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On A tm ospheric  O scillations.

By H o r a c e  La mb , F.R.S.

(Received November 14,—Read November 24, 1910.)

,  In troduction.

1 .  The chief question discussed in  th is  paper (§§ 6— 12) is th a t of the  free 

oscillations of an atm osphere whose tem peratu re  varies w ith  the a ltitude  ; and 

in particu lar the  case of a uniform  vertical tem peratu re-g rad ien t is studied in  

some detail. F o r consistency it  is assum ed th a t the  expansions and con

tractions follow the  adiabatic  law. The problem  is trea ted  as a two- 

dim ensional one, the  space co-ordinates involved being horizontal and v e r tic a l; 

and the  more definite conclusions arrived  a t re la te  to the  case where the  

(horizontal) w ave-length  is som ew hat large in  comparison w ith  the  height 

of the  atm osphere.

The results are m ost easily in te rp re ted  when the tem perature-grad ien t does 

no t fall m uch belowT th a t characteristic  of a sta te  of convective equilibrium . 

The norm al modes of oscillation then  fall in to  well-defined types.

In  the  most im p o rtan t type, the  motion of the  a ir-partic les is m ainly 

horizontal, and independent of the altitude, and the waves m ay therefore 

be described as “ longitudinal.” The velocity of propagation of progressive 

waves is found to be equal to ^ /(^ H ), where H  denotes w hat may be called 

the “ v irtu a l heigh t ” of the atm osphere, i.e. th e  height of a “ homogeneous 

atm osphere ” corresponding to the  tem peratu re  of the lowest stratum . T ha t 

the resu lt should come out in term ediate  in value betw een the velocity of 

sound in  the lowest s tra tum , viz., and the  zero velocity corresponding

to the  zero tem perature  which is postu lated in the  higher regions was to be 

a n tic ip a te d ; b u t th a t i t  should be identical in  form w ith  th a t obtained on 

the  hypothesis of an isotherm al atm osphere whose expansions are subject to 

Boyle’s law,* the effect of the upw ard decrease of tem perature  being exactly 

com pensated by the  g rea ter elasticity  im plied in the adiabatic law, is 

somewhat rem arkable.

W hen the tem perature-grad ien t falls d istinctly  below the “ convective ” 

value, the  character of the  oscillation is less simple. The w ave-velocity is 

somewhat increased, b u t m ust always rem ain below the  value (y^H), which 

is the velocity of sound in the lowest stratum .

2. A  second type of oscillations depends on the degree of stab ility  of the  

atmosphere.

*  R a y le ig h , ‘ P h il . M ag .’ (4), 1890 , v o l. 29, p . 173 ; ‘ S c ien tif ic  P ap e r s ,’ v o l. 3, p. 3 35 .
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552 Prof. H . Lamb. [Nov. 14,

The w ork req u ired  to bring u n it m ass of a ir from  the density  p x to  the  

d ensity  p2 u n der th e  ad iabatic  condition is

0“
( 1)

H ence if we im agine tw o th in  s tra ta  of equal mass, whose densities are  p i, p 2, 

a n d  pressures p i, p 2, to  be in terchanged , th e  w ork req u ired  to effec

be, p e r u n it  m ass,

W-1 - 1 no f  f p i \ y~ 1_

( y — l ) p i {  (pi ) 1 )  +  (-Y—1) P2 “[ ( S )  X} 7 - 1
P p __ £a\

p p  P2y r

( 2 )

I f  we avail ourselves of th e  notion  of “ p o ten tia l tem pera tu re ,”* i.e. th e  

tem p era tu re  •& w hich any  p a rtic u la r p o rtion  of a ir w ould assum e if brought 

ad iab a tica lly  to some s tan d a rd  d ensity  D , we have

p / p y  =  Ra / D r - 1,. (3)

w here R  is th e  co n stan t of the  fo rm ula

p  =  (4)

6  deno ting  th e  absolu te  tem pera tu re . H ence (2) becomes

(7- l )  D?-1 ’ '

H ence if p 2 >  pi, we m ust for s tab ility  have >  $2; the  po ten tia l 

tem p era tu re  m u st increase upw ards. Now, if denote dep th  below a 

s tan d ard  level, we have, in  equ ilib rium ,

d p / d y  =  gp; 

a n d  com bining th is  w ith  (3) and  (4), we find

1 f  d $  (7-l).?l

d \  1  dyR  J *5 d y
(7 )

(8 )

In  convective equ ilib rium , w here p / p y>and  consequently  •&, is th e  same a t a ll

a ltitudes, we have

_  ( y - l ) f f  
d y  7R

T his equ ilib rium , though  stab le  for some types of d istu rbance (§ 8), is in  

o th e r respects n eu tra l. F o r com plete  stab ility , d $ /d y  m ust be negative, and 

therefore
dQ_^ (7 — 1

d y  7R

W h en  th is  condition  is fulfilled, we have a series of possible modes of 

*  v . B e z o ld , ‘ B e r l.  S i t z b . , ’ 1 888 , v o l.  46 .
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1910.] On A tm ospheric  Oscillations. 553

oscillation whose periods, depending as they  do on the  ex ten t to which the 

tem perature-gradient differs from the convective value (8), are com paratively  

long. O scillations of th is  character, governed by local conditions, m ust 

undoubtedly  occur in  the  atm osphere, and m ay conceivably account for some 

of the  m inor fluctuations of the barometer.

There rem ains a th ird  type of oscillations w hich, w hen the w ave-length is 

m oderately  great, approxim ate to the  character of waves propagated vertically  

in  the  atm osphere. These have been discussed in a previous paper by the 

author.*' From a meteorological standpo in t they can hard ly  be of im portance.

3. The theory  of the  “ longitudinal ” waves is of in te rest in  relation  to the  

large-scale oscillations of the  e a r th ’s atm osphere as a whole. This subject 

was trea ted  by Laplace,f and is of some im portance in  connection w ith  the 

suggestion p u t forw ard by Lord K elv in! as to  the  origin of the  sem i-diurnal 

variation of the  barom eter. Laplace’s investigation  was based on the  

hypotheses of a uniform  equilibrium  tem peratu re  and an isotherm al law of 

expansion, and on the  fu rth e r assum ption  th a t the  vertical m otion of the 

a ir-particles m ay be neglected. § Since the circum stances are then  p rac ti

cally those of sound-w aves propagated horizontally, his resu lts n a tu ra lly  

involve the “ N e w to n ian ” velocity  of sound, ^ /((/H ), where H  is the height 

of the homogeneous a tm osphere corresponding to the assum ed uniform  

tem peratu re  0O, viz., H  =  E  Qolg-

The hypotheses referred to were, of course, adopted only for m athem atical 

convenience. As represen tations of actual conditions they  are very im p erfec t; 

and there  is, moreover, g rea t u n certa in ty  as to the  most su itab le  value to be 

a ttrib u ted  to 6q. I t  appeared to the  w rite r th a t a firm er ground for q u an ti

ta tive  conclusions would be gained if it  were possible to calculate the  

wave-velocity (for long waves), even in the  two-dim ensional problem, on 

som ew hat more n a tu ra l suppositions as to the  constitu tion  of the atm osphere 

and  the law of expansion.

