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ON AUSLANDER-REITEN COMPONENTS OF BLOCKS
AND SELF-INJECTIVE BISERIAL ALGEBRAS

KARIN ERDMANN AND ANDRZEJ SKOWROÑSKI

Abstract. We investigate the existence of Auslander-Reiten components of
Euclidean type for special biserial self-injective algebras and for blocks of group
algebras. In particular we obtain a complete description of stable Auslander-
Reiten quivers for the tame self-injective algebras considered here.

Introduction

Throughout the paper K denotes a fixed algebraically closed field. We shall
use the term algebra to mean finite dimensional A>algebra and the term module
to mean finite dimensional left module.

Special biserial algebras form an important class of tame algebras. Well-
known examples of such algebras are blocks of group algebras with cyclic or
dihedral defect groups and algebras appearing in the Gelfand-Ponomarev clas-
sification of Harish-Chandra modules over the Lorentz group [GP].

Let A be a special biserial algebra of infinite type. It is known that any non-
periodic component of the stable Auslander-Reiten quiver of A is isomorphic
to ZA™/G where G is some group of automorphisms. One would like to know
when nontrivial groups occur, that is, when the component is Euclidean.

In this paper, we shall prove that for special biserial self-injective algebras,
this is closely related to the growth type of the algebra: A has a Euclidean
component if and only if A is domestic. If so then it has a finite number
of Euclidean components, all of them isomorphic to ZAp,q where A is of
tubular type (p, q). Otherwise, there are infinitely many components = ZA™ .
Detailed statements of the results are given in §2. The proofs use covering
techniques and exploit results by [BR, DS, PS] on biserial and special biserial
algebras.

The work was partly motivated by block theory: A number of special bis-
erial symmetric algebras appear in the context of classifying dihedral blocks
[El, E2]. It was known that some of these have Euclidean components, such
as 4-dimensional local symmetric special biserial algebras, and also the group
algebras of the alternating groups A4 and A5 over fields of characteristic 2.

Our results enable us now to give a complete answer. There are indeed a
number of domestic algebras amongst the algebras of dihedral type. The only
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166 KARIN ERDMANN AND ANDRZEJ SKOWROÑSKI

ones which are blocks are those which arise when the defect groups are Klein
4-groups. It is convenient to know that the parameters p, q for a ZAPyQ-
component are also ranks of tubes.

The second problem was to study components of semidihedral blocks. This
may be reduced to determine components for the local "semidihedral algebra"
(see [E2]). The classification of modules in ihe form given in [CB2] allows to
prove that any regular (see 1.2) nonperiodic component of A has tree class A™
or Doo . It is also known that the tree class of the only nonregular component
is either D^ or possibly Dn .

After improving our understanding of Okuyama's work [O] we were able to
extend his ideas to a more general situation:

We investigate additive functions and give necessary conditions for a self-
injective algebra to have a Euclidean component. We apply this first to local
self-injective algebras and settle the second problem. This condition is also used
to prove that a group algebra KG has a Euclidean component if and only if the
characteristic of A" is 2 and KG has a block whose defect groups are Klein 4-
groups. This generalizes the original theorem of Okuyama; it has been obtained
independently by Christine Bessenrodt [Bs].

In the first section we give a summary on biserial algebras, including an
outline of the necessary framework on coverings. The second section studies
Euclidean components of special biserial self-injective algebras. In the third
section we give the necessary condition for existence of Euclidean components
and apply it to the local semidihedral algebras and to blocks. The last section
contains applications.

For a module M, we denote by socAf and top M the largest semisim-
ple submodule and factor module respectively. We sometimes write \M\ for
dimjf M. Concerning further notation, we refer to [R2, Be, HB].

1. Preliminaries on biserial algebras

Throughout this section algebras are assumed to be basic and connected.
1.1 Let R be a locally bounded A"-category [BG]. An Ä-module is a co-

variant AMinear functor M from F to the category of A"-vector spaces. We
denote by mod R the category of all finite dimensional i?-modules. If R is
finite (the number of objects is finite), then mod R is equivalent to the category
mod A of left modules over the associated matrix algebra 0 R consisting of
all matrices {ayx)Xty€R where ayx e R(x, y). It is well known that each (finite
dimensional) algebra is isomorphic to a matrix algebra 0 R for some finite
category R.

For a group G of AMinear automorphisms of R acting freely on the objects
of R, we denote by R/G the quotient category whose objects are the (7-orbits
of the objects of R. Then there is a Galois covering functor F:R —> R/G
which assigns to each object x its G-orbit Gx . We denote by F/l:mod R —►
mod R/G the associated push-down functor [BG, 3.2]. A group G of AMinear
automorphisms of R is called admissible if its action on the objects is free and
has finitely many orbits. Then R/G is defined and 0(i?/C7) is an algebra. A
locally bounded category R is called simply connected [AS] if it is triangular (its
ordinary quiver has no oriented cycles) and for any presentation R ^ kQ/I as
a bound quiver category, the fundamental group U{(Q, I) of (Q, I) is trivial.
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This is equivalent to the fact that R is triangular and each Galois covering of
R is trivial. A locally bounded category A is called standard [S2] if it admits
a Galois covering R —► A with R simply connected. Finally, an algebra A is
standard if it is isomorphic to 0 A for some (finite) standard category A.

1.2 For a locally bounded category R we denote by Tr the Auslander-
Reiten quiver of R. We shall use freely properties of Auslander-Reiten se-
quences and the Auslander-Reiten operators x = DTr and x~l = TrD, for
which we refer to [AR, R2]. We shall agree to identify the points of Tr with
the corresponding indecomposable i?-modules. An indecomposable module M
is called stable (resp. periodic) if xnM ¥ 0 and x~nM ^ 0 for all n e N
(resp. x"M = M for some n e N). The full translation subquiver ^r^ of
Tr consisting of the isomorphism classes of stable modules is called the sta-
ble Auslander-Reiten quiver of R. According to Riedtmann [Rd], any stable
connected translation quiver T is of the form ZT/G where T is an oriented
(valued) tree, called the tree class of T, and G is an admissible automorphism
group. It has been shown in [HPR] that the tree class of any component of
the stable Auslander-Reiten quiver of an algebra containing periodic modules
is equal to A^ .

We say that a component T of Yr is regular provided there is no projective
and no injective module in T. For the shape of the translation quivers ZA™ ,
ZAoo , ZAoo/ix") we refer to [HPR]. Finally, by Ap>q (p, q > 1) we mean the
quiver

a\ / \ ap

ßl\ / ß.

It is well known that, if A is a quiver whose underlying graph is of Euclidean
type A„, then ZA = ZAPtq, where p and q are the numbers of clockwise
and counterclockwise oriented arrows in A, respectively. Observe that the tree

(2,2)      ~
class of ZAp>q is equal to A^ for pq > 2 , and • — •(^1,2 in the notation of
[HPR]) for pq = l.

1.3 Let A be an algebra and K[x] be the polynomial algebra in one vari-
able. Following Drozd [D], A is called tame if, for any dimension d, there
is a finite number of v4-A"[x]-bimodules Q¡, 1 < 1 < n¿, which are finitely
generated and free as right AT[x]-modules, and satisfy the following condition:

(a) All but a finite number of isomorphism classes of indecomposable A-
modules of dimension d are of the form Qí®k[x]K[x]/(x-X) for some X e K
and some i, 1 <i<n¿ .

Let ßxid) be the least number of bimodules Q, satisfying the above condi-
tion. Then A is called of polynomial growth [SI] if there is a natural number
m such that fiA(d) < dm for all d > 1.

Further, A is domestic [Rl] if there is a finite number of ^4-A^[x]-bimodules
Qi, 1 <i <n , which are finitely generated free right A"[x]-modules and satisfy
the following condition:

(b) For each dimension d, all but a finite number of isomorphism classes
of indecomposable A -modules of dimension d are of the form Q¡ ®k[x\ V for
some 1 and some indecomposable A^xj-module V .
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Moreover, A is called «-parametric if the minimal number of such bimod-
ules is n . Every domestic algebra is of polynomial growth (cf. [S3]).

