
 Open access  Journal Article  DOI:10.1007/S00778-003-0117-X

On automating Web services discovery — Source link 

Boualem Benatallah, Mohand-Said Hacid, Alain Léger, Christophe Rey ...+1 more authors

Institutions: University of New South Wales, University of Lyon, Orange S.A., Blaise Pascal University

Published on: 01 Mar 2005 - Very Large Data Bases

Topics: Web Services Discovery, Service discovery, Web service, Ontology (information science) and Description logic

Related papers:

 Semantic Matching of Web Services Capabilities

 Similarity search for web services

 A software framework for matchmaking based on semantic web technology

 Meteor-s web service annotation framework

 Automated semantic web service discovery with OWLS-MX

Share this paper:    

View more about this paper here: https://typeset.io/papers/on-automating-web-services-discovery-
4bu8dhtdvq

https://typeset.io/
https://www.doi.org/10.1007/S00778-003-0117-X
https://typeset.io/papers/on-automating-web-services-discovery-4bu8dhtdvq
https://typeset.io/authors/boualem-benatallah-2hmt9lrour
https://typeset.io/authors/mohand-said-hacid-2d61ic0qch
https://typeset.io/authors/alain-leger-51rx39tq0s
https://typeset.io/authors/christophe-rey-3kbef6rlqf
https://typeset.io/institutions/university-of-new-south-wales-2xt68jp7
https://typeset.io/institutions/university-of-lyon-3slbrcfo
https://typeset.io/institutions/orange-s-a-274clkl3
https://typeset.io/institutions/blaise-pascal-university-2jm0xl0k
https://typeset.io/conferences/very-large-data-bases-hqmyzr0f
https://typeset.io/topics/web-services-discovery-1lr6tji5
https://typeset.io/topics/service-discovery-q8eqpoal
https://typeset.io/topics/web-service-5jsci0pw
https://typeset.io/topics/ontology-information-science-60g0x6nw
https://typeset.io/topics/description-logic-1esay4jk
https://typeset.io/papers/semantic-matching-of-web-services-capabilities-csqmrprtii
https://typeset.io/papers/similarity-search-for-web-services-4sobivfhbw
https://typeset.io/papers/a-software-framework-for-matchmaking-based-on-semantic-web-2n53oq3wfy
https://typeset.io/papers/meteor-s-web-service-annotation-framework-1rx03l29lc
https://typeset.io/papers/automated-semantic-web-service-discovery-with-owls-mx-3i8wfj09ur
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/on-automating-web-services-discovery-4bu8dhtdvq
https://twitter.com/intent/tweet?text=On%20automating%20Web%20services%20discovery&url=https://typeset.io/papers/on-automating-web-services-discovery-4bu8dhtdvq
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/on-automating-web-services-discovery-4bu8dhtdvq
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/on-automating-web-services-discovery-4bu8dhtdvq
https://typeset.io/papers/on-automating-web-services-discovery-4bu8dhtdvq


HAL Id: hal-01586362
https://hal.archives-ouvertes.fr/hal-01586362

Submitted on 8 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On automating Web services discovery
Boualem Benatallah, Mohand-Said Hacid, Alain Leger, Christophe Rey,

Farouk Toumani

To cite this version:
Boualem Benatallah, Mohand-Said Hacid, Alain Leger, Christophe Rey, Farouk Toumani. On
automating Web services discovery. The VLDB Journal, Springer, 2005, 1, 14 (1), pp.84-96.
10.1007/s00778-003-0117-x. hal-01586362

https://hal.archives-ouvertes.fr/hal-01586362
https://hal.archives-ouvertes.fr


VLDB Journal (2005) 14: 84–96 / Digital Object Identifier (DOI) 10.1007/s00778-003-0117-x

On automating Web services discovery

Boualem Benatallah1, Mohand-Said Hacid2, Alain Leger3, Christophe Rey4, Farouk Toumani4

1 School of Computer Science and Engineering, University of New South Wales, Sydney, Australia (e-mail: boualem@cse.unsw.edu.au)
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Abstract. One of the challenging problems that Web service
technology faces is the ability to effectively discover services
based on their capabilities. We present an approach to tack-
ling this problem in the context of description logics (DLs).
We formalize service discovery as a new instance of the prob-
lem of rewriting concepts using terminologies. We call this
new instance the best covering problem. We provide a for-
malization of the best covering problem in the framework of
DL-based ontologies and propose a hypergraph-based algo-
rithm to effectively compute best covers of a given request. We
propose a novel matchmaking algorithm that takes as input a
service request (or query) Q and an ontology T of services
and finds a set of services called a “best cover” of Q whose
descriptions contain as much common information with Q as
possible and as little extra information with respect to Q as
possible. We have implemented the proposed discovery tech-
nique and used the developed prototype in the context of the
Multilingual Knowledge Based European Electronic Market-

place (MKBEEM) project.

Keywords: Web services Discovery – Semantic matchmak-
ing – Description logics – Hypergraphs

1 Introduction

Semantic Web services are emerging as a promising technol-
ogy for the effective automation of services discovery, combi-
nation, and management [17,18,28]. They aim at leveraging
two major trends in Web technologies, namely, Web services

and the Semantic Web:

• Web services built upon XML as a vehicle for exchang-
ing messages across applications. The basic technologi-
cal infrastructure for Web services is structured around
three major standards: SOAP (Simple Object Access Pro-
tocol), WSDL (Web Services Description Language), and
UDDI (Universal Description, Discovery, and Integration)
[9,35]. These standards provide the building blocks for
service description, discovery, and communication. While
Web services technologies have clearly influenced posi-
tively the potential of the Web infrastructure by providing

programmatic access to information and services, they are
hindered by lack of rich and machine-processable abstrac-
tions to describe service properties, capabilities, and be-
havior. As a result of these limitations, very little automa-
tion support can be provided to facilitate effective discov-
ery, combination, and management of services. Automa-
tion support is considered the cornerstone of effective and
efficient access to services in large, heterogeneous, and dy-
namic environments [9,10,17]. Indeed, until recently the
basic Web services infrastructure was used mainly to build
simple Web services such as those providing information
search capabilities to an open audience (e.g., stock quotes,
search engine queries, auction monitoring).

• The Semantic Web aims at improving the technology to
organize, search, integrate, and evolve Web-accessible re-
sources (e.g., Web documents, data) by using rich and
machine-understandable abstractions for the representa-
tion of resources semantics. Ontologies are proposed as
means to address semantic heterogeneity among Web-
accessible information sources and services. They are
used to provide metadata for the effective manipulation
of available information including discovering informa-
tion sources and reasoning about their capabilities. Efforts
in this area include the development of ontology languages
such as RDF, DAML, and DAML+OIL [14]. In the con-
text of Web services, ontologies promise to take interop-
erability a step further by providing rich description and
modeling of services properties, capabilities, and behav-
ior.

By leveraging efforts in both Web services and the Se-
mantic Web, the Semantic Web services paradigm promises
to take Web technologies a step further by providing foun-
dations to enable automated discovery, access, combination,
and management of Web services. Efforts in this area focus
on providing rich and machine-understandable representation
of services properties, capabilities, and behavior as well as
reasoning mechanisms to support automation activities [8,
11,13,18,17,28]. Examples of such efforts include DAML-S
[13], WSMF (Web Services Modeling Framework) [18], and
METEOR-S (http://lsdis.cs.uga.edu/proj/meteor/SWP.htm).
Work in this area is still in its infancy. Many of the objectives
of the Semantic Web services paradigm, such as description
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of service capabilities, dynamic service discovery, and goal-
driven composition of Web services, have yet to be reached.

