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ABSTRACT
In this paper, we examine how good validation test benches can be auto-
matically generated starting from the RTL description of a circuit. We de-
velop our methodology based on extensive experiments performed with sev-
eral popular benchmarks as well as industrial circuits. We try to leverage off
a large body of work in the field of circuit testing and study how test sets de-
rived for catching manufacturing defects fare from the standpoint of design
validation. For this purpose, we perform an extensive empirical study using
stuck-at test sets from gate-level implementations synthesized under various
constraints. The experiments demonstrate that a good logic-level stuck-at
test set is also an excellent RTL validation test bench. However, since we are
dealing with RTL designs here and sequential logic-level ATPG is an expen-
sive algorithm, we devise some methods to obtain good quality validation
test vectors directly at the RTL. We use these results to enhance an existing
RTL ATPG tool and show that test benches that can achieve good logic-level
fault coverage and thus design validation coverage can be derived in our
framework.

Categories and Subject Descriptors
B.0 [Hardware]: General; B.2.3 [Hardware]: Arithmetic and Logic
Structures- Reliability, Testing and Fault-Tolerance; B.7.3 [Hardware]: In-
tegrated Circuits- Reliability and Testing; B.8.1 [Hardware]: Performance
and Reliability- Reliability, Testing and Fault-tolerance

General Terms
Experimentation, Reliability, Verification

Keywords
Validation, Design Validation, Coverage Metrics, Code Coverage, OCCOM,
Branch Coverage, Path Coverage, Toggle Coverage, Testing, ATPG, Test
Generation, Fault Coverage, RTL testing, RTL ATPG, Test Sets, Testbench,
Universal Test Sets

1. INTRODUCTION

With the increasing design complexities and time-to-market pressure, a
large number of IC chips today are being designed at the RTL. This has led
to the emergence of a large number of synthesis tools at the RTL. The de-
sign of a chip at the RTL brings with it additional burdens of validation and
verification, area/delay/power estimation, etc as well as the task of interfac-
ing with the lower levels of the design hierarchy. Automating these design
flow steps is necessary for sustaining design effort at the higher levels of the
design hierarchy.
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For verification purposes, simulation-based techniques (increasingly at
the RTL) are mostly used in the chip manufacturing industry. In this pro-
cess, the circuit to be verified is simulated with a set of test vectors which
is popularly known as a test bench. The output responses of the circuit are
captured and compared for correctness with expected outputs derived from
the specification of the circuit. The thoroughness of the verification process
depends on the ability of the test bench to exercise the design completely.
If portions of the design remain unexercised, the probability of bugs exist-
ing in those regions increases drastically. In the industry, the most common
practice is to craft test benches by hand that can cover a large percentage of
design in the RTL description. In the process, the designer would like the test
bench to stress the design in a realistic manner and approach corner-cases,
whenever possible. Test benches that yield high coverage on RTL coverage
metrics such as statement, branch, condition, toggle, OCCOM (observability
based code coverage) etc are considered good test benches. While high cov-
erage numbers are not sufficient to cover all aspects of design verification,
they provide a quantifiable means for a designer to evaluate and compare test
benches. A good verification test bench should at least have close to 100%
coverage for the traditional coverage metrics like statement, branch, and con-
dition. In this paper, techniques for automating this test bench writing pro-
cess are presented. Note that while automatically deriving test benches at the
RTL, there is a risk of validating a buggy circuit. Therefore, in this work, we
assume that a golden RTL model is present from where the test benches may
be derived. If a golden RTL circuit is not available, the test vectors obtained
from an implementation can be applied to its executable specification and
may produce different outputs when the bugs are excited in the implemen-
tation. Further, this technique may be used to validate the logic-level circuit
derived from an RTL description. Thus, automatically generated validation
test benches at the RTL can aid the verification process to a large extent.

