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1. The chief question discussed in this paper (§§ 6—12) is that of the free
oscillations of an atmosphere whose temperature varies with the altitude ; and
in particular the case of a uniform vertical temperature-gradient is studied in
some detail. For consistency it is assumed that the expansions and con-
tractions follow the adiabatic law. The problem is treated as a two-
dimensional one, the space co-ordinates involved being horizontal and vertical ;
and the more definite conclusions arrived at relate to the case where the
(horizontal) wave-length is somewhat large in comparison with the height
of the atmosphere.

The results are most easily interpreted when the temperature-gradient does
not fall much below that characteristic of a state of convective equilibrium.
The normal modes of oscillation then fall into well-defined types.

In the most important type, the motion of the air-particles is mainly
horizontal, and independent of the altitude, and the waves may therefore
be deseribed as “longitudinal.” The velocity of propagation of progressive
waves is found to be equal to /(yH), where H denotes what may be called
the “virtual height” of the atmosphere, i.e. the height of a “homogeneous
atmosphere ” corresponding to the temperature of the lowest strutum. That
the result should come out intermediate in value between the velocity of
sound in the lowest stratum, viz., +/(ygH), and the zero velocity corresponding
to the zero temperature which is postulated in the higher regions was to be
anticipated ; but that it should be identical in form with that obtained on
the hypothesis of an isothermal atmosphere whose expansions are subjeet to
Boyle’s law,* the effect of the upward decrease of temperature being exactly
compensated by the greater elasticity implied in the adiabatic law, is
somewhat remarkable.

When the temperature-gradient falls distinetly below the “convective”
value, the character of the oscillation is less simple. The wave-velocity is
somewhat increased, but must always remain below the value y/(ygH), which
18 the velocity of sound in the lowest stratum.

2. A second type of oscillations depends on the degree of stability of the
atmosphere.

* Rayleigh, ¢ Phil, Mag.’ (4), 1890, vol. 29, p. 173 ; ‘Scientific Papers,’ vol. 3, p. 335.
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The work required to bring unit mass of air from the density p, to the
density ps under the adiabatic condition p/pY=p;/p is
L 4 1 3 . (eg)T—l_ }
j.,pd(p> (y=Dp U\py g @
Hence if we imagine two thin strata of equal mass, whose densities are p, ps,
and pressures p, ps, to be interchanged, the work required to eﬁ'ect this will
be, per unit mass,
o VBN =t Bt B e
(y—=1)p (y—=1)p2 Py pa )
(2)
If we avail ourselves of the notion of “potential temperature,”* d.e. the
temperature $ which any particular portion of air would assume if brought
adiabatically to some standard density 1), we have

plpr = R3[Dr%, 3)
where R is the constant of the formula
" p=Rel, 4)
@ denoting the absolute temperature. Hence (2) becomes
R (par 1 —pi7~ 1)_(8,—-33) )
(=D

Hence if ps > p1, we must for stability have $;> $s; d.e. the potential
temperature must increase upwards. Now, if » denote depth below a
standard level, we have, in equilibrium,

dp[dy = gp; (6)
and combining this with (3) and (4), we find

1(_{'_5_..{ d9 (V__'_l)_} (7)

S dy

In convective equilibrinm, where p/p7, and consequently 9, is the same at all

altitudes, we have
= =g (8)
d Y vR

This equilibrium, though stable for some types of disturbance (§ 8), is in
other respects neutral. For complete stability, d%/dy must be negative, and

therefore
dé _(y—1)g )
dy yR

When this condition is fulfilled, we have a series of possible modes of

¥ v. Bezold, ¢ Berl. Sitzb.,” 1888, vol. 46,
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oscillation whose periods, depending as they do on the extent to which the
temperature-gradient differs from the convective value (8), are comparatively
long. Oscillations of this character, governed by local conditions, must
undoubtedly oceur in the atmosphere, and may conceivably account for some
of the minor fluctuations of the barometer.

There remains a third type of oscillations which, when the wave-length is
moderately great, approximate to the character of waves propagated vertically
in the atmosphere. These have been discussed in a previous paper by the
author.®* Irom a meteorological standpoint they can hardly be of importance.

3. The theory of the “longitudinal” waves is of interest in relation to the
large-scale oscillations of the earth’s atmosphere as a whole. This subject
was treated by Laplace,f and is of some importance in connection with the
suggestion put forward by Lord Kelvini as to the origin of the semi-diurnal
variation of the barometer. Laplace’s investigation was based on the
hypotheses of a uniform equilibriumn temperature and an isothermal law of
expansion, and on the further assumption that the vertical motion of the
air-particles may be neglected.§ Since the circumstances are then practi-
cally those of sound-waves propagated horizontally, his results naturally
involve the “ Newtonian" velocity of sound, ,/(¢H), where H is the height
of the homogeneous atmosphere corresponding to the assumed uniform
temperature 6y, viz., H = R6,/s.

The hypotheses referred to were, of course, adopted only for mathematical
convenience. Asrepresentations of actual conditions they are very imperfect ;
and there is, moreover, great uncertainty as to the most suitable value to be
attributed to 6,. It appeared to the writer that a firmer ground for quanti-
tative conclusions would be gained if it were possible to calculate the
wave-velocity (for long waves), even in the two-dimensional problem, on
somewhat more natural suppositions as to the constitution of the atmosphere
and the law of expansion.

