initial segment of a branch in

Tω then(eαi )
n
1 is 1-equivalent to(ei)n1. Moreover‖∑n

1 ei‖ = 1.
(2) If (xi)n1 is any normalized block basis of(eα) then‖∑n

1 εixi‖ > n/3 for
some choice ofεi = ±1.

Because of the tree structure (1) yields that(ei)
n
1 ∈ {X, (eα)}n for all n. (2) yields

thatc0 is not block finitely representable inX.
We shall specify a set0 ⊆ c00(Tω) and define forx ∈ c00(Tω),

‖x‖ = sup{〈f, x〉 : f ∈ 0} .
f ∈ 0 iff f is finitely supported,f (α) ∈ {0,±1} for all α and on any branch of
Tω, f does not take on successive nonzero values of the same sign. Thus ifα < β

in Tω andf (α) = 1 andf (γ ) = 0 for α < γ < β thenf (β) = −1 or 0.
All the properties ofX are now easily verified except for (2) which requires

some effort. Let(xi)n1 be a normalized block basis of(eα). Choosefi ∈ 0 with
〈fi, xi〉 = 1 for i 6 n. We may suppose that rangefi = rangexi with respect to
the linearly ordered basis(eα); the range ofx ∈ c00(Tω) is the smallest interval of
α’s (in the basis ordering) containing the support ofx.

Let Ii be the set of initial nodes with respect to the tree order in suppfi. We
shall partitionIi into 3 setsI si , I oi andI di and writefi = f si +f oi +f di wheref si is
fi restricted to{β ∈ Tω : α 6 β for someα ∈ I si } and so on. We begin withi = 2.
LetA1 be the set of terminal nodes (in the tree order) of suppf1.

I s2 = {β ∈ I2 : ∃ α ∈ A1 with α < β andf1(α) = f2(β)}
I o2 = {β ∈ I2 : ∃ α ∈ A1 with α < β andf1(α) = −f2(β)}
I d2 = I2 \ (I s2 ∪ I 0

2 ) .

The letterss, o, d represent same, opposite and disjoint.
Chooseg ∈ {f s2 , f o2 , f d2 } so that〈g, x2〉 > 1/3. If g = f o2 or f d2 let ε2 = 1 and

f (2) = f1+g. If g = f s2 let ε2 = −1 andf (2) = f1−g. It follows thatf (2) ∈ 0
and

〈f (2), x1 + ε2x2〉 > 1+ 1

3
.

We continue in this manner usingf (2) to partition I3 into 3 sets and ultimately
determinef s3 , f o3 , f d3 andε3 etc. The construction yields (2). 2
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The analogous question for theI+-index has a similar answer. If(ei) is the
summing basis forc0 = X then`n+1 belongs to{X, (ei)}n for all n but `1 is not
block finitely represented in(ei).

We do not know how to find reflexive examples with these properties.

PROBLEM 6.5. Does there exist a reflexive space with a basis(ei) having infi-
niteH -index (respectively, infiniteI+-index) yetc0 (respectively,̀ 1) is not block
finitely represented in(ei)?

TheH -index was defined for a fixedε > 0. One can vary theε at each level
and obtain a variableH -index. If (En) is an FDD forX, (xn) ⊆ X is bounded and
x ∈ X we writexn ⇀ x if (xn) converges tox coordinatewise with respect to(En).
Let (εi)n1 ⊆ (0,1).H0(X, (Ei), (εi)

n
1) = BX. Fork < n let

Hk+1(X, (Ei), (εi)
n
1) = {x : ∃ (xj ) ⊆ Hk(X, (Ei), (εi)n1) with

xj ⇀ x and lim inf
j→∞ ‖xj − x‖ > εk+1} .

In this notation having finiteH -index just says that for allε > 0 there exists
n ∈ N with Hn(X, (Ei), (ε)n1) = ∅.
DEFINITION 6.6. X hassummableH -indexwith respect to(En) if ∃ K < ∞
∀ n ∀ (εi)n1 ⊆ (0,1)

Hn(X, (Ei), (εi)
n
1) 6= ∅ H⇒

n∑
1

εi 6 K .

Again there is a connection with trees and the asymptotic structure ofX.

PROPOSITION 6.7.Let (En) be an FDD forX. The following are equivalent.
(a) X has summableH -index.
(b) There existsK <∞ so that for alln and for all (ei)n1 ∈ {X, (Ei)}n,

(ei)
n
1 isK-equivalent to the unit vector basis of`n1

(c) There exists a blocking(Hj) of (Ei) which is skipped asymptotic̀1; i.e., for
someK <∞ if (xi)n1 is a skipped block sequence of(Hj)∞n then∥∥∥∑ xi

∥∥∥ > K−1
∑
‖xi‖ .