Our work focuses on the issue of dynamic discovery of
Web services based on their capabilities. Dynamic service dis-
covery is usually based on the rationale that services are se-
lected, at run-time, based on their properties and capabilities.
Our aim is to ground the discovery process on a matchmaking
between a requester query and available Web service descrip-
tions. We formalize the service discovery approach in the con-
text of description logics (DLs) [15]. A key aspect of DLs is
their formal semantics and reasoning support. DLs provide an
effective reasoning paradigm for defining and understanding
the structure and semantics of concept description ontologies.
This is essential for providing formal foundations for the envi-
sioned Semantic Web paradigm [24,26,25]. Indeed, DLs have
heavily influenced the development of some SemanticWeb on-
tology languages (e.g., DAML+OIL or OWL [36]). Our work
aims at enhancing the potential of Web services by focusing
on formal foundations and flexible aspects of their discovery.
More specifically, we make the following contributions:

• Flexible matchmaking between service descriptions

and requests. We propose a matchmaking technique that
goes beyond simple subsumption comparisons between
a service request and service advertisements. As empha-
sized in [31], a service discovery mechanism should sup-
port flexible matchmaking since it is unrealistic to expect
service requests and service advertisements to match ex-
actly. To cope with this requirement, we propose to use a
difference operation on service descriptions. Such an op-
eration enables one to extract from a subset of Web service
descriptions the part that is semantically common with a
given service request and the part that is semantically dif-
ferent from the request. Knowing the former and the latter
allows one to effectively select relevant Web services. We
propose a novel matchmaking algorithm that takes as in-
put a service request (or query) Q and an ontology T of
services and finds a set of services called a “best cover”
of Q whose descriptions contain as much common infor-

mation with Q as possible and as little extra information

with respect to Q as possible.
• Concept rewriting for effective service matchmaking.

We formalize service matchmaking as a new instance of
the problem of rewriting concepts using terminologies [3,
23]. We call this new instance the best covering problem.
We provide a formalization of the best covering prob-

lem in the context of DL-based ontologies and propose
a hypergraph-based algorithm to effectively compute best
covers of a given request.

• Characterization of service discovery automation in

DAML-S service ontologies. We investigate the reason-
ing problem associated with service discovery in DAML-S
ontologies and its relationship with the expressiveness of
the language used to express service descriptions. To study
the feasibility of our approach, we have implemented the
proposed discovery technique and used the developed pro-
totype in the context of Multilingual Knowledge Based

European Electronic Marketplace (MKBEEM) project.1

1 http://www.mkbeem.com

Organization of the paper

The remainder of this paper is organized as follows. Section 2
provides an overview of the basic concepts of description log-
ics. Section 3 describes the formalization of service discovery
in the context of DL-based ontologies. Section 4 presents the
hypergraph-based algorithm for computing best covers. An
extension of our approach to accommodate DAML-S ontolo-
gies is presented in Sect. 5. Section 6 describes an imple-
mentation of the proposed service discovery technique and
discusses some preliminary experimental results. We review
related work in Sect. 7 and provide concluding remarks in
Sect. 8.

2 Description logics: an overview

Our approach uses description logics (DLs) [1] as a formal
framework. DLs are a family of logics that were developed
for modeling complex hierarchical structures and for provid-
ing a specialized reasoning engine to perform inferences on
these structures. The main reasoning mechanisms (e.g., sub-
sumption or satisfiability) are decidable for the main DLs [15].
Recently, DLs have heavily influenced the development of the
Semantic Web languages. For example, DAML+OIL, the on-
tology language used by DAML-S, is in fact an alternative
syntax for a very expressive DL [26].

In this section, we first give basic definitions, and then we
describe the notion of difference between descriptions that is
the core operation used in our framework.

2.1 Basic definitions

Description logics allow one to represent a domain of interest
in terms of concepts or descriptions (unary predicates) that
characterize subsets of the objects (individuals) in the domain
and roles (binary predicates) over such a domain. Concepts are
denoted by expressions formed by means of special constructs.
Examples of DL constructs considered in this paper are:

• The symbol ⊤ is a concept description that denotes the
top concept, while the symbol ⊥ stands for the bottom
concept.

• Concept conjunction (⊓), e.g., the concept description
parent ⊓ male, denotes the set of fathers (i.e., male par-
ents).

• The universal role quantification (∀R.C), e.g., the descrip-
tion ∀child.male, denotes the set of individuals whose
children are all male.

• The number restriction constructs (≥ n R) and (≤ n R),
e.g., the description (≥ 1 child), denotes the set of par-
ents (i.e., individuals having at least one child), while the
description (≤ 1 Leader) denotes the set of individuals
that cannot have more than one leader.

The various DLs differ from one another in the set of con-
structs they allow. Table 1 shows the constructs of two DLs:
FL0 and ALN . A concept obtained using the constructs of a
DL L is called an L-concept. The semantics of a concept de-
scription is defined in terms of an interpretation I = (∆I , ·I),
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Table 1. Syntax and semantics of some concept-forming constructs

Construct name Syntax Semantics FL0 ALN

Concept name P P I ⊆ ∆I X X

Top ⊤ ∆I X X

Bottom ⊥ ∅ X

Conjunction C ⊓ D CI ∩ DI X X

Primitive negation ¬P ∆I \ P I X

Universal quantification ∀R.C {x ∈ ∆I |∀y : (x, y) ∈ RI → y ∈ CI} X X

At least number restriction (≥ nR), n ∈ N {x ∈ ∆I |#{y|(x, y) ∈ RI} ≥ n} X

At most number restriction (≤ nR), n ∈ N {x ∈ ∆I |#{y|(x, y) ∈ RI} ≤ n} X

which consists of a nonempty set ∆I , the domain of the inter-
pretation, and an interpretation function ·I , which associates
with each concept name P ∈ C a subset P I of ∆I and with
each role name R ∈ R a binary relation RI ⊆ ∆I × ∆I .
Additionally, the extension of .I to arbitrary concept descrip-
tions is defined inductively, as shown in the third column of
Table 1. Based on this semantics, subsumption, equivalence,
and the notion of a least common subsumer (lcs) are defined as
follows.2 Let C, C1, . . . , Cn and D be concept descriptions:

• C is subsumed by D (denoted by C ⊑ D) iff CI ⊆ DI

for all interpretation I.
• C is equivalent to D (denoted C ≡ D) iff CI = DI for

all interpretation I.
• D is a least common subsumer of C1, . . . , Cn (denoted by

D = lcs(C1, . . . , Cn)) iff:

(1) Ci ⊑ D for all 1 ≤ i ≤ n and
(2) D is the least concept description with this property,

i.e., if D′ is a concept description satisfying Ci ⊑ D′

for all 1 ≤ i ≤ n, then D ⊑ D′ [2].

The intentional descriptions contained in a knowledge base
built using a DL is called terminology. The kind of terminolo-
gies we consider in this paper are defined below.

Definition 1 (terminology)
Let A be a concept name and C be a concept description. Then

A
.
= C is a concept definition. A terminology T is a finite set

of concept definitions such that each concept name occurs at

most once on the left-hand side of a definition.