In this work, we address the above problem by first investigating the fol-
lowing question: “Do test vectors generated for detecting manufacturing
faults in a gate-level netlist corresponding to the RTL description serve as
good validation test benches?”. If the answer to this question is yes, we
can reduce the validation test bench generation problem to an automatic test
pattern generation (ATPG) problem. However, this does not simplify the
problem a great deal since the most popular method of performing sequen-
tial ATPG is at the logic-level, which is computationally expensive. Also
the logic level design may not be available at an earlier point in the design
process. Finally, the test vectors generated from the logic-level circuit may
validate the bugs already present there. However, recent success with RTL
ATPG techniques indicate that the ATPG problem can be tackled efficiently
at the RTL because of the advantages of lower complexity, smaller design
size and an understanding of the functionality. Typically, an RTL circuit will
have fewer number of primitive elements in its circuit graph than its corre-
sponding logic-level circuit. Hence, the problem size for performing ATPG
is reduced thus reducing the ATPG complexity. Therefore, we examine the
ATPG problem at the RTL and see how current RTL testing techniques can
be augmented to produce good validation testbenches.

The paper is organized as follows. Section 2 presents some previous work
in this line of study. Section 3 details the experimental setup. Section 4 in-
vestigates the performance of logic-level test benches at the RTL. Section
5 presents techniques to enhance the logic-level stuck-at coverage of a test
bench derived at the RTL. Section 6 presents our integrated RTL valida-
tion/ATPG environment as well as results of its application on several indus-
trial benchmarks, while Section 7 concludes.

2. PREVIOUS WORK

In this section, we examine related work relevant to this paper from the

289



areas of design validation, RTL ATPG and fault modeling.

A. Coverage metrics for HDL designs

Popular RTL coverage metrics are mostly borrowed from software testing
techniques [2]. In software testing, coverage metrics are based on activation
of statements, branches or sequence of statements due to a given set of pro-
gram stimuli[3]. Such line or branch or path coverage metrics are now used
in commercial tools performing design validation[4].

However, these coverage metrics are inadequate in design validation since
they focus only on controllability (statement activations) and not on observ-
ability (transmission of possible errors to the circuit outputs). Recently, an
observability-based statement coverage metric OCCOM[10] was proposed
that enhances the standard statement coverage metric by incorporating ob-
servability criteria. The OCCOM metric is based on using the concept of a
tag to model the possibility of an error at a location in the RTL design. Given
a vector and a location in the RTL code, a tag at the location is said to be
covered by the vector under OCCOM if it is determined that the tag can be
propagated to some output by the vector.

B.RTL ATPG and fault modeling

There has been numerous attempts to generate test vectors at the RTL
targeting logic-level stuck at faults as well as various RTL modeled faults [5,
6, 7, 8, 9].

Hierarchical functional HDL circuits have been targeted for test genera-
tion in [5]. However, the algorithm explicitly targets stuck-at faults at the
logic level and there is no explicit RTL fault model used. Each RTL mod-
ule is tested with a precomputed stuck-at test set from the primary inputs of
the RTL circuit. Note that testing of RTL modules using precomputed test
sets was first introduced in [6]. Similar philosophy is used in [7] but the test
path generation algorithm makes use of regular expression based analysis.
The above RTL techniques require that the precomputed test sets of RTL
modules must be stored in a test set library for every bit-width and every im-
plementation of a module possible. Since it is almost impossible to predict a
logic implementation of a module in a constraint-driven logic synthesis sce-
nario where the module implementations are essentially technology-mapped
boolean equations, the above methods can be approximate. This paper tries
to address this issue in Section 6.

Table 1: Benchmark Characteristics

CKT #Lin. #Proc. Type # Gates # FFs
B01 110 1 flat 47 5
B02 70 1 flat 29 4
B08 89 1 flat 168 21
B14 509 1 flat 4776 245
Paulin 130 1 flat 39558 227
GPIO 1002 20 hierarchical 1720 148
ATMS 3214 84 hierarchical 8160 1490
MEMX 10674 651 hierarchical 16871 1954

Table 2: Performance (manufacturing test and validation cov-
erages) of logic-level stuck-at test sets at the RTL for area-
optimized circuits

CKT FltC StmC BrC CondC TogC OCCOM
(%) (%) (%) (%) (%) (%)

B01 100.0 100.0 100.0 100.0 100.0 100.0
B02 100.0 100.0 100.0 100.0 100.0 100.0
B08 99.5 100.0 100.0 100.0 100.0 97.9
B14 95.1 100.0 100.0 99.1 100.0 92.5
Paulin 99.7 100.0 100.0 100.0 100.0 100.0
GPIO 99.4 100.0 100.0 100.0 100.0 100.0
ATMS 95.4 100.0 100.0 99.1 100.0 93.8
MEMX 95.0 100.0 99.8 98.9 100.0 92.1