1.4 The repetitive category (cf. [HW]) of a locally bounded category R
is the self-injective locally bounded category R whose objects are the pairs
(/t, x) =x„, x e R, ntZ, and R{x„,yn) = {«} xR{x,y), R{xn+X,yn) =
{«} x DR(y, x), and R(xp , yq) = 0 if p ^ q, q + 1, where DV denotes the
dual space Hom/^F, K) of V .

We denote by vR the Nakayama automorphism of R which assigns to each
object xn - (n, x) the object xn+\ = (n + 1, x). A ¡/-slice of R is a full
subcategory of R which is connected and does not contain two objects from
the same i^-orbit.

1.5 A locally bounded category R is called biserial if the radial of each
nonuniserial indecomposable projective left or right i?-module is a sum of two
uniserial submodules whose intersection is simple or zero. A locally bounded
category R is special biserial (cf. [SW]) if it is isomorphic to a bound quiver
category KQ/I, where the bound quiver (Q, I) satisfies the following condi-
tions:

(Rl) The number of arrows in Q with a prescribed source or target is at
most two,

(R2) For any arrow a of ß, there is at most one arrow ß and one arrow y
such that aß and y a are not in /.

An algebra A is (special) biserial if A = 0i? for some (special) biserial
category R. By [SW] special biserial algebras are biserial, and representation-
finite biserial algebras are special biserial. Examples of representation-infinite
special biserial algebras are representation-infinite, tilted algebras of type APt<¡
[R2, ASI] and blocks with dihedral defect groups in characteristic 2 [El]. Fol-
lowing [ASI], a triangular locally bounded category B is called gentle if it is
isomorphic to KQ/I where the bound quiver (Q, I) satisfies (RI), (R2) and
the following two conditions:

(R3) / is generated by a set of paths of length 2,
(R4) For any arrow a of ß, there is at most one arrow £ and at most one

arrow « such that a£ and na belong to /.
By a tree category we mean a locally bounded category whose ordinary quiver

is a tree. Examples of gentle tree categories are universal Galois coverings of
representation-infinite tilted algebras of type Ap , q . We shall use the following
characterization of self-injective special biserial algebras proved in [PS].

Theorem. Let A be a representation-infinite algebra. Then the following condi-
tions are equivalent:

(i) A is standard, biserial and self-injective.
(ii) A is isomorphic to 0(i?/G) where R is a self-injective simply connected

locally bounded K-category such that every full finite subcategory is representa-
tion-finite, and G is an admissible group of K-linear automorphisms of R.

(iii) A is isomorphic to 0(5/G), where B is an infinite locally bounded
gentle tree category and G is an admissible torsion-free group of K-linear auto-
morphisms of B.

(iv) A is self-injective special biserial.

1.6 We shall now describe the indecomposable modules and Auslander-
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Reiten sequences of self-injective special biserial algebra. We use the method
based on covering theory [SW, DS]. Let A be a representation-infinite self-
injective special biserial algebra. Then, by 1.5, A -^ 0(.R/G) where R = B is
the repetitive category of an infinite gentle tree category B and G is an admis-
sible torsionfree group of AMinear automorphisms of B. Moreover, by [PS,
Lemma 8], R = B is a special biserial simply connected self-injective category
such that every full finite subcategory is representation-finite. A line in R is a
full convex subcategory L of R which is isomorphic to the path category of a
linear quiver (of type A„ , A^ or A™). Aline L is G-periodic if its stablizer
Gl = {g G G:gL = L] is nontrivial. With each line L in R we associate
a canonical indecomposable i?-module M(L) by setting M(L)(x) = K for
x e L, M(L)(x) = 0 for x £ L and M(L)(y) = iáx for each path y va. L.
It is well known that the modules M(L) where L ranges over all finite lines
in R, are representatives of isoclasses of all (finite-dimensional) nonprojective
indecomposable i?-modules. The indecomposable projective .R-modules are
given by the "commutative squares" of R. Denote by F¿: mod R —► mod R/G
the push-down functor associated with the Galois covering F:R-+ R/G. Fol-
lowing [DS] there are two kinds of indecomposable i?/G-modules: modules
of the first kind formed by all indecomposable modules of the form F¿(M),
M € mod R, and the remaining modules called modules of the second kind.
Hence every nonprojective indecomposable i?/G-module of the first kind is
isomorphic to FxM(L) for some finite line L in R. The indecomposable
.R/G-modules of the second kind can be described as follows. Let S? be the
set of all G-periodic lines in R and 3§ a fixed set of representatives of the
G-orbits in S?. Then, for any L e .56, the canonical action of G¿ on L
supplies a right K Gl -module structure on FxM(L), and for each a e R/G,
FxM(L)(a) is a free K Gl -module of finite rank. Since Gl is an infinite cyclic
group, KGl = K[x,x~l] and we have a functor

<j)L = FkM{L)<^K[XtX-i^ -:mod K[x, x~l] -* mod R/G.

It was shown in [DS, Theorem 3.6] that every indecomposable i?/G-module of
the second kind is isomorphic to <I>L(V) for some Lei| and some indecom-
posable finite dimensional K[x, jsc_I]-module V.

Observe that the family of ordinary quivers of F(L), L e S?, coincides with
the family of primitive walks (in the sense of [WW]). The above description of
indecomposable .R/G-modules shows also that A is tame (cf. [WW, DS, BR]).

We shall now describe the Auslander-Reiten sequences in mod R/G. From
[DS, Theorem 3.6] the Auslander-Reiten sequences terminating at the indecom-
posable .R/G-modules of the second kind are of the form

0 -» <pLNx{i) -> ^(j -1)0 <pLNx{i + 1) - <pLNx(i) - 0
where Nx(i) = K[x, x~l]/(x - X)1 with X £ K*, / > 1 and 7VA(0) = 0. In
particular, TA = rR/G is isomorphic to the disjoint union of translation quivers

(r*/G)ii( W^l)

where for each L e .26, &i is a AT*-family of stable tubes of rank 1. The
Auslander-Reiten sequences whose middle term contains an indecomposable
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projective (injective) direct summand P are of the form

0 -► radP -» radP/socP © P -* P/socP^ 0.
Assume now that FXM(L) is a nonprojective indecomposable iî/G-module of
the first kind which is not isomorphic to P/socF for some projective module
P. The line L is of the form

ek *~ "' *~ eh —>•••—» £/, <—      —» e/,_, *— •••ek *— e¡,—*•■••—* ßj,
where the first or the last subpath may be trivial. Let U be the maximal line
in R extending L on the right by e¡t -*■ ejM <-•••«— e¡M that is,

T r ' P ■      4_   . .  ■   «_   P •      -►.-►   P -     ->   P <-   .  • .   «_   P-

if such a line exists. If not, let U be the line obtained from L by cancellation
of the last subpath including the vertex e¡, (thus U may be empty), that is,

L :ej0 *— ■ • «— ejj —* • • —♦ e/,_, «—•.■•<— ek.

Similarly let lL be obtained from L by the corresponding operations on the
left-hand side of L. Since M(L) is nonprojective, at least one of the lines
l(Lr) or (lL)r is nonempty, and if both are defined, then 1{U) - (!L)r. We
set xL to be the nontrivial line l(Lr) or (lL)r. Then the Auslander-Reiten
sequence terminating at FxM(L) is of the form

0 - FxM{xL) -* FXM('L) © FXM{U) -* FkM{L) -» 0
(cf. [SW, WW, BR]). Moreover, it has been shown in [BR, §3] that only finitely
many such Auslander-Reiten sequences have indecomposable middle terms.

2. AUSLANDER-REITEN COMPONENTS OF SELF-INJECTIVE
SPECIAL BISERIAL ALGEBRAS

In this section we shall prove the following two theorems on Auslander-Reiten
quivers of special biserial self-injective algebras. Throughout this section alge-
bras are assumed to be basic and connected.

2.1 Theorem. Let A be a special biserial self-injective algebra. The following
are equivalent:

(i) STA has a component of the form ZAp<q.
(ii) STA is infinite but has no component of the form ZA™ .
(iii) There are positive integers m, p, q such that SFA is a disjoint union of

m components of the form ZAp%q,m components of the form ZA00/(xp), m
components of the form ZA00/(x9) and infinitely many components of the form
ZAoo/ix).