A concept name A is called a defined concept in the terminol-
ogy T iff it occurs on the left-hand side of a concept definition
in T . Otherwise, A is called an atomic concept.

An interpretation I satisfies the statement A
.
= C iff AI =

CI . An interpretation I is a model for a terminology T if I
satisfies all the statements in T .

A terminology built using the constructs of a language L
is called an L-terminology.3 Below we assume that a termi-
nology T is acyclic, i.e., cyclic dependencies between concept
definitions do not exist.Acyclic terminologies can be unfolded
by replacing defined names by their definitions until no more
defined names occur on the right-hand sides. Therefore, the

2 Informally, a least common subsumer of a set of concepts cor-

responds to the most specific description that subsumes all the given

concepts [2].
3 Henceforth we use the terms terminology and ontology inter-

changeably.

notion of least common subsumer (lcs) of a set of descriptions
can be straightforwardly extended to concepts containing de-
fined names. In this case, we use the expression lcsT (C, D)
to denote the least common subsumer of the concepts C and
D with respect to a terminology T (i.e., the lcs is applied to
the unfolded descriptions of C and D).

2.2 The difference operation

In this section, we recall the main results obtained by Teege in
[34] regarding the difference operation between two concept
descriptions.

Definition 2 (Difference operation)
Let C, D be two concept descriptions with C ⊑ D. The

difference C − D of C and D is defined by C − D :=
max

⊒
{B|B ⊓ D ≡ C}.

The difference of two descriptions C and D is defined as a
description containing all information that is part of the de-
scription C but not part of the description D. This definition
of difference operation requires that the second operand sub-
sumes the first one. However, if the operands C and D are in-
comparable with respect to the subsumption relation, then the
difference C − D can be given by constructing the least com-
mon subsumer of C and D, that is, C −D := C − lcs(C, D).

It is worth noting that, in some DLs, the set C − D may
contain descriptions that are not semantically equivalent, as
illustrated by the following example.

Example 1 Consider the descriptions C
.
= (∀R.P1) ⊓

(∀R.¬P1) and D
.
= (∀R.P2) ⊓ (∀R.(≤ 4S)). The set

C−D includes, among others, the nonequivalent descriptions
(∀R.¬P2) and (∀R.(≥ 5S)).

Teege [34] provides sufficient conditions to characterize the
logics where the difference operation is always semantically
unique and can be syntactically realized by constructing the set
difference of subterms in a conjunction. Some basic notions
and important results of this work are introduced below.

Definition 3 (Reduced clause form and structure equiva-
lence)

Let L be a description logic.

• A clause in L is a description A with the following prop-

erty: (A ≡ B ⊓ A′) ⇒ (B ≡ ⊤) ∨ (B ≡ A). Every

conjunction A1 ⊓ . . . ⊓ An of clauses can be represented

by the clause set {A1, . . . , An}.
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• A = {A1, . . . , An} is called a reduced clause set if either

n = 1 or no clause subsumes the conjunction of the other

clauses: ∀1 ≤ i ≤ n : Ai ⊒ A \ Ai. The set A is then

called a reduced clause form (RCF) of every description

B ≡ A1 ⊓ . . . ⊓ An.

• Let A = {A1, . . . , An} and B = {B1, . . . , Bm} be

reduced clause sets in a description logic L. A and B
are structure equivalent (denoted by A ∼= B) iff: n =
m ∧ ∀1 ≤ i ≤ n ∃1 ≤ j, k ≤ n : Ai ≡ Bj ∧ Bi ≡ Ak.

• If in a description logic for every description all its RCFs

are structure equivalent, we say that RCFs are structurally
unique in that logic.

The structural difference operation is defined as the set differ-
ence between clause sets where clauses are compared on the
basis of the equivalence relationship.

Let us now introduce the notion of structural subsumption

as defined in [34].

Definition 4 (structural subsumption)

The subsumption relation in a description logic L is said

to be structural iff for any clause A ∈ L and any description

B = B1⊓ . . .⊓Bm ∈ L that is given by its RCF, the following

holds: A ⊒ B ⇔ ∃1 ≤ i ≤ m : A ⊒ Bi

Teege [34] provides two interesting results: (1) in DLs
with structurally unique RCFs, the difference operation can
be straightforwardly determined using the structural differ-

ence operation; and (2) structural subsumption is a sufficient
condition for a DL to have structurally unique RCFs. Conse-
quently, structural subsumption is a sufficient condition that
allows one to identify logics where the difference operation is
semantically unique and can be implemented using the struc-

tural difference operation. However, it is worth noting that
the definition of structural subsumption given in [34] is differ-
ent from the one usually used in the literature. Unfortunately,
a consequence of this remark is that many DLs for which a
structural subsumption algorithm exists (e.g., ALN [30]) do
not have structurally unique RCFs. Nevertheless, the result
given in [34] is still interesting in practice since there exists
several DLs that satisfy this property. Examples of such log-
ics include the language FL0∪(≥ n R), which we have used
in the context of the MKBEEM project, or the more power-
ful description logic L1 [34], which contains the following
constructs:

• ⊓, ⊔, ⊤, ⊥, (≥ n R), existential role quantification
(∃R.C) and existential feature quantification (∃f.C) for
concepts, where C denotes a concept, R a role, and f a
feature (i.e., a functional role);

• Bottom (⊥), composition (◦), differentiation (|) for roles;
• Bottom (⊥) and composition (◦) for features.

In the remainder of this paper we use the term structural

subsumption in the sense of [34].

Size of a description. Let L be a DL with structural subsump-
tion. We define the size |C| of an L-concept description C
as the number of clauses in its RCFs.4 If necessary, a more

4 Recall that, since L has structurally unique RCFs, all the RCFs

of an L-description are equivalent and thus have the same number of

clauses.

precise measure of a size of a description can be defined by
taking into account the size of each clause (e.g., by count-
ing the number of occurrences of concept and role names in
each clause). However, in this case one must use some kind of
canonical form to deal with the problem of different descrip-
tions of equivalent clauses. It should be noted that in a DL
with structurally unique RCFs, it is often possible to define a
canonical form that is itself an RCF [34].

3 Formalization of the best covering problem

In this section, we first formalize the best covering problem in
the framework of DLs with structural subsumption. Then we
describe how to compute best covers using a hypergraph-based
algorithm.

3.1 Problem statement

Let us first introduce some basic definitions that are required
to formally define the best covering problem. Let L be a DL
with structural subsumption, T an L-terminology, and Q ≡ ⊥
a coherent L-concept description. The set of defined concepts
occurring in T is denoted as ST = {Si, i ∈ [1, n]} with Si ≡
⊥, ∀i ∈ [1, n]. Below we assume that concept descriptions
Si, i ∈ [1, n] are represented by their RCFs.

Definition 5 (Cover)
A cover of Q using T is a conjunction E of some names Si

from T such that: Q − lcsT (Q, E) ≡ Q.

Hence, a cover of a concept Q using T is defined as any
conjunction of concepts occurring in T that shares some com-
mon information with Q. It is worth noting that a cover E
of Q is always consistent with Q (i.e., Q ⊓ E ≡⊥) since
L is a DL with structurally unique RCFs and Q ≡ ⊥ and
Si ≡ ⊥, ∀i ∈ [1, n].5

To define the notion of best cover, we need to characterize
the part of the description of a cover E that is not contained
in the description of the query Q and the part of the query Q
that is not contained in the description of its cover E.