- In the actual atmosphere the temperature, as a rule, diminishes upwards,
although (as we have seen) it is necessary for stability that the gradient
should nowhere exceed the convective value. The special hypothesis of
a uniform gradient, which is here adopted as a basis of caleulation, is itself an
artificial one ; but in spite of the fact that it implies an upper limit to the
atmosphere, it may claim to give, on the whole, a better representation of the

* ‘Lond. Math. Soc. Proc.’ (2), 1908, vol. 7, p. 122.

t * Mécanique Céleste,” Livre 4, Chap. 5. See also Rayleigh, loc. cit.

I ‘Roy. Soc. Edin. Proc.,' 1882, vol. 11 ; ¢ Math, and Phys. Papers,” vol. 3, p. 341.

§ Some such assumption is necessary to make the problem determinate, in the absence
of a prescribed condition to be fulfilled, or approximated to, in the upper regions of
the atmosphere.
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true conditions than the isothermal view, on which, indeed, the earth’s
atmosphere is merely a local concentration of a medium diffused through
space.

As regards the law of expansion, since permanent inequalities of tempera-
ture are postulated in the equilibrium condition, it is proper to ignore the
transfer of heat between adjacent portions of the air during the oscillations.
In any case, theory shows that the effect of conduction on such long waves as
we have here in view may safely be neglected.®

The main conelusion of Laplace was that the free and forced oscillations of
an atmosphere covering a globe, whether this be at rest or in uniform
rotation, are identical with those of a liquid ocean of uniform depth H; but.
in view of the nature of his premises, and of the uncertainty as to the
temperature to be adopted in estimating the value of H, considerable doubt
has been felt as to how far this analogy can be relied upon for quantitative
results. The present investigation tends, I think, to show that inferences of
this kind will not be very far from the truth, provided the temperature
adopted be the mean temperature of the lower strata of the earth’s atmo-
sphere, so far as this can be ascertained. The formal adaptation of the theory
of longitudinal waves to the case of an atmosphere of relatively small depth
covering a globe would follow the same course as in Laplace’s investigation.

4. As regards the semi-dinrnal variation of the barometer, the passage of
Kelvin’s paper already referred to runs as follows :—

“The cause of the semi-diurnal variation of barometric pressure cannot be
the gravitational tide-generating influence of the sun, because, if it were,
there would be a much larger lunar influence of the same kind, while in
reality the lunar barometric tide is insensible or nearly so. It seems,
therefore, certain that the semi-diurnal variation of the barometer is due to
temperature. Now, the diwrnal term, in the harmonic analysis of the
variation of temperatwre, is undoubtedly much larger in all, or nearly all,
places than the semi-diurnal. 1t is then very remarkable that the semi-
diwrnal term of the barometric effect of the variation of temperature should be
greater, and so much greater as it is, than the diurnal. The explanation
probably is to be found by considering the oscillations of the atmosphere, as
a whole, in the light of the very formule which Laplace gave in his
¢ Méeanique Céleste’ for the ocean,and which he showed to be also applicable
to the atmosphere. When thermal influence is substituted for gravitational,
in the tide-generating foree reckoned for, and when the modes of oscillation

* This follows from the equations (due substantially to Kirchhoff and Rayleigh) given
in the author’s * Hydrodynamies,’ 3rd edit., § 343. Radiation has a different tendency in
this respect.
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corresponding respectively to the diurnal and semi-diurnal terms of the
thermal influence are investigated, it will probably be found that the period
of free oscillation of the former agrees much less nearly with 24 hours than
does that of the latter with 12 hours; and that, therefore, with comparatively
small magnitudes of the tide-generating force, the resulting tide is greater in
the semi-diurnal term than in the diurnal.” :

The first question which here arises, viz., whether as a matter of fact the
earth’s atmosphere has a mode of oscillation of the requisite type, with a
period of about 12 mean solar hours, can at the present time be examined
more closely than was possible at the date (1882) of the above extract. The
free oscillations of an ocean of water of uniform depth covering a globe of the
size of the earth, rotating with the same angular velocity, have been very
fully investigated by Hough® in the course of his elassical work on tidal
theory. He finds, in particular, that in the case of the most important free
oscillation having the same general character as a semi-diurnal tide wave
(4.e. its most salient spherical harmonic constituent is the sectorial harmonic
of the second order), the depth % for which the period is exactly 12 sidereal
hours is given by

ghl4w?a® = 0:10049,
where a is the earth’s radius, and w its velocity of rotation. This is evaluated
at 29,182 feet. It is to be remarked, however, that throughout the calculation
the mutual attraction of the disturbed fluid has been taken into account,
whereas in the aérial ocean this influence must be quite insensible, If the
disturbance were accurately of the type of a spherical harmonic of the second
order the requisite modification would consist merely in multiplying the
previous result by the factor