In  the actual atm osphere the tem perature, as a rule, dim inishes upw ards, 

although (as we have seen) i t  is necessary for stab ility  th a t the  gradient 

should  now here exceed the convective value. The special hypothesis of 

a  u n ifo rm  gradient, which is here adopted as a basis of calculation, is itself an 

artificial o n e ; b u t in  spite of the fact th a t i t  im plies an upper lim it to the 

atm osphere, it may claim to give, on the whole, a b e tte r represen tation  of the

*  ‘ L ond . M a th . Soc. P ro c .’ (2), 1908 , v o l. 7, p. 122.

t  ‘ M ecan iqu e  C e le s te ,’ L iv r e  4 , Chap . 5. S ee  a lso  R a y le ig h , loc. cit.

+ ‘ R oy . Soc. E d in . P ro c .,’ 1882 , vo l. 1 1 ;  * M a th , and  P h y s . P a p e r s ,’ v o l. 3, p. 341 .

§ S om e  such  a ssum p t io n  is  n e cessa ry  to  m ak e  th e  p rob lem  d e te rm in a te , in  th e  ab sen ce  

o f  a  p rescr ib ed  c on d ition  to  b e  fu lfi lle d , or a p p ro x im a ted  to , in  th e  u pp er  r e g io n s  o f  

th e  a tm osph ere .

2 Q 2
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554 Prof. H. Lamb. [Nov. 14,

tru e  conditions th a n  th e  iso therm al view, on w hich, indeed, the  ea rth ’s 

a tm osphere  is m erely  a local concen tra tion  of a m edium  diffused through 

space.

A s regards th e  law  of expansion, since pe rm an en t inequalities of tem pera

tu re  are postu la ted  in  th e  equ ilib rium  condition, i t  is p roper to  ignore the  

tran sfe r of h ea t betw een ad jacen t portions of th e  a ir du rin g  th e  oscillations. 

I n  any  case, theo ry  shows th a t  th e  effect of conduction on such long waves as 

we have here  in  view  m ay safely  be neglected.*'

The m ain  conclusion of Laplace was th a t  th e  free and forced oscillations of 

an a tm osphere  covering a globe, w h e th e r th is  be a t re s t or in  uniform  

ro ta tion , are iden tica l w ith  those of a liqu id  ocean of uniform  dep th  H ; b u t 

in  view  of th e  n a tu re  of h is  prem ises, and  of the  u n certa in ty  as to the  

tem p era tu re  to  be adop ted  in  e s tim a tin g  th e  value of H , considerable doubt 

has been fe lt as to  how  fa r th is  analogy can be re lied  upon for q u an tita tiv e  

resu lts. The p re sen t investiga tion  tends, I  th in k , to  show th a t inferences of 

th is  k in d  w ill no t be very  far from  th e  tru th , provided th e  tem pera tu re  

adopted  be th e  m ean tem p era tu re  of th e  low er s tra ta  of th e  e a r th ’s a tm o 

sphere, so fa r as th is  can be ascerta ined . The fo rm al ad ap ta tion  of the  theory  

of lo n g itu d in a l w aves to th e  case of an  a tm osphere  of re la tiv e ly  sm all dep th  

covering a globe w ould follow th e  sam e course as in  L aplace’s investigation.

4. A s regards th e  sem i-d iu rna l v a ria tio n  of th e  barom eter, the  passage of 

K e lv in ’s paper a lready  re fe rred  to  ru n s  as follows :—

“ The cause of th e  sem i-d iu rnal va ria tio n  of barom etric  p ressure canno t be 

th e  g rav ita tio n a l tid e -genera ting  influence of th e  sun, because, if  i t  w ere,, 

th e re  w ould  be a m uch  la rg e r lu n a r  influence of the  sam e kind , while in  

re a lity  th e  lu n a r  barom etric  tide  is insensib le  or nearly  so. I t  seems, 

therefo re , ce rta in  th a t  th e  sem i-d iu rnal va ria tio n  of th e  barom eter is due to 

tem p era tu re . Now, th e  d iu r n a l  te rm , in  th e  harm onic analysis of the  

v a ria tio n  of tem perature, is u n doub ted ly  m uch la rg e r in  all, or nearly  all, 

places th a n  th e  sem i-d iu rn a l. I t  is th e n  very  rem arkab le  th a t  the  sem i

d iu rn a l te rm  o f  the barometric effect o f  th e  varia tion  of tem p era tu re  should be 

g reater, and  so m uch g re a te r as i t  is, th a n  th e  d iu rnal. The exp lanation  

probably  is to  be found by considering th e  oscillations of the  atm osphere, as 

a whole, in  th e  lig h t of th e  very  formulae w hich Laplace gave in  his 

‘ M ecanique Celeste ’ for th e  ocean, and w hich he showed to be also applicable  

to the  atm osphere. W hen  th e rm al influence is su b stitu ted  for g rav itational, 

in  th e  tide-genera ting  force reckoned for, and  w hen the  modes of oscillation

*  T h is  fo l lo w s  fr om  th e  e q u a t io n s  (d u e  s u b s ta n t ia l ly  to  K ir c h h o f f  and  R a y le ig h )  g iv en  

in  th e  a u th o r ’s ‘ H y d r o d y n a m ic s ,’ 3 rd  e d it . ,  § 3 43 . R a d ia t io n  h a s  a  d if fe r en t  te n d en c y  in  

th is  r e sp ec t.
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1910.] On A tm ospheric  Oscillations. 555

corresponding respectively  to the d iurnal and sem i-diurnal term s of the  

therm al influence are investigated, i t  w ill probably be found th a t the  period 

of free oscillation of the form er agrees m uch less nearly  w ith 24 hours than  

does th a t of the  la tte r  w ith  12 h o u rs ; and that, therefore, w ith  com paratively  

sm all m agnitudes of the tide-generating force, the  resulting  tide is g reater in  

the sem i-diurnal term  th an  in the d iurnal.”

The first question which here arises, viz., w hether as a m a tte r of fact the 

e a r th ’s atm osphere has a mode of oscillation of the  requisite  type, w ith a 

period of about 12 mean solar hours, can a t  the  p resen t tim e be exam ined 

more closely than  was possible a t the  date (1882) of the  above extract. The 

free oscillations of an ocean of w ater of uniform  depth covering a globe of the 

size of the earth , ro ta ting  w ith  the same angu lar velocity, have been very 

fu lly  investigated  by H ough* in the  course of his classical work on tidal 

theory. H e finds, in  particu lar, th a t in  the case of the  m ost im portan t free 

oscillation having the  same general character as a sem i-diurnal tide wave 

( i.e. its  m ost salien t spherical harm onic constituen t is the  sectorial harm onic 

of the second order), the  dep th  h  for w hich the  period is exactly  12 sidereal 

hours is given by
^/t/4<«2a2 =  0TO049,

where a is the  e a r th ’s radius, and  w its  velocity  of ro tation. This is evaluated 

a t 29,182 feet. I t  is to be rem arked, however, th a t  th roughout the  calculation 

the  m utua l a ttraction  of the d istu rbed  fluid has been taken in to  account, 

whereas in  the aerial ocean th is influence m ust be quite  insensible. If  the 

disturbance were accurately  of the type of a spherical harm onic of the  second 

order the  requisite  modification would consist m erely  in  m ultip ly ing  the 

previous resu lt by the factor

^ = l - f x  0-18093 =  0-89144,
9

where the decimal fraction in the second m em ber is the  ratio of th e  density 

of the  w ater to the  m ean density  of the  globe, as adopted in H ough’s 

com putation. This would m ake

gh/4:(o2a2 =  0 08958.