Other ATPG techniques such as [8], [9] define new fault models at the
RTL and generate tests according to that model. They then validate that cov-
erage by doing logic-level fault simulation and show close correlation to the
RTL model. In both these cases, a bit-error model is assumed in which each
bit in each variable at the RTL is injected with a stuck-at 0 or stuck-at 1 fault.
In addition to that, a stuck-at true/false fault is assumed for each condition at
the RTL[8]. However, since the focus of the work is exclusively on ATPG,
no attempts are made to correlate ATPG and validation coverage metrics.

The work in [11] on RTL fault modeling is very pertinent to this paper. In
this work, the author defines a new coverage metric called validation vector
grade (VVG) at the RTL and shows that this coverage metric closely tracks
fault-coverage at the logic level. The VVG metric is actually a variation of
the bit-error model discussed above. In addition to bit stuck-at faults for all
variables, it also injects faults at all fanout branches much like logic-level
fault simulation.

3. EXPERIMENTAL SETUP

The experiments are done on eight RTL circuits out of which four are
taken from the ITC 99 benchmark suite [13]. Of these, B1 is an FSM that

Table 3: Performance (manufacturing test and validation cov-
erages) of logic-level stuck-at test sets at the RTL for delay-
optimized circuits

CKT FltC StmC BrC CondC TogC OCCOM
(%) (%) (%) (%) (%) (%)

B01 100.0 100.0 100.0 100.0 100.0 100.0
B02 100.0 100.0 100.0 100.0 100.0 100.0
B08 99.4 100.0 100.0 100.0 100.0 91.5
B14 94.9 100.0 100.0 98.2 100.0 91.9
Paulin 99.2 100.0 100.0 100.0 100.0 100.0
GPIO 99.2 100.0 100.0 100.0 100.0 98.1
ATMS 94.5 100.0 99.4 98.6 100.0 92.1
MEMX 93.1 99.9 99.2 98.1 100.0 90.5

Table 4: Performance (manufacturing test and validation cov-
erages) of logic-level stuck-at test sets at the RTL for mixed-
optimized circuits

CKT FltC StmC BrC CondC TogC OCCOM
(%) (%) (%) (%) (%) (%)

B01 100.0 100.0 100.0 100.0 100.0 100.0
B02 100.0 100.0 100.0 100.0 100.0 100.0
B08 99.4 100.0 100.0 100.0 100.0 91.5
B14 95.0 100.0 100.0 98.2 100.0 91.9
Paulin 99.5 100.0 100.0 100.0 100.0 100.0
GPIO 99.4 100.0 100.0 100.0 100.0 99.8
ATMS 95.3 100.0 99.5 99.0 100.0 92.4
MEMX 93.4 100.0 99.4 98.6 100.0 91.6

compares serial flows, B2 is an FSM that recognizes BCD numbers, B8 is
a circuit that finds inclusions in a sequence of numbers, and B14 is a mi-
croprocessor that implements an instruction set that is a subset of the Viper
microprocessor instruction set. The fifth example Paulin is a popular filter
benchmark from academia. The last three examples are industrial circuits
from real life designs in Fujitsu. GPIO is a general purpose input/output
controller. ATMS is a part of an ATM switch, and MEMX is a part of a mem-
ory controller. The characteristics of the circuits are summarized in Table 1.
Columns 2 and 3 indicate the number of lines and processes, respectively,
in the RTL description (VHDL) of the different circuits, while Column 4
indicates the RTL design style (flat/hierarchical). Columns 5 and 6 capture
the post-synthesis gate-level statistics in terms of the number of gates and
flip-flops, respectively. The RTL size of the examples vary from 70 lines to
more than 10,000 lines, while the logic-level sizes vary from 30 gates to as
high as 40,000 gates. These numbers were obtained using the area optimized
scripts in Synopsys Design Compiler for Fujitsu’s 0.25 micron standard cell
library. The logic netlist characteristics for other synthesis scripts are a little
different.