Definition 6 (Rest and miss)
Let Q be an L-concept description and E a cover of Q using

T . The rest of Q with respect to E, denoted by RestE(Q), is

defined as follows: RestE(Q) ≡ Q − lcsT (Q, E).
The missing information of Q with respect to E, denoted

by MissE(Q), is defined as follows: MissE(Q) ≡ E −
lcsT (Q, E).

Now we can define the notion of best cover.

Definition 7 (Best cover)
A concept description E is called a best cover of Q using a

terminology T iff

• E is a cover of Q using T and

5 If the language L contains the incoherent concept ⊥, then ⊥
must be a clause, i.e., nontrivial decompositions of ⊥ are not possible

(which means we cannot have incoherent conjunctions of coherent

clauses); otherwise it is easy to show that L does not have structurally

unique RCFs.
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• there exists no cover E′ of Q using T such that

(|RestE′(Q)|, |MissE′(Q)|) <
(|RestE(Q)|, |MissE(Q)|), where < is the lexico-

graphic order operator.

A best cover is defined as a cover that has, first, the smallest
rest and, second, the smallest miss.

The best covering problem, denoted by BCOV(T , Q), is
then the problem of computing all the best covers of Q using
T .

Theorem 1 (Complexity of BCOV(T , Q)) The best covering

problem is NP-hard.

The proof of this theorem follows from the results regard-
ing the minimal rewriting problem [3] (see [22] for a detailed
proof).

3.2 Mapping best covers to hypergraph transversals

Let us first recall some necessary definitions regarding hyper-
graphs.

Definition 8 (Hypergraph and transversals) [16]

A hypergraph H is a pair (Σ, Γ ) of a finite set Σ =
{V1, . . . , Vn} and a set Γ of subsets of Σ. The elements of

Σ are called vertices, and the elements of Γ are called edges.

A set T ⊆ Σ is a transversal of H if, for each ε ∈ Γ , T ∩ε = ∅.

A transversal T is minimal if no proper subset T ′ of T is a

transversal. The set of the minimal transversals of a hyper-

graph H is denoted as Tr(H).

In this section, we describe how to express the best cover-
ing problem as the problem of finding the minimal transversals
with a minimal cost of a given hypergraph.

Definition 9 (Hypergraph generation)
Let L be a DL with structural subsumption, T an L-

terminology, and Q an L-concept description. Given an in-

stance BCOV(T , Q) of the best covering problem, we build

a hypergraph HT Q = (Σ, Γ ) as follows:

• Each concept name Si in T is associated with a vertex VSi

in the hypergraph HT Q. Thus Σ = {VSi
, i ∈ [1, n]}.

• Each clause Ai ∈ Q, for i ∈ [1, k], is associated

with an edge in HT Q, denoted by wAi
, with wAi

=
{VSi

| Si ∈ ST and Ai ∈≡ lcsT (Q, Si)}, where ∈≡

stands for the membership test modulo equivalence of

clauses and lcsT (Q, Si) is given by its RCF.

Notation For the sake of clarity we introduce the following
notation. For any set of vertices X = {VSi

}, subset of Σ,
we use the expression EX ≡ ⊓VSi

∈XSi to denote the con-
cept obtained from the conjunction of concept names corre-
sponding to the vertices in X . Conversely, for any concept
E ≡ ⊓j∈[1,m]Sij

, we use the expression XE = {VSij
, j ∈

[1, m]} to denote the set of vertices corresponding to the con-
cept names in E.

Lemmas 1 and 2, given below, say that computing a cover
of Q using T that minimizes the rest amounts to computing a
transversal of HT Q by considering only the nonempty edges.
Proofs of these lemmas are presented in [22].

Lemma 1 (Characterization of the minimal rest)
Let L be a DL with structural subsumption, T an L-

terminology, and Q an L-concept description. Let HT Q =
(Σ, Γ ) be the hypergraph built from the terminology T and

the concept Q = A1 ⊓ . . .⊓Ak provided by its RCF. The min-

imal rest (i.e., the rest whose size is minimal) of rewriting Q
using T is: Restmin ≡ Aj1⊓. . .⊓Ajl

, ∀ji ∈ [1, k]|wAji
= ∅.

From the previous lemma we know that the minimal rest of
rewriting a query Q using T is always unique and equivalent
to Restmin.

Lemma 2 (Characterization of covers that minimize the rest)

Let ĤT Q = (Σ, Γ ′) be the hypergraph built by removing the

empty edges from HT Q. A rewriting E ≡ Si1 ⊓ . . .⊓Sim
, with

1 ≤ m ≤ n and Sij
∈ ST for 1 ≤ j ≤ m, is a cover of Q

using T that minimizes the rest iff XE = {VSij
, j ∈ [1, m]}

is a transversal of ĤT Q.

This lemma characterizes the covers that minimize the rest.
Consequently, computing the best covers will consist of deter-
mining, from those covers, the ones that minimize the miss.
To express miss minimization in the hypergraphs framework,
we introduce the following notion of cost.

Definition 10 (Cost of a set of vertices)
Let BCOV(T , Q) be an instance of the best covering prob-

lem and ĤT Q = (Σ, Γ ′) its associated hypergraph. The cost

of the set of vertices X is defined as follows: cost(X) =
|MissEX

(Q)|.

Therefore, the best covering problem can be reduced to the
computation of the transversals with minimal cost of the hy-

pergraph ĤT Q. Clearly, it is only interesting to consider min-
imal transversals. In a nutshell, the BCOV(T , Q) problem
can be reduced to the computation of the minimal transver-

sals with minimal cost of the hypergraph ĤT Q. Therefore, we
can reuse and adapt known techniques for computing minimal
transversals (e.g., see [7,16,27]) for solving the best covering
problem.

3.3 Illustrating example

To illustrate the best covering problem, let us consider a termi-
nology T containing the following concepts (Web services):

• ToTravel: allows one to search for trips given a depar-
ture place, an arrival place, an arrival date, and an ar-
rival time.

• FromTravel: allows one to search for trips given a de-
parture place, an arrival place, a departure date, and
a departure time.

• Hotel: allows one to search for hotels given a destination
place, a check-in date, a check-out date, the number
of adults, and the number of children.