As the  resu lt of a more d irect calculation, using H ough’s algorithm , together 

w ith  such of his num erical results as are applicable, I  find

gh/4:(o2a2=  0-08986,

the last figure being somewhat doubtful. I f  we p u t g  =  32*200, 

o) =  27r/86164, a  =  20,902,000, th is gives

h  =  25,930 feet.

*  ‘ P h il .  T r an s .,’ A , 1897 , v o l. 191, p. 139. S ee  pp. 164, 179.
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556 Prof. H . Lamb.

The su b stitu tio n  of a m ean solar for a sidereal ha lf-day  as the  period 

involves a fu r th e r  sligh t d im inu tion , w hich can be estim ated  p re tty  closely 

from  an o th e r of H ough’s resu lts. H e  finds th a t  for =  OT, th e  speed

(<t ) of the  free oscillation in  question  is g iven by 1-9968. Com

p arin g  th is  w ith  th e  form er resu lt, we in fe r th a t  for a period of 12 m ean 

so lar hours ( ajco =  1-9945) we m u st have =  0’09965, abo

A ssum ing th a t  w hen  m u tu a l a ttra c tio n  is ignored th is  figure is to be reduced 

in  th e  sam e ratio  as th e  fo rm er one, we have, finally,

g h j  4co2a2=  0-08911, 

or, w ith  th e  previous num erica l data,

h  = 2 5 ,7 1 0  feet.

I t  m u st be rem em bered , of course, th a t  these  num erical re su lts  can claim  

no g re a te r accu racy  th a n  th e  th eo ry  on w hich  th ey  rest, in  w hich, in  

p a rticu la r, th e  e llip tic ity  of th e  ea rth , w hich is of th e  o rder 1 /3 0 0 , is 

neglected .

O n th e  o th e r hand , th e  value of H  for a ir  a t  0° C. is about 26,200 feet, 

w ith  an  increase  of abou t 96 feet for every  degree above th is  tem peratu re . 

The m ean  tem p era tu re  of th e  a ir near th e  e a r th ’s surface is usually  estim ated  

a t 15° C. This w ould m ake H  =  27,640 fe e t ;  b u t a som ew hat low er value 

for th e  m ean  te m p e ra tu re  of th e  low er s tra ta , aw ay from  th e  im m ediate  

in fluence of th e  ground , w ould  perhaps be m ore appropria te .

W ith o u t p ressing  too fa r conclusions based on th e  hypothesis  of an  a tm o

sphere  un iform  over th e  earth , and  ap p rox im ate ly  in  convective equilibrium , 

wre m ay, I  th in k , a t leas t a sse rt th e  ex istence of a free oscillation of the  

e a r th ’s a tm osphere, of “ sem i-d iu rna l ” type , w ith  a period n o t very  different 

from, b u t p robab ly  som ew hat less th an , 12 m ean solar hours.

A t  th e  sam e tim e, th e  reason for re jec tin g  th e  exp lana tion  of th e  sem i

d iu rn a l barom etric  oscillation as due to  a g rav ita tio n a l solar tide  seems to call 

for a li t t le  fu rth e r exam ination . The am p litude  of th is  v aria tion  a t places on 

th e  equato r is given by K e lv in  as 0-032 inch. The am plitude  given by the  

“ equ ilib rium  ” th eo ry  of the  tides is about 0-00047 inch.*  Some num erical 

re su lts  g iven by  H ough  in  illu s tra tio n  of th e  k in e tic  theory  of oceanic tides 

ind ica te  th a t  in  o rder th a t  th is  am p litude  should be increased by dynam ical 

action  some seventy-fold , th e  free period m u st suffer from the  im posed period 

of 12 solar hours by  n o t m ore th a n  2 or 3 m inutes. Since the  difference 

betw een  th e  lu n a r and  solar sem i-d iurnal periods am ounts to 26 m inutes, it

*  T h e  n u m e r ic a l v a lu e s  g iv e n  o n  p . 5 2 0  o f  th e  a u th o r ’s ‘ H y d r o d y n a m ic s  ’ r e la te  to  th e  

lu n a r  t id e , a n d  a re , m o reo v e r , b y  a n  o v e r s ig h t ,  s t a t e d  a s  “  a m p li tu d e s ,” in s te a d  o f  a s  

“  r a n g e s .”

[Nov. 14,
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1910.] On A tm ospheric  Oscillations. 557

is quite  conceivable th a t the  solar influence m ight in  th is way be rendered 

m uch more effective than  the  lunar. The real difficulty, so far as th is point 

is concerned, is the  a 'priori im probability  of so very close an agreem ent 

betw een the two periods. The m ost decisive evidence, however, appears to 

be furnished by the  phase of the  observed sem i-diurnal equality , which is 

accelerated instead  of re ta rded  (as i t  would be by tida l friction) re latively  

to the  sun ’s transit.*

5. The concluding p a rt of the  paper (§§ 13, 14) is an a ttem p t to exam ine 

more closely th an  has h ith e rto  been done the  theory of waves on a surface 

of d iscon tinu ity  in  the  atm osphere. T hat such waves may play a p a rt in 

meteorological phenom ena has been poin ted  ou t independently  by H elm - 

h o ltz f  and Lord K elv in ,$ bu t both  w riters have confined them selves to 

analogies draw n from the  case of superposed homogeneous liquids. I t  is to 

be observed th a t  even on th is view the d isturbance extends, upw ards and 

downw ards from  the  plane of d iscontinuity , th rough  a space w hich is an 

appreciable fraction of the w av e-len g th ; hence, ap a rt a ltogether from the 

influence of com pressib ility , th e  conditions of the  question w ill be modified 

when the  w ave-length  is such th a t the  ordinary varia tion  of density  w ithin  

th is space becomes sensible. I t  seemed w orth  while to investigate the  

m a t te r ; b u t i t  m ust be acknow ledged th a t w hen there  are no currents, the  

discontinuity  being one of tem peratu re  and density  only, the  analogy proves 

to be adequate, under such conditions as are likely  to occur in  the 

atm osphere, for a considerable range of w ave-lengths. For very long waves 

i t  would b reak  down, the  disturbance ceasing to be even approxim ately  

concentrated in  the  neighbourhood of the  plane of discontinuity. The 

d iscontinuity  then  becomes, in fact, an un im portan t incident in  the  general 

upw ard dim inution of density.

W hen  there  is a d iscontinuity  of velocity, the  upper fluid being in steady 

horizontal m otion relative to the lower, the  question, wdien com pressibility 

is taken  in to  account, is more difficult, and I  have not been able to arrive 

a t any very simple results. There can be no doubt, however, th a t the 

aforesaid analogy is sufficient in th is case also for w ave-lengths less than  a 

certain  lim it. In  particu lar, the dynam ical in stab ility  pointed out by 

Kelvin§ will rem ain. * * * §

*  ‘ B r it . A s s . R ep ., ’ 1908 , p. 6 06 . T h e  forced  t id e s  d u e  to  d iu r n a l and  sem i-d iu rn a l  

w a  es  o f  tem p era tu r e  h ave  b een  s tu d ie d  b y  M a rgu le s ,  ‘ W ien . S i t z b . , ’ 1890, v o l. 99 , 

p. 204 .

t  4 B er l. S i t z b . , ’ 1889  ; 4 W is s . A b h .,’ v o l. 3, p. 309.

