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We propose a general method for constructing confidence intervals and
statistical tests for single or low-dimensional components of a large parameter
vector in a high-dimensional model. It can be easily adjusted for multiplicity
taking dependence among tests into account. For linear models, our method
is essentially the same as in Zhang and Zhang [J. R. Stat. Soc. Ser. B Stat.
Methodol. 76 (2014) 217–242]: we analyze its asymptotic properties and es-
tablish its asymptotic optimality in terms of semiparametric efficiency. Our
method naturally extends to generalized linear models with convex loss func-
tions. We develop the corresponding theory which includes a careful analysis
for Gaussian, sub-Gaussian and bounded correlated designs.

1. Introduction. Much progress has been made over the last decade in high-
dimensional statistics where the number of unknown parameters greatly exceeds
sample size. The vast majority of work has been pursued for point estimation such
as consistency for prediction [7, 21], oracle inequalities and estimation of a high-
dimensional parameter [6, 11, 12, 24, 33, 34, 47, 51] or variable selection [17, 30,
49, 53]. Other references and exposition to a broad class of models can be found
in [18] or [10].

Very little work has been done for constructing confidence intervals, statistical
testing and assigning uncertainty in high-dimensional sparse models. A major dif-
ficulty of the problem is the fact that sparse estimators such as the lasso do not
have a tractable limiting distribution: already in the low-dimensional setting, it
depends on the unknown parameter [25] and the convergence to the limit is not
uniform. Furthermore, bootstrap and even subsampling techniques are plagued by
noncontinuity of limiting distributions. Nevertheless, in the low-dimensional set-
ting, a modified bootstrap scheme has been proposed; [13] and [14] have recently
proposed a residual based bootstrap scheme. They provide consistency guarantees
for the high-dimensional setting; we consider this method in an empirical analysis
in Section 4.
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Some approaches for quantifying uncertainty include the following. The work
in [50] implicitly contains the idea of sample splitting and corresponding construc-
tion of p-values and confidence intervals, and the procedure has been improved by
using multiple sample splitting and aggregation of dependent p-values from mul-
tiple sample splits [32]. Stability selection [31] and its modification [41] provides
another route to estimate error measures for false positive selections in general
high-dimensional settings. An alternative method for obtaining confidence sets is
in the recent work [29]. From another and mainly theoretical perspective, the work
in [24] presents necessary and sufficient conditions for recovery with the lasso β̂

in terms of ‖β̂ −β0‖∞, where β0 denotes the true parameter: bounds on the latter,
which hold with probability at least say 1 − α, could be used in principle to con-
struct (very) conservative confidence regions. At a theoretical level, the paper [35]
derives confidence intervals in �2 for the case of two possible sparsity levels. Other
recent work is discussed in Section 1.1 below.

We propose here a method which enjoys optimality properties when making as-
sumptions on the sparsity and design matrix of the model. For a linear model, the
procedure is as the one in [52] and closely related to the method in [23]. It is based
on the lasso and is “inverting” the corresponding KKT conditions. This yields a
nonsparse estimator which has a Gaussian (limiting) distribution. We show, within
a sparse linear model setting, that the estimator is optimal in the sense that it
reaches the semiparametric efficiency bound. The procedure can be used and is
analyzed for high-dimensional sparse linear and generalized linear models and for
regression problems with general convex (robust) loss functions.

1.1. Related work. Our work is closest to [52] who proposed the semiparamet-
ric approach for distributional inference in a high-dimensional linear model. We
take here a slightly different view-point, namely by inverting the KKT conditions
from the lasso, while relaxed projections are used in [52]. Furthermore, our paper
extends the results in [52] by: (i) treating generalized linear models and general
convex loss functions; (ii) for linear models, we give conditions under which the
procedure achieves the semiparametric efficiency bound and our analysis allows
for rather general Gaussian, sub-Gaussian and bounded design. A related approach
as in [52] was proposed in [8] based on ridge regression which is clearly subopti-
mal and inefficient with a detection rate (statistical power) larger than 1/

√
n.

Recently, and developed independently, the work in [23] provides a detailed
analysis for linear models by considering a very similar procedure as in [52] and
in our paper. They show that the detection limit is indeed in the 1/

√
n-range and

they provide a minimax test result; furthermore, they present extensive simula-
tion results indicating that the ridge-based method in [8] is overly conservative,
which is in line with the theoretical results. Their optimality results are inter-
esting and are complementary to the semiparametric optimality established here.
Our results cover a substantially broader range of non-Gaussian designs in lin-
ear models, and we provide a rigorous analysis for correlated designs with co-
variance matrix � �= I : the SDL-test in [23] assumes that � is known while we
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carefully deal with the issue when �−1 has to be estimated (and arguing why,
e.g., GLasso introduced in [19] is not good for our purpose). Another way and
method to achieve distributional inference for high-dimensional models is given
in [1] (claiming semiparametric efficiency). They use a two-stage procedure with
a so-called post-double-selection as first and least squares estimation as second
stage: as such, their methodology is radically different from ours. At the time of
writing of this paper, [22] developed another modification which directly com-
putes an approximate inverse of the Gram matrix. Moreover, [4] extended their
approach to logistic regression and [2] to LAD estimation using an instrumental
variable approach.

1.2. Organization of the paper. In Section 2, we consider the linear model
and the lasso. We describe the desparsifying step in Section 2.1 where we need
to use an approximately inverting matrix. A way to obtain this matrix is by ap-
plying the lasso with nodewise regression, as given in Section 2.1.1. Assuming
Gaussian errors, we represent in Section 2.2 the de-sparsified lasso as sum of a
normally distributed term and a remainder term. Section 2.3 considers the case of
random design with i.i.d. covariables. We first prove for the case of Gaussian de-
sign and Gaussian errors that the remainder term is negligible. We then show in
Section 2.3.1 that the results lead to honest asymptotic confidence intervals. Sec-
tion 2.3.2 discusses the assumptions and Section 2.3.3 asymptotic efficiency. The
case of non-Gaussian design and non-Gaussian errors is treated in Section 2.3.4.

In Section 3, we consider the extension to generalized linear models. We
start out in Section 3.1 with the procedure, which is again desparsifying the �1-
penalized estimator. We again use the lasso with nodewise regression to obtain an
approximate inverse of the matrix of second order derivatives. The computation of
this approximate inverse is briefly described in Section 3.1.1. Section 3.2 presents
asymptotic normality under high-level conditions. In Section 3.3, we investigate
the consistency of the lasso with nodewise regression as estimator of the inverse
of the matrix of second-order derivatives of the theoretical risk evaluated at the
true unknown parameter β0. We also examine here the consistent estimation of the
asymptotic variance. Section 3.3.1 gathers the results, leading to Theorem 3.3 for
generalized linear models. Section 4 presents some empirical results. The proofs
and theoretical material needed are given in Section 5, while the technical proofs
of Section 2.3.3 (asymptotic efficiency) and Section 3.3 (nodewise regression for
certain random matrices) are presented in the supplemental article [45].

2. High-dimensional linear models. Consider a high-dimensional linear
model

Y = Xβ0 + ε,(1)

with n × p design matrix X =: [X1, . . . ,Xp] (n × 1 vectors Xj ), ε ∼ Nn(0, σ 2
ε I )

independent of X and unknown regression p × 1 vector β0. We note that non-
Gaussian errors are not a principal difficulty, as discussed in Section 2.3.4.
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Throughout the paper, we assume that p > n and in the asymptotic results we re-
quire log(p)/n = o(1). We denote by S0 := {j ;β0

j �= 0} the active set of variables
and its cardinality by s0 := |S0|.

Our main goal is a pointwise statistical inference for the components of the
parameter vector β0

j (j = 1, . . . , p) but we also discuss simultaneous inference

for parameters β0
G := {β0

j ; j ∈ G} where G ⊆ {1, . . . , p} is any group. To exem-

plify, we might want to test statistical hypotheses of the form H0,j :β0
j = 0 or

H0,G :β0
j = 0 for all j ∈ G, and when pursuing many tests, we aim for an effi-

cient multiple testing adjustment taking dependence into account and being less
conservative than say the Bonferroni–Holm procedure.

2.1. The method: Desparsifying the lasso. The main idea is to invert the
Karush–Kuhn–Tucker characterization of the lasso.

The lasso [43] is defined as

β̂ = β̂(λ) := arg min
β∈Rp

(‖Y − Xβ‖2
2/n + 2λ‖β‖1

)
.(2)

It is well known that the estimator in (2) fulfills the Karush–Kuhn–Tucker (KKT)
conditions:

−XT (Y − Xβ̂)/n + λκ̂ = 0,

‖κ̂‖∞ ≤ 1 and κ̂j = sign(β̂j ) if β̂j �= 0.

The vector κ̂ is arising from the subdifferential of ‖β‖1: using the first equation
we can always represent it as

λκ̂ = XT (Y − Xβ̂)/n.(3)

The KKT conditions can be rewritten with the notation �̂ = XT X/n:

�̂
(
β̂ − β0) + λκ̂ = XT ε/n.

The idea is now to use a “relaxed form” of an inverse of �̂. Suppose that 
̂ is a
reasonable approximation for such an inverse, then

β̂ − β0 + 
̂λκ̂ = 
̂XT ε/n − �/
√

n,(4)

where

� := √
n(
̂�̂ − I )

(
β̂ − β0).

We will show in Theorem 2.2 that � is asymptotically negligible under certain
sparsity assumptions. This suggests the following estimator:

b̂ = β̂ + 
̂λκ̂ = β̂ + 
̂XT (Y − Xβ̂)/n,(5)

using (3) in the second equation. This is essentially the same estimator as in [52]
and it is of the same form as the SDL-procedure in [23], when plugging in the
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estimate 
̂ for the population quantity 
 := �−1 where � is the population inner
product matrix. With (4), we immediately obtain an asymptotic pivot when � is
negligible, as is justified in Theorem 2.2 below:

√
n
(
b̂ − β0) = W + oP(1), W |X ∼ Np

(
0, σ 2

ε 
̂�̂
̂T )
.(6)

An asymptotic pointwise confidence interval for β0
j is then given by[

b̂j − c(α,n,σε), b̂j + c(α,n,σε)
]
,

c(α,n,σε) := �−1(1 − α/2)σε

√(

̂�̂
̂T

)
j,j /n,

where �(·) denotes the c.d.f. of N (0,1). If σε is unknown, we replace it by a
consistent estimator.