4. RTL VALIDATION AND STUCK-AT TESTS

In this section, the performance of the logic-level stuck-at coverage met-
ric is evaluated at the RTL. This is done in the following way. First, a good
quality logic-level stuck-at test set is obtained for a circuit by running HITEC
and STRATEGATE on the the logic-level circuit and taking the union of the
test sets. Purposefully those circuits are chosen for which the stuck-at fault
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 0      0                0       0
 0      1                0       1
 1      0                1       0
 1      1                1       1
 1      1                0       0
 0      0                1       1
 1      0                0       1
 0      1                1       0
  
a b a bi+1 i+1 i i

Cell Cell

Logic
block

(a) (b) (c)

       A                        B

00000000        00000000
00000000        11111111
11111111        00000000
11111111        11111111
10101010        10101010
01010101        01010101
10101010        01010101
01010101        10101010

                A                                       B

0000000000000000       0000000000000000
0000000000000000       1111111111111111
1111111111111111       0000000000000000
1111111111111111        1111111111111111
1010101010101010        1010101010101010
0101010101010101        0101010101010101
1010101010101010        0101010101010101
0101010101010101        1010101010101010

0000000000000001       1111111111111111
1111111111111111       0000000000000001

1111000011110000       0001111000011110
1110000111100001       0010110100101101
1100001111000011       0101101101010111
0000111100001111       1110000111100001
0001111000011110       1101001011010010
0011110000111100       1011010110110101
1001100110011001       1000100010001000
1111011111110111       0001011100010111
0111111101111111       0111000101110001

Figure 1: 8-bit generic test set and comprehensive test set of a 16-bit adder

+ +Generic Vectors Array Multiplier Vectors Reflected Vectors

              A                                      B

0000000000000000    0000000000000000
0000000000000000    1111111111111111
1111111111111111    0000000000000000
1111111111111111    1111111111111111
1010101010101010    1010101010101010
0101010101010101    0101010101010101
1010101010101010    0101010101010101
0101010101010101    1010101010101010

                 A                                    B

1111111111111111   1010101010101010
1111111111111111   0101010101010101
1111111111111011   1010101010101010
1111111111111011   0101010101010101
1111111111111111   1011011011011011
1111111111111111   0110110110110110
1010101010101011   1111111111111111
0101010101010110   1111111111111111
1010101010101011   0111111111111111   

                A                                    B

1010101010101010    1111111111111111
0101010101010101    1111111111111111
1010101010101010    1111111111111011
0101010101010101    1111111111111011
1011011011011011    1111111111111111
0110110110110110    1111111111111111
1111111111111111    1010101010101011
1111111111111111    0101010101010110
0111111111111111    1010101010101011

Figure 2: Comprehensive test set derived for a 16-bit multiplier

coverages are greater than 95%. Then, the test set is fed into TransEDA Ver-
ification Navigator to generate the traditional RTL coverage numbers. Fi-
nally, the inhouse coverage analysis tool is run to obtain the OCCOM num-
bers. The experiments are first done with a synthesis script that results in
area-optimized circuits. In that script, infinite clock period is given to the
synthesis tool but with a tight area constraint. These results are shown in Ta-
ble 2. The experiments are repeated with delay-optimized circuits where the
script parameters are reversed. These results are shown in Table 3. Another
set of experiments are done with circuits, where, the synthesis script equally
considers area and delay constraints to obtain a logic circuit somewhere be-
tween the two extreme design points of the previous cases. These circuits
are termed mixed-optimized circuits. The results for the mixed optimized
circuits are shown in Table 4. In all cases, Synopsys Design Compiler is
used for logic synthesis.

In the experiments, the following traditional coverage metrics are consid-
ered - statement, branch, condition and toggle (Columns 3, 4, 5 and 6, re-
spectively, in the tables). Path coverage is not used as the coverage analysis
tools cannot handle complete path coverage analysis (since there are expo-
nential number of paths). For condition coverage, the focussed expression
coverage metric is used. This metric only requires the care vectors for each
clause of the expression thus eliminating the need for impossible vectors at
the expression.