+ 4 B r it .  A ssoc . R ep .,’ 1876  ; 4 M a th , a nd  P h y s .  P a p e r s ,’ v o l. 4 , p. 457 .

§ 4 M a th , and  P h y s ,  P a p e r s ,’ v o l. 4, p. 76.
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558 Prof. H . Lamb. [Nov. 14,

Theory o f  Long Atm Waves.

6. W e consider an  a tm osphere  arranged  in  horizontal layers of uniform  

density . The m otions con tem p la ted  are re s tric ted  to tw o dim ensions, y, of 

w hich x  is  ho rizon ta l and  y  vertical, the  positive d irec tion  of y  being dow n

w ards. The eq u ilib rium  values of th e  p ressure , density , and  tem p era tu re  

a re  denoted  by p 0> p0, 30 ; these  are  functions of y  only, and  are

th e  h y d ro s ta tic  condition
dp0/ d y = g p 0, (10)

as w ell as to th e  general re la tio n

Po =  R po0o- 

T he equations of sm all m otion  are, in  th e  usual no ta tion ,

du

P(,d t

dp

‘D a i ’
dv dp

& + * & + & ) - 0 .D t  1 r " \ fix dy  

w here D / D t  = d /d t  +  u

The expansions being supposed sub jec t to  th e  ad iabatic  law, we have also

D p

D t

ypo/po

:c2
D t  ’

w here c2 ryR0o

( 1 2 )

(13)

(14)

(15)

(16)

i.e. c is th e  velocity  of sound corresponding to  th e  equ ilib rium  tem p era tu re  a t 

th e  po in t considered. I t  is accordingly  in  general a func tion  of y. I f  we p u t

p  =  'pa +  w,

and  con tinue  to  neg lect sm all te rm s of th e  second order, we have

du  dvi dv dv

po5  =  - & ’ P o dt =  ~ W y + p K

d l  +  v d±°
dt d y

(d u  dv  

\8a? dy

Also, from  (15), (13), and  (10),

0BT
■KT +  9P&

D p  (d u  dv

W t =  ~ ® » \ £ + 3 *

H ence, e lim inating  8 and  m, we find*

d2u_  2 8 (d u  , d v \  dv

d2v _  2 8 ( d

W  d y { d i + d y ) +<:1'

1X (du. d v \ dv

(1 7 )

(18)

(19)

( 20 ) 

( 2 1 )

*  I t  m a y  b e  n o t ic e d , p a r e n th e t ic a l ly ,  t h a t  in  th e  ca se  o f  a n  is o th e rm a l a tm o sp h e r e  

w h e r e  c i s  c o n s ta n t , th e s e  e q u a t io n s  a r e  s a t is f ie d  b y

u  =  e - ( y - i )  9
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If  we now w rite
d u  dv d v _____(j u  _  ^

d x

we deduce from (21), by differentiation,

1910.] On A tm ospheric  Oscillations.

w here

d2£ f  d.c2 , i x \  3%

a ? = “ U ;  - ( 7 - 1}w

V2 =  d2/dx2 + d2/dy2.

559

( 22)

(23)

(24)

(25)

The la tte r  equation shows th a t an  irro ta tional m otion is not possible 

unless
d . c 2 

d y

, in  (y  —1
(26)

w hich we have seen to be the  case of convective equilibrium . W e note also 

th a t

=  — TPoX, (27)

b y  (2 0 ) . .

E lim inating  £ betw een (23) and (24), we obtain

(28)

If  we assum e th a t xand t occur only th rough a factor 

■equations (21) take  the  forms

2u  +  igkv  =  — ikc2x ,

— iq ku  +

whence

- c2^ - V 9 X ’

(29)

(30)

(a A—g2k2) u  =  ik  -jj/c2^  + ( 7  ,

{ a * - g 2k?) v =  - a 2c2^  - g { r .
oy  J

Erom these, or from (28), we have

‘2 S H S + w ) l + [ ^ - P M 1 | - (7 - 1 )* } f ]  * = ° -  (3 l)

7. So far, the  vertical d istribu tion  of tem peratu re  is a rb itrary . In  the 

oase of tem peratu re  dim inishing upw ards w ith  a u n ifo rm  gradient, to which 

we now proceed, there  is an  upper lim it to the atm osphere. I f  we take the  

origin of y  a t th is level, we have

do =  Ay, (32)
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Prof. H . Lamb.560 [Nov. 14r

w here /3 is the  g rad ien t in  question. I t  easily  follows from (10) and (11) 

th a t
p o «  y n, V* °c 

n  =  y / B / 3 - 1 .  (34)

c2 =  <yIl/3 y  =  7^y/(w  +  l ) .

w here

Also

H ence

and

( o - * - g W ) u  =  lJ ^ y ^  +  { n + l ) x ~

( < r * - y % >  =  ^ j - [ ~  { 2 ' | f  +  (M+ 1)% }  ~ % x ]  >

(36)

(37)

The m eaning  of th e  fac to r ( n y — n — l ) / y ,whic

term s, is to be n o tic e d ; viz. we have

n y - n — l  =  £ i _ i } (38)

7 £

w here /3\ is th e  tem p era tu re -g rad ien t in  a s ta te  of convective equilib rium , as 

given by  (8).

To solve (37) we p u t % =  eky(f>, (39 )

and  ob ta in

w here

y (̂  +  ( n + 2  -1- 2 k y )+  2 ak<f> =  0,
03T dy

n  +  1 of +  / A _ 1

7  y k  \P

gJe
-p % -j- 2.

This is in teg rab le  by  series, th e  so lu tion  w hich is fin ite for y  =  0 being

* = 1 - ( 2% )
a . a +  1

1 . ^  +  2 ' '  1/7 1 1 . 2  . ?i +  2 . ?t +  3 

or, in  the  n o ta tio n  of D r. E. W . B arnes,*

c f> =  iE i (« ;  w +  2 ;  — 2 7t;y). 

T he rem ain ing  so lu tion  of (40) is of th e  form

~e-2kydy

(2 k y f - .

♦J i in+2<j>2 ’

(40)

(41)

f

(42)

(43)

(44)

w here (f> s tands for th e  series in  (42). This is no t adm issible in  th e  p rese

*  S ee , fo r  e x a m p le ,  ‘ C am b . T r a n s ., ’ v o l .  2 0 , p. 2 53 , w h e r e  r e fe r en c e s  to  o th e r  p ap e r s  

are  g iv e n .

I f  w e  h a d  a s su m ed  % — e~̂v<f), in  p la ce  o f  (3 9 ), w e  sh o u ld  h a v e  fo u n d

4 ) =  1F 1 (7i + 2 - a  ; 2 ; 2kg).