The terminology T , depicted in Table 2, is described
using the description logic FL0∪{≥ n R}.6

6 We denote by FL0∪(≥ n R) the description logic FL0 aug-

mented with the construct (≥ n R).
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Table 2. Example of a terminology

ToTravel ≡ (≥ 1 departurePlace) ⊓ ( ∀ departurePlace.Location) ⊓ (≥
1 arrivalPlace) ⊓ (∀ arrivalPlace.Location) ⊓ (≥ 1 arrival-
Date) ⊓ (∀ arrivalDate.Date) ⊓ (≥ 1 arrivalTime) ⊓ (∀ ar-
rivalTime.Time)

FromTravel ≡ (≥ 1 departurePlace) ⊓ (∀ departurePlace.Location) ⊓ (≥ 1
arrivalPlace) ⊓ (∀ arrivalPlace.Location) ⊓ (≥ 1 departure-
Date) ⊓ (∀ departureDate.Date) ⊓ (≥ 1 departureTime) ⊓
(∀ departureTime.Time)

Hotel ≡ Accommodation ⊓ (≥ 1 destinationPlace) ⊓ (∀ destina-
tionPlace.Location) ⊓ (≥ 1 checkIn) ⊓ (∀ checkIn.Date) ⊓
(≥ 1 checkOut) ⊓ (∀ checkOut.Date) ⊓ (≥ 1 nbAdults)
⊓ (∀ nbAdults.Integer) ⊓ (≥ 1 nbChildren) ⊓ (∀ nbChil-
dren.Integer)

Let us consider now the following query description:
Q ≡ (≥ 1 departurePlace) ⊓ (∀ departure-

Place.Location) ⊓ (≥ 1 arrivalPlace) ⊓ (∀ ar-
rivalPlace.Location) ⊓ (≥ 1 departureDate)
⊓ (∀ departureDate.Date) ⊓ Accommoda-
tion ⊓ (≥ 1 destinationPlace) ⊓ (∀ desti-
nationPlace.Location) ⊓ (≥ 1 checkIn) ⊓ (∀
checkIn.Date) ⊓ (≥ 1 checkOut) ⊓ (∀ check-
Out.Date) ⊓ carRental

We assume that the concept names (e.g., Location, Date,
Accommodation) that appear in the description of the query
Q and/or in the concept descriptions of T are all atomic
concepts. Hence, the query Q and the concepts of T are
all provided by their RCFs.7 Therefore, the associated hy-
pergraph HT Q = (Σ, Γ ) consists of the set of vertices
Σ = {VToTravel, VFromTravel, VHotel} and the set of edges:

Γ = {w(≥1departureP lace), w(∀departureP lace.Location),
w(≥1arrivalP lace), w(∀arrivalP lace.Location),

w(≥1departureDate), w(∀departureDate.Date),
wAccommodation, w(≥1destinationPlace),

w(∀destinationPlace.Location), w(≥1checkIn),

w(∀checkIn.Date), w(≥1checkOut), w(∀checkOut.Date),
wcarRental}.

The hypergraph HT Q = (Σ, Γ ) is depicted in Fig. 1.
We can see that no concept covers the clause correspond-
ing to the edge wcarRental (as we have wcarRental = ∅).
Since this is the only empty edge in Γ , the best covers of
Q using T will have exactly the following rest: Restmin ≡

carRental. Now, considering the hypergraph ĤT Q, the only
minimal transversal is: X = {VFromTravel, VHotel}. Thus
EX ≡ Hotel⊓FromTravel is the best cover of Q using the
terminology T . The size of the missing information of EX is
obtained from the transversal X as shown below:
cost(X) = |MissFromTravel⊓Hotel(Q)| = |(≥ 1 depar-
tureTime) ⊓ (∀ departureTime.Time) ⊓ (≥ 1 nbAdults)
⊓ (∀ nbAdults.Integer) ⊓ (≥ 1 nbChildren) ⊓ (∀
nbChildren.Integer)| = 6.

In this example, we do not consider this cost because the

hypergraph ĤT Q has only one minimal transversal.

7 Otherwise, we have to recursively unfold the concept (resp.

query) description by replacing by its definition each concept name

appearing in the concept (resp. query) description.

4 Computing best covers

In this section we present an algorithm called computeBCov

for computing the best covers of a concept Q using a terminol-
ogy T . In the previous section, we showed that this problem
can be reduced to the search of the transversals with minimal
cost of the hypergraph ĤT Q. The problem of computing min-
imal transversals of a hypergraph is central in various fields of
computer science [16]. The precise complexity of this problem
is still an open issue. In [19], it is shown that the generation of
the transversal hypergraph can be done in incremental subex-
ponential time kO(logk), where k is the combined size of the
input and the output. To the best of our knowledge, this is
the best time bound for the problem of computing minimal
transversals of a hypergraph.

A classical algorithm for computing the minimal transver-
sals of a hypergraph is presented in [7,16,27]. The algorithm
is incremental and works in n steps, where n is the num-
ber of edges of the hypergraph. Starting from an empty set
of transversals, the basic idea is to explore each edge of the
hypergraph, one edge in each step, and to generate a set of can-
didate transversals by computing all the possible unions of the
candidates generated in the previous step and each vertex in
the considered edge. At each step, the nonminimal candidate
transversals are pruned.

Thus a naive approach to computing the minimal transver-
sals with a minimal cost consists in computing all the minimal
transversals, using such an algorithm, and then choosing those
transversals that have the minimal cost. The computeBCov al-
gorithm presented below makes the following improvements
with respect to the naive approach:

1. It reduces the number of candidates in the intermediary
steps of the algorithm by generating only the minimal
transversals.

2. It uses a combinatorial optimization technique (branch-
and-bound) in order to prune, at the intermediary steps of
the algorithm, those candidate transversals that will not
generate transversals with a minimal cost.

These two optimizations have been implemented as sep-
arate options of the algorithm, namely, option Pers for the
first optimization and option BnB for the second one.8 The

8 Other less significant optimization options have also been imple-

mented.
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Fig. 1. Example of a hypergraph

first optimization allows one to generate only good candidates
(only minimal transversals) at each iteration (line 5 of the al-
gorithm). To do so, we use a necessary and sufficient condition
(provided by Theorem 2 below) to describe a pair (Xi, sj) that
will generate a nonminimal transversal at iteration i, where Xi

is a minimal transversal generated at iteration i − 1 and sj is
a vertex of the i-th edge.

Algorithm 1 computeBCov (skeleton)

Require: An instance BCOV(T , Q) of the best covering prob-
lem.

Ensure: The set of the best covers of Q using T .
1: Build the associated hypergraph ĤT Q = (Σ, Γ ′).
2: Tr ← ∅ – Initialization of the minimal transversal set.
3:

CostEval←
∑

e∈Γ ′

min
VSi

∈e
(|MissSi(Q)|). – Initialization of CostEval

4: for all edge E ∈ Γ ′ do
5: Tr ← the newly generated set of the minimal transver-

sals.
6: Remove from Tr the transversals whose costs are greater

than CostEval.
7: Compute a more precise evaluation of CostEval.
8: end for
9: for all X ∈ Tr such that |MissEX

(Q)| = CostEval do
10: return the concept EX as a best cover of Q using T .
11: end for

Theorem 2 Let Tr(H) = {Xi, i = 1..m} be the set of min-

imal transversals for the hypergraph H and E = {sj , j =
1..n} an edge of H. Assume H′ = H ∪ E. Then we have:

Xi ∪ {sj} is a nonminimal transversal of H′ ⇔ there exists a

minimal transversal Xk of H such that Xk ∩ E = {sj} and

Xk \ {sj} ⊂ Xi.

Details and proofs of Theorem 2 are given in [33].
The second improvement consists in a branch-and-bound

like enumeration of transversals. First, a simple heuristic is
used to efficiently compute the cost of a good transversal (i.e.,
a transversal expected to have a small cost). This can be carried
out by adding, for each edge of the hypergraph, the cost of the
vertex that has the minimal cost. The resulting cost is stored
in the variable CostEval (line 3 of the algorithm). Recall that
for any set of vertices X = {Si, . . . , Sn}:

cost(X) = |PmissSi⊓...⊓Sn
(Q)| ≤

∑

j∈[i,n]

|PmissSj
(Q)|

=
∑

Sj∈X

cost(Sj).