From the tables, it is clear that for all types of circuits if the fault cov-
erage is greater than 98% at the logic level (Column 2) then it results in
100% coverage for all traditional coverage metrics at the RTL. In case of
OCCOM coverage (Column 7), the coverage numbers are also quite high
but not perfect. This is because the OCCOM coverage analysis is inherently
pessimistic. This pessimism is due to the limited attributes attached to a tag.
A tag has only a sign attribute attached to it (�∆ or �∆) to determine if it
can be propagated forward.

From the above experiments three important conclusions can be drawn:
Conclusion 1: A good stuck-at test set at the logic level is also a good vali-
dation test bench at the RTL in terms of RTL coverage metrics.
Conclusion 2: The testability properties of a logic circuit does not vary too
much due to the RTL synthesis script used and the resulting logic-level test

set on any implementation is a good RTL validation test set. This observa-
tion is in agreement with the one made in [12].
Conclusion 3: From conclusions 1 and 2 it follows that if a test set can be
generated directly from an RTL circuit targeting high coverage of logic-level
stuck-at faults for some logic-level implementation of the RTL circuit, then
that test set will be good for RTL validation too.

In this section, it has been shown that a good logic-level stuck-at test
set is also a good validation test bench. However, the aim here is to generate
good validation test benches directly at the RTL. Hence, some techniques are
required to obtain good logic-level stuck at test sets directly from the RTL
circuit without going through complete synthesis and then using a logic-level
ATPG tool. Such techniques are discussed in the next section.

5. GENERATING RTL TEST BENCHES

A technique for ATPG at the RTL targeting stuck-at faults is presented in
[5]. If this technique is to work well for any logic-level implementation of
an RTL circuit, then two problems need to be tackled. They are the presence
of arithmetic modules and random logic blocks. A preliminary approach
for testing realization-independent blocks in a design subject to a behavioral
fault model is given in [19]. However, this will not work for the stuck-at
fault model. Arithmetic modules are synthesized into logic implementations
which depend on the synthesis script. Thus, if a test generated at the RTL
for an arithmetic operation is to provide good stuck-at fault coverage at the
logic level irrespective of implementation, it is essential to find a set of com-
prehensive test vectors that work reasonably well for any implementation of
the operation. This is discussed next.

5.1 Handling RTL arithmetic modules

Only those arithmetic modules need to be tackled that are synthesized as
atomic operations by RTL synthesis tools like Synopsys Design Compiler. If
an arithmetic module at the RTL is designed with smaller logic components,
then each of those components can be tested separately without considering
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the arithmetic module as a whole. These synthesizable atomic operations can
be broadly classified into four categories - adders/subtracters, multipliers,
comparators, and shifters/rotators, which are tackled next.

5.1.1 Adders/Subtracters
First, a set of generic test vectors are described. Consider the vector set

in Figure 1(a). It consists of eight vectors and these vectors are usually

Table 5: Performance of comprehensive test set on adders (19
vectors)

BW Area Optimized Delay Optimized Mixed Optimized
#Gates FltC #Gates FltC #Gates FltC

(%) (%) (%)
4 130 100.0 193 100.0 160 100.0
8 212 100.0 590 95.7 408 99.6
16 468 100.0 1457 95.2 899 99.8
32 980 100.0 2824 95.4 1935 99.7

very good for detecting a large number of faults at the logic level for many
arithmetic modules. The intuition behind this is that most arithmetic modules
are composed of an array of two-bit cells as shown in Figure 1(b). These
vectors provide all symmetric vectors to two consecutive cells in the array.

A comprehensive test set for the adder is obtained by combining the
generic vectors shown above with the test sets for a slow implementation
and a fast implementation. A ripple carry adder is used as the slow imple-
mentation. This is C-testable with 8 vectors for any bit-width. A carry-in
input to the least significant bit of the adder is not assumed here. However,
the property holds in that case too with a small modification to the least sig-
nificant bit in the test set. Only test vectors that are not already present in the
generic test set are added. On top of this, a test set comprising of 12 vectors
is derived for a 4-bit blocked carry lookahead adder used popularly in the
industry. The non-overlapping vectors of this test set is combined with the
above test set to obtain the comprehensive test set of an adder which com-

Table 6: Performance of comprehensive test set on multipliers
(26 vectors)

BW Area Optimized Delay Optimized Mixed Optimized
#Gates FltC #Gates FltC #Gates FltC