T h e  c om pa r ison  v e r if ie s  a  w e ll-k n o w n  id e n t i t y  ; see  B a rn es ,
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1910.] On A tm ospheric  Oscillations. 561

question, since i t  becomes infinite  as y ~ n~ x for infinitesim al values of y, 

whereas the  condition to be satisfied a t the upper boundary is D p /D l =  0, or 

y n+lx == 0 ; see equations (27), (33).

The formulae (36) now become

+  (n +l)<j> +  ( l  1

(CT. _ / F ) r =  ^

the factor ei(<rt+kx) being om itted here, as elsewhere, for brevity.

The condition th a t v  =  0 a t the  lower boundary, where y  =  h, 

in conjunction w ith  (41), determ ines the  values of a and a , the  w ave-length 

(27t /&) being  supposed given.*

8. In  the  case of oscillations about convective equilibrium  we have

£  =  & , n  =  1 / ( 7 —1).

I t  follows from (24) th a t d2̂ /d t2 =  0 ; hence e ither £ =  0, 

is irro tational, or th e  period is infinitely  long.

The conditions to which the  steady ro ta tional motions thus indicated 

are subject follow m ost d irectly  from (21). These equations are now 

equivalent to
0 f o id u  . dv\

du dv 

dx dyI t

) + g ^ 0,

by (26). H ence

7> J

const.

(47)

(48)

The choice of two functions, u, v, to satisfy th is  equation, together w ith the  

two boundary conditions, can be m ade in  an infinite v a rie ty  of ways.

The rem aining types of d isturbance are periodic in  character. The 

formulae (42) and (45) apply, w ith

(49)

in place of (41). Since (42) m akes 

( w + l ) ^ l

n <r , ■ o—7- +  n  +  2, 
gk

1 . n + 1
(50)

*  T h e  case o f  a pp ar en t  fa ilu r e , w h er e  a- — d o es  n o t  a r ise . T h is  w o u ld  requ ire , 

b y  (36),

^  + (w  + 1  -  % ) x  =  ° ,  or  x  =  C y - * - i

w h ich  v io la te s  th e  c o n d it io n  a t  th e  u pp er  b o und ary .
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562 Prof. H . Lamb. [Nov. 14,

th e  condition  th a t  v =  0 for y  — m ay be w ri

(»  +  l ) 2 f  xFxOe; n + 1  ; - 2 k h ); -
gh gkJ

■2kh) 0 .

(51)

A  com plete discussion of th e  equations (49) and (51) is ou t of the 

question , b u t th e  lim itin g  form  to  w hich  th e  resu lts  tend  as th e  w ave-length  

increases is easily  ascerta ined . I n  th e  first place, i t  appears th a t  w hen kh  is 

sm all we have
o~2 _ kh

g k  n-f 1 ’
(52)

app rox im ate ly , since th is  ensures, by  (49), th a t  is also small. I f  H  

deno te  th e  v ir tu a l h e ig h t of th e  a tm osphere , as defined above (§ 1), we have

rh

H  =  hn y nd y  =  1). 
Jo

T he lim itin g  value  of th e  w ave-velocity  Y  is accordingly  given by

V 2 =  o-2/A;2 =  g K . (54)

T he bearing  of th is  re su lt has been discussed in  th e  in troduction .

The formulae (45), (50), and  (39) now  lead  to

u  oc i  (n  -f 1 

voc k(y— h), 

th e  facto r $*(«*+**) being understood . These values fulfil, as th ey  ought, the  

irro ta tio n a l condition
d u _dv

d y  dx
ikv.

(55)

(56)

S ince th e  ra tio  of th e  am p litude  of v  to  th a t  of u  is of th e  order kh, th e  

m otion  is m ain ly  horizon ta l, and  th e  p re sen t type  of waves m ay accordingly  

be charac te rised  as “ lo n g itu d in a l.”

The rem ain ing  so lu tions of (49) and (51), w hen k h  is sm all, involve finite  

as d is tingu ished  from  in fin ite ly  sm all values of akh. A s w ill be seen 

p re sen tly  (§ 11), th e y  approx im ate  to  th e  ch arac te r of waves propagated 

v e rtica lly  in  th e  atm osphere.

9. I n  the  g enera l case, w here n  is n o t re s tric ted  to  the  precise value 

1 / ( 7 — 1), th e  re la tion  betw een a and er is as in  (41). W hen  kh  is small we 

have s till a long itud ina l wave for w hich a-zjg k  is of th e  order kh, subject to  

a  ce rta in  condition. The equation  (51) leads again  to th e  resu lt expressed 

by  (52) or (54), an d  su b s titu tin g  in  (41) we find th a t  th e  im plied assum ption 

th a t  akh  is also sm all w ill be justified  provided /3 i//? — 1 be small, 

provided th e  tem p era tu re -g rad ien t falls only  a l itt le  short of th e  convective 

value fti.
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1910.] On A tm ospheric  Oscillations. 563

The lim iting  form of (42), when no assum ption is made as to the  order of 

m agnitude of akh, is

l a k  7 / ,_ _ _ (2

1 . % -j- 2 \ . l . n

or in Dr. B arnes’ notation,

c f> — o^i (n-\-2 ; —2

+ (n + l)(f>  =  (?i +  l ) 0B i ( ? i + l ;

(57)

(58)
w hilst (50) becomes

y ^  +  (n+ l )< f>  =  (w +  l ) 0F i ( w + l ; —lulcy).  (59 )

I t  appears from (41), w ithou t m aking as ye t any special assum ption as to 

the  sm allness of /3i//3 — 1, th a t when akh  is finite, w hilst kh  is small, the 

ra tio  cr2 / gk  w ill be very sm all or very great.

In  the form er case we have

. (60)' 

u ltim ately , and  the  condition (51) becomes

(n  +  l ) ( @ ± - ^ o 'F i ( n + l y - 2 a k 'h ) - 2 a k h 0F 1(n + 2 -, - l a k h )  =  0. (61)

Since 0F i ( n 4 -1 ; — z) =  I I  ( ) J n (2

in the  notation  of Bessel’s functions, th is may be w ritten

|® J »+ i(« o ) ( l ' - l ) j . ( a . ) .

(62)

(63)

(64)provided to2 =  8ukh.

I f  to be a root of (63), the  corresponding frequency of oscillation is given by

<65>

and the w ave-velocity by

l o -  N ^Y 2 ^ - 1

13

H  being defined as before by (53). This resu lt again is accurate as a lim iting 

form for increasing wave-length.

10. The equation (63) m ight be discussed, when n  or is integral, w ith 

the  help  of the tables of Bessel’s functions, bu t i t  m ay be sufficient to 

consider the  case where the  ratio  (f3i — /3)//3  is small. I t  m ay be noticed 

th a t the  form ula em braces all the modes of the  present class, the  longitudinal 

waves already discussed corresponding to the case of co infinitesimal. The 

roots of (63) which relate to the rem aining modes are now given by

J»+i ( « )  =  0, (67)
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Prof. H . Lamb.564 [Nov. 14,

a p p ro x im a te ly ; and  in  p a rtic u la r th e  first of these  sligh tly  exceeds the  first 

fin ite  root of (67).

In  convective equ ilib rium  we have n  — 2 ‘5, if 7  =  1-40. The first finite 

root of J 7/2 (®) = 0  is (01 — 7, very  nearly . H ence for os

s ta te  of very  n early  n e u tra l eq u ilib riu m  we have

V  =  ( g - l ) * > < 0 - 5 3 ^ H ) .