(iv) All but a finite number of components of TA are of the form ZA00/{x).
(v) A is isomorphic to 0(A/G), where A is the category associated with a

representation-infinite tilted algebra of type Ap<q having a complete slice in its
preinjective component, and G is an admissible infinite cyclic group of K-linear
automorphisms of A.

(vi) A S KQ/I where (Q, /) satisfies (RI), (R2) and the number e of its
primitive walks is a positive integer.

(vii) A is representation-infinite domestic.
(viii) A is representation-infinite of polynomial growth.
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2.2 Theorem. Let A be a special biserial self injective algebra. The following
conditions are equivalent:

(i) ^r^ has a component of the form ZA™ .
(ii) T^ has infinitely many {regular) components of the form ZA™ .
(iii) SFA is a disjoint union of a finite number of components of the form

ZA00/(xn) with n > 1, infinitely many components of the form ZA00/{x) and
infinitely many components of the form ZA™ .

(iv) A = KQ/I where (Q, I) satisfies (RI), (R2) and has infinitely many
primitive walks.

(v) A is not of polynomial growth.

In order to prove the theorems we need two propositions.

2.3 Proposition. Let A be a special biserial self-injective algebra and assume
that STA has a component of the form ZAp,q. Then A is representation-infinite
domestic.
Proof. From Theorem 1.5 we know that A = 0(5/G) where B is an infi-
nite locally bounded gentle tree category and G is an admissible torsion-free
group of AMinear automorphisms of B. Let R = B, E = R/G and Sf be a
component of TE whose stable part s%? is of the form ZAp>q . From 1.6 we
have

rE = (YR/G)U¡ \}Jl)

where <9¿, L e .56, are A?*-families of stable tubes of rank 1. Therefore there
exists a component W of Tr and an element 1/geG such that 3? = ^/(g)
and S& — Z^4~. Let the vertices of SW be given by the indecomposable
Ä-modules M(i,j), i,j e Z, the arrows by M(i,j - 1) —> M{i,j),
M(i - I,;') -> M{i,j), such that xM(i,j) S M (i - 1, ;' - 1) and
gM(i, j) = M(i - p, j + q). Choose (/', j) e Z2 such that all projectives
in £f are proper successors of modules from the family S? formed by all
modules M(r, s) of W lying on the sectional paths

M(i + kp, j - kq) -»-> M(i + kp + p, j - kq),
M(i + kp, j - kq) ->•••-> M(i + kp, j - kq + q), k e Z.

Without loss of generality we may assume that i = j = 0.
Denote by 3¡ the full translation subquiver of ^ formed by all modules in

^ which are predecessors of modules from S? (including the modules from
SP). Since E, as a finite special biserial category, is tame, the component
Sf of Te contains only finitely many modules of a given dimension. Then,
since the push-down functor Fx:mod R —> mod(R/G) preserves dimension of
modules, there are only finitely many (g)-orbits in W formed by modules of a
given dimension. Therefore, we may also assume that all modules in 3S have
dimension greater than 2{p + q) dim^ A . Let D be the full subcategory of R
formed by the supports of all indecomposable .R-modules from 3¡ . Observe
that gD — D. We claim that D/(g) is finite. Indeed, consider the quotient
category E' — R/{g) and the push-down functor F[: mod R -» mod E' as-
sociated with the Galois covering F': R —> R/(g) — E'. Then the (isoclasses
of) indecomposable ^'-modules Fx'M{i, j), i, j e Z, form all nonprojective
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vertices of a component %" of YE, with a' - s&fig) = ZÍp>9. Let 3"
be the family of indecomposable ^'-modules of the form F'xM{r, 5) for all
M(r, s) from 3*. Then all projective modules in Sf' are proper successors
of modules from 3e". Denote by D' the full subcategory of E' formed by
the supports of the modules in Sf' which are predecessors of modules from
3*'. Then D' = D/(g). Observe that for any predecessor FxM(i, j) of some
module F'xM{r, s) e 3e" in %?' we have an Auslander-Reiten sequence

0 _ F¡M(i -1,7-1) — Fx'M{i, j - 1) © F/M(/ - 1, j) -» FA'M(i, ;) - 0.
Moreover, F¡M(i, j) = F¡M(i -p, j + q) for all /', 7 G Z.  Hence we de-
duce that D' is the support of the module (&<j=-p@<j=-qFj,M(i, j) and con-
sequently D/{g) is finite.

We shall now prove that ®(D/(g)) is a representation-infinite tilted algebra
of Euclidean type Ap%q having a complete slice in its preinjective component.

First we shall prove that D contains exactly one G-periodic line L and that
gL — L. We know from 1.6 that M(i, j) = M(L(i, j)) for some finite line
L(i, j) in R. Moreover, if M(i, 7) belongs to 2¡ then it is not a socle factor
of an indecomposable projective, and so both lines lL(i, j) and L(i, j)r are
nontrivial. Without loss of generality, we may assume that M(i - 1,7) =
M{'L{i,j)) and M(i, 7 - 1) = M(L(i, j)r) and then M(i -1,7-1) S
M(xL(i, j)) = M(lL(i, j)r). For a line W in R and a positive integer m,
we denote by rW (resp. Wm) the line '{'(■■■'W)- ■■ ) (resp. (•• • {Wr)r ■■■)')
obtained from W by m-times applying the left (resp. right) side operation '()
(resp. ( Y). Denote by L0 the full subcategory of R formed by the common
objects of L(0, 0), L{-p, 0) = FL{0, 0) and L(0, -q) = L(0, 0)'*. Observe
that dimK M(Lo) > (p + q)dim.fcA because the nonzero paths in R have length
< dimKA and dimKM(L(0, 0)) = dim/s: M(0, 0) > 2(p + ^)dimA:^ . Hence
L(0,0) is of the form

u0-*o-yo-^o
where Lq is formed by the line xq-^0 •

Observe that, if M(i,j) e 3 then M[gL(i, j)'"] S gM(i,j - q) s
M {i -p, j) — M[l" L{i, j)]. This implies that all differences

am — dim* M(-mp - p, 0) - dim* M(-mp, 0),        m > 0,
are equal. Similarly, the differences

bm — dimjf A/(0, -mq - q) - dim* M(0, -mq),        m>0,
are equal. The modules M(-mp, 0) (resp. Af(0, -mq)), m > 0, belong to
pairwise different (g)-orbits in W . Hence am > 0 and bm > 0. Consequently
the lines L(-mp, 0) are of the form

Um — ■ ■ ■ — Xm — • ■ • — Xm-\-— X\ — ■ ■ ■ — Xq — ■ ■ • — yo — • • ■ — Vq

and the lines L(0, -mq) of the form
«o-x0-y0-yi-ym-\-ym-vm

where since gmL(0, -qm) = L(-mp, 0), we have gx( = xi+i, gu¡ — ui+l ,
gyi+i = y j and gvi+l = v¡ for /' = 0, ... , m - 1. Moreover, the lines
L(-mp, -mq) are of the form

Um-Xm-Xm-\-Xq-.Vu-ym-l-^m-Vm-
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For each m > 0, we denote by Lm the line

xm - ■ ■ ■ - Xq - ■ ■ ■ - yo-ym.