The evaluation of CostEval is an upper bound of the
cost of an existing transversal. As we consider candidates in
intermediate steps of the algorithm, we can eliminate from
Tr(HT Q) any candidate transversal that has a cost greater
than CostEval since that candidate could not possibly lead
to a transversal that is better than what we already have (line 6).
From each candidate transversal remaining in Tr(HT Q) we
compute a new evaluation for CostEval by considering only
remaining edges (line 7).

At the end of the algorithm, each computed minimal
transversal X ∈ Tr is transformed into a concept EX that
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constitutes an element of the solution to the BCOV(T , Q)
problem (line 10).

5 Semantic reasoning for Web services discovery

In this section, we describe how the proposed reasoning mech-
anism can be used to automate the discovery of Web services
in the context of DAML-S ontologies.9 More details on these
aspects can be found in [5].

DAML-S [13] is an ontology for describing Web services.
It employs the DAML+OIL ontology language [14] to de-
scribe the properties and capabilities of Web services in a
computer-interpretable form, thereby facilitating the automa-
tion of Web service discovery, invocation, composition and
execution. DAML-S supplies a core set of markup language
constructs for describingWeb services in terms of classes (con-
cepts) and complex relationships between them.

A DAML-S ontology of services is structured in three main
parts [13]:

• ServiceProfile describes the capabilities and parameters
of the service. It is used for advertising and discovering
services.

• ServiceModel gives a detailed description of a service’s
operation. Service operation is described in terms of a pro-
cess model that presents both the control structure and data
flow structure of the service required to execute a service.

• ServiceGrounding specifies the details of how to access
the service via messages (e.g., communication protocol,
message formats, addressing, etc).

The service profile provides information about a service
that can be used by an agent to determine if the service meets
its needs. It consists of three types of information: a (human-
readable) description of the service, the functional behavior

of the service that is represented as a transformation from the
service inputs to the service outputs, and several nonfunctional

attributes that specify additional information about a service
(e.g., the cost of the service).

In the DAML-S approach, a service profile is intended to
be used by providers to advertise their services as well as by
service requesters to specify their needs.

5.1 Best covering profile descriptions

We describe now how the proposed algorithm can be adapted
to support dynamic discovery of DAML-S services. It is worth
noting that we do not deal with the full expressiveness of the
DAML+OIL language. We consider only DAML-S ontolo-
gies expressed using a subset of the DAML+OIL language for
which a structural subsumption algorithm exists. Below such
ontologies are called restricted DAML-S ontologies.

As proposed in [31], a match between a query (expressed
by means of a service profile) and an advertised service is de-
termined by comparing all the outputs of the query with the
outputs of the advertisement and all the inputs of the advertise-
ment with the inputs of the query. We adopt the same idea for
comparing requests with advertised services, but we propose

9 http://www.daml.org/services/

to use computeBCov instead of the matchmaking algorithm
given in [31]. Intuitively, we target a service discovery mech-
anism that works as follows: given a service request Q and a
DAML-S ontology T , we want to compute the best combi-
nation of Web services that satisfies as much as possible the
outputs of the request Q and that requires as few input as pos-

sible that are not provided in the description of Q. We call such
a combination of Web services a best profile cover of Q using
T . To achieve this task, we need to extend the best covering
techniques, as presented in Sect. 3, to take into account profile
descriptions as presented below.

Let T = {Si, i ∈ [1, n]} be a restricted DAML-S ontology
and E ≡ Sl ⊓ . . . ⊓ Sp, with l, p ∈ [1, n], be a conjunction
of some services occurring in T . We denote by I(E) (resp.
O(E)) the concept determined using the conjunction of all
the inputs (resp. the outputs) occurring in the profile section
of all the services Si, for all i ∈ [l, p]. In the same way, we use
I(Q) (resp. O(Q)) to denote the concept determined using the
conjunction of all the inputs (resp. the outputs) occurring in
the profile section of a given query Q.

We extend the notions of cover, rest, and miss to service
profiles as follows.

Definition 11 Profile cover (Pcover)
A profile cover, called Pcover, of Q using T is a con-

junction E of some services Si from T such that O(Q) −
lcsT (O(Q), O(E)) ≡ O(Q).

Hence, a Pcover of a query Q using T is defined as any
conjunction of Web services occurring in T that shares some
outputs with Q.

Definition 12 Profile rest (Prest) and profile miss (Pmiss)
Let Q be a service request and E a cover of Q using T . The

Prest of Q with respect to E, denoted by PrestE(Q), is de-

fined as follows: PrestE(Q)
.
= O(Q)− lcsT (O(Q), O(E)).

The profile missing information about Q with respect to E, de-

noted by PmissE(Q), is defined as follows: PmissE(Q)
.
=

I(E) − lcsT (I(Q), I(E)).

Finally, the notion of best profile cover can be extended
to profiles by respectively replacing rest and miss by Prest

and Pmiss in definition 7 [6]. Consequently, the algorithm
computeBCov, presented in the previous section, can be
adapted and used as a matchmaking algorithm for discovering
DAML-S services based on their capabilities. We devised a
new algorithm, called computeBProfileCov, for this purpose.
According to definitions 11 and 12, the algorithm selects the
combinations of services that best match a given query and
effectively computes the outputs of the query that cannot be
satisfied by the available services (i.e., Prest) as well as the
inputs that are required by the selected services and are not
provided in the query (i.e., Pmiss).

5.2 Illustrative example

This example illustrates how the notion of best profile cover
can be used to match a service request with service adver-
tisements. Let us consider an ontology of Web services that
contains the following three services:



92 B. Benatallah et al.: On automating Web services discovery

Table 3. Input and output service parameters

Service Input Output

ToTravel Itinerary, Arrival TripReservation

FromTravel Itinerary, Departure TripReservation

Hotel Destination, StayDuration HotelReservation

• ToTravel allows one to reserve a trip given an itinerary
(i.e., the departure point and the arrival point) and the ar-
rival time and date.

• FromTravel allows one to reserve a trip given an
itinerary and the departure time and date.

• Hotel allows one to reserve a hotel given a destination
place, a period of time expressed in terms of the check-in
date, and the check-out date.

Table 3 shows the input and the output concepts of the
three Web services. We assume that the service profiles refer
to concepts defined in the restricted DAML+OIL tourism on-
tology given in Table 4. For the sake of clarity, we use the
usual DL syntax instead of the DAML+OIL syntax to de-
scribe the ontology. In Table 4, the description of the con-
cept Itinerary denotes the class of individuals whose depar-
ture places (resp. arrival places) are instances of the concept
Location. Moreover, the individual that belongs to this class
must have at least one departure place (the constraint (≥ 1 de-
parturePlace)) and at least one arrival place (the constraint
(≥ 1 arrivalPlace)). The input of the service ToTravel is
obtained using the conjunction of all its inputs as follows:
I(ToTravel) ≡ Itinerary ⊓ Arrival. By replacing the
concepts Itinerary and Arrival with their descriptions, we ob-
tain the following equivalent description:
I(ToTravel) ≡ (≥ 1 departurePlace) ⊓ ( ∀ departure-

Place.Location) ⊓ (≥ 1 arrivalPlace) ⊓
(∀ arrivalPlace.Location) ⊓ (≥ 1 arrival-
Date) ⊓ (∀ arrivalDate.Date) ⊓ (≥ 1 ar-
rivalTime) ⊓ (∀ arrivalTime.Time)

The inputs and outputs of the other Web services can be
computed in the same way.