I n  th e  case of n  =  3, w hich m akes (/3 i—£ ) //3  =  -f, a first ap

g iven by (67), is coi =  7 ‘586, an d  a second is easily  found to  be 

This leads to

y  =  0 1 9  V f o H ) ,

w hich is about one-fifth  th e  velocity  of th e  lo n g itud ina l type  of waves.

As to th e  ch arac te r of these  slow ro ta tiona l*  modes, we find from (24)

• 7  - 9 k . y
n + 1  a 2 x ’

(68)

or, by  (65), y -  W to2
(69)

^  I * 4 Teh *

H av in g  regard  to  th e  k in em atica l m eaning  of th e  functions £, as defined 

by (22), we see th a t  th e  ro ta tio n a l q u a lity  in  th e  re la tiv e  m otion of a fluid 

e lem en t p redom inates over th e  d ila ta tiona l. W e lea rn  also from  (45) th a t 

w hen  y  =  0 th e  am p litu d e  of v  is to th a t  of u  in  th e  ra tio  cr2/ w h i c h  

sm all. S ince v  van ishes a t  th e  low er boundary , we in fe r th a t  th e  vertical 

com ponent of th e  velocity  is in  general re la tiv e ly  sm all. The d istribu tion  

of ho rizon ta l ve locity  depends u ltim a te ly  on th e  function

w hich varies as (coy*/ h i)~ n J n (eoy§/ hi),

if co be th e  re lev an t roo t of (63), or less accu ra te ly  of (67). I n  th e  case of 

th e  first root, a fte r th e  sm all one, th is  expression changes sign once, and 

once only, as y  increases from  0 to  h. F o r n  =  3, th e  change of sign occurs 

for coyi/h i =  6 '379, or y j h  =  0'70.

The general ch a rac te r of th e  types of d istu rbance  a t p resen t under 

consideration  is m ost easily apprehended  in  the  case of a “ stand ing  ” 

oscillation. I f  on th e  preced ing  expressions we superpose o thers w hich

*  T h e  r o ta t io n a l  c h a r a c te r  is , o f  co u rse , p r e s e n t  a lso  in  th e  lo n g itu d in a l  w a v e s ,  u n le ss  

j3 =  e x a c t ly ,  th o u g h  to  r e la t iv e ly  s l ig h t  e x t e n t .
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On A tm ospheric  Oscillations. 5651910.]

differ only in  the  sign of cr, and reject the  im aginary parts, we find, on 

discarding all b u t the  m ost im portan t term s, th a t

u  oc + (n  + 1 )  </> sin lex cos

v oc — ley </> cos lex cos at. J
(VO)

The differential equation of the  lines of (oscilla tory) motion, viz.

v d x — u d y  =  0,
is accordingly satisfied by

yn+1</>sin lex =  const., 

or y ^ n+VJn+ l((0yi/h§ )sm lex  =  C.

I f  we p u t C =  0 we get the  lines y  0, lex 

of these is only an  approxim ation. The annexed figure indicates, w ithout 

any a ttem p t a t m inu te  accuracy, the  general a rrangem ent of the lines in the 

case of th e  low est fin ite  root of (67).

(71)

(72)

(73)

In  the  modes corresponding to the  higher roots th ere  are horizontal nodal 

planes (v  =  0), in  addition  to  the low er boundary.

E e tu rn in g  for a m om ent to the more im portan t “ longitudinal ” type of 

m otion first considered, we note th a t the  formulae (52), (54), cease to be 

accurate, even as lim iting  forms, when the  ra tio  f t \ / /3  differs appreciably  

from unity. The formulae (65) and (66) will, however, s till apply , being 

the low est root of (63). As a num erical exam ple, take the  case w here the 

tem perature-grad ien t has only one-half the convective value, so th a t

(/3x—/3)//3 =  1, 6.

I  find th a t the lowest root of

ft) J 7 (ft)) =  J 6(fi>)

is o) =  4 ’96, approxim ately , whence

Y =  1-07v %H).

The resu lt must, of course, in  any case be less than  -^/(yyH), or 

1’18 ^ /(y H ). The change of w ave-velocity is accompanied by a change in 

the  character of the  oscillation, the variation of .horizontal velocity w ith  

altitude now becoming sensible.

The preceding formulae m ight also be used to estim ate  the rap id ity  of
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Prof. H . Lamb.566 [Nov. 14,

fa lling  aw ay from  th e  s ta te  of u n stab le  equ ilib rium  w hich prevails when 

f t  >  /3i, th e  value of a 2 g iven by (65) being th en  negative.

11. The modes for w hich  a 2/g k  is large are  easily  accounted for. W e 

have from (41)
a 2   2 y  a

g k  1 ’ (7 4 )

and  from  (45) (75)

these  being  app rox im ations w hich  gain  indefin ite ly  in  accuracy w ith  increase 

of w ave-leng th . On th e  p re sen t supposition  th a t  akh  is finite, n o tw ith 

s tan d in g  th e  sm allness of kh , (75) reduces to

J w(a>) =  0, (76)

provided <o2 =  8 as in  (64). 

sponding frequency  is g iven by

I f  cobe a roo t of th is  equation, th e  corre-

yco2 g

4 ( w + 1) ’ h '

These m odes a re  in  th e  lim it iden tica l w ith  th e  w aves of vertical 

d isp lacem ent discussed in  a pap er a lread y  cited  in  § 2. The formulae (45) 

show, in  fact, th a t  th e  ra tio  of th e  am p litu d e  of u  to  th a t  of v  is for th e  

m ost p a rt of th e  o rder g k / a 2. I f  we p u t h  =  pyR /S n2 =  +  1),

th e  equation  (76) takes th e  form  J re (ct t i) =  0, w hich is iden tical w ith  

equation  (88) of th e  pap er re fe rred  to.

12. I t  m ay  be w orth  w hile, for th e  sake of th e  con trast, to  give the  theory  

of th e  oscillations of a he terogeneous b u t incompressible fluid, whose 

eq u ilib rium  den sity  has a sim ila r d is tribu tion .

W e have now

II

C
O

 '<70
O dv Bp

~  d>)+ 9 p ’
(78)

ar <=
 h

s
I© II © (79)

Bu , dvA

5 c + t y  =  0-
(80)

I f  we p u t p  =  pa +  ct , p — Po +  S, (81)

as before, we have

Bm

PoS t ~  S ’

dv Bu . o. 

pod t =  ~ ^ + g S -
(82)

F rom  (80) we have

$ II 1

^
1

-?

II 1

*
 

^
II

&
&

(83)

(84)
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1910.] On A tm ospheric  Oscillatioyis. 567

\jr being the stream -function. S ubstitu ting  in  (82), (83), and elim inating nr 

and 8, we find*

If  x  and t  occur only in  the  form d  (<rt+te), we have

+  -  dp ( d$  + ̂  f )  =  0.
oy p0 d y  2 /

Also 

and

If  we now assume th a t 

we have 

or w riting

v — iky fr , 

po oc y n,

\fr =  e^cf).