(%) (%) (%)
4 198 98.5 250 97.5 233 97.7
8 1052 97.2 1091 96.3 1080 96.7
16 4682 96.5 4810 95.5 4709 96.3
32 19668 96.4 19951 95.1 19707 96.3

prises of 19 vectors. This is shown in Figure 1(c). Note that all the vectors
in the comprehensive test set follow a pattern. Thus they can be derived dur-
ing test generation for any bit-width adder. The last 9 vectors in the test set
may not seem to follow a pattern at first look but if 4-bit chunks of the test
vectors are examined then the pattern will be evident. On fault simulating
different adders of various implementations with the test set good fault cov-
erage is obtained in all the cases. The results are summarized in Table 5.
Column 1 indicates the bit-width of the adder. Columns 2 to 7 indicate the
gate count and fault coverages for different versions of the logic-level im-
plementation (area optimized, delay optimized and mixed optimized). The
results show that the test set derived above may be used as a comprehensive
test set during RTL test generation of addition operations.

Subtracters are nothing but 2s-compliment adders. In that case the
operand B is complimented and the carry-in to the least significant bit of
the adder is set to 1. A comprehensive test for a subtracter can be obtained
by changing the adder test set to take into account the above modifications.
The changed test set will again feed the comprehensive adder test to the
adder part of the subtracter. On fault simulating this test set on different
subtracters, similar results are obtained as above.

5.1.2 Multipliers
The comprehensive test set of a multiplier is shown in Figure 2. It consists

of the eight generic vectors and an array multiplier test set taken from [17].
The array multiplier test set follows a pattern and can be used to generate test
sets for multipliers of any bit-width. These together constitute 17 vectors.
The last 9 test vectors are obtained my interchanging the ports of the array
multiplier test set to make the test set symmetrical. The performance of these
vectors on different multiplier implementations are summarized in Table 6.

(a)   A == B (b)   A < B

         A                      B        

00000000        00000000
11111111        11111111
00000000        00000001
00000000        00000010
00000000        00000100
00000000        00001000
00000000        00010000
00000000        00100000
00000000        01000000
00000000        10000000
00000001        00000000
00000010        00000000
00000100        00000000
00001000        00000000
00010000        00000000
00100000        00000000
01000000        00000000
10000000        00000000

        A                      B        

00000000        00000000
11111111        11111111
11111110        11111111
00000000        00000001
00000000        00000010
00000000        00000100
00000000        00001000
00000000        00010000
00000000        00100000
00000000        01000000
00000000        10000000
00000010        00000001
00000100        00000011
00001000        00000111
00010000        00001111
00100000        00011111
01000000        00111111
10000000        01111111

Figure 3: Comprehensive test sets for 8-bit equal-to and less-
than comparators

Again, good fault coverage is obtained for all the implementations using this
comprehensive test set.

5.1.3 Comparators
Two type of comparators are tackled here - the equal-to and the lesser

than. All other comparators can be derived from these two comparators by
switching operands or complimenting the output or both. Figure 3(a) shows
the test set for a simple XNOR-AND equal-to comparator. This test set has

Table 7: Performance of comprehensive test set on equal-to
comparators (2n+2 vectors)

BW Area Optimized Delay Optimized Mixed Optimized
#Gates FltC #Gates FltC #Gates FltC

(%) (%) (%)
4 39 100.0 77 100.0 - -
8 79 100.0 - - - -
16 193 100.0 179 100.0 173 100.0
32 405 100.0 629 100.0 491 100.0

a length of (2n+2) where n is the bit-width of the comparator. Thus, it is
linearly growing with size but still can be derived at runtime. The generic
vectors are not good for comparator testing. Thus the comprehensive test set
for an equal-to comparator just consists of this (2n+2) vectors. In Table 7,
its performance is shown for different versions of the comparator. Note that
a blank square in the table means that Design Compiler has not been able

Table 8: Performance of comprehensive test set on less-than
comparators (2n+2 vectors)

BW Area Optimized Delay Optimized Mixed Optimized
#Gates FltC #Gates FltC #Gates FltC

(%) (%) (%)
4 73 100.0 105 95.3 101 100.0
8 172 100.0 305 95.0 263 100.0
16 386 100.0 719 95.3 595 100.0
32 760 100.0 1099 96.4 920 97.9

to generate any other solution with the cell library that has been used. It is
evident from the table that the vectors actually provide perfect coverage for
all equal-to comparators.