';3 =1—2x 018093 = 0:89144,

where the decimal fraction in the second member is the ratio of the density
of the water to the mean density of the globe, as adopted in Hough’s
computation. This would make

ghl4e’s® = 008958,
As the result of a more direct calculation, using Hough’s algorithm, together
with such of his numerical results as are applicable, I find

gh[4e*® = 0108986,
the last figure being somewhat doubtful. If we put g = 32200,
0 = 21r/86164, a = 20,902,000, this gives

h = 25,930 feet.
* ¢Phil. Trans,,’ A, 1897, vol. 191, p. 139. See pp. 164, 179.
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The substitution of a mean solar for a sidereal half-day as the period
involves a further slight diminution, which can be estimated pretty closely
from another of Hough's results. He finds that for gh[4w®?® = 01, the speed
(o) of the free oscillation in question is given by o¢/w = 19968. Com-
paring this with the former result, we infer that for a period of 12 mean
solar hours (of/w = 1:9945) we must have gh/4w®«® = 0:09965, about.
Assuming that when mutunal attraction is ignored this figure is to be reduced
in the same ratio as the former one, we have, finally,

gh[4e?a? = 008911,
or, with the previous numerical data,
h =25,710 feet.

It must be remembered, of course, that these numerical results can claim
no greater accuracy than the theory on which they rest, in which, in
particular, the ellipticity of the earth, which is of the order 1/300, is
neglected.

On the other hand, the value of H for air at 0° C. is about 26,200 feet,
with an increase of about 96 feet for every degree above this temperature.
The mean temperature of the air near the earth’s surface is usually estimated
at 15° C. This would make H = 27,640 feet; but a somewhat lower value
for the mean temperature of the lower strata, away from the immediate
influence of the ground, would perhaps be more appropriate.

Without pressing too far conclusions based on the hypothesis of an atmo-
sphere uniform over the earth, and approximately in convective equilibrium,
we may, I think, at least assert the existence of a free oscillation of the
earth’s atmosphere, of “semi-diurnal ” type, with a period not very different
from, but probably somewhat less than, 12 mean solar hours.

At the same time, the reason for rejecting the explanation of the semi-
diurnal barometric oscillation as due to a gravitational solar tide seems to call
for a little further examination. The amplitude of this variation at places on
the equator is given by Kelvin as 00032 inch. The amplitude given by the
“equilibrium” theory of the tides is about 0°00047 inch.* Some numerical
results given by Hough in illustration of the kinetic theory of oceanic tides
indicate that in order that this amplitude should be increased by dynamical
action some seventy-fold, the free period must suffer from the imposed period
of 12 solar hours by not more than 2 or 3 minutes. Since the difference
between the lunar and solar semi-diurnal periods amounts to 26 minutes, it

* The numerical values given on p. 520 of the author’s ¢ Hydrodynamics’ relate to the
lunar tide, and are, moreover, by an oversight, stated as “amplitudes,” instead of as
“ranges.”
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is quite conceivable that the solar influence might in this way be rendered
much more effective than the lunar. The real difficulty, so far as this point
is concerned, is the a priori improbability of so very close an agreement
between the two periods. The most decisive evidence, however, appears to
be furnished by the phase of the observed semi-diurnal equality, which is
- accelerated instead of retarded (as it would be by tidal friction) relatively
to the sun’s fransit.* A

5. The concluding part of the paper (§§ 13, 14) is an attempt to examine
more closely than has hitherto been done the theory of waves on a surface
of discontinuity in the atmosphere. That such waves may play a part in
meteorological phenomena has heen pointed out independently Ly Helm-
holtzt and Lord Kelvin} but both writers have confined themselves to
analogies drawn from the case of superposed homogeneous liquids. It is to
be observed that even on this view the disturbance extends, upwards and
downwards from the plane of discontinuity, through a space which is an
appreciable fraction of the wave-lengih; hence, apart altogether from the
influence of compressibility, the conditions of the question will be modified
when the wave-length is such that the ordinary variation of density within
this space becomes sensible. It seemed worth while to investigate the
matter ; but it must be acknowledged that when there are no currents, the
discontinuity being one of temperature and density only, the analogy proves
to be adequate, under such conditions as are likely to occur in the
atmosphere, for a considerable range of wave-lengths. For very long waves
it would break down, the disturbance ceasing to be even approximately
concentrated in the neighbourhood of the plane of discontinuity. The
discontinuity then becomes, in fact, an unimportant incident in the general
upward diminution of density.

When there is a discontinuity of welocity, the upper fluid being in steady
horizontal motion relative to the lower, the question, when compressibility
is taken into account, is more difficult, and 1 have not been able to arrive
at any very simple results. There can be no doubt, however, that the
aforesaid analogy is sufficient in this case also for wave-lengths less than a
certain limit. In particular, the dynamical instability pointed out by
Kelvin§ will remain.

* ¢Brit. Ass. Rep.,’ 1908, p. 606. The forced tides due to diurnal and semi-diurnal
wa es of temperature have been studied by Margules, * Wien. Sitzb.,’ 1890, vol. 99,
p- 204.

t ¢ Berl. Sitzb.,’ 1889 ; * Wiss. Abh.,’ vol. 3, p. 309.

§ “Brit. Assoc. Rep,,’ 1876 ; * Math. and Phys. Papers,’ vol. 4, p. 457.

§ ‘Math. and Phys, Papers,’ vol. 4, p. 76.
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Theory of Long Atmospheric Waves.