Then we have the chain of full subcategories of R

Lq C Li c L2 C • • •

such that gLm c Lm+l. Consequently L - \Jm>0Lm is a line in R and
gL-L. Observe also that, for any M(i, 7) .= M(L(i, 7')) from 3, L(i, j)
is of the form
a-gkxs-gkxx-gkx0-gky0-gky\-gkyt-*

for some k eZ, s, t > 0, where the line

xs-x\-xq-y0-y\-yt

is the convex subline of Lm , m = max(s, t). Hence L is the unique (g)-
periodic (G-periodic) line of D. Observe also that L is a convex v -slice in
R = B and that 0(L/(g)) is a hereditary algebra of type APOtqo. We shall
show that ®(D/(g)) is a tubular extension of 0(L/(g)) (in the sense of [R2,
4.7]). We claim that for any arrow a in D with source in L its target is also
in L. Suppose this is not the case. Then there exists M(i, j) = M(L(i, 7')) in
3 such that gkL(i, 7) is for some k G Z, one of the lines

a-xs-xq-y0-yt-<- c -> d-e

where c lies on L between yt and yt+\, d & L, or

e-d 4-c-^-xs-xq-y0-yt-b

where c lies on L between xs+\ and xs, d £ L. We may assume that k — 0
and, by symmetry, that L(i, j) is of the first form. Observe that, for any
m G N, L(i, jY™ either contains d does not contain c. On the other hand,
L(i, JY" = L(i, j - q) is of the form

a-xs-x0-y0-y,-*-c-yt+\-<- c' -> d'-e'

where c = gc', a contradiction.
From the choice of 3, the support of any module from 3 contains a line

gkLo. Hence the support L¡j of any M(i,j) from 3 is of the form

a-—> b-c <--d
where the common part of L and L¡j is the line between b and c, and may be
the line a--> b (resp. c «--d) has only one object. This shows that D
is a gentle tree category and a convex iv-slice of R = B . Hence, let A = D/(g),
then 0 A is a tubular extension of the hereditary algebra H = 0(L/(g)), and
so is a representation-infinite tilted algebra of type Ap> tq<, p' > Pq, q' > qo,
with a complete slice in its preinjective component.

Moreover, 3/(g) is a full translation subquiver of a component of TA.
Since any module in 3'/(g) has infinitely many predecessors and 3/(g) is a
full translation subquiver of ^/(g) whose stable part is of the form ZAp<q , we
infer that 3¡(g) is a full translation subquiver of the preinjective component
of rA . Consequently 0 A is a tilted algebra of type Apq.
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Our next claim is that D = B. Suppose that D is a proper subcategory
of B - R. Since B is connected there exists an object x G B, x & D
connected by an arrow to D. Then y = vrx for some r eZ is connected
by an arrow to D. Obviously y 0 D. Let K be the full subcategory of B
formed by all objects of D and the objects gmy, m G Z. Since AT is a convex
t/-slice in the repetitive category B of the gentle tree category B , it is also a
gentle tree category. We may assume that 0(A7(ír)) is a tubular extension
of H — 0(L/(g)). Indeed, if this is not the case, we replace K by the full
subcategory K' of B formed by all objects of D and the objects gmy' where y'
is defined as follows. If y is a source of K, then there exists a nonzero path (in
R) y —> «i —► ■ • • -» at —> at+l -+•■■—► as = v~xy such that a\, ... , at £ D,
at+i, ... , as 0 D, and we put y' = at+i. If y is a sink of K then there
exists a nonzero path y <— ai <—■■■<— a¡ <— at+\ <—•••<— as = vy such
that a\, ... , at e D, ai+1, ... , as $. D, and we put y' = at+\. Consequently,
0(A7(g)) is a tubular extension of H of tubular type (p+\,q) or (p,q+l).
We shall prove now that this leads to a contradiction to the fact that 3 is &
full translation subquiver of the component W and D is the support category
of 3 . We use now the known description of the indecomposable preinjective
modules over the tilted algebra 0A of type Ap¡q and the fact that 3/(g) isa
full cofinite translation subquiver of the preinjective component of YA . Then,
for any M(i, j) = M(L(i, 7')) G 3 the line L(i, j) is of the form

where the line a*-<— 6—►•••<— c —>•••—* d is the common part of L(i, 7)
and L, contains a line of the form gkxo-gkyo, for some k e Z, a and
d are not sinks of L, and may be a = b, c = d, e = a or d = f. Assume
now that y is a source of K. Then there exists (up to symmetry) a line

¿z->-x -y Z[ <-^Z(<-y = yo

where a is a source of L, F: a —>-x is the support of a module M g3 ,
U: a —» -x —► z\ <— • • • <— z, is the support of a module N e 3, and may be
f= 1.

Let Q: z\ <—■•■<— zr «— yo <—•••<— y5 be the maximal nonzero path in R
which is a i;-slice of R, contains the path z\ <—■■■<— zt and has z\ as the
end point. Obviously we have in 3 an arrow N —> M and hence V = U.
This is a contradiction to the existence of Q and the definition of the operation
(Y-

Finally assume that y is a sink of K. Then there exists (up to symmetry)
a line a —►••■- x «— Z\ ->••■-» zt -* y = yo where a is a source of
L,  K:a —►-x is the support of a module M e 3,  U:a —> ••• — x *-
Zl —>...—> zt is the support of a module N e 3, and may be / = 1. Let
Q:zi —>•••—> z, —> y0 —>•••—> yx be the maximal nonzero path in R which is
a i/-slice of R, contains the path Z\ -»■-► Z/ and has zi as a source. Then
there is an arrow yV —> A/ in 3 and hence Fr = U, again a contradiction,
because of the existence of £!.

Therefore we proved that R — B — D. Now, since ®(D/(g)) is a tilted
algebra of type Ap¡q, we deduce from [S2, 2.13] that G' = G/(g) is an ad-
missible infinite cyclic group of AMinear automorphisms of A = D/(g), and
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hence G is a free abelian group of rank 2 (cf. [S2, 4.5]). Consequently, by [S2,
2.1] A £ (B(R/G) = 0(Â/G') is representation-infinite and domestic.

2.4 Proposition. Let A be a nondomestic special biserial self-injective algebra.
Then YA has infinitely many (regular) components of the form ZA™ .
Proof. We shall apply some arguments from [PS]. We know, by 1.5, that A =
0(i?/G) where R is a simply connected special biserial self-injective category
and G is an admissible torsion-free group of AMinear automorphisms of R.
Since A is representation-infinite, we conclude as in [DS 5.1] that R contains
a full convex subcategory L which is a G-periodic line. Observe that L is a
convex i/-slice of R. For a convex ¡/-slice D of R, we denote (cf. [PS]) by D+
(resp. D~) the convex hull of the full subcategory of R formed by the objects
of D and all objects x of R which satisfy the following two conditions:

(a) the (¡/)-orbit of x does not intersect D ;
(b) R(x, y) ^ 0 (resp. R(y ,x)^Qi) for some object y of D.

It follows from [PS, Lemma 9] that D+ (resp. D~) is a convex ¡/-slice of R.
Consider the following sequence of convex ¡/-slices of R, Bq c B\ c B2 c • • ■
where, in the above notation, Bq — L, B2n_\ - B^n_2, B2n = B^n_x for
n > 1, and let B — U„eN ̂ « • Then B is a convex ¡/-slice of R. Moreover,
it was shown in [PS, §3] that B is a gentle (locally bounded) tree category and
R = B. Since A = 0(5/G) is nondomestic, B/Gl is not a (finite) branch
extension of L/Gl (otherwise 0(5/G¿) is a tilted algebra of type APtQ and
0(5/G) is domestic) and hence B ^ Bn for all n G N. Then 5 contains a
full subcategory D of the form

L-\ Lq Ll

U-\ Wo Mi
I                               I                       I

y_i -x_i -z_!-y0-x0-z0---yi -x, -Z[-

where the categories L¡ are lines of type A^ , and gL¡ = L¡+\, gx¡ = x,+i, for
all i G Z. Replacing, if necessary, L, by L¿ = gkL¡ and x, by x\ = gkx¡ for a
large k > 1, we may assume that the number of objects on the line Xo-Xi
is greater than dim^ A . By duality and symmetry, we may also assume that the
arrows w, - x, and x, - z, are oriented as u¡ —> x, and x, —> z;. Then D is
of the form

L L, Li+1

i I I
"i-i "i »i+i

I «1-1 I ai Í ai+l
Pi-l ßi Pi+\«- x,_i —► z,-,,-► «,• <-y; ^ Xi —► Zi-► vM <-*- yM *- xM —► z,+1

where a,jß, = 0 and may be v¡ = x,, ¡eZ. Taking values of v~l at the source
of the lines L, we conclude that R = B contains lines y¡ —►•••—» v¡ -* •• •
of type Aoo whose sources are the sinks of L, and the sinks are the values of
v~x at the sources of L,. For each n > 1, we denote by M„ the .R-module
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M(Wn) given by the line

Wn:v0<-<- y0 «- x0 -» z0-► vn <-«- y„ «- xn

and put d„ = dimjt M„ . Observe that by our assumption on Ö, dn > dim^ A ,
and obviously dn+\ > d„ for all n > 1. Let % denote the component
of Tr containing the module M„ . Observe that, for all t, s > 0, the lines
(l'W„Y = l\w£) contain the line Wn . Hence all predecessors of M„ in %,
have dimension > d„ , and the Auslander-Reiten sequences terminating at these
modules have two middle terms, because the radicals and the socle factors of
indecomposable projective i?-modules have dimension less than dimjç A, and
hence less than d„. Similarly, all successors of Mn in Wn have dimension
> d„, and the Auslander-Reiten sequences starting at these modules have two
middle terms. Then, using properties of Auslander-Reiten sequences, we de-
duce that Wn is a regular component of the form ZA^, all modules in %
have dimension > d„ and that Mn is the unique module in fên of dimen-
sion d„. Since d\ < d2 < ••• the components ^ are pairwise different.
Then the images ^' (n > 1) of the components Wn by the push-down functor
Fx: mod R —» mod R/G are pairwise different regular components of TRjG with
tree class A™ . Then, by [BR, §2] the components ^' are of the form ZA™ .
This finishes the proof of the proposition.