For the less-than comparator also a simple implementation test set is used
as the comprehensive test set. This is shown in Figure 3(b) and it consists
of (2n+2) vectors. Again the test vectors follow a pattern as in the previous
cases. The fault simulation results are provided in Table 8 and shows that the
comprehensive test set is quite good.

5.1.4 Shifters and Rotators
Shifters of the form shift(I,S) where I and S are both signals or variables

are usually not supported in a synthesis tool. However, Figure 4.a. shows
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Figure 4: 4-bit generic rotator

signal A : std_logic_vector(7 downto 0);
signal B : std_logic_vector(4 downto 0);

Case A is

     when "00001000" =>   B <= "11111";
     when "00001001" =>   B <= "11000";
     when "00001100" =>   B <=  "00100";
     when "10000100" =>   B <= "10010";
     when "10100000" =>   B <= "10100";
     when    others      =>    B <= "00000"; ==

==

==

==

==
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0
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0

0
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A bit−vectors converted to decimal to keep diagram simple

Figure 5: Random logic HDL code and its crude implementation

a generic implementation of a 4-bit right-rotator. Here variable S needs to
be of size log2�widtho f �I��. By changing the input lines appropriately or
by placing 1s or 0s at certain input lines any type of shifter or rotator can be
obtained. The rotator of Figure 4(a) has a well defined test set of length 4n -4,
i.e. 12 vectors. This test set is shown in Figure 4(b). It results in 100% logic
stuck at coverage and follows a pattern as before. When this test set is used
on a 4-bit right shifter of similar architecture, the fault coverage is 91% due
to the swept constants. Unlike the previous operations further experiments
cannot be performed as Design Compiler allows shifts by constant numbers
only.

5.2 Handling RTL random logic blocks

Random logic blocks in the RTL arise from Case statements or nested
if-then-else blocks. In this case also, logic synthesis is done based on a
truth table and the design constraints. The final logic-level implementation
is unclear at the RTL. Hence, we need to formulate a systematic procedure to
obtain a comprehensive test set for these block. This procedure is discussed
next.

Consider the Case statement in Figure 5(a). It constitutes an address de-
coder. In this case the first thing to do at the RTL is to cover all the cases
with the test vectors. Note that only exciting each case with different ad-
dresses is not enough. The effect of the decoded address (B) should also be
propagated to the primary outputs. The algorithm presented in [5] is used for
this purpose. This can be termed as observability enhanced code coverage.
Using the OCCOM metric will generate similar results. When the resulting
vectors are fault simulated at the logic level for different synthesis scripts,
the fault coverage obtained is not very good. This will be evident from the
data presented below.

In order to increase the coverage, one extra step needs to be performed at
the RTL. First, a crude logic-level implementation in generated for the Case
statement. This is a straight forward priority encoder implementation and is
shown in Figure 5(b). The constants in the circuit are swept away and then
this crude logic implementation is fed to a logic-level ATPG tool to obtain a
crude implementation test set. Since these random logic blocks are usually
not very big, the logic ATPG is not a very expensive operation. This test set

is appended with the earlier test set to obtain a comprehensive test set for
the random logic block directly at the RTL. From the experimental data, it
will be evident that the performance of this test set is reasonably good for
different logic implementations of random logic blocks.

The experimental data is provided in Table 9. Five random logic gener-
ating Case statements are extracted from the industrial RTL circuits. They
are synthesized to logic using the three different synthesis scripts described
earlier. The circuits are fault simulated using PROOFS first with the ear-
lier (only observability enhanced statement coverage) test set and then the
enhanced test set (adding crude implementation test set). For generating the
crude implementation test set, HITEC is used on the crude logic implementa-
tion of the case statement. It can be seen from the table that the observability
enhanced code coverage test set usually provides a fault coverage of around
70% which is clearly not enough. However, the enhanced test set by com-
bining the two methods does provide greater than 90% fault coverage for all
cases and in most cases the coverage is greater than 95%. Hence by using
the above method, random logic blocks can be tested directly at the RTL for
good fault coverage at the logic level.