6. We consider an atmosphere arranged in horizontal layers of uniform
density. The motions contemplated are restricted to two dimensions, z, ¥, of
which z is horizontal and y vertical, the positive direction of ¥ being down-
wards. The equilibrium values of the pressure, density, and temperature
are denoted by po, po, %0; these are functions of y only, and are subject to
the hydrostatic condition

dpo[dy = gpy, (10)
as well as to the general relation
Po = Rpobo. (11)
The equations of small motion are, in the usual notation,
Su _ _op v_ P o
0 at a" Pog — ay-i-gp. (ld)
Dp ou >
2+ o5 e =0 (13)
where D/ l)t = 0/t +ud[0x+ v [0y. (14)
The expansions being supposed subject to the adiabatic law, we have also
Dy 2 0P
Dt e Dt’ (18)
where ¢ = ym[p, = yRE,, (16)

i.e. ¢ is the velocity of sound corresponding to the equilibrium temperature at
the point considered. It is accordingly in general a function of y. If we put

P=potw, p = po+9, 17
and continue to neglect small terms of the second order, we have

ou _ Ow o Ow

PEr = PR = % +g0. (18)
88 dpy _ w . ov
o= () @
Also, from (15), (13), and (10),
Ow = Dp _ ou , v
RS, = °<aw ay) A

Hence, eliminating 8 and », we find*

*u _ 20 (Pm. 8:;) o ov

=%\ o/ M i
o 9 (2u Bu_ 8v) 0 -
ekl i aJ) -Dg(g+a )5,

* It may be noticed, parenthetically, that in the case of an isothermal atmosphere
where ¢ is constant, these equations are satisfied by

u = e~ly=1 g/ f (et — ), v =0
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If we now write

ou +8'v ov_du —E
| dz'y ¥ & oy (22)
we deduce from (21), by differentiation,
&y d.c d
a X 0‘v’x+( % +w)gx+9£:. (23)
28— r-1)g } X, (24)
where V= 8’/&L’+8’/3y°. (25)

The latter equation shows that an irrotational motion is not possible
unless

d.c dd, _ (y—=1)g
7o =(y—=1)g, or = (26)

which we have seen to be the case of convective equilibrium. We note also
that .

o= — @0
by (20). .
Eliminating ¢ between (23) and (24), we obtain
Z;}f v’v’%}%‘ﬂ'f,f )g%%‘trﬂ ‘—f}—f-:—(v—l)y %2@23. (28)
If we assume that = and ¢ occur only through a factor ¢'(++e the
equations (21) take the forms
au+ighv = —ike*y,

29
—iglu+ oo = —c’%g—rygx, (29)
whence
(A =gy = o {,,Hg_x +(qgP— 9% x} :
Y (30)

(=) = —a % —g (gt —) }

From these, or from (28), we have

&x , (do oy sa_ Jde }97:"] =0. (31
o SK+ (b)) ot [ ar—we— {22 —1)g } L] x=0 @)

7. So far, the vertical distribution of temperature is arbitrary. In the
case of temperature diminishing upwards with a wniform gradient, to which
we now proceed, there is an upper limit to the atmosphere. If we take the
origin of ¥ at this level, we have

= By, (32)
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where B3 is the gradient in question. It easily follows from (10) and (11)
that

po < Y, Po e Y"HL, (33)
where n = g[RB—1. (34)
Also ¢! = yRBy = vygy[(n+1). (35)

Hence :
(ot —giyu = 2Ry X (a4 1) X~ b

. k [a*
(ot =210 = n’j’f k2 {vgEr ey} -],

(36)

> n+lo- = n= lqk L}I =iy 37
and yalg-i-(n-}- )8J+{ v qk 5 Y X (37)

The meaning of the factor (my—mn—1)/y, which appears in one of these
terms, is to be noticed ; viz. we have

-

=1 (38)

nmy—n—1 __
7
where 3, is the temperature-gradient in a state of convective equilibrium, as
given by (8).

ww

To solve (37) we put x = o, (39)
and obtain y%zdg-}-(w +2+20y) & -5’3 +2alip = 0, (40)
where Qo = ntl f +<’§‘—1>g—k+n+2. (41)

v gk \B
This is integrable by series, the solution which is finite for = 0 being
= ]— e 2 a.atl 2kyP—...; 42
Gt 1.n+2(J“'/)+1.2.71+2.n+3( V) : (52
or, in the notation of Dr. E. W. Barnes,*
¢ = 1Fi(a;n+2; —2ky). (43)
The remaining solution of (40) is of the form
e 2Mdy

where ¢ stands for the series in (42). This is not admissible in the present

* See, for example, ‘Camb. Trans.,,’ vol. 20, p. 253, where references to other papers
are given.
If we had assumed x = e—¥¥ ¢, in place of (39), we should have found

¢=,F,(n+2—a; n+2; 2Ly).
The comparison verifies a well-known identity ; see Barnes, loe. cit.
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question, since it becomes infinite as y~~! for infinitesimal values of ¥,
whereas the condition to be satisfied at the upper boundary is Dp/DZ = 0, or
y**x = 0; see equations (27), (33).