2.1.1. The lasso for nodewise regression. A prime example to construct the
approximate inverse 
̂ is given by the lasso for the nodewise regression on the
design X: we use the lasso p times for each regression problem Xj versus X−j ,
where the latter is the design submatrix without the j th column. This method was
introduced by [30]. We provide here a formulation suitable for our purposes. For
each j = 1, . . . , p,

γ̂j := arg min
γ∈Rp−1

(‖Xj − X−j γ ‖2
2/n + 2λj‖γ ‖1

)
,(7)

with components of γ̂j = {γ̂j,k;k = 1, . . . , p, k �= j}. Denote by

Ĉ :=

⎛
⎜⎜⎜⎜⎝

1 −γ̂1,2 · · · −γ̂1,p

−γ̂2,1 1 · · · −γ̂2,p

...
...

. . .
...

−γ̂p,1 −γ̂p,2 · · · 1

⎞
⎟⎟⎟⎟⎠

and write

T̂ 2 := diag
(
τ̂ 2

1 , . . . , τ̂ 2
p

)
,

where for j = 1, . . . , p

τ̂ 2
j := ‖Xj − X−j γ̂j‖2

2/n + λj‖γ̂j‖1.

Then define


̂Lasso := T̂ −2Ĉ.(8)

Note that although �̂ is self-adjoint, its relaxed inverse 
̂Lasso is not. In the sequel,
we denote by

b̂Lasso = the estimator in (5) with 
̂ the nodewise lasso from (8).(9)

The estimator b̂Lasso corresponds to the proposal in [52].
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Let the j th row of 
̂ be denoted by 
̂j (as a 1 × p vector) and analogously
for Ĉj . Then 
̂Lasso,j = Ĉj /τ̂

2
j .

The KKT conditions for the nodewise lasso (7) imply that

τ̂ 2
j = (Xj − X−j γ̂j )

T Xj/n

so that

XT
j X
̂T

Lasso,j /n = 1.

These KKT conditions also imply that∥∥XT−j X
̂T
Lasso,j

∥∥∞/n ≤ λj/τ̂
2
j .

Hence, for the choice 
̂j = 
̂Lasso,j we have∥∥�̂
̂T
j − ej

∥∥∞ ≤ λj/τ̂
2
j ,(10)

where ej is the j th unit column vector. We call this the extended KKT conditions.
We note that using, for example, the GLasso estimator of [19] for 
̂ may not

be optimal because with this choice a bound for ‖�̂
̂T
j − ej‖∞ is not readily

available and this means we cannot directly derive desirable componentwise prop-
erties of the estimator b̂ in (5) as established in Section 2.3. The same can be
said about a ridge type of estimator for 
̂, a choice analyzed in [8]. We note
that in (10) the bound depends on τ̂ 2

j and is in this sense not under control.

In [22], a program is proposed which gives an approximate inverse 
̂ such that
‖�̂
̂T

j − ej‖∞ is bounded by a prescribed constant. We will show in Remark 2.1
that a bound of the form (10) with λj proportional (by a prescribed constant) to
τ̃j := ‖Xj − X−j γ̂j‖2/

√
n gives the appropriate normalization when considering

a Studentized version of the estimator b̂Lasso.

2.2. Theoretical result for fixed design. We provide here a first result for fixed
design X. A crucial identifiability assumption on the design is the so-called com-
patibility condition [44]. To describe this condition, we introduce the following
notation. For a p × 1 vector β and a subset S ⊆ {1, . . . , p}, define βS by

βS,j := βj 1{j ∈ S}, j = 1, . . . , p.

Thus, βS has zeroes for the components outside the set S. The compatibility con-
dition for �̂ requires a positive constant φ0 > 0 such that for all β satisfying
‖βSc

0
‖1 ≤ 3‖βS0‖1 (the constant 3 is relatively arbitrary, it depends on the choice

of the tuning parameter λ)

‖βS0‖2
1 ≤ s0β

T �̂β/φ2
0 .

The value φ2
0 is called the compatibility constant.

We make the following assumption:
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(A1) The compatibility condition holds for �̂ with compatibility constant
φ2

0 > 0. Furthermore, maxj �̂j,j ≤ M2 for some 0 < M < ∞.

The assumption (A1) is briefly discussed in Section 2.3.2. We then obtain the fol-
lowing result where we use the notation ‖A‖∞ := maxj,k |Aj,k| for the element-
wise sup-norm for a matrix A.

THEOREM 2.1. Consider the linear model in (1) with Gaussian error ε ∼
Nn(0, σ 2

ε I ), and assume (A1). Let t > 0 be arbitrary. When using the lasso in (2)

with λ ≥ 2Mσε

√
2(t2 + log(p))/n and the lasso for nodewise regression in (8) we

have:
√

n
(
b̂Lasso − β0) = W + �,

W = 
̂LassoXT ε/
√

n ∼ Nn

(
0, σ 2

ε �̂
)
, �̂ := 
̂�̂
̂T ,

P

[
‖�‖∞ ≥ 8

√
n

(
max

j

λj

τ̂ 2
j

)
λs0

φ2
0

]
≤ 2 exp

[−t2].
A proof is given in Section 5.2.

REMARK 2.1. In practice, one will use a Studentized version of b̂Lasso. Let us
consider the j th component. One may verify that �̂j,j = τ̃ 2

j /τ̂ 4
j , where τ̃ 2

j is the

residual sum of squares τ̃ 2
j := ‖Xj − X−j γ̂ ‖2

2/n. Under the conditions of Theo-
rem 2.1,

√
n(b̂Lasso,j − β0

j )

�̂
1/2
j,j σε

= Vj + �̃j ,

Vj ∼ N (0,1),

P

[
|�̃j | ≥ 8

√
n

(
λj

τ̃j

)(
λ

σε

)
s0

φ2
0

]
≤ 2 exp

[−t2].
A Studentized version has the unknown variance σ 2

ε replaced by a consistent es-
timator, σ̃ 2

ε say. Thus, the bound for �̃j depends on the normalized tuning pa-
rameters λj/τ̃j and λ/σ̃ε . In other words, the standardized estimator is standard
normal with a standardized remainder term. The appropriate choice for λ makes
λ/σ̃ε scale independent. Scale independence for λj/τ̃j can be shown under certain
conditions, as we will do in the next subsection. Scale independent regularization
can also be achieved numerically by using the square-root lasso introduced in [3],
giving an approximate inverse, 
̂√

Lasso say, as alternative for 
̂Lasso. Most of the
theory that we develop in the coming subsections goes through with the choice

̂√

Lasso as well. To avoid digressions, we do not elaborate on this.



CONFIDENCE REGIONS FOR HIGH-DIMENSIONAL MODELS 1173

Theorem 2.2 presents conditions that ensure that τ̂j as well as 1/τ̂ 2
j are asymp-

totically bounded uniformly in j (see Lemma 5.3 in Section 5) and that asymp-
totically one may choose λ as well as each λj of order

√
log(p)/n. Then, if the

sparsity s0 satisfies s0 = o(
√

n/ logp), the correct normalization factor for b̂Lasso is√
n (as used in the above theorem) and the error term ‖�‖∞ = oP(1) is negligible.

The details are discussed next.

2.3. Random design and optimality. In order to further analyze the error term
� from Theorem 2.1, we consider an asymptotic framework with random design.
It uses a scheme where p = pn ≥ n → ∞ in model (1), and thus, Y = Yn, X = Xn,
β0 = β0

n and σ 2
ε = σ 2

ε,n are all (potentially) depending on n. In the sequel, we
usually suppress the index n. We make the following assumption.

(A2) The rows of X are i.i.d. realizations from a Gaussian distribution whose p-
dimensional inner product matrix � has strictly positive smallest eigenvalue �2

min
satisfying 1/�2

min = O(1). Furthermore, maxj �j,j = O(1).

The Gaussian assumption is relaxed in Section 2.3.4.
We will assume below sparsity with respect to rows of 
 := �−1 and define

sj := ∣∣{k �= j :
j,k �= 0}∣∣.
Recall the notation �̂ := 
̂Lasso�̂
̂T

Lasso. We then have the following main re-
sult.

THEOREM 2.2. Consider the linear model (1) with Gaussian error ε ∼
Nn(0, σ 2

ε I ) where σ 2
ε = O(1). Assume (A2) and the sparsity assumptions s0 =

o(
√

n/ log(p)) and maxj sj = o(n/ log(p)). Consider a suitable choice of the reg-
ularization parameters λ � √

log(p)/n for the lasso in (2) and λj � √
log(p)/n

uniformly in j for the lasso for nodewise regression in (8). Then
√

n
(
b̂Lasso − β0) = W + �,

W |X ∼ Np

(
0, σ 2

ε �̂
)
,

‖�‖∞ = oP(1).

Furthermore, ‖�̂ − �−1‖∞ = oP(1).

A proof is given in Section 5.5.
Theorem 2.2 has various implications. For a one-dimensional component β0

j

(with j fixed), we obtain for all z ∈ R

P

[√
n(b̂Lasso;j − β0

j )

σε

√
�̂j,j

≤ z
∣∣∣X]

− �(z) = oP(1).(11)
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Furthermore, for any fixed group G ⊆ {1, . . . , p} which is potentially large, we
have that for all z ∈ R

P

[
max
j∈G

√
n|b̂Lasso;j − β0

j |
σε

√
�̂j,j

≤ z
∣∣∣X]

− P

[
max
j∈G

|Wj |
σε

√
�̂j,j

≤ z
∣∣∣X]

= oP(1).

Therefore, conditionally on X, the asymptotic distribution of

max
j∈G

n|b̂Lasso;j |2/σ 2
ε �̂j,j

under the null-hypothesis H0,G;β0
j = 0 ∀j ∈ G is asymptotically equal to the max-

imum of dependent χ2(1) variables maxj∈G |Wj |2/σ 2
ε �̂j,j whose distribution can

be easily simulated since �̂ is known. The unknown σ 2
ε may be replaced by a con-

sistent estimator. For example, the scaled lasso [42] yields a consistent estimator
for σ 2

ε under the assumptions made for Theorem 2.2.
Theorem 2.2 is extended in Theorem 2.4 to the case of non-Gaussian errors and

non-Gaussian design.