Now let us consider a service request Q that searches for
a vacation package that combines a trip with a hotel and a car
rental, given a departure place, an arrival place, a departure
date, a (hotel) destination place, and check-in and check-out
dates. The inputs and outputs of the query Q can be expressed
by the following descriptions that, again, refer to some con-
cepts of the tourism ontology given in Table 4:

I(Q) ≡ (≥ 1 departurePlace) ⊓ (∀ departure-
Place.Location) ⊓ (≥ 1 arrivalPlace) ⊓ (∀
arrivalPlace.Location) ⊓ (≥ 1 departureDate) ⊓
(∀ departureDate.Date) ⊓ (≥ 1 destinationPlace)
⊓ (∀ destinationPlace.Location) ⊓ (≥ 1 checkIn)
⊓ (∀ checkIn.Date) ⊓ (≥ 1 checkOut) ⊓ (∀
checkOut.Date)

O(Q) ≡ TripReservation ⊓ HotelReservation ⊓ CarRental

The matching between the service request Q and the three
advertised services given above can be achieved by computing
the best profile cover of Q using these services. The result is
the following:

Best profile cover Prest Pmiss

FromTravel, Hotel CarRental departureTime

In this example, there is only one best profile cover
of Q corresponding to the description E ≡ Hotel ⊓
FromTravel. The selected services generate the concepts
TripReservation and HotelReservation, which are part of
the output required by the query Q. From the service descrip-
tions we can see that no Web service supplies the concept Car-
Rental. Hence, the best profile covers of Q will have exactly
the following profile rest: PrestE(Q) ≡ carRental. This rest
corresponds to the output of the query that cannot be generated
by any advertised service. Moreover, the Pmiss column shows
the information (the role departureTime) required as input
of the selected services but not provided in the query inputs.
More precisely, the best profile covers of Q will have exactly
the following profile missing information: PmissE(Q) ≡ (≥
1 departureTime) ⊓ (∀ departureTime.Time). It is worth noting
that, although the solution E′ ≡ Hotel ⊓ ToTravel gener-
ates the same outputs (i.e., the concepts TripReservation
and HotelReservation), it will not be selected because its
Pmiss is greater than that of the first solution (it contains the
roles arrivalTime and arrivalDate).

6 Evaluation and experiments

In this section, we describe a testbed prototype implemen-
tation of the computeBCov algorithm. This prototype imple-
mentation has been motivated by three goals: (i) to validate the
feasibility of the approach, (ii) to test the correctness of the
computeBCov algorithm, and (iii) to study the performance
and scalability of computeBCov.

The first two goals were achieved in the context
of a European project – the MKBEEM project.10 To
achieve the third goal, we have integrated into the
prototype a tool based on the IBM XML Generator
(http://www.alphaworks.ibm.com/tech/xmlgenerator) that en-
ables one to generate random XML-based service ontologies
and associated service requests.

6.1 Application scenario

We used our prototype in the context of the MKBEEM project,
which aims at providing electronic marketplaces with intelli-
gent, knowledge-based multilingual services. The main ob-
jective of MKBEEM is to create an intelligent knowledge-

based multilingual mediation service that features the follow-
ing building blocks [29]:

• Natural language interfaces for both the end user and the
system’s content providers/service providers.

• Automatic multilingual cataloging of products by service
providers.

• Online e-commerce contractual negotiation mechanisms
in the language of the user that guarantee safety and free-
dom.

In this project, ontologies are used to provide a consensual
representation of the electronic commerce field in two typical
domains (tourism and mail order). In MKBEEM, ontologies
are structured in three layers, as shown in Fig. 2. The global

10 MKBEEM stands for Multilingual Knowledge Based European

Electronic Marketplace (IST-1999-10589, 1 February 2000–1 De-

cember 2002): http://www.mkbeem.com.
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Table 4. Example of a tourism ontology

Itinerary ≡ (≥ 1 departurePlace) ⊓ (
∀ departurePlace.Location) ⊓ (≥ 1 arrivalPlace) ⊓ (∀
arrivalPlace.Location)

Arrival ≡ (≥ 1 arrivalDate) ⊓ (∀ arrivalDate.Date) ⊓ (≥ 1 arrival-
Time) ⊓ (∀ arrivalTime.Time)

Departure ≡ (≥ 1 departureDate) ⊓ (∀ departureDate.Date) ⊓ (≥ 1
departureTime) ⊓ (∀ departureTime.Time)

Destination ≡ (≥ 1 destinationPlace) ⊓ (∀ destinationPlace.Location)
StayDuration ≡ (≥ 1 checkIn) ⊓ (∀ checkIn.Date) ⊓ (≥ 1 checkOut) ⊓

(∀ checkOut.Date)
TripReservation ≡ . . .

HotelReservation ≡ . . .
CarRental ≡ . . .

MKBEEM Global Ontology

Tourism Mail order

Domain ontology

SNCF B&B Ellos...

Sources descriptions

services Ontology service level

Global and
domain

Ontologies

Source level

Fig. 2. Knowledge representation in the MKBEEM system

ontology describes the common terms used in the whole MK-
BEEM platform. This ontology represents the general knowl-
edge in different domains while each domain ontology con-
tains specific concepts corresponding to vertical domains (e.g.,
tourism). The service ontology describes classes of services,
e.g., service capabilities, nonfunctionnal attributes, etc. The
source descriptions specify concrete services (i.e., provider
offerings) in terms of service ontology. The MKBEEM me-
diation system allows one to fill the gap between customer
queries (possibly expressed in a natural language) and diverse
concrete provider offerings. In a typical scenario, users express
their requests in a natural language, and the requests are then
translated into ontological formulas expressed using domain
ontologies. Then, the MKBEEM system relies on the proposed
reasoning mechanism to reformulate user queries against the
domain ontology in terms of Web services. The aim here is
to allow the users/applications to automatically discover the
available Web services that best meet their needs, to examine
service capabilities, and to possibly complete missing infor-
mation.

In our implementation we used ontologies with approxi-
mately 300 concepts and 50 Web services to validate the ap-
plicability of the proposed approach. Indeed, this implementa-
tion has shown the effectiveness of the proposed matchmaking
mechanism in two distinct end-user scenarios: (i) business-

to-consumer online sales and (ii) Web-based travel/tourism
services.

6.2 Quantitative experiments

To conduct experiments, we have implemented up to six ver-
sions of the computeBCov algorithm corresponding to differ-
ent combinations of optimization options. The prototype is
implemented using the Java programming language. All ex-
periments were performed using a PC with a 500-MHz Pen-
tium III and 384 MB RAM.

To quantitatively test computeBCov, we first have to run
computeBCov on the worst cases and then on a set of ontolo-
gies and queries randomly generated by our prototype. com-

puteBCov worst cases were built according to a theoretical
study of the complexity of all versions of computeBCov: two
ontologies (and their associated queries) were built to maxi-
mize the number of minimal transversals of the corresponding
hypergraph as well as the number of elementary operations of
the algorithm (i.e., inclusion tests and intersection operations).
In each case, there exists at least one version of computeBCov

that completes the execution in less than 20 s. It should be
noted that although these cases are bad for computeBCov, they
are also totally unrealistic with respect to practical situations.