The solution which is finite for =  0 is

a  . a  +  1

4> • ( 2% ) +

or

if

1 . w “ 1 . 2 .  w . » + 1

<f> =  1F1 ( a ; n ;  — 2hy),

2« =  * ( l  + « ! ’

( 2% ) 2 -

( 86)

(87)

( 88 )

(89)

(90)

(91)

(92)

(93)

(94)

(95)

The second solution becomes infinite as y ~ n+1 for =  0, and is therefore 

excluded, in  v irtue  of (88), by the condition th a t D m ust vanish a t the  

upper boundary. Since, by (87), yfr =  0 for y  =  h, we have

- 2 M )  =  0. (96)

This determ ines «, and  the value of <r2 follows from (95).

I t  is obvious th a t, w hen kh  is small, (96) is no t satisfied by finite values 

of a . If  a be large, b u t so th a t ukhrem ains finite, the  equati

the  form
0Fx ( n ; —2 =  0, (97)

or J » - i ( o > ) = 0 , (98)

provided o>2 =  8 a k h . (99)

If  co be a root of (98), we have

cr2 n  4  17
— =  — =  — . kh, 
gk  2  a  o r

(100)

*  Cf. L ove , ‘ L ond . M a th . Soc. P roc . ’ (1 ) , 1891 , v o l. 22, p. 307.

VOL. L X X X IV .— A . 2 R

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

4
 A

u
g
u
st

 2
0
2
2
 



568 Prof. H . Lamb. [Nov. 14,

and  therefo re , for th e  w ave-velocity,

T = f ( 1 0 1 )

Thus, if, for th e  sake of com parison w ith  § 7, we p u t n  =  2*5, we have 

on =  4*491, w hence
Y  =  1-32 (102)

T h a t th e  frequency  should  be increased by  th e  incom pressib ility  was to  be 

e x p e c te d ; th a t  th e  effect is so considerable is due to  th e  g rea t modification 

w hich  is caused in  th e  charac te r of th e  fu n d am en ta l modes.

T he m odes corresponding to  th e  h ig h er roots of (98) have horizon tal nodal 

p lanes, and  th e  frequencies form , by  (101), a descending series,* as in  the  case 

of (65).

W aves at a  Su rfa ce  o f  D isco n tin u ity .

13. W h en  we proceed to  exam ine th e  case of w aves propagated  along a

horizon ta l p lane  w here  th e  eq u ilib riu m  tem p era tu re  is discontinuous, i t  m ay 

be suffic ient to  suppose th e  tem p e ra tu re  uniform  th roughou t each of the  

regions, above and  below  th is  p lane, to  w hich  th e  influence of th e  waves 

ex tends. T he p lane  in  question  is ta k en  as th e  p lane  0, and  the  

d ep en d en t variab les re la tin g  to  th e  u p p er region w ill be d istingu ished  by 

accents.

The formulae of §6 w ill therefo re  ap p ly  to  th e  low er region, w ith  the  

sim plification  th a t  c is a c o n s ta n t; so th a t  (31) becomes

c2 x  o. (103)

T his is satisfied by  % =  CeAy, 

p rov ided  X2 +  ^~X  +  — k2 +  ̂ ~ ~   ̂̂  

W e are seek ing  for a ty p e  of m otion  analogous to  th a t  of w aves on the  

in terface  of tw o liq u id s  of d ifferent densities, in  w hich case the  values of X  are 

+  h  W e assum e, provisionally , th a t  in  our case also th e  roots of (105) are 

rea l and  of opposite signs ; m oreover, since th e  d istu rbance  is to  vanish for 

y  — oo , th e  negative  sign is to  be taken .

F o r th e  u p p er region we shall have

X  =  CV'y (106)

w ith  a s im ilar de term ination  of X ';  b u t th  

one.

*  Cf. R a y le ig h ,  ‘ L ond . M a th . Soc. P r o c .’ (1 ), 1 883 , v o l. 14, p . 170  ; ‘ S c ie n t if ic  P a p e r s ,’ 

v o l.  2, p . 2 00 .
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1910.] On A tm ospheric  O scillations.569

I f  7} denote the  ordinate of the  surface of separation, as affected by the 

waves, we have
drj/dt =  v (107)

for y  — 0 ;  and the  pressure in  e ither fluid a t the  po in t {x, rj) is to be

found by p u ttin g  y  — 0 in the  corresponding value of the  expression

Po +  y(108)

D ifferentiating  w ith  respect to t, we see th a t D p /D  m ust be continuous a t 

the  in terface.*  This involves, by (27), the  con tinu ity  of so th a t  the 

constants C, C' in  (104) and (106) m ust be equal. Again, i t  follows from 

(107) th a t v  m ust be continuous, whence, by (30),

a2c2\ —gk2c2 +  'yg<T2 =  <r2c/2X' —gk?c'2 +  ygo2. (169)

This, together w ith  the  tw o equations of the  type (105), determ ines the 

values of X, X', and <x.

To obtain  a solution, we denote the  two equal m em bers in  (109) by ya; 

thus

x -  ^  ^  _ r j
a 2 c2 ’

V  -  A* . 7
(Ac'2 a-2c'2 *

(110)

S ubstitu ting  in  (105), we have

ya2 +  9(2 k2(?—7a-2) +  (<r4 •—g2k 2) (cr2 — k?c?) c2 =  0, ( H I )

w ith  a sim ilar equation in  w hich c is replaced by c'. W ritin g  these two 

equations in  the  form

ya2 +  P/a +  Q =  0 , ya2 +  P'ya +  Q' =  0 , (1 1 2 )

and elim inating  ya, we have

( P - P ' ) ( P Q ' - P ' Q )  +  ( Q - Q ' ) 2 =  0. (1 13 )

Now

P - P '  =  2 g

Q - Q '  =  ( c 2 - c ' 2) ( A - g 2l ? ) { < r 2 - k 2 ( c 2 +  c '2) } ,

P Q ' - P 'Q  =  g (c 2- c ' 2) ( A - g 2k2) c'2) +  2 & W 2} ,

(114)

Hence

(cr4 — g2]<?) {< A -k?{c2+ c '2) Y  +  2 g2k2 { y A  -  y A k 2 (c2 +  c'2) +  2 k W 2} =  0.

(115)

This is of the fourth  degree in a 2, b u t one root only is re levant to the 

present question. The common root of (112) is

P Q ' - P ' Q _____ 2 l  2

Q - Q '
yga- a 2 _ k 2 ^ + c ' 2 y (116)

*  T h is  m ig h t  a lm o st  h a v e  b een  a ssum ed  a t  on ce  ; b u t  i t  is  to  b e  ob se rv ed  th a t  i t  w ou ld  

n o t  g iv e  th e  co rrec t c on d it io n  to  b e  sa t is f ied  a t  th e  com m on  b ou nda ry  o f  tw o  currents.

2 r  2
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w hence

570

I f  we now  w rite

Prof. H . Lamb.