2.3.1. Uniform convergence. The statements of Theorem 2.2 also hold in a
uniform sense, and thus the confidence intervals and tests based on these state-
ments are honest [27]. In particular, the estimator b̂Lasso does not suffer the prob-
lems arising from the nonuniformity of limit theory for penalized estimators (de-
scribed in, e.g., [37] or [38]). Such uniformity problems are also taken care of in [5]
using an alternative procedure. However, using b̂Lasso − β0 as pivot is asymptoti-
cally less conservative in general.

We consider the set of parameters

B(s) = {
β ∈ R

p; ∣∣{j :βj �= 0}∣∣ ≤ s
}
.

We let Pβ0 be the distribution of the data under the linear model (1). Then the

following for b̂Lasso in (9) holds.

COROLLARY 2.1. Consider the linear model (1) with Gaussian error ε ∼
Nn(0, σ 2

ε I ) where σ 2
ε = O(1). Assume (A2) and the sparsity assumption β0 ∈

B(s0) with s0 = o(
√

n/ log(p)). Suppose that maxj sj = o(n/ log(p)). Then,
when using suitable choices with λ � √

log(p)/n for the lasso in (2), and λj �√
log(p)/n uniformly j for the lasso for nodewise regression in (8)

√
n
(
b̂Lasso − β0) = W + �,

W |X ∼ Np

(
0, σ 2

ε �̂
)
, �̂ := 
̂�̂
̂T ,

‖�‖∞ = oP
β0 (1) uniformly in β0 ∈ B(s0).

Moreover, since �̂ does not depend on β0 we have as in Theorem 2.2, ‖�̂ −
�−1‖∞ = oP(1).
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The proof is exactly the same as for Theorem 2.2 by simply noting that ‖β̂ −
β0‖1 = OP

β0 (s0
√

log(p)/n) uniformly in β0 ∈ B(s0) [with high probability, the
compatibility constant is bounded away from zero uniformly in all subsets S0 with
|S0| = o(

√
n/ log(p))].

Corollary 2.1 implies that for j ∈ {1, . . . , p} and all z ∈ R,

sup
β0∈B(s0)

∣∣∣∣Pβ0

[√
n(b̂Lasso;j − β0

j )

σε

√
�̂j,j

≤ z
∣∣∣X]

− �(z)

∣∣∣∣ = oP(1).

Thus one can construct p-values for each component. Based on many sin-
gle p-values, we can use standard procedures for multiple testing adjustment to
control for various type I error measures. The representation from Theorems 2.1
or 2.2 with ‖�‖∞ being sufficiently small allows to construct a multiple testing
adjustment which takes the dependence in terms of the covariance �̂ (see The-
orem 2.2) into account: the exact procedure is described in [8]. Especially when
having strong dependence among the p-values, the method is much less conserva-
tive than the Bonferroni–Holm procedure for strongly controlling the family-wise
error rate.

2.3.2. Discussion of the assumptions. The compatibility condition in (A1) is
weaker than many others which have been proposed such as assumptions on re-
stricted or sparse eigenvalues [48]: a relaxation by a constant factor has recently
been given in [42]. Assumption (A2) is rather weak in the sense that it concerns
the population inner product matrix. It implies condition (A1) with 1/φ0 = O(1)

(see Lemma 5.2) and M = O(1).
Regarding the sparsity assumption for s0 in Theorem 2.1, our technique cru-

cially uses the �1-norm bound ‖β̂ − β0‖1 = OP(s0
√

log(p)/n); see Lemma 5.1.
In order that this �1-norm converges to zero, the sparsity constraint s0 =
o(

√
n/ log(p)) is usually required. Our sparsity assumption is slightly stricter

by the factor 1/
√

log(p) (because the normalization factor is
√

n), namely
s0 = o(

√
n/ log(p)).

2.3.3. Optimality and semiparametric efficiency. Corollary 2.1 establishes, in
fact, that for any j , b̂Lasso,j is an asymptotically efficient estimator of β0

j , in the
sense that it is asymptotically normal with asymptotic variance converging, as n →
∞ to the variance of the best estimator. Consider, the one-dimensional sub-model,

Y = β0
j (Xj − X−j γj ) + X−j

(
β0−j + β0

j X−j γj

) + ε,(12)

where Xj − X−j γj is the projection in L2(P) of Xj to the subspace orthogo-
nal to X−j . Clearly, this is a linear submodel of the general model (1), passing
through the true point. The Gauss–Markov theorem argues that the best variance
of an unbiased estimator of β0

j in (12) is given by σ 2
ε /(nVar(X1,j − X1,−j γj )).
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Corollary 2.1 shows that σ 2
ε /Var(X1,j − X1,−j γj ) this is the asymptotic variance

of
√

n(b̂Lasso,j − β0
j ). Thus,

√
n(b̂Lasso,j − β0

j ) is asymptotically normal, with the
variance of the best possible unbiased estimator. Note, that any regular estimator
(regular at least on parametric sub-models) must be asymptotically unbiased.

The main difference between this and most of the other papers on complex mod-
els is that usually the lasso is considered as solving a nonparametric model with pa-
rameter whose dimension p is increasing to infinity, while we consider the problem
as a semiparametric model in which we concentrate on a low-dimensional model
of interest, for example, β0

j , while the rest of the parameters, β0−j , are considered
as nuisance parameters. That is, we consider the problem as a semiparametric one.

In the rest of this discussion, we put the model in a standard semiparametric
framework in which there is an infinite-dimensional population model. Without
loss of generality, the parameter of interest is β0

1 , that is, the first component (ex-
tension to more than one but finitely many parameters of interest is straightfor-
ward). Consider the random design model where the sequence {(Yi,Xi,1,Zi)}∞i=1
is i.i.d. with

Y1 = β0
1X1,1 + K(Z1) + ε1, ε1 ∼ N

(
0, σ 2

ε

)
,(13)

where β0
1 ∈ R is an unknown parameter and K(·) is an unknown function. When

observing {(Yi,Xi,1,Zi)}ni=1 this is the partially linear regression model, where√
n-consistency for the parametric part β0

1 can be achieved [40]. We observe the
i.i.d. sequence {(Yi,Xi,1, {Xn

i,j }pn

j=2})}ni=1 such that

Y1 = β0
1X1,1 +

pn∑
j=2

βn
j Xn

1,j + εn
1 ,

εn
1 independent of X1,1,X

n
1,2, . . . ,X

n
1,pn

,

E

[
K(Z1) − ∑

j∈Sn∩{2,...,pn}
βn

j Xn
1,j

]2

→ 0, |Sn| = o
(√

n/ log(p)
)
,(14)

E

[
E[X1,1|Z1] −

pn∑
j=2

γ n
1,jX

n
1,j

]2

→ 0,

(
K(Z1) −

pn∑
j=2

βn
j Xn

1,j

)(
E[X1,1|Z1] −

pn∑
j=2

γ n
1,jX

n
1,j

)
= oP

(
n−1/2).

THEOREM 2.3. Suppose (14) and the conditions of Theorem 2.2 are satisfied,
then

b̂Lasso;1 = β0
1 + 1

n

n∑
i=1

(
Xi,1 −E[Xi,1|Zi])εi + oP

(
n−1/2).
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In particular, the limiting variance of
√

n(b̂Lasso;1 − β0
1 ) reaches the informa-

tion bound σ 2
ε /E(X1,1 − E[X1,1|Z1])2. Furthermore, b̂Lasso;1 is regular at the

one-dimensional parametric sub-model with component β0
1 , and hence, b̂Lasso;1

is asymptotically efficient for estimating β0
1 .

A proof is given in the supplemental article [45].
As a concrete example consider the following situation:

K(Z1) =
∞∑

j=2

β0
j X1,j ,

(15)
Xn

1,j ≡ X1,j ∀j = 1, . . . , pn,

where

β0 ∈ B(s0) := {
(βj )j∈N; |{j :βj �= 0}| ≤ s0

}
,

s0 < ∞ fixed,E[X1,j ] = 0 ∀j and max
j∈N var(X1,j ) < ∞,

min
S⊂N

�2
min(S) > 0,

where �2
min(S) is the smallest eigenvalue of the

covariance matrix of {X1,j : j ∈ S},∣∣{k :γ1,k �= 0}∣∣ < ∞,

where γ1 := arg min
γ∈R∞

EP

[(
X1,1 −

∞∑
k=2

γkX1,k

)2]
.

Note that the assumption about the minimal eigenvalues {�2
min(S) :S ⊂ N} is

equivalent to saying that {X1,j }j∈N has a positive definite covariance function.

LEMMA 2.1. Condition (14) is satisfied in the above example.

A proof of this lemma is given in the supplemental article [45].

2.3.4. Non-Gaussian design and non-Gaussian errors. We extend Theo-
rem 2.2 to allow for non-Gaussian designs and non-Gaussian errors. Besides cov-
ering a broader range for linear models, the result is important for the treatment of
generalized linear models in Section 3.

Consider a random design matrix X with i.i.d. rows having inner product ma-
trix � with its inverse (assumed to exist) 
 = �−1. For j = 1, . . . , p, denote by
γj := arg minγ∈Rp−1 E[‖Xj − X−j γ ‖2

2]. Define the error ηj := Xj − X−j γj with
variance τ 2

j = E[‖ηj‖2
2/n] = 1/
j,j , j = 1, . . . , p. We make the following as-

sumptions:
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(B1) The design X has either i.i.d. sub-Gaussian rows (i.e.,
maxi sup‖v‖2≤1 E exp[|∑p

j=1 vj Xi,j |2/L2] =O(1) for some fixed constant L > 0)
or i.i.d. rows and for some K ≥ 1, ‖X‖∞ = maxi,j |Xi,j | = O(K). The latter
we call the bounded case. The strongly bounded case assumes in addition that
maxj ‖X−j γj‖∞ =O(K).

(B2) In the sub-Gaussian case, it holds that maxj

√
sj log(p)/n = o(1). In the

(strongly) bounded case, we assume that maxj K2sj
√

log(p)/n = o(1).
(B3) The smallest eigenvalue �2

min of � is strictly positive and 1/�2
min =O(1).

Moreover, maxj �j,j = O(1).
(B4) In the bounded case, it holds that maxj Eη4

1,j = O(K4).