Proof.The equivalence of (b) and (c) follows from Proposition 1.9. The equiva-
lence with (a) comes from the following connection between the variableH -index
and trees.

Suppose thatH(X, (Ei), (εi)n0) 6= ∅. Then, as in the proof of Proposition 2.8,
there existsT ∈ a − Tn(X, (Ei)) which converges to(ei)n1 ∈ {X, (Ei)}n and
satisfies‖∑n

1 ε
′
iei‖ 6 1 for someεi/26 ε′i 6 1. If (b) holds then

∑n
1 ε
′
i 6 K.
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Finally assume (a) and let(ei)n1 ∈ {X, (Ei)}n. Assume the variable index ofX
is 6 K. Let (εi)n1 ⊆ (0,1) with

∑n
1 εi > K. Suppose‖∑n

1 εiei‖ 6 1. Choose
T ∈ a − Tn(X, (Ei)) that converges to(ei)n1. It follows thatH(X, (Ei), (εi)n1) 6=∅ which is a contradiction. Thus‖∑n

1 εiei‖ 6 1 implies
∑n

1 εi 6 K. Since
(±ei)n1 ∈ {X, (Ei)}n we have‖∑n

1±εiei‖ 6 1 implies
∑n

1 εi 6 K. Thus(ei)n1
isK-equivalent to the unit vector basis of`n1. 2

These results can also be generalized to aω∗ closed subspace of a spaceX
with a boundedly complete FDD. By Proposition 6.7 Tsirelson’s spaceT [7] has
summableH -index. There is a (formally) weaker notion than summable index.

DEFINITION 6.8. Let (En) be an FDD forX. We sayX hasproportional H -
index with respect to(En) if there existsK < ∞ so that for all 0< ε < 1,
H(X, (En), ε) 6 K/ε. It is clear that summable index implies proportional index.

PROPOSITION 6.9.Let (En) be a monotone FDD forX and suppose thatX has
proportionalH -index with respect to(En). ThenX has summableH -index with
respect to(En).

Proof. If not then for allε > 0 there existk ∈ N and a block tree with respect to
(En), T = (x(n1, . . . , nj ))Tk ∈ Tk(X), which converges to(ei)k1 ∈ {X, (Ei)}k and
such that there exists(ai)k1 ⊆ [0,∞) with

∑k
1 ai = 1 and‖∑k

1 aiei‖ < ε. Without
loss of generality we may assume that for someN ∈ N eachai = ni

N
for some

ni ∈ N. WriteN asN = nimi + ki , wheremi andki are integers with 06 ki < ni.
Using Proposition 1.9 and pruningT we may assume that every collection of

j 6 kN elements ofT , suitably ordered, is essentially in{X, (En)}j . We form
a seminormalized block basis ofT as follows. The order will be(x1

1, . . . , x
1
n1

,
x2

1, . . . , x
2
n2
, . . . xk1, . . . , x

k
nk
). The firstk1 of thex1

j ’s will be a sum ofm1+1 x(n)’s
with weighta1. The remainingx1

j ’s will be a sum ofm1 x(n)’s with the same weight
a1. All together thex1

j ’s will involve N of thex(n)’s. The firstk2 x
2
j ’s will each be

a sum ofm2+ 1 x(n,m)’s with weighta2 and the remainingx2
j ’s will be a sum of

m2 x(n,m)’s with the same weighta2. Moreover, eachx(n,m) in the support of
one of thex2

j ’s will be a successor to one of thex(n)’s in the support of thex1
j ’s

and so on.
It follows sinceX has proportional index that for some fixedc > 0,∥∥∥ k∑

i=1

ni∑
j=1

xij

∥∥∥ > c k∑
i=1

ni = cN .

However if (m1, . . . , mk) ∈ Tk is such thatx(m1, . . . , mj ) ∈ suppxj`(j) for some
`(1), . . . , `(k) then∥∥∥ k∑

j=1

nj

N
x(`(1), . . . , `(j))

∥∥∥ ≈ ∥∥∥ k∑
1

aiei

∥∥∥ < ε .
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Since there areN such “columns” in the tree we obtain from the triangle inequality
that ∥∥∥ k∑

i=1

ni∑
j=1

xij

∥∥∥ < εN .

This yields a contradiction. 2
The nonreflexive version of our main theorem remains open when one replaces

ω∗ convergence byω convergence.