The formulw (36) now become

- (ot— 'k’)u—-n_'_l[y +(n+l)¢+(1—f: ky¢>:| ety

(A—tit)v = — 2k [ [ ;0 Pt 1)} —(1-5)kvg |,
the factor ¢'“*+#) being omitted here, as elsewhere, for brevity.

The condition that v = 0 at the lower boundary, where ¥ = %, say, taken
in conjunction with (41), determines the values of « and o, the wave-length
(27 /%) being supposed given.*

8. In the case of oscillations about convective equilibrium we have

B=p8, n=1/@y-1). (46)
It follows from (24) that ¢?¢/d# = 0; hence either {= 0, 7.c. the motion
is irrotational, or the period is infinitely long.

The conditions to which the sicady rotational motions thus indicated
are subject follow most directly from (21). These equations are now

equivalent to
(% { Qau_*_g_”).pgv} =0

(45)

! u ¢ (58
L v
517Gt g et =0
by (26). Hence
(y—1) r/(gu g" )+'v = const. (48)

The choice of two functions, u, v, to satisfy this equation, together with the
two boundary conditions, can be made in an infinite variety of ways.

The remaining types of disturbance are periodic in character. The
formule (42) and (45) apply, with

Dme B L D (49)
ql
in place of (41). Since (42) makes
o D) vk 1) ] e X (2 a.atl (op }
v+t g = {1 - @R+ R =
(50)

* The case of apparent failure, where o® = gk, does not arise. This would require,
by (36), P
y§§+(n+1 ~ky)x =0, or x=Cy-nr-lek,

which violates the condition at the upper boundary.
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the condition that » = 0 for y = % may be written
F N 2
(n,+1);‘}’-klh(a-, nt1; —2kh)—<1—;’z_)kh Ty (2 n42; —2kh) = 0.

(51)

A complete discussion of the equations (49) and (51) is out of the

question, but the limiting form to which the results tend as the wave-length

increases is easily ascertained. In the first place, it appears that when &k is
small we have

a® _ kh
gk~ n+1’ %)

approximately, since this ensures, by (49), that «%% is also small. If H
denote the virtual height of the atmosphere, as defined above (§ 1), we have

H =i rg/"dy = Bf(n1). (63)
0

The limiting value of the wave-velocity V is accordingly given by
V2= oY = gH. (54)
The bearing of this result has been discussed in the introduction.
The formulz (45), (50), and (39) now lead to

woe i (n+ 1—=12hy + § 2P, }

voe ke (y—h),
the factor ¢'(’*+#) being understood. These values fulfil, as they ought, the
irrotational condition

(55)

L =9 — i, (56)

Since the ratio of the amplitude of » to that of = is of the order %k, the
motion is mainly horizontal, and the present type of waves may accordingly
be characterised as “longitudinal.”

The remaining solutions of (49) and (51), when /7% is small, involve finite
as distinguished from infinitely small values of «kh. As will be seen
presently (§11), they approximate to the character of waves propagated
vertically in the atmosphere.

9. In the general case, where » is not restricted to the precise value
1/(y—1), the relation between « and o is as in (41). When /% is small we
have still a longitudinal wave for which ¢*®/¢k is of the order %A, subject to
a certain condition. The equation (51) leads again to the result expressed
by (52) or (54), and substituting in (41) we find that the implied assumption
that «kh is also small will be justified provided B,/B—1 be small, e
provided the temperature-gradient falls only a little short of the convective
value ;.
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The limiting form of (42), when no assumption is made as to the order of
magnitude of «kk, is
Zaky | (2akyy

A s e e (o0
or in Dr. Barnes’ notation,
¢ = Fi(n+2; —2aky), (58)
whilst (50) becomes
3/%‘%+(n+ )¢ = (n+1)oF1(n+1: —2aky). (59)

It appears from (41), without making as yet any special assumption as to
the smallness of 8,/8—1, that when «kk is finite, whilst 4% is small, the
~ ratio o?/gk will be very small or very great.
In the former case we have
g ‘Br_ . 1 \
-1 ( 5 1) 5 (60)

ultimately, and the condition (51) becomes

("+1)<§1—]>0F1(n+ 1 —2akh)— 2akhFy(n+2; —2akh) = 0. (61)

Since oFi(n+1; —z) = II (n)z~#J, (2:), (62)

in the notation of Bessel's functions, this may be written
§odaa (@) = (%‘- )Ia (@), (63)
provided o? = 8akh. (64)
If @ be a root of (63), the corresponding frequency of oscillation is given by
o (By_y), 4k
e \B Loy (68)

and the wave-velooity by

V2 = Bi__ : 4(n+1)gH 66
<B 1) w* ' (66)

H being defined as before by (53). This result again is accurate as a limiting
form for increasing wave-length.

10. The equation (63) might be discussed, when 7 or 2n is integral, with
the help of the tables of Bessel's functions, but it may be sufficient to
consider the case where the ratio (8,—p@)/f8 is small. It may be noticed
that the formula embraces all the modes of the present class, the longitudinal
waves already discussed corresponding to the case of o infinitesimal. The
roots of (63) which relate to the remaining modes are now given by

Jar1(w) = 0, (67)
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approximately ; and in particular the first of these slightly exceeds the first
finite root of (67).