We note that the strongly bounded case in (B1) follows from the bounded case if
‖γj‖1 = O(1). Assumption (B2) is a standard sparsity assumption for 
. Finally,
assumption (B3) implies that ‖
j‖2 ≤ �−2

min = O(1) uniformly in j so that in
particular τ 2

j = 1/
j,j stays away from zero. Note that (B3) also implies τ 2
j ≤

�j,j =O(1) uniformly in j .
To streamline the statement of the results, we write K0 = 1 in the sub-Gaussian

case and K0 = K in the (strongly) bounded case.

THEOREM 2.4. Suppose the conditions (B1)–(B4) hold. Denote by 
̂ :=

̂Lasso and τ̂ 2

j , j = 1, . . . , p the estimates from the nodewise lasso in (8). Then

for suitable tuning parameters λj � K0
√

log(p)/n uniformly in j , we have

‖
̂j − 
j‖1 = OP

(
K0sj

√
log(p)

n

)
,

‖
̂j − 
j‖2 = OP

(
K0

√
sj log(p)

n

)
,

∣∣τ̂ 2
j − τ 2

j

∣∣ = OP

(
K0

√
sj log(p)

n

)
, j = 1, . . . , p.

Furthermore,∣∣
̂j�
̂T
j − 
j,j

∣∣ ≤ ‖�‖∞‖
̂j − 
j‖2
1 ∧ �2

max‖
̂j − 
j‖2
2 + 2

∣∣τ̂ 2
j − τ 2

j

∣∣,
j = 1, . . . , p,

where �2
max is the maximal eigenvalue of �. In the sub-Gaussian or strongly

bounded case the results are uniform in j .
Finally, assume model (1) but assume instead of Gaussian errors that {εi}ni=1

are i.i.d. with variance σ 2
ε = O(1). Assume moreover in the sub-Gaussian case for

X that the errors are subexponential, that is, that E exp[|ε1|/L] = O(1) for some
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fixed L. Apply the estimator (2) with λ � K0
√

log(p)/n suitably chosen. Assume
that K0s0 log(p)/

√
n = o(1) and maxj K0sj

√
log(p)/n = o(1). Then we have

√
n
(
b̂Lasso − β0) = W + �,

W = 
̂XT ε/
√

n,

|�j | = oP(1) ∀j

and in the sub-Gaussian or strongly bounded case

‖�‖∞ = oP(1).

A proof is given in Section 5.6.
Note that the result is as in Theorem 2.2 except that W |X is not necessarily

normally distributed. A central limit theorem argument can be used to obtain ap-
proximate Gaussianity of components of W |X of fixed dimension. This can also
be done for moderately growing dimensions (see, e.g., [36]), which is useful for
testing with large groups G.

3. Generalized linear models and general convex loss functions. We show
here that the idea of de-sparsifying �1-norm penalized estimators and correspond-
ing theory from Section 2 carries over to models with convex loss functions such
as generalized linear models (GLMs).

3.1. The setting and de-sparsifying the �1-norm regularized estimator. We
consider the following framework with 1 × p vectors of covariables xi ∈ X ⊆ R

p

and univariate responses yi ∈ Y ⊆ R for i = 1, . . . , n. As before, we denote by X
the design matrix with ith row equal to xi . At the moment, we do not distinguish
whether X is random or fixed (e.g., when conditioning on X).

For y ∈ Y and x ∈ X being a 1 × p vector, we have a loss function

ρβ(y, x) = ρ(y, xβ)
(
β ∈ R

p),
which is assumed to be a strictly convex function in β ∈ R

p . We now define

ρ̇β := ∂

∂β
ρβ, ρ̈β := ∂

∂β ∂βT
ρβ,

where we implicitly assume that the derivatives exist. For a function g :Y ×X →
R, we write Png := ∑n

i=1 g(yi, xi)/n and Pg := EPng. Moreover, we let ‖g‖2
n :=

Png
2 and ‖g‖2 := Pg2.

The �1-norm regularized estimator is

β̂ = arg min
β

(
Pnρβ + λ‖β‖1

)
.(16)

As in Section 2.1, we desparsify the estimator. For this purpose, define

�̂ := Pnρ̈β̂
.(17)
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Note that in general, �̂ depends on β̂ (an exception being the squared error loss).
We construct 
̂ = 
̂Lasso by doing a nodewise lasso with �̂ as input as detailed
below in (21). We then define

b̂ := β̂ − 
̂Pnρ̇β̂
.(18)

The estimator in (5) is a special case of (18) with squared error loss.

3.1.1. Lasso for nodewise regression with matrix input. Denote by �̂ a matrix
which we want to approximately invert using the nodewise lasso. For every row j ,
we consider the optimization

γ̂j := arg min
γ∈Rp−1

(
�̂j,j − 2�̂j,\j γ + γ T �̂\j,\j γ + 2λj‖γ ‖1

)
,(19)

where �̂j,\j denotes the j th row of �̂ without the diagonal element (j, j), and
�̂\j,\j is the submatrix without the j th row and j th column. We note that for the
case where �̂ = XT X/n, γ̂j is the same as in (7).

Based on γ̂j from (19), we compute

τ̂ 2
j = �̂j,j − �̂j,\j γ̂j .(20)

Having γ̂j and τ̂ 2
j from (19) and (20), we define the nodewise lasso as


̂Lasso as in (8) using (19)–(20) from matrix input �̂ in (17).(21)

Moreover, we denote by

b̂Lasso := b̂ from (18) using the nodewise lasso from (21).

Computation of (19), and hence of 
̂ can be done efficiently via coordinate de-
scent using the KKT conditions to characterize the zeroes. Furthermore, an active
set strategy leads to additional speed-up. See, for example, [20] and [28].

For standard GLMs, the matrix input �̂ = Pnρ̈β̂
in (17) can be written as �̂ =

�̂
β̂

= XT

β̂
X

β̂
/n with X

β̂
:= WβX and W

β̂
= diag(w

β̂
) for some weights w

i,β̂
=

w
β̂
(yi, xi) (i = 1, . . . , n). Then we can simply use the nodewise lasso as in (8)

but based on the design matrix X
β̂

: in particular, we can use the standard lasso
algorithm.

3.2. Theoretical results. We show here that the components of the estimator b̂

in (18), when normalized with the easily computable standard error, converge to a
standard Gaussian distribution. Based on such a result, the construction of confi-
dence intervals and tests is straightforward.

Let β0 ∈ R
p be the unique minimizer of Pρβ with s0 denoting the number of

nonzero coefficients. We use analogous notation as in Section 2.3 but with mod-
ifications for the current context. The asymptotic framework, which allows for
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Gaussian approximation of averages, is as in Section 2.3 for p = pn ≥ n → ∞,
and thus, Y := (y1, . . . , yn)

T = Yn, X = Xn, β0 = β0
n and underlying parameters

are all (potentially) depending on n. As before, we usually suppress the corre-
sponding index n.

We make the following assumptions which are discussed in Section 3.3.1.
Thereby, we assume (C3), (C5), (C6) and (C8) for some constant K ≥ 1 and
positive constants λ∗ and s∗. The constant λ is the tuning parameter in (16). In
Section 3.3.1, we will discuss the conditions with λ � √

logp/n and for all j ,
λ∗ � λj � √

log(p)/n where λj is the tuning parameter in (19). Moreover, there
we will assume s∗ ≥ sj for all j . Here, sj = |{k �= j :
β0,j,k �= 0}|, j = 1, . . . , p

with 
β0 := (P ρ̈β0)−1 (assumed to exist).

(C1) The derivatives

ρ̇(y, a) := d

da
ρ(y, a), ρ̈(y, a) := d2

da2 ρ(y, a),

exist for all y, a, and for some δ-neighborhood (δ > 0), ρ̈(y, a) is Lipschitz:

max
a0∈{xiβ

0}
sup

|a−a0|∨|â−a0|≤δ

sup
y∈Y

|ρ̈(y, a) − ρ̈(y, â)|
|a − â| ≤ 1.

Moreover,

max
a0∈{xiβ

0}
sup
y∈Y

∣∣ρ̇(y, a0)
∣∣ = O(1), max

a0∈{xiβ
0}

sup
|a−a0|≤δ

sup
y∈Y

∣∣ρ̈(y, a)
∣∣ = O(1).

(C2) It holds that ‖β̂ − β0‖1 = OP(s0λ), ‖X(β̂ − β0)‖2 = OP(s0λ
2), and

‖X(β̂ − β0)‖2
n = OP(s0λ

2).
(C3) It holds that ‖X‖∞ := maxi,j |Xi,j | = O(K).
(C4) It holds that ‖Pnρ̈β̂


̂T
j − ej‖∞ =OP(λ∗).

(C5) It holds that ‖X
̂T
j ‖∞ = OP(K) and ‖
̂j‖1 = OP(

√
s∗).

(C6) It holds that ‖(Pn − P)ρ̇β0 ρ̇T
β0‖∞ = OP(K

2λ) and moreover

max
j

1/
(

̂P ρ̇β0 ρ̇

T
β0
̂

T )
j,j =O(1).

(C7) For every j , the random variable
√

n(
̂Pnρ̇β0)j√
(
̂P ρ̇β0 ρ̇T

β0
̂
T )j,j

converges weakly to a N (0,1)-distribution.
(C8) It holds that

Ks0λ
2 = o

(
n−1/2), λ∗λs0 = o

(
n−1/2) and K2s∗λ + K2√s0λ = o(1).
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The following main result holds for fixed or random design according to whether
the assumptions hold for one or the other case.

THEOREM 3.1. Assume (C1)–(C8). For the estimator in (18), we have for
each j ∈ {1, . . . , p}: √

n
(
b̂j − β0

j

)
/σ̂j = Vj + oP(1),

where Vj converges weakly to a N (0,1)-distribution and where

σ̂ 2
j := (


̂Pnρ̇β̂
ρ̇T

β̂

̂T )

j,j .

A proof is given in Section 5.7. Assumption (C1) of Theorem 3.1 means
that we regress to the classical conditions for asymptotic normality in the one-
dimensional case as in, for example, [15]. Assumption (C8) is a sparsity assump-
tion: for K = O(1) and choosing λ∗ � λ � √

log(p)/n the condition reads as
s0 = o(

√
n/ log(p)) (as in Theorem 2.2) and s∗ = o(

√
n/ log(p)). All the other

assumptions (C2)–(C7) follow essentially from the conditions of Corollary 3.1
presented later, with the exception that (C3) is straightforward to understand. For
more details, see Section 3.3.1.