2.5 Proof of Theorem 2.1. The equivalence of (v), (vi), (vii) and (viii) is
a direct consequence of [S2, 1.5, 2.13], of 1.5 and the fact that the Ringel's
tubular algebras and tilted algebras of type Dn and Ep are not special biserial
(cf. [R2, §5]). The implications (iii) =*> (ii), (iii) => (i) and (iii) =>• (iv) are
trivial. Suppose (v) holds. In [ANS, 4.3], the AR-quiver of A is completely
determined. It consists of infinitely many components of type ZAP i9 , tubes of
rank p, q and 1. From [S2, 2.13] we know the generators of G, and there is
some m such that G has m orbits on the components of each type. Therefore,
by [DS, 2.5], the push-down functor Fx: mod A —> mod(A/G) is dense, and (iii)
follows. Further, the implication (i) =>• (vii) follows from Proposition 2.3, and
the implications (ii) =*► (vii) and (iv) => (vii) hold by Proposition 2.4.

2.6 Proof of Theorem 2.2. The implications (iii) => (ii) and (ii) => (i) are
obvious. The equivalences (i) •» (v) and (iv) •» (v) follow from Theorem 2.1.
We shall now show that (v) implies (iii). Assume that A is not of polynomial
growth. Let A = 0(/?/G) where R is a simply connected self-injective locally
bounded special biserial category and G is an admissible torsion-free group of
AMinear automorphisms of R . We know from 1.6 that

TA et TR/G s (Tr/G) II ( U 31 )
V.e-25     /

where 31 are AT*-families of stable tubes of rank 1. By [BR §3] there are only
finitely many Auslander-Reiten sequences in mod R/G with indecomposable
middle term and terminating at the indecomposable i?/G-modules of the first
kind. Consequently, STA does not contain components of the form ZAoo and
contains at most finitely many components of the form ZA00/(xn) with n > 1.
Moreover, we know by [HPR] that the components of STA containing periodic
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modules are of the form ZAoc/(xm), m > 1. Let W be a component of sTr/G
which does not contain periodic modules. Then, by [BR, §2] W = ZA/H for
A = A™ and some admissible subgroup H of G. If i/ is nontrivial, then
by [Z] ^ is of the form Z3* where 3e = Ap t q for some p, q > 1, and
consequently, by Proposition 2.3, A = 0(/?/G) is domestic, a contradiction to
our assumption on A . Therefore W is of the form ZA^ and then (iii) is a
consequence of Proposition 2.4.

This finishes the proof of the theorem.

3. On Auslander-Reiten components for
a class of self-injective algebras

Let A be a self-injective finite-dimensional algebra. We consider functions
on the stable Auslander-Reiten quiver STA oí A.

For ^-modules X and Y, we denote by 3°A(X, Y) ç HomA(X, Y) the sub-
space of maps which factor through a projective module, and by Hom4(X, Y)
the quotient Hom^X, Y)/&A{X, Y).

3.1   Fix some ,4-module W, and define d = dw' STA -> N by
dw(M) = dim^Hom^(IF, M).

3.2   Lemma. Suppose that d = dw as above. Assume that
(*)  0 —> xM -^ E -^ M —>0 is an Auslander-Reiten sequence.
(a) If M is not a summand of W then d(M) + d(xM) > d(E).
(b) If in addition £IM is not a summand of W then equality holds in (a).

In particular, if A is a component of STA such that no indecomposable summand
of W belongs to A or QA then dw is an additive function on A.

This can be deduced from [AR2], using the fact that for self-injective algebras,
ÇI preserves AR-sequences [AR, VI]. For completeness, we include a (different)
proof.
Proof, (a) Apply the functor HomA(W, ) to (*). Since (*) is almost split
and since M is not a direct summand of W, we obtain an exact sequence

0^(W, xM)A A (W, E)A -C (W, M)A -* 0.
Clearly, j* and p* preserve 3°A( , ). Moreover, if n e3°A(W, M) then there
is some p G ¿?A(W, E) with p*(p) = n. Consequently we have a sequence

0 - â°A(W, xM) ^ &>A(W, E) -^ &>A(W, M) - 0
which is exact at the ends, and im7* ç kerp*. Therefore (a) follows.

(b) Suppose QM is not a summand of W. We have to show the follow-
ing: (**) Let <p: W -> xM such that j o <p belongs to ¿?A(W, E). Then
<p G 3°A(W, xM). Take such (p, and assume for contradiction that (p 0
¿PA(W, xM). Then there is an indecomposable summand, W\ say, of W
such that <p\ = (pwx does not belong to ¿?A{W\, xM). Let X be the push-out
of tp\ along an injective hull. That is, there is a commutative diagram with
exact rows

0 -» xM —  x  JU n-'wj  ^0
( * * * ) î (d, Î / id Î

0 -»   wx   -U   1   -i* n-iWi  -»  0
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with I injective. We will show that the top row is an almost split sequence.
Then we are done since by the uniqueness of Auslander-Reiten sequences,
Q_1 W\ = M, a contradiction to the hypothesis.

Explicitly, we may take X = xM®I/Xq where Xq = {(<p\W , iw): w G Wx] ,
and u, v and / are canonical maps.

First, we claim that (* * *) does not split: Otherwise, there is some y/ G
Hom^(X, xM) such that y/u = idTM and we have that (p\ = (y/u)<pi =
y/(li) and <p\ factors through I. Since I is also projective, we have ç>\ e
3°A(W\, xM), a contradiction.

Now let n: xM -» Z, and assume that n is not a split monomorphism.
Since (*) is an Auslander-Reiten sequence, there exists some p G HomA(E, Z)
such that n = p o j. Now, jo^ belongs to ^A(W\, E) and A is self-
injective, therefore j°q>\ must factor through the injective hull I of W\ . Let
X G Hom^(7, E) with Xoi — jcxpl. Then we have a well-defined map p: X —► Z
given by p[(m, a) + X0] = nm - pXa, and moreover n = p o u. This shows
that (* * *) is almost split.

We wish to exploit functions of this form which we construct using approxi-
mate subalgebras.

3.3 Lemma. Let B be a self-injective subalgebra of A (with \B = \A). For
Y g 5-mod and M g ,4-mod we have

(a) Homfi(F, M) S Hom^ ®B Y, M).
(b) If A is projective as a B-module then this induces an isomorphism

HomjiF. M) a HornA(A ®R Y, M).

3.4 Hypothesis. Let A and B be self-injective algebras, and suppose A is a
component of STA.

(1) B is a subalgebra, such that A is a projective B-module (and \A = Iß).
(2) B is local.
(3) For all M in A, M is a direct summand of A®r M.

3.5 Let W = A<S>b Y for some A-module Y, and consider d — dw ■ Then
dw(M) = dy(Ms) ■ Moreover, write MB = M0 © £) B , such that M0 does not
have a projective summand. Then d(M) = dy(Mo).

We denote by K the simple 5-module.

3.6 Some remarks, (a) If Y = K then dy(MB) = dimsoc¿(Afo) • In particu-
lar, if MB is not projective then dy(MB) ^ 0 and í/^®y(Af) ̂  0.