In convective equilibrium we have n = 25, if oy = 1'40. The first finite
root of Jzp (@) =0 is w; =7, very nearly. Hence for oscillations about a
state of very nearly neutral equilibrium we have

s (%4)‘ x 0:53,/(sH).

In the case of n = 3, which makes (81—8)/8 = +, a firsi approximation,
given by (67), is @; = T'586, and a second is easily found to be w, = 7:624.

This leads to
V = 0198,/(¢H),

which is about one-fifth the velocity of the longitudinal type of waves.
As to the character of these slow rotational* modes, we find from (24)

o g (B g Y g
§= L(B 1>'n+1'a2'x’ (68)
Y 3
or, by (65), ¢ = —n’_;/l : 5.7/1 X (69)

Having regard to the kinematical meaning of the functions & y, as defined
by (22), we see that the rotational quality in the relative motion of a fluid
element predominates over the dilatational. We learn also from (45) that
when y = 0 the amplitude of » is to that of » in the ratio ¢*/gk, which is
small. Since v vanishes at the lower boundary, we infer that the vertical
component of the velocity is in general relatively small. The distribution
of horizontal velocity depends ultimately on the function

o
v +t1)g,

which varies as (ot [73)~" T, (wyd [ 1Y),

if @ be the relevant root of (63), or less accurately of (67). In the case of
the first root, after the small one, this expression changes sign once, and
once only, as 7 increases from 0 to 2. For n = 3, the change of sign occurs
for wyt /1t = 6:379, or y[h = 0°70.

The general character of the types of disturbance at present under
consideration is most easily apprehended in the case of a “standing”
oscillation. If on the preceding expressions we superpose others which

* The rotational character is, of course, present also in the longitudinal waves, unless
B= 3, exactly, though to relatively slight extent.
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differ only in the sign of o, and reject the imaginary parts, we find, on
discarding all but the most important terms, that

UL {y%—f-{—(n-}-l)cﬁ} sin Lz cos o't,}

(70)
v — Ly ¢ cos ka cos at.
The differential equation of the lines of (oscillatory) motion, viz.
vde—udy =0, (71)
is accordingly satisfied by
y"* ¢ sin kz = const,, (72)
or ABEDT (m]/}/hi) sin ke = C. (73)

If we put C = 0 we get the lines y = 0, y = A, ko = s, but the former
of these is only an approximation. The annexed figure indicates, without
any attempt at minute accuracy, the general arrangement of the lines in the
case of the lowest finite root of (67).

In the modes corresponding to the higher roots there are horizontal nodal
planes (v = 0), in addition to the lower boundary.

Returning for a moment to the more important “longitudinal” type of
motion first considered, we note that the formule (52), (54), cease to be
accurate, even as limiting forms, when the ratio (8,/8 differs appreciably
from unity. The formule (65) and (66) will, however, still apply, @ being
the lowest root of (63). As a numerical example, take the case where the
temperature-gradient has only one-half the convective value, so that

(B—B)/B =1, n = 6.

I find that the lowest root of

twli(w) = Js(w)
is @ = 4'96, approximately, whence

V = 1:07,/(gH).
The result must, of course, in any case be less than /(ysH), or
118 ,/(yH). The change of wave-velocity is accompanied by a change in
the character of the oscillation, the variation of horizontal velocity with
altitude now becoming sensible.

The preceding formuli might also be used to estimate the rapidity of
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falling away from the state of unstable equilibrium which prevails when
B > B, the value of o® given by (65) being then negative.

11. The modes for which o?/gk is large are easily accounted for. We
have from (41)

a? _ 2ya
gk~ 41’ (74
and from (45) ?/g +(n+1)¢ =0, (75)

these being approximations which gain indefinitely in accuracy with increase
of wave-length. On the present supposition that zkkh is finite, notwith-
standing the smallness of %/, (75) reduces to
Jn(@) = 0, (76)
provided w® = 8«kh, as in (64). If w be a root of this equation, the corre-
sponding frequency is given by
w® a
6?2 = 4——(;:_*_1) . ,—L (77)
These modes are in the limit identical with the waves of vertical
displacement discussed in a paper already cited in § 2. The formulae (45)
show, in fact, that the ratio of the amplitude of » to that of » is for the
most part of the order gk/s®. If we put & = }yRBn*= lyym?/(n + 1),
the equation (76) takes the form J, (o) = 0, which is identical with
equation (88) of the paper referred to.
12. It may be worth while, for the sake of the contrast, to give the theory
of the oscillations of a heterogeneous but dncompressible fluid, whose
equilibrium density has a similar distribution.

ou _ op ov_ o

We have now Par = 5 o= 3 +gp, (78)
ap ,dpo ¥ :
an av
—~= 0. 80
If we put P = po+mw, p= po+9, (81)
as before, we have
ou _ _Ow o
Y = — d. 82
Pog= "%’ Px™ aJ"'” S
08 _ _ dp. (83)
¢ dy

From (80) we have

v =¥ (84)
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Y being the stream-function. Substituting in (82), (83), and eliminating &
and &, we find*