3.3. About nodewise regression with certain random matrices. We justify in
this section most of the assumptions for Theorem 3.1 when using the node-
wise lasso estimator 
̂ = 
̂Lasso as in (21) and when the matrix input is pa-
rameterized by β̂ as for standard generalized linear models. For notational sim-
plicity, we drop the subscript “lasso” in 
̂. Let wβ be an n-vector with entries
wi,β = wβ(yi, xi). We consider the matrix Xβ := WβX where Wβ = diag(wβ).
We define �̂β := XT

β Xβ/n. We fix some j and consider 
̂
β̂,j

as the j th row of the

nodewise regression 
̂ = 
̂
β̂

in (21) based on the matrix input �̂
β̂

.

We let �β = E[XT
β Xβ/n] and define 
 := 
β0 := �−1

β0 (assumed to exist). Let
sj := sβ0,j be the number of off-diagonal zeros of the j th row of 
β0 . Analogous
to Section 2.3.4, we let Xβ0,−j γβ0,j be the projection of Xβ0,j on Xβ0,−j using the
inner products in the matrix �β0 and let ηβ0,j := Xβ0,j − Xβ0,−j γβ0,j . We then
make the following assumptions:

(D1) The pairs of random variables {(yi, xi)}ni=1 are i.i.d. and ‖X‖∞ =
maxi,j |Xi,j | = O(K) and ‖Xβ0,−j γβ0,j‖∞ = O(K) for some K ≥ 1.

(D2) It holds that K2sj
√

log(p)/n = o(1).
(D3) The smallest eigenvalue of �β0 is bounded away from zero, and moreover,

‖�β0‖∞ = O(1).
(D4) For some δ > 0 and all ‖β − β0‖1 ≤ δ, it holds that wβ stays away from

zero and that ‖wβ‖∞ = O(1). We further require that for all such β and all x and y∣∣wβ(y, x) − wβ0(y, x)
∣∣ ≤ ∣∣x(β − β0)∣∣.
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(D5) It holds that∥∥X
(
β̂ − β0)∥∥

n = OP(λ
√

s0),
∥∥β̂ − β0∥∥

1 = OP(λs0).

Condition (D5) and (C2) typically hold when λ
√

s0 = o(1) with tuning parameter
λ � √

log(p)/n since the compatibility condition is then inherited from (D3) (see
also Section 3.3.1). We have the following result.

THEOREM 3.2. Assume the conditions (D1)–(D5). Then, using λj �
K

√
log(p)/n for the nodewise lasso 
̂

β̂,j
.

‖
̂
β̂,j

− 
β0,j‖1 = OP

(
Ksj

√
log(p)/n

) +OP

(
K2s0

((
λ2/

√
log(p)/n

) ∨ λ
))

,

‖
̂
β̂,j

− 
β0,j‖2 = OP

(
K

√
sj log(p)/n

) +OP

(
K2√s0λ

)
,

and for τ 2
β0,j

:= 
β0,j,j

∣∣τ̂ 2
β̂,j

− τ 2
β0,j

∣∣ =OP

(
K

√
sj log(p)/n

) +OP

(
K2√s0λ

)
.

Moreover,∣∣
̂
β̂,j

�β0
̂
T

β̂,j
− 
β0,j,j

∣∣
≤ ‖�β0‖∞‖
̂

β̂,j
− 
β0,j‖2

1 ∧ �2
max‖
̂β̂,j

− 
β0,j‖2
2 + 2

∣∣τ̂ 2
β̂,j

− τ 2
β0,j

∣∣,
where �2

max is the maximal eigenvalue of �β0 .

A proof using ideas for establishing Theorem 2.4 is given in the supplemental
article [45].

COROLLARY 3.1. Assume the conditions of Theorem 3.2, with tuning param-
eter λ � √

log(p)/n, K � 1, sj = o(
√

n/ log(p)) and s0 = o(
√

n/ log(p)). Then

‖
̂
β̂,j

− 
β0,j‖1 = oP
(
1/

√
log(p)

)
,

‖
̂
β̂,j

− 
β0,j‖2 = oP
(
n−1/4)

and ∣∣
̂
β̂,j

�β0
̂
T

β̂,j
− 
β0,j,j

∣∣ = oP
(
1/ log(p)

)
.

The next lemma is useful when estimating the asymptotic variance.
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LEMMA 3.1. Assume the conditions of Corollary 3.1. Let for i = 1, . . . , n, ξi

be a real-valued random variable and xT
i ∈ R

p , and let (xi, ξi)
n
i=1 be i.i.d. Assume

ExT
i ξi = 0 and that |ξi | ≤ 1. Then


̂
β̂,j

n∑
i=1

xT
i ξi/n = 
β0,j

n∑
i=1

xT
i ξi/n + oP

(
n−1/2).

Let A := ExT
i xiξ

2
i (assumed to exist). Assume that ‖A
T

j ‖∞ = O(1) and that

1/(
jA
T
j ) = O(1). Then


̂
β̂,j

A
̂T

β̂,j
= 
β0,jA
T

β0,j
+ oP(1).

Moreover, then


̂
β̂,j

∑n
i=1 xT

i ξi/
√

n√

̂

β̂,j
A
̂T

β̂,j

convergences weakly to a N (0,1)-distribution.

A proof is given in the supplemental article [45].

3.3.1. Consequence for GLMs. Consider the case where a �→ ρ(y, a) is con-
vex for all y. We let {(yi, xi)}ni=1 ∼ P be i.i.d. random variables. We denote by Xβ0

the weighted design matrix Wβ0X with Wβ0 the diagonal matrix with elements

{
√

ρ̈(yi, xiβ0)}ni=1. We further let Xβ0,−j γ
0
β0,j

be the projection in L2(P) of Xβ0,j

on Xβ0,−j , j = 1, . . . , p. We write �β0 := EXT
β0Xβ0/n and let sj be the number

of nonzero lower-diagonal elements of the j th column of �β0 (j = 1, . . . , p).

THEOREM 3.3. Let {(yi, xi)}ni=1 ∼ P be i.i.d. random variables. Assume:

(i) Condition (C1),
(ii) ‖1/ρ̈β0‖∞ = O(1),

(iii) ‖X‖∞ = O(1),
(iv) ‖Xβ0‖∞ = O(1) and ‖Xβ0,−j γ

0
β0,j

‖∞ =O(1) for each j ,
(v) the smallest eigenvalue of �β0 stays away from zero,

(vi) 1/(
β0,jP ρ̇β0 ρ̇T
β0


T
β0,j

) = O(1) ∀j ,

(vii) s0 = o(
√

n/ log(p)) and sj = √
n/ log(p) for all j .

Take 
̂ equal to 
̂Lasso given in (21) with λj � √
log(p)/n (j = 1, . . . , p) suitably

chosen. For the estimator in (18), with suitable λ � √
log(p)/n, we have for each j

√
n
(
b̂j − β0

j

)
/σ̂j = Vj + oP(1),
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where Vj converges weakly to a N (0,1)-distribution and where

σ̂ 2
j := (


̂Pnρ̇β̂
ρ̇T

β̂

̂T )

j,j .

A proof is given in Section 5.8.
Note that for the case where ρβ is the minus log-likelihood, P ρ̇β0 ρ̇T

β0 = �β0 ,

and hence 
β0,jP ρ̇β0 ρ̇T
β0


T
β0,j

= 
β0,j,j . Assumption (vi) then follows from as-
sumptions (i)–(iii) since 1/
β0,j,j ≤ �β0,j,j .

4. Empirical results. We consider finite sample behavior for inference of in-
dividual regression coefficients β0

j , including adjustment for the case of multiple
hypothesis testing.

4.1. Methods and models. We compare our method based on b̂Lasso with a
procedure based on multiple sample splitting [32] (for multiple hypothesis testing
only) and with a residual bootstrap method proposed by [14].

The implementational details for inference based on b̂Lasso are as follows. For
the linear regression of the response Y versus the design X, we use the scaled
lasso [42] with its universal regularization parameter, and we use its estimate σ̂ 2

ε of
the error variance. For logistic regression, we use the corresponding lasso estimator
with tuning parameter from 10-fold cross-validation. Regarding the nodewise lasso
(for linear and logistic regression), we choose the same tuning parameter λj ≡ λX

by 10-fold cross-validation among all nodewise regressions. An alternative method
which we did not yet examine in the simulations would be to do nodewise regres-
sion with square-root lasso using a universal choice for the tuning parameter (see
Remark 2.1). For the bootstrap method from [14], we use 10-fold cross-validation
to sequentially select the tuning parameter for lasso and subsequently for adaptive
lasso. For multiple sample splitting [32], we do variable screening with the lasso
whose regularization parameter is chosen by 10-fold cross-validation.

The construction of confidence intervals and hypothesis tests for individual pa-
rameters β0

j based on b̂Lasso is straightforward, as described in Section 2.1. Ad-
justment for multiple testing of hypotheses H0,j over all j = 1, . . . , p is done
using the Bonferroni–Holm procedure for controlling the family-wise error rate
(FWER). For the bootstrap procedure from [14], the Bonferroni–Holm adjustment
is not sensible, unless we would draw very many bootstrap resamples (e.g., 10,000
or more): with fewer resamples, we cannot reliably estimate the distribution in the
tails needed for Bonferroni–Holm correction. Thus, for this bootstrap method, we
only consider construction of confidence intervals. Finally, the multiple sample
splitting method [32] is directly giving p-values which control the FWER.

For our simulation study, we consider (logistic) linear models where the rows of
X are fixed i.i.d. realizations from Np(0,�). We specify two different covariance
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matrices:

Toeplitz: �j,k = 0.9|j−k|,
Equi corr: �j,k ≡ 0.8 for all j �= k, �j,j ≡ 1 for all j.

The active set has either cardinality s0 = |S0| = 3 or s0 = 15, and each of it is of
one of the following forms:

S0 = {1,2, . . . , s0},or: realization of random support S0 = {u1, . . . , us0},
where u1, . . . , us0 is a fixed realization of s0 draws without replacement from
{1, . . . , p}. The regression coefficients are from a fixed realization of s0 i.i.d. Uni-
form U [0, c] variables with c ∈ {1,2,4}. For linear models, the distribution of the
errors is always ε1, . . . , εn ∼ N (0,1); see comment below regarding t-distributed
errors. We also consider logistic regression models with binary response and

log
(
π(x)/

(
1 − π(x)

)) = xβ0, π(x) = P[y1 = 1|x1 = x].
Sample size is always n = 100 (with some exceptions in the supplemental arti-
cle [45]) and the number of variables is p = 500. We then consider many com-
binations of the different specifications above. All our results are based on 100
independent simulations of the model with fixed design and fixed regression coef-
ficients (i.e., repeating over 100 independent simulations of the errors in a linear
model).