(b) If Y = xY then dy is constant on r-orbits, hence induces a subadditive
function on the tree of a component.

3.7 Lemma. Let Y = K. Suppose that X is a B-module which does not have
a projective summand. Then dim* X < dy(X)(\B\ - 1).
Proof. Let d = dy(X) ; then by 3.6(a), d = dim soc X. There is an injective
hull 0^I^?Afl-'l^0 where P = £0¿ B. Moreover, 7t(radP) =
radQ-'-Y and therefore dimQ-'X > d. We deduce d + dimX < dimfí-'X-l-
dim X = dim P, and the statement follows.

3.8 Proposition. Let A, B be as in 3.4. Suppose that A is a Euclidean com-
ponent of A. Let *¥ = {X e ind B:A®B X has a summand in A}. Then
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(a) One of K or £l~lK belongs to ¥.
(b) If Y and £IY e indi? -W, where Y is not periodic or projective we have

that either Hornby, A) = 0 or dimlrT} is bounded.

3.9 Remark. The last possibility, namely that there is a nonperiodic module
such that the dimension of {xnY} is bounded, does not arise for various types
of components, in particular A™ and D^ , see [MR].

Moreover, if A is a group algebra or a block this never happens: In this case,
x = Q2. If dim{t"y} is bounded, then Y has complexity < 1, in the sense
of [AE]. Then by the theorem of [AE], Y is periodic.

Also, if A is a tame self-injective algebra then by [CB1] for any nonperiodic
module Y, the dimension of {x"Y} is unbounded.

Proof of 3.8. Suppose that (a) does not hold. Take W :- A ®B K, then dw is
additive on A. Moreover, dw is nonzero on A : If dw{M) = |HomB(A', M)\ =
\socB(M0)\ = 0 then MB is projective. By the hypothesis (3) in 3.4 it follows
that M is projective; a contradiction.

In [HPR, Theorem (c), p. 286], the following is proved:
Suppose I is a Euclidean diagram, then any additive function ZZ —> No is

bounded. Hence dw takes bounded values on A, by 3.2. So for any M in
A and for all n G Z, dw(rnM) = |Homg(A:, xnM)\ < a constant C. But
this is equal to |soCfl(T"Af)0|. But then also dim(t"A/)o is bounded, by 3.7.
Using now the hypotheses (1) and (3) in 3.4 we deduce that also dim(xnM) is
bounded.

In [A], the following is proved: Let R be a connected artinian ring with
AR-sequences. If R has an AR-component with modules of bounded length,
then these are all indecomposable modules and R is of finite representation
type. Hence A is finite and A is of finite type. This is a contradiction.

Since Í2(A) is also Euclidean, we may assume that K belongs to *F.
(b) Suppose now that the 5-module Y is nonperiodic and not projective,

and that both Y and QY do not lie in *¥. Consider the function dw where
W = A®B Y. By 3.2, we know that dw is additive on A, and consequently
by [HPR, p. 286] (see above) dw must be bounded.

If dw = 0 then we have the first possibility. Otherwise, let dw ^ 0.
We have, taking M = x~"K that \HomB(Y. x-"K)\ = \HomB(xnY. K)\ =
|top(r"y)o| < a constant C. But then dimTny is bounded.

3.10 Corollary. Let A be local and self-injective. Suppose A has infinitely
many x-orbits of nonperiodic modules Y with dim{r"y} unbounded. Then A
does not have a Euclidean component.
Proof. We take A = B ; then the hypotheses in 3.4 are satisfied. Assume for con-
tradiction that A has a Euclidean component, A say. We apply the proposition.
Here *F is the set of modules in A. Note that the component is fixed by Í2 since
QA and A are both Euclidean, and there is only one projective module. There-
fore K belongs to *F. By the proposition and by the hypothesis, there is some
Y in ind A -*F which is nonperiodic and for which Hornby, A) = 0. Conse-
quently Hom^r, A") = 0. On the other hand, HornA(Y.K) = Hornby, K)
[since y is not projective and K is simple]. Moreover, K is the only simple
module and therefore Y = 0, a contradiction.
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As this result may suggest, we shall now prove that various algebras have
infinitely many r-orbits of nonperiodic modules.
3.11 Lemma. Let A be a local self-injective algebra, and let m G N such that
socm(A) ç J2. Suppose {M„} is a sequence of nonperiodic indecomposable A-
modules of unbounded dimension such that J2Mn = 0. If there is a x-periodic
module Z such that JmZ = 0, then the modules Mn lie in infinitely many
x-orbits.
Proof. Consider the function d — d¿; then d is additive on nonperiodic com-
ponents and periodic on each r-orbit. We claim that d(Mn) > dim soc M„ ; this
implies that the numbers d(M„) are unbounded; therefore the modules must
belong to infinitely many r-orbits.

Observe first that ¿PA(Z,Mn) = 0: Suppose <p G 3°A(Z, Mn)\ since A
is self-injective, (p factors through an injective hull of Z ; hence there is a
commutative diagram

Z -^ Mn
;\ /n

I,® A
Since JmZ = 0 we have that 7'(Z) ç socm[Z © A] ç E © J2 . Consequently

nj(Z) ç ¡/(I©/2) ç J2[im<p] = 0, and therefore dz(M) = dimHom^(Z , Mn)
> dim soc Mn.

3.12 Corollary. Let A be the local algebra
A = K(a,ß)/(ß2,a2-(ßa)mß,(aß)m-(ßa)m,a3),        m > 1.

Then A does not have a Euclidean component.
Proof. We apply 3.11. Let Mn be the string module of dimension In + 1 :

K^-K^Ki-^K-Ík.
We take for Z a 2-dimensional module

Z = K =i K       (X ¿ 0).
a=l

Then xZ = Z (see [CB2]). Now we have to show
( 1 ) Mn is not periodic.
Then it follows from 3.11 that the M„ lie in infinitely many r-orbits. More-

over, the corollary is proved by 3.10 if we establish that
(2) If y = Mn then the dimension of {xkY} is unbounded.
Let Ö be the component of Mn. Consider the module W = Aß ; then

xW a W a QW. It has been proved in [E2] that dw(M) = 1 or 2 for
arbitrary string modules M. Moreover, all modules in the component of W
are asymmetric strings whereas Mn is symmetric, in the notation of [CB2]. So
W does not belong to 8 , and dw is a nonzero bounded additive function on
6 . It induces a bounded additive function on the tree of 6 .

Consequently 6 is not a tube, and (1) follows. Moreover, by [HPR], the
tree class of 6 must be either A™ or fl» (or Euclidean), and then (2) follows
from [MR] (or from Auslander's Theorem [A] (see the proof of 3.8)).

3.13 Lemma. Let A = KG where G is a p-group and char AT = p. Suppose
G is noncyclic and not a Klein A-group or a quaternion group.   Then A has
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infinitely many x-orbits of nonperiodic modules. In particular, A does not have
a Euclidean component.

This follows also from [L, Lemma 3.1] and for p > 2 from [O, Lemma
4]. We include a (different) proof since it is elementary and exploits the same
principles as 3.12.

We will use the following well-known facts from the theory of modular group
representations:

3.13.1    Suppose G is a p-group and charA^ — p .
(a) Let Q be a subgroup of G. If M is an indecomposable ATß-module

then KG ®kq M is indecomposable [Green's theorem, see e.g. [Be]].
(b) If y is a periodic A^G-module and G is not cyclic or quaternion then

dim^ y is divisible by p (see [C]).
Proof of 3.13. By Green's theorem it suffices to prove the lemma for a group G
such that \G\ is minimal subject to the hypothesis. Then by elementary group
theory G is either dihedral of order 8 or C2 x C4 or Cp x Cp for p > 2. We
apply 3.11.

In all cases, the group algebra is = K(a, ß)/I for an appropriate (well-
known) ideal. Take Mn to be

K A K A K A • • • A K
of dimension 2« + 1. Then M„ is not periodic, by 3.13.1 if we take those n
where p does not divide 2n + 1. For Z , take a periodic module of dimension
P-

If p = 2 one may take

Z = Ka^K   with X ¿0.
ß=\

Then it is easily verified that Z = Q2Z [which is also well known in the dihedral
case, since then A^G is special biserial, see [BR] or Chapter 1]. If p > 2 we
take Z = Aap~x. In all cases, it is easy to check that Z ç socpA, and the
statement follows from 3.10.