We generated larger but still realistic random ontologies.
We focus here on three case studies with varying sizes of ap-
plication domain ontology, of the Web service ontology, and
of the query. Their characteristics are given below:

Configurations Case 1 Case 2 Case 3

Number of defined concepts in the

application domain ontology

365 1334 3405

Number of Web services 366 660 570

Number of (atomic) clauses in the

query

6 33 12

Note that the internal structures of these ontologies correspond
to bad cases for the computeBCov algorithm. We have run the
six versions of the computeBCov algorithm based on these
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Pers: false, 

BnB2

7 : BnB: true, 

Pers: true, 

BnB1

8 : BnB: true, 

Pers: true, 

BnB2

(1s)

(10s)

(1mn40s)

(16mn40s)

(2h46mn40s)

(27h46mn40s)
(˜ 4h43mn)

(˜ 1mn40s)

(˜ 4h)

(˜ 2h53mn)

(˜ 5mn30s)

5 6 7 8 5 6 7 8

Fig. 3. Execution time

cases. The overall execution time results are given in Fig. 3.11

This figure shows that for cases 1 and 3 (resp. case 2), there
is at least a version of the algorithm that runs in less than 2 s
(resp. less than 30 s). Although Fig. 3 shows that there is a
great difference in performance of the different versions of
the algorithm, in each case there is at least one efficient ver-
sion of the algorithm even when the domain ontology is quite
large. Details about the implementation of computeBCov, the
theoretical study of worst cases, the parameterized ontology
generation process, and experimental results can be found in
[33].

7 Related work

In this section, we first review related work in the area of
Semantic Web services discovery, then we examine the re-
lationship of our work with the problem of query (concept)
rewriting.

7.1 Semantic Web services discovery

Current Web services infrastructure have serious limitations
with respect to meeting the automation challenges. For ex-
ample, UDDI provides limited search facilities allowing only
a keyword-based search of businesses, services, and the so-
called tModels based on names and identifiers. To cope with

11 Note that versions 1 and 2 of the algorithm (resp. 3 and 4) are sim-

ilar as both run computeBCov without BnB, and what distinguishes

1 from 2 (resp. 3 from 4) is the way the option BnB is implemented

(BnB1 or BnB2).

this limitation, emerging approaches rely on Semantic Web
technology to support service discovery [21,31]. For example,
[8] proposes to use process ontologies to describe the behavior
of services and then to query such ontologies using a process
query language (PQL). Chakraborty et al. [11] define an on-
tology based on DAML [12] to describe mobile devices and
propose a matching mechanism that locates devices based on
their features (e.g., a type of a printer). The matching mecha-
nism exploits rules that use the ontology, service profile infor-
mation, and query to perform matching based on relationships
between attributes and their values. A Prolog-based reasoning
engine is used to support such a matching. There are other ap-
proaches based on a DAML+OIL [25] description of services
that propose to exploit the DL-based reasoning mechanisms.

An experience in building a matchmaking prototype based
on a DL reasoner that considers DAML+OIL-based service
descriptions is reported by [21]. The proposed matchmaking
algorithm is based on simple subsumption and consistency
tests. A more sophisticated matchmaking algorithm between
services and requests described in DAML-S is proposed by
[31].12 The algorithm considers various degrees of matching
that are determined by the minimal distance between con-
cepts in the concept taxonomy. Based on a similar approach,
the ATLAS matchmaker [32] considers DAML-S ontologies
and utilizes two separate sets of filters: (1) Matching func-
tional attributes to determine the applicability of advertise-
ments (i.e., do they deliver sufficient quality of service, etc).
The matching is achieved by performing conjunctive pairwise
comparison for the functional attributes; (2) matching service
functionality to determine if the advertised service matches

12 http://www.daml.org/services/
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the requested service. A DAML-based subsumption inference
engine is used to compare input and output sets of requests
and advertisements.

Finally, it should be noted that the problem of capabilities-
based matching has also been addressed by several other re-
search communities, e.g., information retrieval, software reuse
systems, and multiagent communities. More details about
these approaches and their applicability in the context of the
Semantic Web services area can be found in [8,31]. Our work
makes complementary contributions to the efforts mentioned
above. More precisely, our approach builds upon existing ser-
vice description languages and provides the following building
blocks for flexible and effective service discovery:

• A global reasoning mechanism: we propose a matchmak-
ing algorithm that goes beyond a pairwise comparison be-
tween a service request and service offerings by allow-
ing the discovery of combinations of services that match
(cover) a given request.

• A flexible matchmaking process that goes beyond sub-
sumption tests.

• Effective computation of missed information: the differ-
ence between the query and its rewriting (i.e., rest and
miss) is effectively computed and can be used, for exam-
ple, to improve service repository interactions.

7.2 Query (concept) rewriting

From a technical point of view, the best covering problem
belongs to the general framework for rewriting using termi-

nologies provided in [3]. This framework is defined as follows:

• Given a terminology T (i.e., a set of concept descriptions),
a concept description Q that does not contain concept
names defined in T and a binary relation ρ between con-
cept descriptions, can Q be rewritten into a description E,
built using (some) of the names defined in T , such that
QρE?

• Additionally, some optimality criterion is defined to select
the relevant rewritings.

Already investigated instances of this problem are the min-
imal rewriting problem [3] and rewriting queries using views
[4,20,23].

Minimal rewriting is concerned with the problem of rewrit-
ing a concept description Q into a shorter but equivalent de-
scription (hence ρ is equivalence modulo T and the size of the
rewriting is used as the optimality criterion). Here the focus is
on determining a rewriting that is shorter and more readable
than the original description.

The problem of rewriting queries using views has been
intensively investigated in the database area (see [23] for a
survey). The purpose here is to rewrite a query Q into a query
expression that uses only a set of views V . Two main kinds of
rewritings have been studied:

• Maximally contained rewritings where ρ is the subsump-
tion and the optimality criterion is the inverse subsump-
tion. This kind of rewriting plays an important role in
many applications such as information integration and data
warehousing.

• Equivalent rewriting where ρ is the equivalence and the
optimality criterion is minimization of the cost of the cor-
responding query plan. This kind of rewriting has been
used mainly for query optimization purposes.

The best covering problem can be viewed as a new in-
stance of the problem of rewriting concepts using terminolo-
gies where:

• ρ correponds to the notion of cover (hence, it is neither
equivalence nor subsumption), and

• The optimality criterion is the minimization of the rest and
the miss.

8 Conclusion

In this paper we have presented a novel approach to automate
the discovery of Web services. We formalized service discov-
ery as a rewriting process and then investigated this problem
in the context of restricted framework of description logics
with structural subsumption. These logics ensure that the dif-
ference operation is always semantically unique and can be
computed using a structural difference operation. In this con-
text, we have shown that the best covering problem can be
mapped to the problem of computing the minimal transver-
sals with minimum cost of a “weighted" hypergraph.

The framework of languages with a semantically unique
difference appears to be sufficient in the context of the MK-
BEEM project. But the languages that are proposed to achieve
the Semantic Web vision appear to be more expressive. Our
future work will be devoted to the extension of the proposed
framework to hold the definition of the best covering problem
for description logics where the difference operation is not se-
mantically unique. In this case, the difference operation does
not yield a unique result and thus the proposed definition of a
best cover is no longer valid. We also plan to (i) consider ser-
vice discovery when there is a large number of heterogeneous
ontologies and (ii) extend the proposed technique to support
service composition automation.
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