4.2. Results for simulated data.

4.2.1. Linear model: Confidence intervals. We consider average coverage and
average length of the intervals for individual coefficients corresponding to vari-
ables in either S0 or Sc

0: denoting by CIj a two-sided confidence interval for β0
j ,

we report empirical versions of

AvgcovS0 = s−1
0

∑
j∈S0

P
[
β0

j ∈ CIj
]
,

AvgcovSc
0 = (p − s0)

−1
∑
j∈Sc

0

P[0 ∈ CIj ],

AvglengthS0 = s−1
0

∑
j∈S0

length(CIj ); and analogously for AvglengthSc
0.

The following Tables 1–4 are for different active sets.
Discussion. As the main finding, we summarize that the desparsified lasso es-

timator is clearly better for the variables in S0 than the residual based bootstrap.
For the variables in Sc

0 with regression coefficients equal to zero, the residual boot-
strap exhibits the super-efficiency phenomenon: the average length of the interval
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TABLE 1
Linear model: average coverage and length of confidence intervals, for nominal coverage equal to
0.95. “Lasso-Pro” (lasso-projection) denotes the procedure based on our desparsified estimator

b̂Lasso; “Res-Boot” is the residual based bootstrap from [14]

Toeplitz Equi corr

Measure Method U([0,2]) U([0,4]) U([0,2]) U([0,4])
Active set S0 = {1,2,3}

Avgcov S0 Lasso-Pro 0.86 0.84 0.90 0.89
Res-Boot 0.66 0.85 0.45 0.57

Avglength S0 Lasso-Pro 0.786 0.787 0.762 0.760
Res-Boot 0.698 0.918 0.498 0.670

Avgcov Sc
0 Lasso-Pro 0.95 0.95 0.95 0.95

Res-Boot 1.00 1.00 1.00 1.00
Avglength Sc

0 Lasso-Pro 0.786 0.787 0.811 0.808
Res-Boot 0.000 0.000 0.006 0.007

is often very close to zero while coverage equals one. This cannot happen with
the desparsified lasso estimator: in contrast to the residual based bootstrap, the
desparsified lasso estimator allows for a convergence result which is uniform for
a large class of parameters, and hence leading to honest confidence intervals; see
Section 2.3.1. Furthermore, our empirical results for active sets with s0 = 15 in-
dicate that inference with the desparsified lasso has its limit when the problem is
not sufficiently sparse, especially for the case with equi-correlated design: this is
in line with our theoretical results.

Finally, we have also looked at non-Gaussian models where the error terms are
from a scaled t5 distribution (Student distribution with 5 degrees of freedom) with

TABLE 2
See caption of Table 1

Toeplitz Equi corr

Measure Method U([0,2]) U([0,4]) U([0,2]) U([0,4])
Active set with s0 = 3 and support from fixed random realization

Avgcov S0 Lasso-Pro 0.95 0.94 0.89 0.87
Res-Boot 0.58 0.73 0.31 0.51

Avglength S0 Lasso-Pro 0.890 0.934 0.822 0.821
Res-Boot 0.336 0.463 0.500 0.743

Avgcov Sc
0 Lasso-Pro 0.95 0.96 0.95 0.95

Res-Boot 1.00 1.00 1.00 1.00
Avglength Sc

0 Lasso-Pro 0.879 0.923 0.805 0.804
Res-Boot 0.002 0.003 0.008 0.009
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TABLE 3
See caption of Table 1

Toeplitz Equi corr

Measure Method U([0,2]) U([0,4]) U([0,2]) U([0,4])
Active set S0 = {1,2, . . . ,15}

Avgcov S0 Lasso-Pro 0.76 0.73 0.56 0.53
Res-Boot 0.79 0.87 0.54 0.63

Avglength S0 Lasso-Pro 0.813 0.814 0.559 0.554
Res-Boot 1.012 1.138 0.746 0.844

Avgcov Sc
0 Lasso-Pro 0.96 0.96 0.93 0.93

Res-Boot 1.00 1.00 0.99 0.99
Avglength Sc

0 Lasso-Pro 0.788 0.789 0.568 0.562
Res-Boot 0.001 0.000 0.047 0.044

variance equal to one. The results (not reported here) look essentially identical as
in Tables 1–4.

4.2.2. Linear model: Multiple testing. We consider multiple two-sided testing
of hypotheses H0,j ;β0

j = 0 among all j = 1, . . . , p. We correct the p-values based

on our b̂Lasso with the Bonferroni–Holm procedure to control the familywise error
rate (FWER). The method based on multiple sample splitting [32] automatically
yields p-values for controlling the FWER. For measuring power, we report on the
empirical version of

Power = s−1
0

∑
j∈S0

P[H0,j is rejected].

TABLE 4
See caption of Table 1

Toeplitz Equi corr

Measure Method U([0,2]) U([0,4]) U([0,2]) U([0,4])
Active set with s0 = 15 and support from fixed random realization

Avgcov S0 Lasso-Pro 0.93 0.94 0.55 0.44
Res-Boot 0.45 0.54 0.48 0.55

Avglength S0 Lasso-Pro 2.391 4.354 0.572 0.552
Res-Boot 0.480 0.599 0.675 0.809

Avgcov Sc
0 Lasso-Pro 0.95 0.95 0.93 0.92

Res-Boot 0.98 0.97 0.99 0.99
Avglength Sc

0 Lasso-Pro 2.370 4.317 0.570 0.550
Res-Boot 0.029 0.035 0.048 0.050
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TABLE 5
Linear model: family-wise error rate (FWER) and power of multiple testing, for nominal FWER
equal to 0.05. “Lasso-Pro”(lasso-projection) denotes the procedure based on our de-sparsified

estimator b̂Lasso with Bonferroni–Holm adjustment for multiple testing; “MS-Split” is the multiple
sample splitting method from [32]

Toeplitz Equi corr

Measure Method U([0,2]) U([0,4]) U([0,2]) U([0,4])
Active set S0 = {1,2,3}

Power Lasso-Pro 0.42 0.69 0.48 0.82
MS-Split 0.60 0.83 0.35 0.63

FWER Lasso-Pro 0.03 0.05 0.13 0.13
MS-Split 0.16 0.25 0.00 0.00

The following Tables 5–8 are for different active sets.
Discussion. Similarly to what we found for confidence intervals above, multiple

testing with the desparsified lasso estimator is reliable and works well for sparse
problems (i.e., s0 = 3). For less sparse problems (i.e., s0 = 15), the error control is
less reliable, especially for equi-correlated designs. For sparse Toeplitz designs, the
lasso-projection method has more power than multiple sample splitting, a finding
which is in line with our established optimality theory.

4.2.3. Logistic regression: Multiple testing. The residual bootstrap
method [14] cannot be used in a straightforward way for logistic regression. As
for linear models, we compare our desparsified lasso estimator with the multiple
sample splitting procedure, in the context of multiple testing for controlling the
FWER.

For the case of logistic regression shown in Tables 9–10, inference with the
de-sparsified lasso method is not very reliable with respect to the FWER. The
multiple sample splitting method is found to perform better. We present in the

TABLE 6
See caption of Table 5

Toeplitz Equi corr

Measure Method U([0,2]) U([0,4]) U([0,2]) U([0,4])
Active set with s0 = 3 and support from fixed random realization

Power Lasso-Pro 0.54 0.81 0.56 0.79
MS-Split 0.44 0.71 0.40 0.69

FWER Lasso-Pro 0.00 0.00 0.10 0.11
MS-Split 0.00 0.00 0.00 0.00
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TABLE 7
See caption of Table 5

Toeplitz Equi corr

Measure Method U([0,2]) U([0,4]) U([0,2]) U([0,4])
Active set S0 = {1,2, . . . ,15}

Power Lasso-Pro 0.73 0.89 0.70 0.92
MS-Split 0.23 0.67 0.00 0.00

FWER Lasso-Pro 0.03 0.02 1.00 1.00
MS-Split 0.00 0.00 0.00 0.00

supplemental article [45] some additional results for sample sizes n = 200 and n =
400, illustrating that the FWER control as well as the power for the desparsified
lasso improve.

4.3. Real data analysis. We consider a dataset about riboflavin (vitamin B2)
production by bacillus subtilis. The data has been kindly provided by DSM
(Switzerland) and is publicly available [9]. The real-valued response variable
is the logarithm of the riboflavin production rate and there are p = 4088 co-
variates (genes) measuring the logarithm of the expression level of 4088 genes.
These measurements are from n = 71 samples of genetically engineered mutants
of bacillus subtilis. We model the data with a high-dimensional linear model
and obtain the following results for significance. The desparsified lasso proce-
dure finds no significant coefficient while the multiple sample splitting method
claims significance of one variable at the 5% significance level for the FWER.
Such low power is to be expected in presence of thousands of variables: finding
significant groups of highly correlated variables would seem substantially easier,
at the price of not being able to infer significant of variables at the individual
level.

TABLE 8
See caption of Table 5

Toeplitz Equi corr

Measure Method U([0,2]) U([0,4]) U([0,2]) U([0,4])
Active set with s0 = 15 and support from fixed random realization

Power Lasso-Pro 0.06 0.07 0.65 0.86
MS-Split 0.07 0.14 0.00 0.00

FWER Lasso-Pro 0.02 0.00 0.96 0.98
MS-Split 0.02 0.13 0.00 0.00
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TABLE 9
Logistic regression: All other specifications as in Table 5

Toeplitz

Measure Method U([0,1]) U([0,2]) U([0,4])
Power Lasso-ProG 0.06 0.27 0.50

MS-Split 0.07 0.37 0.08

FWER Lasso-ProG 0.03 0.08 0.23
MS-Split 0.01 0.00 0.00

5. Proofs and materials needed.

5.1. Bounds for ‖β̂ − β0‖1 with fixed design. The following known result
gives a bound for the �1-norm estimation accuracy.