X   g k a 2 — k2 ( — c'2)

k ~ 7 2 ' <j2- k 2 (c2 +  c,2Y

X ' _  g k  a 2 — k 2 (c/2— c2)

k  cr2* a 2—k2 (c2 +  c'2) '

a2 =  £ (c 2 +  c'2),

x  — a 2j k 2a2, to =  g /k a 2,

th e  equation  (115) becomes

x 2(x—2)2 +  eo2 { (2 7 — l ) a ^ —4 (7 — ] ) ; r —4 54/ a 4}

w h ils t
X _  sc +  2

k  x { x —

I t  is to  be no ticed  th a t

X '_x —2

k  x ( x — 2 ) W

[Nov. 14,

(117)

(118)

(119)

0 ; ( 1 2 0 ) 

( 1 2 1 )

b2__ __ c,2- ( ?  =  £ - /  

n2 c'2 +  c2 +  ’
( 1 2 2 )

w here p,  p ,  are th e  equ ilib rium  densities a t th e  p lane 0, on th e  tw o sides.

F o r sufficiently  sm all w ave-leng ths, a> and  x  are very  sm all, and  the  roo t of 

(120) w ith  w hich  we are  concerned is x  =  c

P - ^ g k ,
P +  P

■k, X k, (123)

as in  th e  case of superposed incom pressib le  fluids.*

To exam ine th e  m a tte r  fu r th e r , th e  s im plest procedure  is to tab u la te  the  

function

x 2 ( x — 2)2

4 J 4/«4 +  4 (7— 1 ) x —(27— l ) x 2
(124)

for a series of su itab le  va lues of x . T he only  case of rea l in te re s t is w here 

th e  d isco n tin u ity  of te m p e ra tu re  is v ery  slight, so th a t  b2/ a 2 is a sm all 

fraction. The following tab le  gives a few resu lts  calcu lated  on the  supposition 

th a t  b2/ a 2 =  w ith  7 =  1’40. The a b ru p t step  in  tem p era tu re  then

am ounts to  of th e  m ean  of th e  tem p era tu res  (absolu te) above and below.

X. a ,2 . (l>. 10 a /(x /co). -X/k. X'lJc.
W a v e 

le n g th

(m e tr e s ) .

P e r io d

( s e c o n d s ) .

1 0 -6 0  -9 9 6 0  X 1 0 ~ 8 0 -9 9 8 0  x  1 0 - 4 1 -0 0 0 5 0 - 9 9 8 0 - 9 9 8 7  -0 2 1  -2

1 0 - s 0 - 9 6 1 5  x l O - 6 0  -9 8 0 6  x 1 0 ~ 3 1 - o i o 0 - 9 8 1 0 - 9 8 0 6 9  -2 6 5  -9

1 0 - 4 0  -7 1 4 3  x  1 0 - * 0  -8 4 5 2  x 1 0 - 2 1 -0 88 0 - 8 5 0 0 - 8 4 1 5 9 7  -0 1 8 0 - 0

1 0 - 3 2 - 0 0 4  x  1 0 - 3 0  -4 4 7 6  x 1 0 - 1 1 - 4 9 5 0 - 4 7 0 0 - 4 2 5 3 1 6 0  -0 3 0 1  -0

*  S to k e s ,  ‘ C am b . T r a n s ., ’ 1 847 , v o l. 8 , p. 441  ; ‘ M a th , a nd  P h y s .  P a p e r s ,’ v o l. 1, 

p. 1 97 .
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1910.] On A tm ospheric  Oscillations. 571

The fourth  colum n gives the ratio  of the  frequency to th a t of waves of the  

same length  on the surface of separation of two homogeneous liquids w ith  

the  same discontinuity  of density, as given by (123), viz., the  ra tio  is

c  * _10^/iC

^/{gh) . b/a y/u> ’

on the p resen t suppositions. The seventh colum n is calculated from 

2 t t  /  k — 2Tra?(olg, tak ing  a  =  332 m etres per second ; and the  la s t from  

2i7t j <t  — 27 raw/ĝ/x.I t  is seen th a t, w ith  increasing w ave-length, the wave-

velocity tends more and more to exceed the  value estim ated  on the  assum ption 

of the  hom ogeneity and incom pressibility  of the tw o fluids. A t the same 

tim e, the  d istu rbance tends to become, re la tive ly  as well as absolutely, less 

and less concentrated in  the  neighbourhood of the  plane of d iscontinuity.

14. In  th is  question, again, i t  is of some in te rest to com pare th e  case of 

waves on the  common boundary of two liquids, each of which, though incom

pressible, has a sim ilar g radation  of density. W e therefore w rite , in  (86),

— — q,a constant. 
Po d 9

yfr = C exy,

(125)

If  we assume th a t
(126)

we derive \ 2 +  qX+  — =  0. (127)

These formulae m ay be supposed to re la te  to the lower region ; for the upper 

region we w rite  q', A', C ' for q, A, C, respectively.

The continu ity  of v  involves, by (87), th a t of so th a t C ' =  C. Also, in  

v irtue  of the  con tinu ity  of D p /D t ,  we have from  (88)

p  (cr2\ + g k ? )  =  p'(o^A '+^A 2), 

where p, p ', are the  densities ju s t below and ju s t  above the  plane =  0.

If  the  two fluids had been portions of the  same gas a t different 

tem peratures we should have had

9. =  191 c2>9' =  (1 2 9 )

and therefore p / p  =  

Now from (127) we have

q (<r2A +  gk2) =  <72 ( / 2 - A 2). (1 3 1 )

Hence, if we adopt the rela tion (1 3 0 ) for the  sake of the  comparison, we 

m ust have A2 =  A/2, or, tak ing  account of the  signs, A =  —A'. This

leads to
A ' _  A  _  q — q' gk  

k  ~ k~  q +  <p * <r2 ’
(132)

and
/<r2\ 2 2 qq'a2 p

\g k j  k (q  + q ')g k  \q  + q'J
(133)
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572 On A tm o sp h er ic  O scillations.

The positive roo t of th is  q u ad ra tic  in  is to he taken , since i t  is the

only  one w hich gives th e  p roper signs to X, X', i t  being assum ed th a t p > p ' 

and  therefore  q > q .  F o r infin itesim al values of q, q', we reproduce the  

re la tio n s (123).

I n  order to  m ake th e  varia tions of d ensity  follow exactly  the  sam e law  as 

in  th e  a tm ospheric  problem  of § 13 we m u st give to  q, q \  th e  values (129). 

I n  th e  n o ta tio n  of (118), (119), we have th e n

x 2 — ya>2x  — <o254/ a 4 =  0. 

T he fo llow ing tab le , lik e  th e  fo rm er one, refers to  th e  case of 

l 2/ a 2 = 1 /1 0 0 .  I n  order th a t  th e  com parison m ay  be for th e  sam e series of 

w ave-leng ths, those values of co are chosen w hich w ere obtained  in  th e  previous 

n u m erica l work. The significance of th e  colum n headed 10v / (« /<y)is th e  

sam e as on p. 570. The com parison shows th e  usual effect of a co n stra in t in  

increasing  th e  frequency .

(if. 10 V  (#/eu). \'/k. W a ve -len g th
(m etres).

Period

(seconds).

0 *9980 X  1 0 ~ 4 1 -003 0 -9 9 3 7 - 0 21 -2

0  *9806 x 1 0 “ 3 1 -0 3 5 0 -9 3 4 69  -2 6 4 -3

0 - 8 4 5 2 x 1 0 " 2 1 -324 0 -5 7 0 597 -0 1 4 8 -0

0  -4476 x 1 0 - 1 2 -5 3 4 0 -1 5 6 3160 -0 178 -0
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