PROBLEM 6.10. [10] If W(X, ε) <∞ for all ε > 0canX be given an equivalent
UKK norm?

If the answer is no it still may be true in the case whereX does not contaiǹ1.

7. Theω∗-UKK Modulus

Let us redefine the modulus for aω∗-UKK dual spaceX as follows. Givenε > 0
there existsδ = δ(ε) > 0 so that if(xn) ⊆ X, x ∈ X, ‖x + xn‖ 6 1 and‖xn‖ > ε
for all n with ω∗-limn→∞ xn = 0 then‖x‖ 6 1− δ.

We have proved that ifX (or more properlyB whereX = B∗) has finite Szlenk
index then there exists an equivalent norm‖ · ‖ onX (andB) andp < ∞ so that
for x as above

‖x‖ 6 (1− εp)1/p ∼ 1− 1

p
εp for smallε .

Soδ(ε) > cεp for somec.
We examine what can be said aboutX from knowledge of theω∗-UKK modulus

δ(ε). We begin with an easy observation.

PROPOSITION 7.1.
(a) `1 = c∗0 isω∗-UKK with δ(ε) = ε.
(b) LetX beω∗-UKK with δ(ε) > cε for somec > 0 and all ε > 0. Then every

normalizedω∗-null sequence inX admits a subsequence equivalent to the
unit vector basis of̀1.

Proof. (a) is obvious.
(b) The hypothesis yields that ifω∗-lim xn = 0 andλ = lim ‖x + xn‖ with

limn ‖xn‖ = ε then‖x‖ 6 λ− cε.
Let (yn) be normalizedω∗-null in X. Let εn ↓ 0 rapidly. By passing to a

subsequence we may assume that for allk and(ai)
k+1
1 ⊆ [−1,1], ` > k,∣∣∣∣ ∥∥∥ k∑

1

aiyi + ak+1y`

∥∥∥− ∥∥∥ k+1∑
1

aiyi

∥∥∥ ∣∣∣∣ < εk+1 .
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Let
∑k+1

1 |ai | = 1. Since

lim
`→∞

∥∥∥ k∑
1

aiyi + ak+1y`

∥∥∥ > ∥∥∥ k∑
1

aiyi

∥∥∥+ c|ak+1|

it follows that∥∥∥ k+1∑
1

aiyi

∥∥∥ > ∥∥∥ k∑
1

aiyi

∥∥∥+ c|ak+1| − εk+1 .

Iterating the argument we obtain∥∥∥ k+1∑
1

aiyi

∥∥∥ > c k+1∑
1

|ai| −
k+1∑

1

εi >
c

2

if
∑
εi < c/2. 2

Actually more can be said.

REMARK 7.2. (1) It follows from [15] that ifX = B∗ is as in (b) thenB embeds
into c0.

(2) Tsirelson’s spaceT can be renormed forp > 1 to haveδ(ε) > cpεp but of
course cannot be renormed to haveδ(ε) > cε.

(3) SupposeX is as in (b) andX has a boundedly complete FDD,(En). Then
(En) can be blocked into aǹ1 FDD forX. This can be deduced either from (1) or
from our arguments. More generally ifX is aω∗ closed subspace of a space with
a boundedly complete FDD(En) then there exists a blocking(Hj) of (En) so that
setting|x| = ∑ ‖xj‖ for x = ∑

xj , xj ∈ Hj thenX embeds into(〈Hj 〉, | · |), a
space with aǹ1-FDD.

PROPOSITION 7.3.LetY be aω∗ closed subspace ofX, a space with a bound-
edly complete FDD,(En). AssumeY is ω∗-UKK with δ(ε) > cεp for somec > 0,
1 < p < ∞. Then there exists a blocking(Hj) of (En) and a norm| · | on 〈(Hj)〉
that makes((Hj), | · |) 1-blockp-Besselian and so that| · | ∼ ‖ · ‖ onY .

Proof.We may assume(En) is bimonotone. From our previous work it suffices
to prove that for somec′ > 0 if ‖yn‖ > ε, ω∗-lim yn = 0 and lim‖y + yn‖ = λ for
y, (yn) ⊆ Y then‖y‖p 6 λp − c′εp.

We present the argument forp = 2 where the calculations are simpler.
Fromδ(ε) > cε2 we have‖ y

λ
‖ 6 1− c( ε

λ
)2 and so‖y‖ 6 λ− cε2

λ
. Thus

‖y‖2 6 λ2− 2cε2+ c2
( ε
λ

)2
ε2

6 λ2− cε2

sinceε 6 λ. 2
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