LEMMA 5.1. Assume a linear model as in (1) with Gaussian error and fixed
design X which satisfies the compatibility condition with compatibility constant
φ2

0 and with �̂j,j ≤ M2 < ∞ for all j . Consider the lasso with regularization

parameter λ ≥ 2Mσε

√
2(t2+log(p))

n
. Then, with probability at least 1 − 2 exp(−t2),

∥∥β̂ − β0∥∥
1 ≤ 8λ

s0

φ2
0

and
∥∥X

(
β̂ − β0)∥∥2

2/n ≤ 8λ2 s0

φ2
0

.

A proof follows directly from the arguments in [10], Theorem 6.1, which can
be modified to treat the case with unequal values of �̂j,j for various j .

5.2. Proof of Theorem 2.1. It is straightforward to see that

‖�‖∞/
√

n = ∥∥(
̂Lasso�̂ − I )
(
β̂ − β0)∥∥∞

(22)
≤ ∥∥(
̂Lasso�̂ − I )

∥∥∞
∥∥β̂ − β0∥∥

1.

TABLE 10
Logistic regression: All other specifications as in Table 5

Toeplitz

Measure Method U([0,1]) U([0,2]) U([0,4])
Power Lasso-ProG 0.02 0.16 0.35

MS-Split 0.00 0.17 0.27

FWER Lasso-ProG 0.08 0.16 0.27
MS-Split 0.00 0.03 0.01
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Therefore, by (10) we have that ‖�‖∞ ≤ √
n‖β̂ −β0‖1 maxj λj /τ̂

2
j , and using the

bound from Lemma 5.1 completes the proof.

5.3. Random design: Bounds for compatibility constant and ‖T̂ −2‖∞. The
compatibility condition with constant φ2

0 being bounded away from zero is ensured
by a rather natural condition about sparsity. We have the following result.

LEMMA 5.2. Assume (A2). Furthermore, assume that s0 = o(n/ log(p)).
Then there is a constant L = O(1) depending on �min only such that with proba-
bility tending to one the compatibility condition holds with compatibility constant
φ2

0 ≥ 1/L2.

A proof follows directly as in [39], Theorem 1.
Lemmas 5.1 and 5.2 say that we have a bound

∥∥β̂ − β0∥∥
1 = OP

(
s0

√
log(p)

n

)
,

(23) ∥∥X
(
β̂ − β0)∥∥2

2/n = OP

(
s0 log(p)

n

)
,

when assuming (A2) and sparsity s0 = o(n/ log(p)).
When using the lasso for nodewise regression in (8), we would like to have a

bound for ‖T̂ −2
Lasso‖∞ appearing in Theorem 2.1.

LEMMA 5.3. Assume (A2) with row-sparsity for 
 := �−1 bounded by

max
j

sj = o
(
n/ log(p)

)
.

Then, when suitably choosing the regularization parameters λj � √
log(p)/n uni-

formly in j ,

max
j

1/τ̂ 2
j = OP(1).

PROOF. A proof follows using standard arguments. With probability tend-
ing to one the compatibility assumption holds uniformly for all nodewise regres-
sions with compatibility constant bounded away from zero uniformly in j , as in
Lemma 5.2 and invoking the union bound. Furthermore, the population error vari-
ance τ 2

j = E[(X1,j − ∑
k �=j γj,kX1,k)

2], where γj,k are the population regression

coefficients of X1,j versus {X1,k;k �= j} satisfy: uniformly in j , τ 2
j = 1/
j,j ≥

�2
min > 0 and τ 2

j ≤ E[X2
1,j ] = �j,j = O(1), thereby invoking assumption (A2).

Thus, all the error variances behave nicely. Recall that

τ̂ 2
j := ‖Xj − X−j γ̂j‖2

2/n + λj‖γ̂j‖1.

In the following, the probability statements are again uniformly in j by the union
bound for suitable tuning parameters λj � √

log(p)/n uniformly in j . Each node-
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wise regression satisfies ‖X−j (γ̂j − γj )‖2
2/n = OP(sj log(p)/n) [see Lemma 5.1

or (23), now applied to the lasso estimator for the regression of Xj on X−j ]. It
follows that

‖Xj − X−j γ̂j‖2
2/n = ‖Xj − X−j γj‖2

2/n + ∥∥X−j (γ̂j − γj )
∥∥2

2/n

+ 2(Xj − X−j γj )
T X−j (γ̂j − γj )

= τ 2
j +OP

(
n−1/2) +OP

(
λ2

j sj
) +OP(λj

√
sj ) = τ 2

j + oP(1).

Note further that

‖γj‖1 ≤ √
sj‖γj‖2 ≤

√
sj�j,j /�min.

Moreover, by the same arguments giving the bounds in (23), ‖γ̂j − γj‖1 =
OP(sjλj ) so that

λj‖γ̂j‖1 ≤ λj‖γj‖1 + λj‖γ̂j − γj‖1 = λjO(
√

sj ) + λjOP(λj sj ) = oP(1).

Hence, the statement of the lemma follows. �

5.4. Bounds for ‖β̂ −β0‖2 with random design. Note that ‖X(β̂ −β0)‖2
2/n =

(β̂ − β0)T �̂(β̂ − β0). Lemma 5.2 uses [39], Theorem 1. The same result can be
invoked to conclude that when (A2) holds and when λ � √

log(p)/n is suitably
chosen, then for a suitably chosen fixed C, with probability tending to one(

β̂ − β0)T �
(
β̂ − β0)

≤ (
β̂ − β0)T �̂

(
β̂ − β0)C +

√
log(p)

n

∥∥β̂ − β0∥∥
1C.

Hence, (
β̂ − β0)T �

(
β̂ − β0) = OP

(
s0 log(p)

n

)
.

So under (A2) for suitable λ � √
log(p)/n∥∥β̂ − β0∥∥

2 = OP

(√
s0 log(p)/n

)
(24)

(see also [6]). This result will be applied in the next subsection, albeit to the lasso
for node wise regression instead of for the original linear model.

5.5. Proof of Theorem 2.2. Invoking Theorem 2.1 and Lemma 5.3, we have
that

‖�‖∞ ≤OP

(
s0 log(p)/

√
n
) = oP(1),

where the last bound follows by the sparsity assumption on s0.
What remains to be shown is that ‖�̂ − 
‖∞ = oP(1), as detailed by the fol-

lowing lemma.
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LEMMA 5.4. Let 
̂ := 
̂Lasso with suitable tuning parameters λj satisfying
λj � √

log(p)/n uniformly in j . Assume the conditions of Lemma 5.3. Suppose
that maxj λ2

j sj = o(1). Then

‖�̂ − 
‖∞ = oP(1).

PROOF. By the same arguments as in the proof of Lemma 5.3, uniformly in j ,

‖
̂j‖1 = OP(
√

sj ).

Furthermore, we have

�̂ = 
̂�̂
̂T = (
̂�̂ − I )
̂T + 
̂T(25)

and ∥∥(
̂�̂ − I )
̂T
∥∥∞ ≤ max

j
λj‖
̂j‖1/τ̂

2
j = oP(1),(26)

which follows from Lemma 5.3. Finally, we have using standard arguments for the
�2-norm bounds [see also (24)]

‖
̂ − 
‖∞ ≤ max
j

‖
̂j − 
j‖2 ≤ max
j

λj
√

sj = oP(1).(27)

Using (25)–(27), we complete the proof. �

The proof of Theorem 2.2 is now complete.

5.6. Proof of Theorem 2.4. Under the sub-Gaussian assumption we know that
ηj is also sub-Gaussian. So then ‖ηT

j X−j /n‖∞ = OP(
√

log(p)/n). If ‖X‖∞ =
O(K), we can use the work in [16] to conclude that∥∥ηT

j X−j

∥∥∞/n = OP

(
K

√
log(p)/n

)
.

However, this result does not hold uniformly in j . Otherwise, in the strongly
bounded case, we have

‖ηj‖∞ ≤ ‖Xj‖∞ + ‖X−j γj‖∞ = O(K).

So then ‖ηT
j X−j /n‖∞ = OP(K

√
log(p)/n) + OP(K

2 log(p)/n), which is uni-
form in j .

Then by standard arguments (see, e.g., [6], and see [10] which complements the
concentration results in [26] for the case of errors with only second moments) for
λj � K0

√
log(p)/n [recall that K0 = 1 in the sub-Gaussian case and K0 = K in

the (strongly) bounded case]∥∥X−j (γ̂j − γj )
∥∥2
n =OP

(
sjλ

2
j

)
, ‖γ̂j − γj‖1 = OP(sjλj ).

The condition K2sj
√

log(p)/n is used in the (strongly) bounded case to be able to
conclude that the empirical compatibility condition holds (see [10], Section 6.12).
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In the sub-Gaussian case, we use that
√

sj log(p)/n = o(1) and an extension of
Theorem 1 in [39] from the Gaussian case to the sub-Gaussian case. This gives
again that the empirical compatibility condition holds.

We further find that

‖γ̂j − γj‖2 = OP

(
K0

√
sj log(p)/n

)
.

To show this, we first introduce the notation vT �v := ‖Xv‖2. Then in the
(strongly) bounded case∣∣‖Xv‖2

n − ‖Xv‖2∣∣ ≤ ‖�̂ − �‖∞‖v‖2
1 =OP

(
K2

√
log(p)/n

)‖v‖2
1.

Since ‖γ̂j − γj‖1 = OP(K0sj
√

log(p)/n) and the smallest eigenvalue �2
min of �

stays away from zero, this gives

OP

(
K2

0 sj log(p)/n
) = ∥∥X−j (γ̂j − γj )

∥∥2
n

≥ �2
min‖γ̂j − γj‖2

2 −OP

(
K4

0 s2
j

(
log(p)/n

)3/2)
≥ �2

min‖γ̂j − γj‖2
2 − oP

(
K2

0 log(p)/n
)
,

where we again used that K2
0 sj

√
log(p)/n = o(1). In the sub-Gaussian case, the

result for the ‖ · ‖2-estimation error follows by similar arguments invoking again a
sub-Gaussian extension of Theorem 1 in [39].

We moreover have∣∣τ̂ 2
j − τ 2

j

∣∣ = ∣∣ηT
j ηj/n − τ 2

j

∣∣︸ ︷︷ ︸
I

+ ∣∣ηT
j X−j (γ̂j − γj )/n

∣∣︸ ︷︷ ︸
II

+ ∣∣ηT
j X−j γj /n

∣∣︸ ︷︷ ︸
III

+ ∣∣(γj )
T XT−j X−j (γ̂j − γj )/n

∣∣︸ ︷︷ ︸
IV

.