@ oy 4 1doo( Sy 3_‘~k) =
A po dy (Byat ) =0 oo,

If # and ¢ oceur only in the form ¢ (@+49), we have
B pogs L6 :
Byt (X Oy (86)
Also v = ik, (87)
and =S+ = it g = (Bv 1000\ (88)
If we now assume that po =< ", (89)
won Bive ,/glg +n Q‘."+<’f2" s \Ic\p 2 (90)
or writing ‘ ¥ = Mg, (91)
:/ad:-i-(n-i-‘)]u/)a +7z(1+'/")1.¢ (92)

The solution which is finite for y = 0 is
. a+1

— —L. 2( _— ‘)lf .—..., 93

kgl 1.:1,( ]‘u)+1 2. n+l( kyy (99)

or ¢ = 1F(z;n: —27-?.'#), (94)
it 20 = n 1+g§). (95)

The second solution becomes infinite as y=**! for y = 0, and is therefore
excluded, in virtue of (88), by the eondition that Dp/D¢ must vanish at the
upper boundary. Since, by (87), 4 = 0 for y = &, we have

WFy(a:n; —2kk) = 0. (96)
This determines «, and the value of ¢ follows from (95).
It is obvious that, when /% is small, (96) is not satisfied by finite values

of «. If « be large, but so that «k%4 remains finite, the equation (96) tends to
the form

oF1(ny —2akh) = 0, (97)
or Jp-1(w) = 0, (98)
provided w® = Bulh. (99)

If @ be a root of (98), we have
S R Y (100)

* (f. Love, ‘ Lond. Math. Soc. Proc,’ (1), 1891, vol. 22, p. 307.
VOL. LXXXIV.—A. 2 R
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and therefore, for the wave-velocity,

e g = Salndd) (Zj L & (101)
Thus, if, for the sake of comparison with §7, we put n = 25, we have
w, = 4491, whence
V = 132 /(gH). (102)
That the frequency should be increased by the incompressibility was to be
expected ; that the effect is so considerable is due to the great modification
which is caused in the character of the fundamental modes.

The modes corresponding to the higher roots of (98) have horizontal nodal
planes, and the frequencies form, by (101), a descending series,* as in the case
of (65).

Waves at a Surface of Discontinwity.

13. When we proceed to examine the case of waves propagated along a
horizontal plane where the equilibrium temperature is discontinuous, it may
be sufficient to suppose the temperature uniform throughout each of the
regions, above and below this plane, to which the influence of the waves
extends, The plane in question is taken as the plane y =0, and the
dependent variables relating to the upper region will be distinguished by
accents.

The formule of §6 will therefore apply to the lower region, with the
simplification that ¢ is a constant; so that (31) becomes

a_’x % - 7.9 ('Y— 1)!7%2} — 1

cﬂayz+qgay+{az po+ Q=T Ly =0, (103)

This is satisfied by x = CeV, (104)
e G S gl TR o 0 ] B

provided A4 “37\-{» {c" 2+ o } 0. (105)

We are seeking for a type of motion analogous to that of waves on the
interface of two Ziguids of different densities, in which case the values of A are
+7%. We assume, provisionally, that in our case also the roots of (105) are
real and of opposite signs ; moreover, since the disturbance is to vanish for
y = o, the negative sign is to be taken.

For the upper region we shall have

x. = C%, (106)
with a similar determination of A’; but the positive root is now the appropriate

one.

* Of. Rayleigh, ¢ Lond. Math. Soc. Proc.” (1), 1883, vol. 14, p. 170 ; ‘Scientific Papers,’
vol. 2, p. 200,
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If » denote the ordinate of the surface of separation, as affected by the

waves, we have
onfot = v (107)

for y=0; and the pressure in either fluid at the point (z, 5) is to be
found by putting ¥ = 0 in the corresponding value of the expression

Po+w+%/°n. (108)

Differentiating with respect to 7, we see that Dp/D¢ must be continuocus at
the interface.* This involves, by (27), the continuity of sy, so that the
constants C, C’ in (104) and (106) must be equal. Again, it follows from
(107) that » must be continuous, whence, by (30),

N —gl* + qyga? = N — gl + ygo. (109)
This, together with the fwo equations of the type (105), determines the

values of A, A/, and ¢. A
To obtain a solution, we denote the two equal members in (109) by u;

thus

A L, ST L
A P2 g A i 0‘26'2+ oY &% {1
Substituting in (105), we have
w4+ (21RE—nya?)+(a*—g°k?) (a*—=12) 2 = 0, (111)

with a similar equation in which ¢ is replaced by ¢. Writing these two
equations in the form

wW4+Pu+Q =0, wW+Pu+Q =0, (112)
and eliminating u, we have
(P—P') (PQ —P'Q)+(Q—Q) = 0. (113)

Now
P—P = 2gk* (¢*—¢"),
Q—Q’ = (*—¢?) (a* —g) {*— 12 (+ )}, (114)
PQ'—P'Q = g(*—¢"?) (o' — k) {yat —qak® (B + ')+ 242}
Hence
(et =gl {2 =12 (*+ )} + 20%8 {ya* —yo¥l? (P +¢'?) + 2X4e%*} = 0.
(115)
This is of the fourth degree in o® but one root ouly is relevant to the
present question. The common root of (112) is

~PQ'=PQ _ ., 2 gldc3c’?
— Q—Q’ — '7.7‘7 +0'3—k2 (02+013) 3’

* This might almost have been assumed at once ; but it is to be observed that it would
not give the correct condition to be satisfied at the common boundary of two currents.