We note the following consequence:

3.13.2 Corollary. Let D be a p-block of some group algebra KG with defect
group P. If P is not cyclic or a Klein 4-group of a generalized quaternion group
then D has infinitely many x-orbits of nonperiodic modules with a given vertex
Q < P where Q is not cyclic or a Klein 4-group of generalized quaternion.
Proof. By the Brauer correspondence of blocks and the Green correspondence
for module which preserves x, we may assume that P is normal in G. The
statement follows then from 3.13 by standard arguments.

We shall now study Euclidean components for blocks. Let D be a block, that
is D is an indecomposable algebra which is a direct summand of some group
algebra.

A defect group of D may be defined as a minimal subgroup P of G such that
every Z)-module M is a direct summand of KG <s>kp M. It is well known that
any such P is a p-group and is unique up to G-conjugation. In particular, with
A = KG and B = KP the hypotheses in 3.4 are satisfied, for any component
of STD.
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A vertex of an indecomposable AG-module M is a minimal subgroup V of
G such that M is a direct summand of KG®kv S for some indecomposable
K F-module S. In this case, S is a source of M. Also, F is a p-group and is
unique up to G-conjugation. Moreover, any two sources of M are conjugate
in NG(V).

We recall that a module whose vertex is cyclic or generalized quaternion must
be periodic; this follows from [AE].

Let H be a subgroup of G, we use the notation K% for the module
A^G <g)KH K.

3.14   Theorem. Let D be a block of a group algebra KG with defect group P.
Then D does not have a Euclidean component unless p = 2 and P is a Klein
4-group.
Proof. Assume that D has a Euclidean component, A say. Take A = KG and
B — KP ; then the hypotheses in 3.4 are satisfied, and we apply the proposition.
We may assume that K belongs to *P [otherwise we replace A by Q_1A] ; and
write KG = M ® M' with M in A.

The module Mp is a direct sum of modules of the form KpxnP for x G G ;
this follows from the Mackey decomposition and Green's theorem [see 3.13.1].

By 3.4(3) there is some Q = PxDP such that M is a summand of Kq . Fix
such Q; note that Q is not cyclic or generalized quaternion. Put A/i := Kq,
and remember that Mi is a summand of Mp . Now suppose that Y G B-mod
is nonperiodic and not projective.

(1) If Y and Q do not belong to *F then Yq is projective. By 3.8 and 3.9
we have that HomB(y, A) = 0. In particular, Homfi(y, M) = 0 and then
0 = HomÄ(y, Mi) = Hornig(y, KQ), by the Nakayama relations for group
representations. Now, Kq is the only simple ATQ-module, and therefore Yq
must be projective.

As we noted above, Q must contain a subgroup V = Cp x Cp .
(2) We may assume that Q = V . We will show that there is a module Z in

A with vertex V and source Kv . Let Y = Ky\ then Yq is not projective and
therefore Y belongs to *F. Choose a summand N of YG which lies in A. As
in (1), a source of N in P is of the form KyxnP . Since N is not periodic, the
group Vx n P is not cyclic and is therefore = Vx which is G-conjugate to V.

Then V is necessarily a minimal vertex of the modules in A. Now let
¥0 = {Y G »F: vertex(y) = V}. Then % is closed under x. We claim that
¥0 contains only finitely many r-orbits: Let N be in A, and suppose there
is some No in 4*0 such that N is a summand of Nff. Then it follows that
vertex(N) = V, and a source of N0 is a source of N. As we noted above, the
number of sources is finite.

By (1) and (2), all nonperiodic f-modules with vertex V belong to *F0.
Hence V has only a finite number of r-orbits of nonperiodic modules. We
deduce from Lemma 3.13 that F is a Klein 4-group; in particular p = 2.

It remains to show that P = V.
(3) We may assume that V is a normal subgroup of G. Let Aq be the

block of NG(V) containing the Green correspondent of some M in A with
vertex V. By the theorem of Kawata [K] which we will state below in 3.15,
Aq must have a Euclidean component. If we show that the defect group
of Aq is V then it follows form general block theory (see [AB]) that V is
also a defect group of D.
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Let A = A U QA. Our aim is to show that all simple Z)-modules belong to
A. To do this, consider the set of modules 'V = {M e indö: M is a summand
of Ky) . We will use properties listed below in 3.16.

By (1) and (2), there is some M in "V which belongs to A. Choose such
M = Mq , with socle Sq (see 3.16(a)).

(4) If Mq g T n A and S0 = soc M0 then S0 G A :
Suppose not, then ds0 is an additive function on A which is bounded on

A. On the other hand, it follows from 3.16(e) that socv(xnM0) s £0rf,-A// ;
moreover the multiplicity of Mq as a summand is unbounded for n -* oo.
Consequently the dimension of Hom/4(5'o, r"M0) is unbounded as well. But
this is equal to |Hom4(,Sn, t"M0)| since Sq is simple. Therefore ds0 is un-
bounded, a contradiction.

Now assume Si is simple and Ext'^i, Sq) ^ 0. Assume first that Si is a
composition factor of Mq . By (4) it suffices to show that A/j belongs to A.

Suppose not, then d\i{ is additive on A and hence is bounded. On the other
hand, dMi(xnMo) = IHom^Af,, r"M0)| = IHom^Afi, xnM0)\, by 3.16(c), and
this is > the multiplicity of Mq as a summand of socv(x"Mq) , by 3.16(b). we
have observed in the proof of (4) that this number is unbounded as n —> oo .

Otherwise, »Si ç socQ-1A/o. By 3.16, we have again that socv[xnQ~lM0] =
Y, 0 djMi. Since Si ç soc Q_1 Mq , we deduce that Mi occurs for n = 0, and
then by 3.16(b) and (e), the multiplicity of Mi is unbounded as n —» oo . One
shows now as before that Mi belongs to A and then Si as well, by (4).

The quiver of D is connected, therefore all simple modules belong to A. We
will now show that all nonperiodic indecomposable Z)-modules must belong to
A.

Let Z be such a module, and consider dz ■ Put X = ¿2 0 S¡¡, the sum of all
simple ^-modules. Then dz(x~nX) = IHom^Z. x~"X)\ = \HgmA(xnZ, X)\
— |Hom/i(T'IZ, X)\. If dz were additive on A or QA then it would follow that
the length of top t"Z is bounded, and then dimr"Z as well, a contradiction
to 3.9.

Hence D has only finitely many r-orbits of nonperiodic modules. By 3.13.2,
P is a Klein 4-group.

3.15 Theorem (Kawata [K]). Suppose A is a component of the stable Auslander-
Reiten quiver of KG. Let V be a minimal vertex of the modules in A and W
the component of STA containing the Green correspondent of some module M
in A with vertex V where A = K[NG(V)]. Then there is a subquiver Wq of W
and a graph isomorphism ^6 —> A.

It remains to summarize the properties of the modules in 'V we used.
3.16   Let G be a finite group and V < G a Klein 4-group. Suppose K is an

algebraically closed field of characteristic 2, and that D is a block of A = ATG.
Define 'V = {M e indD: M is a summand of Kfi} .
(a) socAf = topAf and is simple; moreover each simple ^-module occurs

exactly once as a top factor of some M g 2^. We denote by M¡ the module
in T with top Si. This follows from the fact that Kfi ^ K(G/V), hence is a
group algebra, which also implies that

(b) |Hom^(Af,, Mj)\ is equal to the multiplicity of S¡ as a composition
factor of Mi.
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(c) If X G D-mod such that Xv does not have a projective summand and
Mef then 3aA(M, X) = 0 = 9°A(X, M). This follows easily from the fact
that V acts trivially on M.

The following properties may be proved by inducing the ATF-modules £ln(K)
which are G-stable, and studying their indecomposable direct summands, using
for example [HB, §9].

(d) Suppose P¡ is an indecomposable projective Z)-module with top S¡ .Then

OcMiC Í2M, c P¡   and   í2A/,/M, £ M¡ © Mk

for some M¡, Mk in 'V. Moreover, the multiplicity of M¡ as a summand of
ÇlMi/Mi is the same as the multiplicity of M¡ as a summand of QMj/Mj .