Now, since we assume fourth moments of the errors,

I = OP

(
K2

0n−1/2).
Moreover,

II = OP

(
K0

√
log(p)/n

)‖γ̂j − γj‖1 = OP

(
K2

0 sj log(p)/n
)
.

As for III, we have

III = OP

(
K0

√
log(p)/n

)‖γj‖1 = OP

(
K0

√
sj log(p)/n

)
since ‖γj‖1 ≤ √

sj‖γj‖2 = O(
√

sj ). Finally, by the KKT conditions,

∥∥XT−j X−j (γ̂j − γj )
∥∥∞/n = OP

(
K0

√
log(p)/n

)
,
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and hence

IV = OP

(
K0

√
log(p)/n

)‖γj‖1 = OP

(
K0

√
sj log(p)/n

)
.

So now we have shown that∣∣τ̂ 2
j − τ 2

j

∣∣ = OP

(
K0

√
sj log(p)/n

)
.

Since 1/τ 2
j = O(1), this implies that also

1/τ̂ 2
j − 1/τ 2

j = OP

(
K0

√
sj log(p)/n

)
.

We conclude that

‖
̂j − 
j‖1 = ∥∥Ĉj /τ̂
2
j − Cj/τ

2
j

∥∥
1

≤ ‖γ̂j − γj‖1/τ̂
2
j︸ ︷︷ ︸

i

+‖γj‖1
(
1/τ̂ 2

j − 1/τ 2
j

)
︸ ︷︷ ︸

ii

,

where

i = OP

(
K0sj

√
log(p)/n

)
since τ̂ 2

j is a consistent estimator of τ 2
j and 1/τ 2

j = O(1), and also

ii = OP

(
K0sj

√
log(p)/n

)
,

since ‖γj‖1 = O(
√

sj ).
Recall that

‖γ̂j − γj‖2 = OP

(
K0

√
sj log(p)/n

)
.

But then

‖
̂j − 
j‖2 ≤ ‖γ̂j − γj‖2/τ̂
2
j + ‖γj‖2

(
1/τ̂ 2

j − 1/τ 2
j

)
= OP

(
K0

√
sj log(p)/n

)
.

For the last part, we write


̂j�
̂T
j − 
j,j

= (
̂j − 
j)�(
̂j − 
j)
T + 
j�(
̂j − 
j)

T + 
j�
T
j − 
j,j

= (
̂j − 
j)�(
̂j − 
j)
T + 2

(
1/τ̂ 2

j − 1/τ 2
j

)
,

since 
j� = eT
j , 
j�
T

j = 
j,j , 
̂j,j = 1/τ̂ 2
j , and 
j,j = 1/τ 2

j . But

(
̂j − 
j)�(
̂j − 
j)
T ≤ ‖�‖∞‖
̂j − 
j‖1.
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We may also use

(
̂j − 
j)�(
̂j − 
j)
T ≤ �2

max‖
̂j − 
j‖2
2.

The last statement of the theorem follows as in Theorem 2.1, as
√

n(b̂Lasso,j −
β0

j ) = Wj + �j , with �j ≤ √
nλj/τ̂

2
j ‖β̂ − β0‖1, and λj/τ̂

2
j � λj � √

log(p)/n,
the latter being uniformly in j in the sub-Gaussian or strongly bounded case.

5.7. Proof of Theorem 3.1. Note that

ρ̇(y, xiβ̂) = ρ̇
(
y, xiβ

0) + ρ̈(y, ãi)xi

(
β̂ − β0),

where ãi is a point intermediating xiβ̂ and xiβ
0, so that |ãi − xiβ̂| ≤ |xi(β̂ − β0)|.

We find by the Lipschitz condition on ρ̈ [condition (C1)]∣∣ρ̈(y, ãi)xi

(
β̂ − β0) − ρ̈(y, xiβ̂)xi

(
β̂ − β0)∣∣

≤ |ãi − xiβ̂|∣∣xi

(
β̂ − β0)∣∣ ≤ ∣∣xi

(
β̂ − β0)∣∣2.

Thus, using that by condition (C5) |xi
̂
T
j | = OP(K) uniformly in j ,


̂jPnρ̇β̂
= 
̂jPnρ̇β0 + 
̂jPnρ̈β̂

(
β̂ − β0) + Rem1,

where

Rem1 = OP(K)

n∑
i=1

∣∣xi

(
β̂ − β0)∣∣2/n =O(K)

∥∥X
(
β̂ − β0)∥∥2

n

= OP

(
Ks0λ

2) = oP(1),

where we used condition (C2) and in the last step condition (C8).
We know that by condition (C4)∥∥
̂jPnρ̈β̂

− eT
j

∥∥∞ = O(λ∗).

It follows that

bj − β0
j = β̂j − β0

j − 
̂jPnρ̇β̂

= β̂j − β0
j − 
̂jPnρ̇β0 − 
̂jPnρ̈β̂

(
β̂ − β0) − Rem1

= −
̂jPnρ̇β0 − (

̂jPnρ̈β̂

− eT
j

)(
β̂ − β0) − Rem1

= −
̂jPnρ̇β0 − Rem2,

where

|Rem2| ≤ |Rem1| +O(λ∗)
∥∥β̂ − β0∥∥

1 = oP
(
n−1/2) +OP(s0λλ∗) = oP

(
n−1/2)

since by condition (C2) ‖β̂ − β0‖1 = OP(λs0), and by the second part of condi-
tion (C8) also λ∗λs0 = o(n−1/2).



1198 VAN DE GEER, BÜHLMANN, RITOV AND DEZEURE

We now have to show that our estimator of the variance is consistent. We find∣∣(
̂P ρ̇β0 ρ̇
T
β0
̂

T )
j,j − (


̂Pnρ̇β̂
ρ̇T

β̂

̂T )

j,j

∣∣
≤ ∣∣(
̂(Pn − P)ρ̇β0 ρ̇

T
β0
̂

T )
j,j

∣∣︸ ︷︷ ︸
I

+ ∣∣(
̂P ρ̇β0 ρ̇
T
β0
̂

T )
j,j − (


̂P ρ̇
β̂
ρ̇T

β̂

̂T )

j,j

∣∣︸ ︷︷ ︸
II

.

But, writing εk,l := (Pn − P)ρ̇k,β0 ρ̇l,β0 , we see that

I = ∣∣(
̂(Pn − P)ρ̇β0 ρ̇
T
β0
̂

T )
j,j

∣∣ = ∣∣∣∣∑
k,l


̂j,k
̂j,lεk,l

∣∣∣∣ ≤ ‖
̂j‖2
1‖ε‖∞

= OP

(
s∗K2λ

)
,

where we used conditions (C5) and (C6).
Next, we will handle II. We have

ρ̇
β̂
(y, x)ρ̇T

β̂
(y, x) − ρ̇β0(y, x)ρ̇T

β0(y, x) = [
ρ̇2(y − xβ̂) − ρ̇2(y − xβ0)]xT x

:= v(y, x)xT x,

with ∣∣v(y, x)
∣∣ := ∣∣ρ̇2(y − xβ̂) − ρ̇2(y − xβ0)∣∣ = OP(1)

∣∣x(β̂ − β0)∣∣,
where we use that ρ̇β0 is bounded and ρ̈ is locally bounded [condition (C1)]. It
follows from condition (C2) that

P |v| ≤
√

P |v|2 = ∥∥X
(
β̂ − β0)∥∥ =OP(λ

√
s0).

Moreover, by condition (C5), ∥∥
̂j x
T
∥∥∞ = OP(K)

so that ∣∣(
̂v(x, y)xT x
̂T )
j,j

∣∣ ≤ O
(
K2)∣∣v(y, x)

∣∣.
Thus, ∣∣(
̂P ρ̇β0 ρ̇

T
β0
̂

T )
j,j − (


̂P ρ̇
β̂
ρ̇T

β̂

̂T )

j,j

∣∣ =OP

(
K2√s0λ

)
.

It follows that

I + II =OP

(
K2s∗λ

) +OP

(
K2√s0λ

) = oP(1)

by the last part of condition (C8).
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5.8. Proof of Theorem 3.3. This follows from Theorem 3.1. The assump-
tions (C2), (C4)–(C8) follow from the conditions of Corollary 3.1 with �β := P ρ̈β

and w2
β(y, x) := ρ̈(y, xβ), where we take 
̂ = 
̂Lasso and s∗ = sj and λ∗ = λj .

Condition (C2) holds because the compatibility condition is met as �β0 is nonsin-
gular and

‖�̂ − �β0‖∞ = OP(λ∗).

The condition that ρ̇(y, xβ0) is bounded ensures that ρ(y, a) is locally Lipschitz,
so that we can control the empirical process (Pn − P)(ρ

β̂
− ρβ0) as in [47] (see

also [10] or [46]). [In the case of a GLM with canonical loss (e.g., least squares
loss) we can relax the condition of a locally bounded derivative because the empir-
ical process is then linear.] Condition (C3) is assumed to hold with ‖X‖∞ = O(1),
and condition (C4) holds with λ∗ � √

logp/n. This is because in the node-
wise regression construction, the 1/τ̂ 2

j are consistent estimators of (�−1
β0 )jj (see

Theorem 3.2). Condition (C5) holds as well. Indeed, ‖
β0,j‖1 = O(
√

sj ), and

‖
̂
β̂,j

− 
β0,j‖1 = OP(λj sj ) = OP(
√

sj ). Condition (C6) holds, too, since we
assume that ‖ρ̇β0‖∞ = O(1) as well as ‖X‖∞ = O(1). As for condition (C7), this
follows from Lemma 3.1, since |
β0,j ρ̇β0(y, x)| = |
β0,j x

T ρ̇(y, xβ0)| = O(1),
which implies for A := P ρ̇β0 ρ̇T

β0 that ‖A
T
β0,j

‖∞ = O(1).

SUPPLEMENTARY MATERIAL

Supplement to “On asymptotically optimal confidence regions and tests for
high-dimensional models” (DOI: 10.1214/14-AOS1221SUPP; .pdf). The supple-
mental article contains additional empirical results, as well as the proofs of Theo-
rems 2.3 and 3.2, Lemmas 2.1 and 3.1.
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