2R 2

(116)
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whence o ="

gk =12 ((' —c*) (17)
ko =R (2+ ¢3):
If we now write

@ = }(2+c), B =1 (2—e), (118)
z = o®[i%a?, o = gfhka?, (119)
the equation (115) becomes
:13(:0—2)9-1-(02 ((2y—1)a2—4(y—1)2—4l/at} = 0: (120)
whilst =TT A Sediia., (121)
]u x(z—2) k @ (z—2)

It is to be noticed that

9 JI 2 WaY .
Z’__) £ =5 A et (122)

«* +  p+p
where p, p’, are the equilibrium densities at the plane y = 0, on the two sides.
For sufficiently small wave-lengths, @ and « are very small, and the root of

(120) with which we are concerned is # = wb?/a?, approximately, whence

= g-—%r/l. A=—k N=k (123)

as in the case of superposed incompressible fluids.®

To examine the matter further, the simplest procédure is to tabulate the
function

R a? (z—2) 4
i T A i (y—De—2y—1)a* (129
for a series of suitable values of z. The only case of real interest is where
the discontinuity of temperature is very slight, so that #’/«® is a small
fraction. The following table gives a few results caleculated on the supposition
that #*/a® = {14, with ¢ = 1'40. The abrupt step in temperature then
amounts to 45 of the mean of the temperatures (absolute) above and below.

| nvc‘ -
‘ W Period
, / ’
a, w?. . | 10V/(z/w). | —=A[k.| X[k (leengt t‘h). (seconds).

10-% | 0'9960x10~% | 09980 x 10~* 10005 | 0+998 | 0998 7°0 212
10-5 | 09615 x 10~° | 09806 x 102 1°010 0981 | 0980 69 -2 659
1074 | 07143 x 107 | 08452 x 107 1088 0850 | 0841 597 -0 1800
1073 | 2°004 %1073 | 04476 x 107! 1495 0°470 | 0-425 | 8160°0 3010

* Stokes, ‘Camb. Trans.,’ 1847, vol. 8 p. 441 ; ‘Math. and Phys. Papers,’ vol. 1,
p. 197.
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The fourth column gives the ratio of the frequency to that of waves of the
same length on the surface of separation of two homogeneous liquids with
the same discontinuity of density, as given by (123), viz., the ratio is
o " _10/=
V(gk).bfa e
on the present suppositions. The seventh column is calculated from
2m [k = 2wa’w (g, taking a = 332 metres per second ; and the last from
2w [o = 2waw[gy/@. 1t is seen that, with increasing wave-length, the wave-
velocity tends more and more to exceed the value estimated on the assumption
of the homogeneity and incompressibility of the two fluids. At the same
time, the disturbance tends to become, relatively as well as absolutely, less
and less concentrated in the neighbourhood of the plane of discontinuity.
14. In this question, again, it is of some interest to compare the case of
waves on the common boundary of two liquids, each of which, though incom-
pressible, has a similar gradation of density. We therefore write, in (86),

;)1—0 % = ¢, a constant. (125)

If we assume that
Y =CeV, (126)
we derive A A+ (-g%—l) 2 =0. (127)

These formul@ may be supposed to relate to the lower region ; for the upper
region we write ¢, A, C’ for ¢, A, C, respectively.

The continuity of » involves, by (87), that of 4, so that C" = C. Also, in
virtue of the continuity of Dp/D¢, we have from (88)

p (N +gk*) = p’ (a®N + gi?), (128)

where p, p’, are the densities just below and just above the plane y = 0.

If the two fluids had been portions of the same gas at different
temperatures we should have had

g = v9/¢, ¢ = yg/<", (129)
and therefore ple’ = alq. (130)
Now from (127) we have
q(a*\+gl*) = o* (JF—=\?). (131)
Hence, if we adopt the relation (130) for the sake of the comparison, we
must have A2 =A%, or, taking account of the signs, A = —\’. This
leads to
Ay gk (132)
ke k g+q o'
a'\' 24 0_’_(.(1—9’)’ — 0.
g <y1c> FG+D o \grg) = s
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The positive root of this quadratic in ¢?/gk is to be taken, since it is the
only one which gives the proper signs to A, \, it being assumed that p>p’
and therefore ¢>g¢". For infinitesimal values of ¢, ¢/, we reproduce the
relations (123).

In order to make the variations of density follow exactly the same law as
in the atmospheric problem of §13 we must give to ¢, ¢/, the values (129).
In the notation of (118), (119), we have then

2 —ywr—w®t[at = 0. (134)

The following table, like the former one, refers to the case of

t*[a® =1/100. In order that the comparison may be for the same series of

wave-lengths, those values of  are chosen which were obtained in the previous

numerical work. The significance of the column headed 10,/(z/w) is the

same as on p. 570. The comparison shows the usual effect of a constraint in
increasing the frequency.

l
’ Wave-length Period
i 104/ (a)e). \ Nk, (metres). (seconds).
09980 x 10—* 1003 0993 70 21-2
0°9806 x 1072 1035 0934 692 643
0°8452 x 10~ 1324 i 0°570 597 0 1480
04476 x 1071 2-534 0156 | 3160 ‘0 178 0