This allows to construct a special biserial algebra associated to D and y.
We define a quiver where the vertices are the simple .D-modules. The number
of arrows i -» 7 is defined to be the multiplicity of M¡ as a direct summand
of ÇlMilMi.

Then, by (d), we have that at each vertex i, two arrows start and two arrows
end. Moreover, the number of arrows i —► 7 is the same as the number of arrows
7 —» /. Any connected component has at most three vertices, since it arises from
inducing simple C(F)-modules to G and G/C(V) is isomorphic to a subgroup
of 53 (= Aut V). In fact, this implies that the connected components of the
quiver are of the form:

CO " o—o » //%
We define now 3d to be the symmetric special biserial algebra with this quiver
such that J3 = 0 ; and we denote by S, the simple ^-module corresponding
to the vertex S¿. We will now describe £lnM for all M in y and n eZ.

(e) The submodule socv(Q"M) is a direct sum of modules M¡ in 'V and so
is the quotient ÇinM/soz,v(ÇlnM). Suppose M — Mq; then the structure of the
module Q"So of the algebra ¿?o describes which M¡ occur in this filtration
of il" M and how they extend.

In particular, if So and S7 belong to the same connected component of
the quiver then the number of M¡ in sock(Q2"A/o) or in sock(£22"+1A/o) is
unbounded as n -» 00 .

4. Some applications

Let K be an algebraically closed field with char AT = p > 0, G a finite group
and B be a block of KG. Concerning Euclidean components, we summarize:

4.1    Theorem. The following conditions are equivalent:
(i) STB has a connected component of the form ZA for some Euclidean quiver

A.
(ii) ^r^ has a connected component of the form ZAi^i or ZA^^.
(iii) p = 2 and the defect groups of B are Klein 4-groups.
(iv) B is Morita equivalent to one of the algebras given by the following quiver
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and relations:

< «CO a* = ßz = 0, aß = ßa.

ß2:#^=^«^=^» ßy = no = 0,        yßor, = or,yß.

By       \\V.?" // ßa = SX = Xß = yn = Kn = ny = 0,
ßy = tcX,    yß = on,    nô = Xic.Ä

(v) B is one-parametric.
(vi) B is representation-infinite of polynomial growth.
This follows from 3.14 and the results of [E1 ] or the lists in [E2, pp. 294-297].

Remarks. (1) If B = Bi then STB consists of one component of the form
ZAiti and one Pi (AT)-family of tubes of rank 1.

(2) If B = B2 or B = By then STB consists of one component of the form
Z^3 3, two tubes of rank 3 and one A^*-family of tubes of rank 1.

(3) For small fields, it is also possible that W = ZBt, , see [Be, Bs].  This
occurs if and only if the block has two simple modules.

For the tree class of stable components for STB , this means
4.2 Corollary. The following conditions are equivalent:

(i) STB has a connected component whose tree class is a Euclidean tree.
(2,2)

(ii) STB has a connected component whose tree class is of the form-.
(iii) p = 2 and B is Morita equivalent to KV4  (the group algebra of the

Klein 4-group).
4.3 Corollary. Assume that B is representation-infinite and B is not Morita
equivalent to KV4 in characteristic 2. Then the tree class of any component of
STB is one of the trees Ax , D^ or A^ .
4.4 Corollary. Assume that the defect groups of B are neither cyclic nor Klein
4-groups. Then any component of STB is of the form ZAX, ZA00/(x"), ZD^
or ZA™.

For tame blocks B which have nonperiodic modules we have now precise
information about the graph structure of STB .
4.5 Corollary. Let p = 2 and suppose that B is a block whose defect groups
are dihedral of order > 8. Then STB is a disjoint union of at most two tubes of
rank 3, infinitely many tubes of rank 1 and infinitely many components of the
form ZA™.

By [El; E2, VI. 10.1], B/socB is special biserial, and the stable AR-quiver
consists of components of the form Z^J/TI for some group n and otherwise
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of tubes of rank 1, 3; and moreover the number of 3-tubes is at most two. More-
over, by 3.14, srB does not have a Euclidean component. Now the Corollary
follows from the results of Chapter 2.

4.6 Corollary. Let p = 2, and suppose that the defect groups of B are semi-
dihedral. Then STB is a disjoint union of at most one tube of rank 3 and
infinitely many components of each of the following types: l-tubes, 2-tubes,
ZA™ and ZD^.

By 3.14, we know now that B does not have a Euclidean component. The
rest has been proved in [E2,11.10].

In [El, E2], algebras of dihedral type have been studied and classified. By
definition, an algebra A is of dihedral type if it is connected, symmetric and
the Cartan matrix of A is nonsingular, and moreover STA is a disjoint union
of

(i) tubes of rank 1 or 3, and the number of 3-tubes is at most 2.
(ii) nonperiodic components of tree class A™ or Aii2 .
It has been proved in [El; E2, VI. 10.1] that for any such algebra A, the socle

factor is special biserial. However, it was not clear when Euclidean components
occur. Now it is easy to answer this question.

4.7 Corollary. Let A be an algebra of dihedral type. Then A is of polynomial
growth if and only if A is one of the following:

ö(l) «CO1 (a) a2 = ß2 = 0,  a)S = )Sa,
or (b) char AT = 2 and a2 = 0,  ß2 = aß,  aß = ßa.

d (2- ¿) (a) yß = 0 = a2, aßy = ßya,

CQ« m   » m or (b) char A" = 2 and yß = 0, a2 = aßy,
Y aßy = ßya.

D {3.A)
# _ß_^# _^# (laOi ßy = 0 = no,  yßon = Snyß,
*"^T*"V OT(3s/)2ßo = 0 = w, (yß)2 = (on)2.

D(3J?)2

a
s-<   J> 8 ya = aß = ßö = ny = 0,
^   ~Y~    "V (ßy)k = a2, (yß)k = (ôn)' with {k,l} = {1,2}.

D (3&),2

ai       • ^    " • „    * •       )<
—'        v n        ^—

ß ^       8^    '-n ya = aß = ßo = ny = SC = Cn = 0,  yß = on,
^*"V*v^      ßy = a2, nô = e.
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D {3.%)

%h/A ßo — ÔX = Xß = yK — ten = ny = 0,
ßy = KX, yß = Sn, nô = Xk.

D(3'/ )

ß.ai   i
aß = 0 = Xa,  (ßöX)2 = a2,  (OXß)2S = 0.

D (3£)

aÇ_S -""V)p aß=Xa = ßp = po = 0,
^\/b ßoX = a2, SXß = p2.

Otherwise, STA has no Euclidean components.
The algebras D(\)(b) and D{2s>/)(b) are not special biserial but they have

the same socle factors as D(\)(a) and D(2jrf)(a), and hence they have the
same Auslander-Reiten quiver and we can apply the results of Chapter 2. Note
that the algebras of 4.1 occur.
4.8 Corollary. Let A be an algebra of dihedral type. Then A is of polynomial
growth if and only if STA consists of one of the following:

(i) One component ZA^i and infinitely many l-tubes.
(ii) One component ZAi^, one 3-tube and infinitely many l-tubes.
(iii) One component ZA^^, two "h-tubes and infinitely many \-tubes.

4.9 Corollary. Let A be a tame local symmetric álgebra. Then A has a Eu-
clidean component if and only if dim A = 4.
Proof. In [E2] we have obtained a list of these algebras; by short cuts of [R]. It
turns out that any tame local symmetric algebra is either of dihedral type or of
semidihedral type or of quaternion type, as defined in [E2].

If A is of dihedral type then A has a Euclidean component if and only if
A is 4-dimensional, as we have just seen.

Suppose A is of semidihedral type. Then A/socA = AOT/socAm where Am
is the algebra in 3.12; and we have proved that A does not have a Euclidean
component. Also, dim A > 8 .

Now assume that A is of quaternion type, then Q4K = K. It follows that
all indecomposable modules have complexity < 1, hence their r-orbits have
bounded dimension. If there were a Euclidean component A say then it would
follow that all modules in A have bounded dimension. This is a contradiction
to Auslander's theorem.
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