6. ENHANCEMENTS TO RTL ATPG

In this section, the insights gained in the previous section are incorporated
into the RTL ATPG tool of [5]. The previous version used a test set library
for RTL modules with various implementations and bit-widths. This library
has obviously been incomplete and used non-universal test sets. If the imple-
mentation of an RTL module is not clear, then the test set for some arbitrary
implementation has to be used. As a result fault coverage of arithmetic mod-
ules have suffered. Also, the random logic blocks have been tested with
observability enhanced code coverage resulting in moderate fault coverage.

In the new version, the universal test-sets obtained in Section 6 are used.
This results in the removal of the test set library as the tests for all arithmetic
modules are made to follow a pattern and, thus, can be derived at runtime.
Also, the crude implementation test sets are used for the random logic blocks
by using a logic ATPG tool to derive the stuck-at test sets for those small por-
tions of logic and then justifying and propagating them at the RTL. The test
sets were then fault simulated at the logic level using PROOFS [18] and the
fault coverage noted. The results are summarized in Table 10. In each case,
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Table 9: Performance of RTL tests on Random logic blocks

Block Area Optimized Delay Optimized Mixed Optimized
# Gates Earlier Enhanced # Gates Earlier Enhanced # Gates Earlier Enhanced

C1 84 75.4 97.2 96 72.7 96.5 87 75.8 97.1
C2 108 73.2 96.8 134 70.8 96.2 121 71.4 96.6
C3 259 73.0 95.8 290 70.4 93.6 265 71.0 95.1
C4 451 71.2 93.6 501 67.3 90.5 475 69.6 92.1
C5 564 68.5 91.4 632 65.5 90.1 599 66.2 90.4

Table 10: Fault coverage improvements by enhancing the RTL ATPG tool [5]

CKT Orig Enhanced Logic ATPG
FltC Time FltC Time FltC Time
(%) (sec) (%) (sec) (%) (sec)

B01 99.3 0.2 100.0 0.2 100.0 0.4
B02 98.7 0.3 100.0 0.3 100.0 1.4
B08 96.5 0.3 98.2 0.3 99.5 2.1
B14 94.3 10.5 95.2 11.2 95.0 23.8
Paulin 99.1 5.2 99.4 5.2 99.2 154987.2
GPIO 97.6 65.2 99.5 78.1 99.4 55.6
ATMS 93.1 2032.2 95.4 2156.9 95.1 59657.2
MEMX 91.5 4056.1 94.2 5960.0 93.8 80701.6

the average results are reported from using three different implementations
of the RTL circuit. The CPU time is for a Sparc Ultra60 with 512MB of
memory. It can be observed that in most cases, the implementation of the
above techniques in the RTL ATPG tool results in higher logic-level fault
coverage for the circuits. In fact, the fault coverages for even highly con-
trol flow intensive circuits where the Gates/(RTL lines) ratio is low, the RTL
ATPG fault coverage is very close to the logic-level ATPG fault coverage.
Also the CPU time required for RTL ATPG is much lower than logic-level
ATPG for all the large circuits. Note that the CPU time is also averaged over
the three implementations. Thus, the RTL ATPG algorithm can be used to
generate good validation test vectors at the RTL.

7. CONCLUSIONS

In this paper, the correlation between RTL and logic-level coverage met-
rics is investigated. Some insights are obtained on the different types of cov-
erage metrics and their effectiveness in detecting faults and errors. The ex-
periments point out the fact that any good logic-level stuck-at test set is also
a very good validation test set at the RTL. Thus, if a test set can be generated
at the RTL that provides good logic-level stuck-at coverage then it can be
used as a good validation test set during RTL verification. Some techniques
are explored to handle large synthesizable modules and random logic blocks
at the RTL and obtain good stuck-at test sets for them directly at the RTL.
These techniques and insights are incorporated into an RTL ATPG tool and
improvements in fault coverage numbers are demonstrated. The RTL ATPG
algorithm is much faster than the logic ATPG algorithm for larger circuits
and with the above improvements the fault coverage numbers for both the
cases are comparable. In fact, the RTL ATPG does better for some circuits.
Thus, the improved tool can be used to generate good validation test vectors
at the RTL.
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